1 /* -*- Mode: C; tab-width: 4 -*- 2 * 3 * Copyright (c) 2002-2003 Apple Computer, Inc. All rights reserved. 4 * 5 * Licensed under the Apache License, Version 2.0 (the "License"); 6 * you may not use this file except in compliance with the License. 7 * You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 // Set mDNS_InstantiateInlines to tell mDNSEmbeddedAPI.h to instantiate inline functions, if necessary 19 #define mDNS_InstantiateInlines 1 20 #include "DNSCommon.h" 21 22 // Disable certain benign warnings with Microsoft compilers 23 #if (defined(_MSC_VER)) 24 // Disable "conditional expression is constant" warning for debug macros. 25 // Otherwise, this generates warnings for the perfectly natural construct "while(1)" 26 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know 27 #pragma warning(disable:4127) 28 // Disable "array is too small to include a terminating null character" warning 29 // -- domain labels have an initial length byte, not a terminating null character 30 #pragma warning(disable:4295) 31 #endif 32 33 // *************************************************************************** 34 #if COMPILER_LIKES_PRAGMA_MARK 35 #pragma mark - Program Constants 36 #endif 37 38 mDNSexport const mDNSInterfaceID mDNSInterface_Any = 0; 39 mDNSexport const mDNSInterfaceID mDNSInterfaceMark = (mDNSInterfaceID)-1; 40 mDNSexport const mDNSInterfaceID mDNSInterface_LocalOnly = (mDNSInterfaceID)-2; 41 mDNSexport const mDNSInterfaceID mDNSInterface_Unicast = (mDNSInterfaceID)-3; 42 mDNSexport const mDNSInterfaceID mDNSInterface_P2P = (mDNSInterfaceID)-4; 43 44 // Note: Microsoft's proposed "Link Local Multicast Name Resolution Protocol" (LLMNR) is essentially a limited version of 45 // Multicast DNS, using the same packet formats, naming syntax, and record types as Multicast DNS, but on a different UDP 46 // port and multicast address, which means it won't interoperate with the existing installed base of Multicast DNS responders. 47 // LLMNR uses IPv4 multicast address 224.0.0.252, IPv6 multicast address FF02::0001:0003, and UDP port 5355. 48 // Uncomment the appropriate lines below to build a special Multicast DNS responder for testing interoperability 49 // with Microsoft's LLMNR client code. 50 51 #define DiscardPortAsNumber 9 52 #define SSHPortAsNumber 22 53 #define UnicastDNSPortAsNumber 53 54 #define SSDPPortAsNumber 1900 55 #define IPSECPortAsNumber 4500 56 #define NSIPCPortAsNumber 5030 // Port used for dnsextd to talk to local nameserver bound to loopback 57 #define NATPMPAnnouncementPortAsNumber 5350 58 #define NATPMPPortAsNumber 5351 59 #define DNSEXTPortAsNumber 5352 // Port used for end-to-end DNS operations like LLQ, Updates with Leases, etc. 60 #define MulticastDNSPortAsNumber 5353 61 #define LoopbackIPCPortAsNumber 5354 62 //#define MulticastDNSPortAsNumber 5355 // LLMNR 63 #define PrivateDNSPortAsNumber 5533 64 65 mDNSexport const mDNSIPPort DiscardPort = { { DiscardPortAsNumber >> 8, DiscardPortAsNumber & 0xFF } }; 66 mDNSexport const mDNSIPPort SSHPort = { { SSHPortAsNumber >> 8, SSHPortAsNumber & 0xFF } }; 67 mDNSexport const mDNSIPPort UnicastDNSPort = { { UnicastDNSPortAsNumber >> 8, UnicastDNSPortAsNumber & 0xFF } }; 68 mDNSexport const mDNSIPPort SSDPPort = { { SSDPPortAsNumber >> 8, SSDPPortAsNumber & 0xFF } }; 69 mDNSexport const mDNSIPPort IPSECPort = { { IPSECPortAsNumber >> 8, IPSECPortAsNumber & 0xFF } }; 70 mDNSexport const mDNSIPPort NSIPCPort = { { NSIPCPortAsNumber >> 8, NSIPCPortAsNumber & 0xFF } }; 71 mDNSexport const mDNSIPPort NATPMPAnnouncementPort = { { NATPMPAnnouncementPortAsNumber >> 8, NATPMPAnnouncementPortAsNumber & 0xFF } }; 72 mDNSexport const mDNSIPPort NATPMPPort = { { NATPMPPortAsNumber >> 8, NATPMPPortAsNumber & 0xFF } }; 73 mDNSexport const mDNSIPPort DNSEXTPort = { { DNSEXTPortAsNumber >> 8, DNSEXTPortAsNumber & 0xFF } }; 74 mDNSexport const mDNSIPPort MulticastDNSPort = { { MulticastDNSPortAsNumber >> 8, MulticastDNSPortAsNumber & 0xFF } }; 75 mDNSexport const mDNSIPPort LoopbackIPCPort = { { LoopbackIPCPortAsNumber >> 8, LoopbackIPCPortAsNumber & 0xFF } }; 76 mDNSexport const mDNSIPPort PrivateDNSPort = { { PrivateDNSPortAsNumber >> 8, PrivateDNSPortAsNumber & 0xFF } }; 77 78 mDNSexport const OwnerOptData zeroOwner = { 0, 0, { { 0 } }, { { 0 } }, { { 0 } } }; 79 80 mDNSexport const mDNSIPPort zeroIPPort = { { 0 } }; 81 mDNSexport const mDNSv4Addr zerov4Addr = { { 0 } }; 82 mDNSexport const mDNSv6Addr zerov6Addr = { { 0 } }; 83 mDNSexport const mDNSEthAddr zeroEthAddr = { { 0 } }; 84 mDNSexport const mDNSv4Addr onesIPv4Addr = { { 255, 255, 255, 255 } }; 85 mDNSexport const mDNSv6Addr onesIPv6Addr = { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 } }; 86 mDNSexport const mDNSEthAddr onesEthAddr = { { 255, 255, 255, 255, 255, 255 } }; 87 mDNSexport const mDNSAddr zeroAddr = { mDNSAddrType_None, {{{ 0 }}} }; 88 89 mDNSexport const mDNSv4Addr AllDNSAdminGroup = { { 239, 255, 255, 251 } }; 90 mDNSexport const mDNSv4Addr AllHosts_v4 = { { 224, 0, 0, 1 } }; // For NAT-PMP Annoucements 91 mDNSexport const mDNSv6Addr AllHosts_v6 = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01 } }; 92 mDNSexport const mDNSv6Addr NDP_prefix = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01, 0xFF,0x00,0x00,0xFB } }; // FF02:0:0:0:0:1:FF00::/104 93 mDNSexport const mDNSEthAddr AllHosts_v6_Eth = { { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 } }; 94 mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 251 } } } }; 95 //mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 252 } } } }; // LLMNR 96 mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFB } } } }; 97 //mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x01,0x00,0x03 } } } }; // LLMNR 98 99 mDNSexport const mDNSOpaque16 zeroID = { { 0, 0 } }; 100 mDNSexport const mDNSOpaque16 onesID = { { 255, 255 } }; 101 mDNSexport const mDNSOpaque16 QueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery, 0 } }; 102 mDNSexport const mDNSOpaque16 uQueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, 0 } }; 103 mDNSexport const mDNSOpaque16 ResponseFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_StdQuery | kDNSFlag0_AA, 0 } }; 104 mDNSexport const mDNSOpaque16 UpdateReqFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_Update, 0 } }; 105 mDNSexport const mDNSOpaque16 UpdateRespFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_Update, 0 } }; 106 107 mDNSexport const mDNSOpaque64 zeroOpaque64 = { { 0 } }; 108 109 // *************************************************************************** 110 #if COMPILER_LIKES_PRAGMA_MARK 111 #pragma mark - 112 #pragma mark - General Utility Functions 113 #endif 114 115 // return true for RFC1918 private addresses 116 mDNSexport mDNSBool mDNSv4AddrIsRFC1918(mDNSv4Addr *addr) 117 { 118 return ((addr->b[0] == 10) || // 10/8 prefix 119 (addr->b[0] == 172 && (addr->b[1] & 0xF0) == 16) || // 172.16/12 120 (addr->b[0] == 192 && addr->b[1] == 168)); // 192.168/16 121 } 122 123 mDNSexport NetworkInterfaceInfo *GetFirstActiveInterface(NetworkInterfaceInfo *intf) 124 { 125 while (intf && !intf->InterfaceActive) intf = intf->next; 126 return(intf); 127 } 128 129 mDNSexport mDNSInterfaceID GetNextActiveInterfaceID(const NetworkInterfaceInfo *intf) 130 { 131 const NetworkInterfaceInfo *next = GetFirstActiveInterface(intf->next); 132 if (next) return(next->InterfaceID); else return(mDNSNULL); 133 } 134 135 mDNSexport mDNSu32 NumCacheRecordsForInterfaceID(const mDNS *const m, mDNSInterfaceID id) 136 { 137 mDNSu32 slot, used = 0; 138 CacheGroup *cg; 139 const CacheRecord *rr; 140 FORALL_CACHERECORDS(slot, cg, rr) 141 if (rr->resrec.InterfaceID == id) used++; 142 return(used); 143 } 144 145 mDNSexport char *DNSTypeName(mDNSu16 rrtype) 146 { 147 switch (rrtype) 148 { 149 case kDNSType_A: return("Addr"); 150 case kDNSType_NS: return("NS"); 151 case kDNSType_CNAME:return("CNAME"); 152 case kDNSType_SOA: return("SOA"); 153 case kDNSType_NULL: return("NULL"); 154 case kDNSType_PTR: return("PTR"); 155 case kDNSType_HINFO:return("HINFO"); 156 case kDNSType_TXT: return("TXT"); 157 case kDNSType_AAAA: return("AAAA"); 158 case kDNSType_SRV: return("SRV"); 159 case kDNSType_OPT: return("OPT"); 160 case kDNSType_NSEC: return("NSEC"); 161 case kDNSType_TSIG: return("TSIG"); 162 case kDNSQType_ANY: return("ANY"); 163 default: { 164 static char buffer[16]; 165 mDNS_snprintf(buffer, sizeof(buffer), "(%d)", rrtype); 166 return(buffer); 167 } 168 } 169 } 170 171 // Note slight bug: this code uses the rdlength from the ResourceRecord object, to display 172 // the rdata from the RDataBody object. Sometimes this could be the wrong length -- but as 173 // long as this routine is only used for debugging messages, it probably isn't a big problem. 174 mDNSexport char *GetRRDisplayString_rdb(const ResourceRecord *const rr, const RDataBody *const rd1, char *const buffer) 175 { 176 const RDataBody2 *const rd = (RDataBody2 *)rd1; 177 #define RemSpc (MaxMsg-1-length) 178 char *ptr = buffer; 179 mDNSu32 length = mDNS_snprintf(buffer, MaxMsg-1, "%4d %##s %s ", rr->rdlength, rr->name->c, DNSTypeName(rr->rrtype)); 180 if (rr->RecordType == kDNSRecordTypePacketNegative) return(buffer); 181 if (!rr->rdlength) { mDNS_snprintf(buffer+length, RemSpc, "<< ZERO RDATA LENGTH >>"); return(buffer); } 182 183 switch (rr->rrtype) 184 { 185 case kDNSType_A: mDNS_snprintf(buffer+length, RemSpc, "%.4a", &rd->ipv4); break; 186 187 case kDNSType_NS: // Same as PTR 188 case kDNSType_CNAME:// Same as PTR 189 case kDNSType_PTR: mDNS_snprintf(buffer+length, RemSpc, "%##s", rd->name.c); break; 190 191 case kDNSType_SOA: mDNS_snprintf(buffer+length, RemSpc, "%##s %##s %d %d %d %d %d", 192 rd->soa.mname.c, rd->soa.rname.c, 193 rd->soa.serial, rd->soa.refresh, rd->soa.retry, rd->soa.expire, rd->soa.min); 194 break; 195 196 case kDNSType_HINFO:// Display this the same as TXT (show all constituent strings) 197 case kDNSType_TXT: { 198 const mDNSu8 *t = rd->txt.c; 199 while (t < rd->txt.c + rr->rdlength) 200 { 201 length += mDNS_snprintf(buffer+length, RemSpc, "%s%#s", t > rd->txt.c ? "" : "", t); 202 t += 1 + t[0]; 203 } 204 } break; 205 206 case kDNSType_AAAA: mDNS_snprintf(buffer+length, RemSpc, "%.16a", &rd->ipv6); break; 207 case kDNSType_SRV: mDNS_snprintf(buffer+length, RemSpc, "%u %u %u %##s", 208 rd->srv.priority, rd->srv.weight, mDNSVal16(rd->srv.port), rd->srv.target.c); break; 209 210 case kDNSType_OPT: { 211 const rdataOPT *opt; 212 const rdataOPT *const end = (const rdataOPT *)&rd->data[rr->rdlength]; 213 length += mDNS_snprintf(buffer+length, RemSpc, "Max %d", rr->rrclass); 214 for (opt = &rd->opt[0]; opt < end; opt++) 215 { 216 switch(opt->opt) 217 { 218 case kDNSOpt_LLQ: 219 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.llq.vers); 220 length += mDNS_snprintf(buffer+length, RemSpc, " Op %d", opt->u.llq.llqOp); 221 length += mDNS_snprintf(buffer+length, RemSpc, " Err/Port %d", opt->u.llq.err); 222 length += mDNS_snprintf(buffer+length, RemSpc, " ID %08X%08X", opt->u.llq.id.l[0], opt->u.llq.id.l[1]); 223 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.llq.llqlease); 224 break; 225 case kDNSOpt_Lease: 226 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.updatelease); 227 break; 228 case kDNSOpt_Owner: 229 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.owner.vers); 230 length += mDNS_snprintf(buffer+length, RemSpc, " Seq %3d", (mDNSu8)opt->u.owner.seq); // Display as unsigned 231 length += mDNS_snprintf(buffer+length, RemSpc, " MAC %.6a", opt->u.owner.HMAC.b); 232 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4) 233 { 234 length += mDNS_snprintf(buffer+length, RemSpc, " I-MAC %.6a", opt->u.owner.IMAC.b); 235 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4) 236 length += mDNS_snprintf(buffer+length, RemSpc, " Password %.6a", opt->u.owner.password.b); 237 } 238 break; 239 default: 240 length += mDNS_snprintf(buffer+length, RemSpc, " Unknown %d", opt->opt); 241 break; 242 } 243 } 244 } 245 break; 246 247 case kDNSType_NSEC: { 248 mDNSu16 i; 249 for (i=0; i<255; i++) 250 if (rd->nsec.bitmap[i>>3] & (128 >> (i&7))) 251 length += mDNS_snprintf(buffer+length, RemSpc, "%s ", DNSTypeName(i)); 252 } 253 break; 254 255 default: mDNS_snprintf(buffer+length, RemSpc, "RDLen %d: %s", rr->rdlength, rd->data); 256 // Really should scan buffer to check if text is valid UTF-8 and only replace with dots if not 257 for (ptr = buffer; *ptr; ptr++) if (*ptr < ' ') *ptr = '.'; 258 break; 259 } 260 return(buffer); 261 } 262 263 // See comments in mDNSEmbeddedAPI.h 264 #if _PLATFORM_HAS_STRONG_PRNG_ 265 #define mDNSRandomNumber mDNSPlatformRandomNumber 266 #else 267 mDNSlocal mDNSu32 mDNSRandomFromSeed(mDNSu32 seed) 268 { 269 return seed * 21 + 1; 270 } 271 272 mDNSlocal mDNSu32 mDNSMixRandomSeed(mDNSu32 seed, mDNSu8 iteration) 273 { 274 return iteration ? mDNSMixRandomSeed(mDNSRandomFromSeed(seed), --iteration) : seed; 275 } 276 277 mDNSlocal mDNSu32 mDNSRandomNumber() 278 { 279 static mDNSBool seeded = mDNSfalse; 280 static mDNSu32 seed = 0; 281 if (!seeded) 282 { 283 seed = mDNSMixRandomSeed(mDNSPlatformRandomSeed(), 100); 284 seeded = mDNStrue; 285 } 286 return (seed = mDNSRandomFromSeed(seed)); 287 } 288 #endif // ! _PLATFORM_HAS_STRONG_PRNG_ 289 290 mDNSexport mDNSu32 mDNSRandom(mDNSu32 max) // Returns pseudo-random result from zero to max inclusive 291 { 292 mDNSu32 ret = 0; 293 mDNSu32 mask = 1; 294 295 while (mask < max) mask = (mask << 1) | 1; 296 297 do ret = mDNSRandomNumber() & mask; 298 while (ret > max); 299 300 return ret; 301 } 302 303 mDNSexport mDNSBool mDNSSameAddress(const mDNSAddr *ip1, const mDNSAddr *ip2) 304 { 305 if (ip1->type == ip2->type) 306 { 307 switch (ip1->type) 308 { 309 case mDNSAddrType_None : return(mDNStrue); // Empty addresses have no data and are therefore always equal 310 case mDNSAddrType_IPv4 : return(mDNSBool)(mDNSSameIPv4Address(ip1->ip.v4, ip2->ip.v4)); 311 case mDNSAddrType_IPv6 : return(mDNSBool)(mDNSSameIPv6Address(ip1->ip.v6, ip2->ip.v6)); 312 } 313 } 314 return(mDNSfalse); 315 } 316 317 mDNSexport mDNSBool mDNSAddrIsDNSMulticast(const mDNSAddr *ip) 318 { 319 switch(ip->type) 320 { 321 case mDNSAddrType_IPv4: return(mDNSBool)(mDNSSameIPv4Address(ip->ip.v4, AllDNSLinkGroup_v4.ip.v4)); 322 case mDNSAddrType_IPv6: return(mDNSBool)(mDNSSameIPv6Address(ip->ip.v6, AllDNSLinkGroup_v6.ip.v6)); 323 default: return(mDNSfalse); 324 } 325 } 326 327 // *************************************************************************** 328 #if COMPILER_LIKES_PRAGMA_MARK 329 #pragma mark - 330 #pragma mark - Domain Name Utility Functions 331 #endif 332 333 mDNSexport mDNSBool SameDomainLabel(const mDNSu8 *a, const mDNSu8 *b) 334 { 335 int i; 336 const int len = *a++; 337 338 if (len > MAX_DOMAIN_LABEL) 339 { debugf("Malformed label (too long)"); return(mDNSfalse); } 340 341 if (len != *b++) return(mDNSfalse); 342 for (i=0; i<len; i++) 343 { 344 mDNSu8 ac = *a++; 345 mDNSu8 bc = *b++; 346 if (mDNSIsUpperCase(ac)) ac += 'a' - 'A'; 347 if (mDNSIsUpperCase(bc)) bc += 'a' - 'A'; 348 if (ac != bc) return(mDNSfalse); 349 } 350 return(mDNStrue); 351 } 352 353 mDNSexport mDNSBool SameDomainName(const domainname *const d1, const domainname *const d2) 354 { 355 const mDNSu8 * a = d1->c; 356 const mDNSu8 * b = d2->c; 357 const mDNSu8 *const max = d1->c + MAX_DOMAIN_NAME; // Maximum that's valid 358 359 while (*a || *b) 360 { 361 if (a + 1 + *a >= max) 362 { debugf("Malformed domain name (more than 256 characters)"); return(mDNSfalse); } 363 if (!SameDomainLabel(a, b)) return(mDNSfalse); 364 a += 1 + *a; 365 b += 1 + *b; 366 } 367 368 return(mDNStrue); 369 } 370 371 mDNSexport mDNSBool SameDomainNameCS(const domainname *const d1, const domainname *const d2) 372 { 373 mDNSu16 l1 = DomainNameLength(d1); 374 mDNSu16 l2 = DomainNameLength(d2); 375 return(l1 <= MAX_DOMAIN_NAME && l1 == l2 && mDNSPlatformMemSame(d1, d2, l1)); 376 } 377 378 mDNSexport mDNSBool IsLocalDomain(const domainname *d) 379 { 380 // Domains that are defined to be resolved via link-local multicast are: 381 // local., 254.169.in-addr.arpa., and {8,9,A,B}.E.F.ip6.arpa. 382 static const domainname *nL = (const domainname*)"\x5" "local"; 383 static const domainname *nR = (const domainname*)"\x3" "254" "\x3" "169" "\x7" "in-addr" "\x4" "arpa"; 384 static const domainname *n8 = (const domainname*)"\x1" "8" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa"; 385 static const domainname *n9 = (const domainname*)"\x1" "9" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa"; 386 static const domainname *nA = (const domainname*)"\x1" "a" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa"; 387 static const domainname *nB = (const domainname*)"\x1" "b" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa"; 388 389 const domainname *d1, *d2, *d3, *d4, *d5; // Top-level domain, second-level domain, etc. 390 d1 = d2 = d3 = d4 = d5 = mDNSNULL; 391 while (d->c[0]) 392 { 393 d5 = d4; d4 = d3; d3 = d2; d2 = d1; d1 = d; 394 d = (const domainname*)(d->c + 1 + d->c[0]); 395 } 396 397 if (d1 && SameDomainName(d1, nL)) return(mDNStrue); 398 if (d4 && SameDomainName(d4, nR)) return(mDNStrue); 399 if (d5 && SameDomainName(d5, n8)) return(mDNStrue); 400 if (d5 && SameDomainName(d5, n9)) return(mDNStrue); 401 if (d5 && SameDomainName(d5, nA)) return(mDNStrue); 402 if (d5 && SameDomainName(d5, nB)) return(mDNStrue); 403 return(mDNSfalse); 404 } 405 406 mDNSexport const mDNSu8 *LastLabel(const domainname *d) 407 { 408 const mDNSu8 *p = d->c; 409 while (d->c[0]) 410 { 411 p = d->c; 412 d = (const domainname*)(d->c + 1 + d->c[0]); 413 } 414 return(p); 415 } 416 417 // Returns length of a domain name INCLUDING the byte for the final null label 418 // e.g. for the root label "." it returns one 419 // For the FQDN "com." it returns 5 (length byte, three data bytes, final zero) 420 // Legal results are 1 (just root label) to 256 (MAX_DOMAIN_NAME) 421 // If the given domainname is invalid, result is 257 (MAX_DOMAIN_NAME+1) 422 mDNSexport mDNSu16 DomainNameLengthLimit(const domainname *const name, const mDNSu8 *limit) 423 { 424 const mDNSu8 *src = name->c; 425 while (src < limit && *src <= MAX_DOMAIN_LABEL) 426 { 427 if (*src == 0) return((mDNSu16)(src - name->c + 1)); 428 src += 1 + *src; 429 } 430 return(MAX_DOMAIN_NAME+1); 431 } 432 433 // CompressedDomainNameLength returns the length of a domain name INCLUDING the byte 434 // for the final null label, e.g. for the root label "." it returns one. 435 // E.g. for the FQDN "foo.com." it returns 9 436 // (length, three data bytes, length, three more data bytes, final zero). 437 // In the case where a parent domain name is provided, and the given name is a child 438 // of that parent, CompressedDomainNameLength returns the length of the prefix portion 439 // of the child name, plus TWO bytes for the compression pointer. 440 // E.g. for the name "foo.com." with parent "com.", it returns 6 441 // (length, three data bytes, two-byte compression pointer). 442 mDNSexport mDNSu16 CompressedDomainNameLength(const domainname *const name, const domainname *parent) 443 { 444 const mDNSu8 *src = name->c; 445 if (parent && parent->c[0] == 0) parent = mDNSNULL; 446 while (*src) 447 { 448 if (*src > MAX_DOMAIN_LABEL) return(MAX_DOMAIN_NAME+1); 449 if (parent && SameDomainName((const domainname *)src, parent)) return((mDNSu16)(src - name->c + 2)); 450 src += 1 + *src; 451 if (src - name->c >= MAX_DOMAIN_NAME) return(MAX_DOMAIN_NAME+1); 452 } 453 return((mDNSu16)(src - name->c + 1)); 454 } 455 456 // CountLabels() returns number of labels in name, excluding final root label 457 // (e.g. for "apple.com." CountLabels returns 2.) 458 mDNSexport int CountLabels(const domainname *d) 459 { 460 int count = 0; 461 const mDNSu8 *ptr; 462 for (ptr = d->c; *ptr; ptr = ptr + ptr[0] + 1) count++; 463 return count; 464 } 465 466 // SkipLeadingLabels skips over the first 'skip' labels in the domainname, 467 // returning a pointer to the suffix with 'skip' labels removed. 468 mDNSexport const domainname *SkipLeadingLabels(const domainname *d, int skip) 469 { 470 while (skip > 0 && d->c[0]) { d = (const domainname *)(d->c + 1 + d->c[0]); skip--; } 471 return(d); 472 } 473 474 // AppendLiteralLabelString appends a single label to an existing (possibly empty) domainname. 475 // The C string contains the label as-is, with no escaping, etc. 476 // Any dots in the name are literal dots, not label separators 477 // If successful, AppendLiteralLabelString returns a pointer to the next unused byte 478 // in the domainname bufer (i.e. the next byte after the terminating zero). 479 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes) 480 // AppendLiteralLabelString returns mDNSNULL. 481 mDNSexport mDNSu8 *AppendLiteralLabelString(domainname *const name, const char *cstr) 482 { 483 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name 484 const mDNSu8 *const lim1 = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero) 485 const mDNSu8 *const lim2 = ptr + 1 + MAX_DOMAIN_LABEL; 486 const mDNSu8 *const lim = (lim1 < lim2) ? lim1 : lim2; 487 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go 488 489 while (*cstr && ptr < lim) *ptr++ = (mDNSu8)*cstr++; // Copy the data 490 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte 491 *ptr++ = 0; // Put the null root label on the end 492 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input 493 else return(ptr); // Success: return new value of ptr 494 } 495 496 // AppendDNSNameString appends zero or more labels to an existing (possibly empty) domainname. 497 // The C string is in conventional DNS syntax: 498 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots. 499 // If successful, AppendDNSNameString returns a pointer to the next unused byte 500 // in the domainname bufer (i.e. the next byte after the terminating zero). 501 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes) 502 // AppendDNSNameString returns mDNSNULL. 503 mDNSexport mDNSu8 *AppendDNSNameString(domainname *const name, const char *cstring) 504 { 505 const char *cstr = cstring; 506 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name 507 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero) 508 while (*cstr && ptr < lim) // While more characters, and space to put them... 509 { 510 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go 511 if (*cstr == '.') { LogMsg("AppendDNSNameString: Illegal empty label in name \"%s\"", cstring); return(mDNSNULL); } 512 while (*cstr && *cstr != '.' && ptr < lim) // While we have characters in the label... 513 { 514 mDNSu8 c = (mDNSu8)*cstr++; // Read the character 515 if (c == '\\') // If escape character, check next character 516 { 517 c = (mDNSu8)*cstr++; // Assume we'll just take the next character 518 if (mDNSIsDigit(cstr[-1]) && mDNSIsDigit(cstr[0]) && mDNSIsDigit(cstr[1])) 519 { // If three decimal digits, 520 int v0 = cstr[-1] - '0'; // then interpret as three-digit decimal 521 int v1 = cstr[ 0] - '0'; 522 int v2 = cstr[ 1] - '0'; 523 int val = v0 * 100 + v1 * 10 + v2; 524 if (val <= 255) { c = (mDNSu8)val; cstr += 2; } // If valid three-digit decimal value, use it 525 } 526 } 527 *ptr++ = c; // Write the character 528 } 529 if (*cstr) cstr++; // Skip over the trailing dot (if present) 530 if (ptr - lengthbyte - 1 > MAX_DOMAIN_LABEL) // If illegal label, abort 531 return(mDNSNULL); 532 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte 533 } 534 535 *ptr++ = 0; // Put the null root label on the end 536 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input 537 else return(ptr); // Success: return new value of ptr 538 } 539 540 // AppendDomainLabel appends a single label to a name. 541 // If successful, AppendDomainLabel returns a pointer to the next unused byte 542 // in the domainname bufer (i.e. the next byte after the terminating zero). 543 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes) 544 // AppendDomainLabel returns mDNSNULL. 545 mDNSexport mDNSu8 *AppendDomainLabel(domainname *const name, const domainlabel *const label) 546 { 547 int i; 548 mDNSu8 *ptr = name->c + DomainNameLength(name) - 1; 549 550 // Check label is legal 551 if (label->c[0] > MAX_DOMAIN_LABEL) return(mDNSNULL); 552 553 // Check that ptr + length byte + data bytes + final zero does not exceed our limit 554 if (ptr + 1 + label->c[0] + 1 > name->c + MAX_DOMAIN_NAME) return(mDNSNULL); 555 556 for (i=0; i<=label->c[0]; i++) *ptr++ = label->c[i]; // Copy the label data 557 *ptr++ = 0; // Put the null root label on the end 558 return(ptr); 559 } 560 561 mDNSexport mDNSu8 *AppendDomainName(domainname *const name, const domainname *const append) 562 { 563 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name 564 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero) 565 const mDNSu8 * src = append->c; 566 while (src[0]) 567 { 568 int i; 569 if (ptr + 1 + src[0] > lim) return(mDNSNULL); 570 for (i=0; i<=src[0]; i++) *ptr++ = src[i]; 571 *ptr = 0; // Put the null root label on the end 572 src += i; 573 } 574 return(ptr); 575 } 576 577 // MakeDomainLabelFromLiteralString makes a single domain label from a single literal C string (with no escaping). 578 // If successful, MakeDomainLabelFromLiteralString returns mDNStrue. 579 // If unable to convert the whole string to a legal domain label (i.e. because length is more than 63 bytes) then 580 // MakeDomainLabelFromLiteralString makes a legal domain label from the first 63 bytes of the string and returns mDNSfalse. 581 // In some cases silently truncated oversized names to 63 bytes is acceptable, so the return result may be ignored. 582 // In other cases silent truncation may not be acceptable, so in those cases the calling function needs to check the return result. 583 mDNSexport mDNSBool MakeDomainLabelFromLiteralString(domainlabel *const label, const char *cstr) 584 { 585 mDNSu8 * ptr = label->c + 1; // Where we're putting it 586 const mDNSu8 *const limit = label->c + 1 + MAX_DOMAIN_LABEL; // The maximum we can put 587 while (*cstr && ptr < limit) *ptr++ = (mDNSu8)*cstr++; // Copy the label 588 label->c[0] = (mDNSu8)(ptr - label->c - 1); // Set the length byte 589 return(*cstr == 0); // Return mDNStrue if we successfully consumed all input 590 } 591 592 // MakeDomainNameFromDNSNameString makes a native DNS-format domainname from a C string. 593 // The C string is in conventional DNS syntax: 594 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots. 595 // If successful, MakeDomainNameFromDNSNameString returns a pointer to the next unused byte 596 // in the domainname bufer (i.e. the next byte after the terminating zero). 597 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes) 598 // MakeDomainNameFromDNSNameString returns mDNSNULL. 599 mDNSexport mDNSu8 *MakeDomainNameFromDNSNameString(domainname *const name, const char *cstr) 600 { 601 name->c[0] = 0; // Make an empty domain name 602 return(AppendDNSNameString(name, cstr)); // And then add this string to it 603 } 604 605 mDNSexport char *ConvertDomainLabelToCString_withescape(const domainlabel *const label, char *ptr, char esc) 606 { 607 const mDNSu8 * src = label->c; // Domain label we're reading 608 const mDNSu8 len = *src++; // Read length of this (non-null) label 609 const mDNSu8 *const end = src + len; // Work out where the label ends 610 if (len > MAX_DOMAIN_LABEL) return(mDNSNULL); // If illegal label, abort 611 while (src < end) // While we have characters in the label 612 { 613 mDNSu8 c = *src++; 614 if (esc) 615 { 616 if (c == '.' || c == esc) // If character is a dot or the escape character 617 *ptr++ = esc; // Output escape character 618 else if (c <= ' ') // If non-printing ascii, 619 { // Output decimal escape sequence 620 *ptr++ = esc; 621 *ptr++ = (char) ('0' + (c / 100) ); 622 *ptr++ = (char) ('0' + (c / 10) % 10); 623 c = (mDNSu8)('0' + (c ) % 10); 624 } 625 } 626 *ptr++ = (char)c; // Copy the character 627 } 628 *ptr = 0; // Null-terminate the string 629 return(ptr); // and return 630 } 631 632 // Note: To guarantee that there will be no possible overrun, cstr must be at least MAX_ESCAPED_DOMAIN_NAME (1009 bytes) 633 mDNSexport char *ConvertDomainNameToCString_withescape(const domainname *const name, char *ptr, char esc) 634 { 635 const mDNSu8 *src = name->c; // Domain name we're reading 636 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid 637 638 if (*src == 0) *ptr++ = '.'; // Special case: For root, just write a dot 639 640 while (*src) // While more characters in the domain name 641 { 642 if (src + 1 + *src >= max) return(mDNSNULL); 643 ptr = ConvertDomainLabelToCString_withescape((const domainlabel *)src, ptr, esc); 644 if (!ptr) return(mDNSNULL); 645 src += 1 + *src; 646 *ptr++ = '.'; // Write the dot after the label 647 } 648 649 *ptr++ = 0; // Null-terminate the string 650 return(ptr); // and return 651 } 652 653 // RFC 1034 rules: 654 // Host names must start with a letter, end with a letter or digit, 655 // and have as interior characters only letters, digits, and hyphen. 656 // This was subsequently modified in RFC 1123 to allow the first character to be either a letter or a digit 657 658 mDNSexport void ConvertUTF8PstringToRFC1034HostLabel(const mDNSu8 UTF8Name[], domainlabel *const hostlabel) 659 { 660 const mDNSu8 * src = &UTF8Name[1]; 661 const mDNSu8 *const end = &UTF8Name[1] + UTF8Name[0]; 662 mDNSu8 * ptr = &hostlabel->c[1]; 663 const mDNSu8 *const lim = &hostlabel->c[1] + MAX_DOMAIN_LABEL; 664 while (src < end) 665 { 666 // Delete apostrophes from source name 667 if (src[0] == '\'') { src++; continue; } // Standard straight single quote 668 if (src + 2 < end && src[0] == 0xE2 && src[1] == 0x80 && src[2] == 0x99) 669 { src += 3; continue; } // Unicode curly apostrophe 670 if (ptr < lim) 671 { 672 if (mDNSValidHostChar(*src, (ptr > &hostlabel->c[1]), (src < end-1))) *ptr++ = *src; 673 else if (ptr > &hostlabel->c[1] && ptr[-1] != '-') *ptr++ = '-'; 674 } 675 src++; 676 } 677 while (ptr > &hostlabel->c[1] && ptr[-1] == '-') ptr--; // Truncate trailing '-' marks 678 hostlabel->c[0] = (mDNSu8)(ptr - &hostlabel->c[1]); 679 } 680 681 #define ValidTransportProtocol(X) ( (X)[0] == 4 && (X)[1] == '_' && \ 682 ((((X)[2] | 0x20) == 'u' && ((X)[3] | 0x20) == 'd') || (((X)[2] | 0x20) == 't' && ((X)[3] | 0x20) == 'c')) && \ 683 ((X)[4] | 0x20) == 'p') 684 685 mDNSexport mDNSu8 *ConstructServiceName(domainname *const fqdn, 686 const domainlabel *name, const domainname *type, const domainname *const domain) 687 { 688 int i, len; 689 mDNSu8 *dst = fqdn->c; 690 const mDNSu8 *src; 691 const char *errormsg; 692 #if APPLE_OSX_mDNSResponder 693 mDNSBool loggedUnderscore = mDNSfalse; 694 static char typeBuf[MAX_ESCAPED_DOMAIN_NAME]; 695 #endif 696 697 // In the case where there is no name (and ONLY in that case), 698 // a single-label subtype is allowed as the first label of a three-part "type" 699 if (!name && type) 700 { 701 const mDNSu8 *s0 = type->c; 702 if (s0[0] && s0[0] < 0x40) // If legal first label (at least one character, and no more than 63) 703 { 704 const mDNSu8 * s1 = s0 + 1 + s0[0]; 705 if (s1[0] && s1[0] < 0x40) // and legal second label (at least one character, and no more than 63) 706 { 707 const mDNSu8 *s2 = s1 + 1 + s1[0]; 708 if (s2[0] && s2[0] < 0x40 && s2[1+s2[0]] == 0) // and we have three and only three labels 709 { 710 static const mDNSu8 SubTypeLabel[5] = "\x04_sub"; 711 src = s0; // Copy the first label 712 len = *src; 713 for (i=0; i <= len; i++) *dst++ = *src++; 714 for (i=0; i < (int)sizeof(SubTypeLabel); i++) *dst++ = SubTypeLabel[i]; 715 type = (const domainname *)s1; 716 717 // Special support to enable the DNSServiceBrowse call made by Bonjour Browser 718 // For these queries, we retract the "._sub" we just added between the subtype and the main type 719 // Remove after Bonjour Browser is updated to use DNSServiceQueryRecord instead of DNSServiceBrowse 720 if (SameDomainName((domainname*)s0, (const domainname*)"\x09_services\x07_dns-sd\x04_udp")) 721 dst -= sizeof(SubTypeLabel); 722 } 723 } 724 } 725 } 726 727 if (name && name->c[0]) 728 { 729 src = name->c; // Put the service name into the domain name 730 len = *src; 731 if (len >= 0x40) { errormsg = "Service instance name too long"; goto fail; } 732 for (i=0; i<=len; i++) *dst++ = *src++; 733 } 734 else 735 name = (domainlabel*)""; // Set this up to be non-null, to avoid errors if we have to call LogMsg() below 736 737 src = type->c; // Put the service type into the domain name 738 len = *src; 739 if (len < 2 || len > 16) 740 { 741 LogMsg("Bad service type in %#s.%##s%##s Application protocol name must be underscore plus 1-15 characters. " 742 "See <http://www.dns-sd.org/ServiceTypes.html>", name->c, type->c, domain->c); 743 #if APPLE_OSX_mDNSResponder 744 ConvertDomainNameToCString(type, typeBuf); 745 mDNSASLLog(mDNSNULL, "serviceType.nameTooLong", "noop", typeBuf, ""); 746 #endif 747 } 748 if (len < 2 || len >= 0x40 || (len > 16 && !SameDomainName(domain, &localdomain))) return(mDNSNULL); 749 if (src[1] != '_') { errormsg = "Application protocol name must begin with underscore"; goto fail; } 750 for (i=2; i<=len; i++) 751 { 752 // Letters and digits are allowed anywhere 753 if (mDNSIsLetter(src[i]) || mDNSIsDigit(src[i])) continue; 754 // Hyphens are only allowed as interior characters 755 // Underscores are not supposed to be allowed at all, but for backwards compatibility with some old products we do allow them, 756 // with the same rule as hyphens 757 if ((src[i] == '-' || src[i] == '_') && i > 2 && i < len) 758 { 759 #if APPLE_OSX_mDNSResponder 760 if (src[i] == '_' && loggedUnderscore == mDNSfalse) 761 { 762 ConvertDomainNameToCString(type, typeBuf); 763 mDNSASLLog(mDNSNULL, "serviceType.nameWithUnderscore", "noop", typeBuf, ""); 764 loggedUnderscore = mDNStrue; 765 } 766 #endif 767 continue; 768 } 769 errormsg = "Application protocol name must contain only letters, digits, and hyphens"; 770 #if APPLE_OSX_mDNSResponder 771 { 772 ConvertDomainNameToCString(type, typeBuf); 773 mDNSASLLog(mDNSNULL, "serviceType.nameWithIllegalCharacters", "noop", typeBuf, ""); 774 } 775 #endif 776 goto fail; 777 } 778 for (i=0; i<=len; i++) *dst++ = *src++; 779 780 len = *src; 781 if (!ValidTransportProtocol(src)) { errormsg = "Transport protocol name must be _udp or _tcp"; goto fail; } 782 for (i=0; i<=len; i++) *dst++ = *src++; 783 784 if (*src) { errormsg = "Service type must have only two labels"; goto fail; } 785 786 *dst = 0; 787 if (!domain->c[0]) { errormsg = "Service domain must be non-empty"; goto fail; } 788 if (SameDomainName(domain, (const domainname*)"\x05" "local" "\x04" "arpa")) 789 { errormsg = "Illegal domain \"local.arpa.\" Use \"local.\" (or empty string)"; goto fail; } 790 dst = AppendDomainName(fqdn, domain); 791 if (!dst) { errormsg = "Service domain too long"; goto fail; } 792 return(dst); 793 794 fail: 795 LogMsg("ConstructServiceName: %s: %#s.%##s%##s", errormsg, name->c, type->c, domain->c); 796 return(mDNSNULL); 797 } 798 799 // A service name has the form: instance.application-protocol.transport-protocol.domain 800 // DeconstructServiceName is currently fairly forgiving: It doesn't try to enforce character 801 // set or length limits for the protocol names, and the final domain is allowed to be empty. 802 // However, if the given FQDN doesn't contain at least three labels, 803 // DeconstructServiceName will reject it and return mDNSfalse. 804 mDNSexport mDNSBool DeconstructServiceName(const domainname *const fqdn, 805 domainlabel *const name, domainname *const type, domainname *const domain) 806 { 807 int i, len; 808 const mDNSu8 *src = fqdn->c; 809 const mDNSu8 *max = fqdn->c + MAX_DOMAIN_NAME; 810 mDNSu8 *dst; 811 812 dst = name->c; // Extract the service name 813 len = *src; 814 if (!len) { debugf("DeconstructServiceName: FQDN empty!"); return(mDNSfalse); } 815 if (len >= 0x40) { debugf("DeconstructServiceName: Instance name too long"); return(mDNSfalse); } 816 for (i=0; i<=len; i++) *dst++ = *src++; 817 818 dst = type->c; // Extract the service type 819 len = *src; 820 if (!len) { debugf("DeconstructServiceName: FQDN contains only one label!"); return(mDNSfalse); } 821 if (len >= 0x40) { debugf("DeconstructServiceName: Application protocol name too long"); return(mDNSfalse); } 822 if (src[1] != '_'){ debugf("DeconstructServiceName: No _ at start of application protocol"); return(mDNSfalse); } 823 for (i=0; i<=len; i++) *dst++ = *src++; 824 825 len = *src; 826 if (!len) { debugf("DeconstructServiceName: FQDN contains only two labels!"); return(mDNSfalse); } 827 if (!ValidTransportProtocol(src)) 828 { debugf("DeconstructServiceName: Transport protocol must be _udp or _tcp"); return(mDNSfalse); } 829 for (i=0; i<=len; i++) *dst++ = *src++; 830 *dst++ = 0; // Put terminator on the end of service type 831 832 dst = domain->c; // Extract the service domain 833 while (*src) 834 { 835 len = *src; 836 if (len >= 0x40) 837 { debugf("DeconstructServiceName: Label in service domain too long"); return(mDNSfalse); } 838 if (src + 1 + len + 1 >= max) 839 { debugf("DeconstructServiceName: Total service domain too long"); return(mDNSfalse); } 840 for (i=0; i<=len; i++) *dst++ = *src++; 841 } 842 *dst++ = 0; // Put the null root label on the end 843 844 return(mDNStrue); 845 } 846 847 // Notes on UTF-8: 848 // 0xxxxxxx represents a 7-bit ASCII value from 0x00 to 0x7F 849 // 10xxxxxx is a continuation byte of a multi-byte character 850 // 110xxxxx is the first byte of a 2-byte character (11 effective bits; values 0x 80 - 0x 800-1) 851 // 1110xxxx is the first byte of a 3-byte character (16 effective bits; values 0x 800 - 0x 10000-1) 852 // 11110xxx is the first byte of a 4-byte character (21 effective bits; values 0x 10000 - 0x 200000-1) 853 // 111110xx is the first byte of a 5-byte character (26 effective bits; values 0x 200000 - 0x 4000000-1) 854 // 1111110x is the first byte of a 6-byte character (31 effective bits; values 0x4000000 - 0x80000000-1) 855 // 856 // UTF-16 surrogate pairs are used in UTF-16 to encode values larger than 0xFFFF. 857 // Although UTF-16 surrogate pairs are not supposed to appear in legal UTF-8, we want to be defensive 858 // about that too. (See <http://www.unicode.org/faq/utf_bom.html#34>, "What are surrogates?") 859 // The first of pair is a UTF-16 value in the range 0xD800-0xDBFF (11101101 1010xxxx 10xxxxxx in UTF-8), 860 // and the second is a UTF-16 value in the range 0xDC00-0xDFFF (11101101 1011xxxx 10xxxxxx in UTF-8). 861 862 mDNSexport mDNSu32 TruncateUTF8ToLength(mDNSu8 *string, mDNSu32 length, mDNSu32 max) 863 { 864 if (length > max) 865 { 866 mDNSu8 c1 = string[max]; // First byte after cut point 867 mDNSu8 c2 = (max+1 < length) ? string[max+1] : (mDNSu8)0xB0; // Second byte after cut point 868 length = max; // Trim length down 869 while (length > 0) 870 { 871 // Check if the byte right after the chop point is a UTF-8 continuation byte, 872 // or if the character right after the chop point is the second of a UTF-16 surrogate pair. 873 // If so, then we continue to chop more bytes until we get to a legal chop point. 874 mDNSBool continuation = ((c1 & 0xC0) == 0x80); 875 mDNSBool secondsurrogate = (c1 == 0xED && (c2 & 0xF0) == 0xB0); 876 if (!continuation && !secondsurrogate) break; 877 c2 = c1; 878 c1 = string[--length]; 879 } 880 // Having truncated characters off the end of our string, also cut off any residual white space 881 while (length > 0 && string[length-1] <= ' ') length--; 882 } 883 return(length); 884 } 885 886 // Returns true if a rich text label ends in " (nnn)", or if an RFC 1034 887 // name ends in "-nnn", where n is some decimal number. 888 mDNSexport mDNSBool LabelContainsSuffix(const domainlabel *const name, const mDNSBool RichText) 889 { 890 mDNSu16 l = name->c[0]; 891 892 if (RichText) 893 { 894 if (l < 4) return mDNSfalse; // Need at least " (2)" 895 if (name->c[l--] != ')') return mDNSfalse; // Last char must be ')' 896 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Preceeded by a digit 897 l--; 898 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits 899 return (name->c[l] == '(' && name->c[l - 1] == ' '); 900 } 901 else 902 { 903 if (l < 2) return mDNSfalse; // Need at least "-2" 904 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Last char must be a digit 905 l--; 906 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits 907 return (name->c[l] == '-'); 908 } 909 } 910 911 // removes an auto-generated suffix (appended on a name collision) from a label. caller is 912 // responsible for ensuring that the label does indeed contain a suffix. returns the number 913 // from the suffix that was removed. 914 mDNSexport mDNSu32 RemoveLabelSuffix(domainlabel *name, mDNSBool RichText) 915 { 916 mDNSu32 val = 0, multiplier = 1; 917 918 // Chop closing parentheses from RichText suffix 919 if (RichText && name->c[0] >= 1 && name->c[name->c[0]] == ')') name->c[0]--; 920 921 // Get any existing numerical suffix off the name 922 while (mDNSIsDigit(name->c[name->c[0]])) 923 { val += (name->c[name->c[0]] - '0') * multiplier; multiplier *= 10; name->c[0]--; } 924 925 // Chop opening parentheses or dash from suffix 926 if (RichText) 927 { 928 if (name->c[0] >= 2 && name->c[name->c[0]] == '(' && name->c[name->c[0]-1] == ' ') name->c[0] -= 2; 929 } 930 else 931 { 932 if (name->c[0] >= 1 && name->c[name->c[0]] == '-') name->c[0] -= 1; 933 } 934 935 return(val); 936 } 937 938 // appends a numerical suffix to a label, with the number following a whitespace and enclosed 939 // in parentheses (rich text) or following two consecutive hyphens (RFC 1034 domain label). 940 mDNSexport void AppendLabelSuffix(domainlabel *const name, mDNSu32 val, const mDNSBool RichText) 941 { 942 mDNSu32 divisor = 1, chars = 2; // Shortest possible RFC1034 name suffix is 2 characters ("-2") 943 if (RichText) chars = 4; // Shortest possible RichText suffix is 4 characters (" (2)") 944 945 // Truncate trailing spaces from RichText names 946 if (RichText) while (name->c[name->c[0]] == ' ') name->c[0]--; 947 948 while (divisor < 0xFFFFFFFFUL/10 && val >= divisor * 10) { divisor *= 10; chars++; } 949 950 name->c[0] = (mDNSu8) TruncateUTF8ToLength(name->c+1, name->c[0], MAX_DOMAIN_LABEL - chars); 951 952 if (RichText) { name->c[++name->c[0]] = ' '; name->c[++name->c[0]] = '('; } 953 else { name->c[++name->c[0]] = '-'; } 954 955 while (divisor) 956 { 957 name->c[++name->c[0]] = (mDNSu8)('0' + val / divisor); 958 val %= divisor; 959 divisor /= 10; 960 } 961 962 if (RichText) name->c[++name->c[0]] = ')'; 963 } 964 965 mDNSexport void IncrementLabelSuffix(domainlabel *name, mDNSBool RichText) 966 { 967 mDNSu32 val = 0; 968 969 if (LabelContainsSuffix(name, RichText)) 970 val = RemoveLabelSuffix(name, RichText); 971 972 // If no existing suffix, start by renaming "Foo" as "Foo (2)" or "Foo-2" as appropriate. 973 // If existing suffix in the range 2-9, increment it. 974 // If we've had ten conflicts already, there are probably too many hosts trying to use the same name, 975 // so add a random increment to improve the chances of finding an available name next time. 976 if (val == 0) val = 2; 977 else if (val < 10) val++; 978 else val += 1 + mDNSRandom(99); 979 980 AppendLabelSuffix(name, val, RichText); 981 } 982 983 // *************************************************************************** 984 #if COMPILER_LIKES_PRAGMA_MARK 985 #pragma mark - 986 #pragma mark - Resource Record Utility Functions 987 #endif 988 989 // Set up a AuthRecord with sensible default values. 990 // These defaults may be overwritten with new values before mDNS_Register is called 991 mDNSexport void mDNS_SetupResourceRecord(AuthRecord *rr, RData *RDataStorage, mDNSInterfaceID InterfaceID, 992 mDNSu16 rrtype, mDNSu32 ttl, mDNSu8 RecordType, AuthRecType artype, mDNSRecordCallback Callback, void *Context) 993 { 994 // 995 // LocalOnly auth record can be created with LocalOnly InterfaceID or a valid InterfaceID. 996 // Most of the applications normally create with LocalOnly InterfaceID and we store them as 997 // such, so that we can deliver the response to questions that specify LocalOnly InterfaceID. 998 // LocalOnly resource records can also be created with valid InterfaceID which happens today 999 // when we create LocalOnly records for /etc/hosts. 1000 1001 if (InterfaceID == mDNSInterface_LocalOnly && artype != AuthRecordLocalOnly) 1002 { 1003 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch LocalOnly record InterfaceID %p called with artype %d", InterfaceID, artype); 1004 return; 1005 } 1006 else if (InterfaceID == mDNSInterface_P2P && artype != AuthRecordP2P) 1007 { 1008 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch P2P record InterfaceID %p called with artype %d", InterfaceID, artype); 1009 return; 1010 } 1011 else if (!InterfaceID && (artype == AuthRecordP2P || artype == AuthRecordLocalOnly)) 1012 { 1013 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch InterfaceAny record InterfaceID %p called with artype %d", InterfaceID, artype); 1014 return; 1015 } 1016 1017 // Don't try to store a TTL bigger than we can represent in platform time units 1018 if (ttl > 0x7FFFFFFFUL / mDNSPlatformOneSecond) 1019 ttl = 0x7FFFFFFFUL / mDNSPlatformOneSecond; 1020 else if (ttl == 0) // And Zero TTL is illegal 1021 ttl = DefaultTTLforRRType(rrtype); 1022 1023 // Field Group 1: The actual information pertaining to this resource record 1024 rr->resrec.RecordType = RecordType; 1025 rr->resrec.InterfaceID = InterfaceID; 1026 rr->resrec.name = &rr->namestorage; 1027 rr->resrec.rrtype = rrtype; 1028 rr->resrec.rrclass = kDNSClass_IN; 1029 rr->resrec.rroriginalttl = ttl; 1030 rr->resrec.rDNSServer = mDNSNULL; 1031 // rr->resrec.rdlength = MUST set by client and/or in mDNS_Register_internal 1032 // rr->resrec.rdestimate = set in mDNS_Register_internal 1033 // rr->resrec.rdata = MUST be set by client 1034 1035 if (RDataStorage) 1036 rr->resrec.rdata = RDataStorage; 1037 else 1038 { 1039 rr->resrec.rdata = &rr->rdatastorage; 1040 rr->resrec.rdata->MaxRDLength = sizeof(RDataBody); 1041 } 1042 1043 // Field Group 2: Persistent metadata for Authoritative Records 1044 rr->Additional1 = mDNSNULL; 1045 rr->Additional2 = mDNSNULL; 1046 rr->DependentOn = mDNSNULL; 1047 rr->RRSet = mDNSNULL; 1048 rr->RecordCallback = Callback; 1049 rr->RecordContext = Context; 1050 1051 rr->AutoTarget = Target_Manual; 1052 rr->AllowRemoteQuery = mDNSfalse; 1053 rr->ForceMCast = mDNSfalse; 1054 1055 rr->WakeUp = zeroOwner; 1056 rr->AddressProxy = zeroAddr; 1057 rr->TimeRcvd = 0; 1058 rr->TimeExpire = 0; 1059 rr->ARType = artype; 1060 1061 // Field Group 3: Transient state for Authoritative Records (set in mDNS_Register_internal) 1062 // Field Group 4: Transient uDNS state for Authoritative Records (set in mDNS_Register_internal) 1063 1064 // For now, until the uDNS code is fully integrated, it's helpful to zero the uDNS state fields here too, just in case 1065 // (e.g. uDNS_RegisterService short-circuits the usual mDNS_Register_internal record registration calls, so a bunch 1066 // of fields don't get set up properly. In particular, if we don't zero rr->QueuedRData then the uDNS code crashes.) 1067 rr->state = regState_Zero; 1068 rr->uselease = 0; 1069 rr->expire = 0; 1070 rr->Private = 0; 1071 rr->updateid = zeroID; 1072 rr->zone = rr->resrec.name; 1073 rr->nta = mDNSNULL; 1074 rr->tcp = mDNSNULL; 1075 rr->OrigRData = 0; 1076 rr->OrigRDLen = 0; 1077 rr->InFlightRData = 0; 1078 rr->InFlightRDLen = 0; 1079 rr->QueuedRData = 0; 1080 rr->QueuedRDLen = 0; 1081 mDNSPlatformMemZero(&rr->NATinfo, sizeof(rr->NATinfo)); 1082 rr->SRVChanged = mDNSfalse; 1083 rr->mState = mergeState_Zero; 1084 1085 rr->namestorage.c[0] = 0; // MUST be set by client before calling mDNS_Register() 1086 } 1087 1088 mDNSexport void mDNS_SetupQuestion(DNSQuestion *const q, const mDNSInterfaceID InterfaceID, const domainname *const name, 1089 const mDNSu16 qtype, mDNSQuestionCallback *const callback, void *const context) 1090 { 1091 q->InterfaceID = InterfaceID; 1092 q->Target = zeroAddr; 1093 AssignDomainName(&q->qname, name); 1094 q->qtype = qtype; 1095 q->qclass = kDNSClass_IN; 1096 q->LongLived = (qtype == kDNSType_PTR); 1097 q->ExpectUnique = (qtype != kDNSType_PTR); 1098 q->ForceMCast = mDNSfalse; 1099 q->ReturnIntermed = mDNSfalse; 1100 q->SuppressUnusable = mDNSfalse; 1101 q->SearchListIndex = 0; 1102 q->AppendSearchDomains = 0; 1103 q->RetryWithSearchDomains = mDNSfalse; 1104 q->TimeoutQuestion = 0; 1105 q->WakeOnResolve = 0; 1106 q->qnameOrig = mDNSNULL; 1107 q->QuestionCallback = callback; 1108 q->QuestionContext = context; 1109 } 1110 1111 mDNSexport mDNSu32 RDataHashValue(const ResourceRecord *const rr) 1112 { 1113 int len = rr->rdlength; 1114 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data; 1115 switch(rr->rrtype) 1116 { 1117 case kDNSType_NS: 1118 case kDNSType_CNAME: 1119 case kDNSType_PTR: 1120 case kDNSType_DNAME: return DomainNameHashValue(&rdb->name); 1121 1122 case kDNSType_SOA: return rdb->soa.serial + 1123 rdb->soa.refresh + 1124 rdb->soa.retry + 1125 rdb->soa.expire + 1126 rdb->soa.min + 1127 DomainNameHashValue(&rdb->soa.mname) + 1128 DomainNameHashValue(&rdb->soa.rname); 1129 1130 case kDNSType_MX: 1131 case kDNSType_AFSDB: 1132 case kDNSType_RT: 1133 case kDNSType_KX: return DomainNameHashValue(&rdb->mx.exchange); 1134 1135 case kDNSType_RP: return DomainNameHashValue(&rdb->rp.mbox) + DomainNameHashValue(&rdb->rp.txt); 1136 1137 case kDNSType_PX: return DomainNameHashValue(&rdb->px.map822) + DomainNameHashValue(&rdb->px.mapx400); 1138 1139 case kDNSType_SRV: return DomainNameHashValue(&rdb->srv.target); 1140 1141 case kDNSType_OPT: return 0; // OPT is a pseudo-RR container structure; makes no sense to compare 1142 1143 case kDNSType_NSEC: len = sizeof(rdataNSEC); // Use in-memory length of 32, and fall through default checksum computation below 1144 1145 default: 1146 { 1147 mDNSu32 sum = 0; 1148 int i; 1149 for (i=0; i+1 < len; i+=2) 1150 { 1151 sum += (((mDNSu32)(rdb->data[i])) << 8) | rdb->data[i+1]; 1152 sum = (sum<<3) | (sum>>29); 1153 } 1154 if (i < len) 1155 { 1156 sum += ((mDNSu32)(rdb->data[i])) << 8; 1157 } 1158 return(sum); 1159 } 1160 } 1161 } 1162 1163 // r1 has to be a full ResourceRecord including rrtype and rdlength 1164 // r2 is just a bare RDataBody, which MUST be the same rrtype and rdlength as r1 1165 mDNSexport mDNSBool SameRDataBody(const ResourceRecord *const r1, const RDataBody *const r2, DomainNameComparisonFn *samename) 1166 { 1167 const RDataBody2 *const b1 = (RDataBody2 *)r1->rdata->u.data; 1168 const RDataBody2 *const b2 = (RDataBody2 *)r2; 1169 switch(r1->rrtype) 1170 { 1171 case kDNSType_NS: 1172 case kDNSType_CNAME: 1173 case kDNSType_PTR: 1174 case kDNSType_DNAME:return(SameDomainName(&b1->name, &b2->name)); 1175 1176 case kDNSType_SOA: return(mDNSBool)( b1->soa.serial == b2->soa.serial && 1177 b1->soa.refresh == b2->soa.refresh && 1178 b1->soa.retry == b2->soa.retry && 1179 b1->soa.expire == b2->soa.expire && 1180 b1->soa.min == b2->soa.min && 1181 samename(&b1->soa.mname, &b2->soa.mname) && 1182 samename(&b1->soa.rname, &b2->soa.rname)); 1183 1184 case kDNSType_MX: 1185 case kDNSType_AFSDB: 1186 case kDNSType_RT: 1187 case kDNSType_KX: return(mDNSBool)( b1->mx.preference == b2->mx.preference && 1188 samename(&b1->mx.exchange, &b2->mx.exchange)); 1189 1190 case kDNSType_RP: return(mDNSBool)( samename(&b1->rp.mbox, &b2->rp.mbox) && 1191 samename(&b1->rp.txt, &b2->rp.txt)); 1192 1193 case kDNSType_PX: return(mDNSBool)( b1->px.preference == b2->px.preference && 1194 samename(&b1->px.map822, &b2->px.map822) && 1195 samename(&b1->px.mapx400, &b2->px.mapx400)); 1196 1197 case kDNSType_SRV: return(mDNSBool)( b1->srv.priority == b2->srv.priority && 1198 b1->srv.weight == b2->srv.weight && 1199 mDNSSameIPPort(b1->srv.port, b2->srv.port) && 1200 samename(&b1->srv.target, &b2->srv.target)); 1201 1202 case kDNSType_OPT: return mDNSfalse; // OPT is a pseudo-RR container structure; makes no sense to compare 1203 1204 case kDNSType_NSEC: return(mDNSPlatformMemSame(b1->data, b2->data, sizeof(rdataNSEC))); 1205 1206 default: return(mDNSPlatformMemSame(b1->data, b2->data, r1->rdlength)); 1207 } 1208 } 1209 1210 // ResourceRecordAnswersQuestion returns mDNStrue if the given resource record is a valid answer to the given question. 1211 // SameNameRecordAnswersQuestion is the same, except it skips the expensive SameDomainName() call. 1212 // SameDomainName() is generally cheap when the names don't match, but expensive when they do match, 1213 // because it has to check all the way to the end of the names to be sure. 1214 // In cases where we know in advance that the names match it's especially advantageous to skip the 1215 // SameDomainName() call because that's precisely the time when it's most expensive and least useful. 1216 1217 mDNSexport mDNSBool SameNameRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q) 1218 { 1219 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records 1220 // are handled in LocalOnlyRecordAnswersQuestion 1221 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P)) 1222 { 1223 LogMsg("SameNameRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID); 1224 return mDNSfalse; 1225 } 1226 if (rr->InterfaceID && 1227 q ->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && 1228 rr->InterfaceID != q->InterfaceID) return(mDNSfalse); 1229 1230 // Resource record received via unicast, the DNSServer entries should match ? 1231 if (!rr->InterfaceID && rr->rDNSServer != q->qDNSServer) return(mDNSfalse); 1232 1233 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question 1234 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse); 1235 1236 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class. 1237 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse); 1238 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse); 1239 1240 return(mDNStrue); 1241 } 1242 1243 mDNSexport mDNSBool ResourceRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q) 1244 { 1245 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records 1246 // are handled in LocalOnlyRecordAnswersQuestion 1247 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P)) 1248 { 1249 LogMsg("ResourceRecordAnswersQuestion: ERROR!! called with LocalOnly/P2P ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID); 1250 return mDNSfalse; 1251 } 1252 1253 if (rr->InterfaceID && 1254 q ->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && 1255 rr->InterfaceID != q->InterfaceID) return(mDNSfalse); 1256 1257 // Resource record received via unicast, the DNSServer entries should match ? 1258 if (!rr->InterfaceID && rr->rDNSServer != q->qDNSServer) return(mDNSfalse); 1259 1260 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question. 1261 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse); 1262 1263 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class. 1264 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse); 1265 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse); 1266 1267 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname)); 1268 } 1269 1270 // We have a separate function to handle LocalOnly AuthRecords because they can be created with 1271 // a valid InterfaceID (e.g., scoped /etc/hosts) and can be used to answer unicast questions unlike 1272 // multicast resource records (which has a valid InterfaceID) which can't be used to answer 1273 // unicast questions. ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion can't tell whether 1274 // a resource record is multicast or LocalOnly by just looking at the ResourceRecord because 1275 // LocalOnly records are truly identified by ARType in the AuthRecord. As P2P and LocalOnly record 1276 // are kept in the same hash table, we use the same function to make it easy for the callers when 1277 // they walk the hash table to answer LocalOnly/P2P questions 1278 // 1279 mDNSexport mDNSBool LocalOnlyRecordAnswersQuestion(AuthRecord *const ar, const DNSQuestion *const q) 1280 { 1281 ResourceRecord *rr = &ar->resrec; 1282 1283 // mDNSInterface_Any questions can be answered with LocalOnly/P2P records in this function. AuthRecord_Any 1284 // records are handled in ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion 1285 if (RRAny(ar)) 1286 { 1287 LogMsg("LocalOnlyRecordAnswersQuestion: ERROR!! called with regular AuthRecordAny %##s", rr->name->c); 1288 return mDNSfalse; 1289 } 1290 1291 // Questions with mDNSInterface_LocalOnly InterfaceID should be answered with all resource records that are 1292 // *local* to the machine. These include resource records that have InterfaceID set to mDNSInterface_LocalOnly, 1293 // mDNSInterface_Any and any other real InterfaceID. Hence, LocalOnly questions should not be checked against 1294 // the InterfaceID in the resource record. 1295 // 1296 // mDNSInterface_Unicast does not indicate any scope and hence treat them like mDNSInterface_Any. 1297 1298 if (rr->InterfaceID && 1299 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && q->InterfaceID != mDNSInterface_Unicast && 1300 rr->InterfaceID != q->InterfaceID) return(mDNSfalse); 1301 1302 // Entries in /etc/hosts are added as LocalOnly resource records. The LocalOnly resource records 1303 // may have a scope e.g., fe80::1%en0. The question may be scoped or not: the InterfaceID may be set 1304 // to mDNSInterface_Any, mDNSInterface_LocalOnly or a real InterfaceID (scoped). 1305 // 1306 // 1) Question: Any, LocalOnly Record: no scope. This question should be answered with this record. 1307 // 1308 // 2) Question: Any, LocalOnly Record: scoped. This question should be answered with the record because 1309 // traditionally applications never specify scope e.g., getaddrinfo, but need to be able 1310 // to get to /etc/hosts entries. 1311 // 1312 // 3) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: no scope. This is the inverse of (2). 1313 // If we register a LocalOnly record, we need to answer a LocalOnly question. If the /etc/hosts has a 1314 // non scoped entry, it may not make sense to answer a scoped question. But we can't tell these two 1315 // cases apart. As we currently answer LocalOnly question with LocalOnly record, we continue to do so. 1316 // 1317 // 4) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: scoped. LocalOnly questions should be 1318 // answered with any resource record where as if it has a valid InterfaceID, the scope should match. 1319 // 1320 // (1) and (2) is bypassed because we check for a non-NULL InterfaceID above. For (3), the InterfaceID is NULL 1321 // and hence bypassed above. For (4) we bypassed LocalOnly questions and checked the scope of the record 1322 // against the question. 1323 // 1324 // For P2P, InterfaceIDs of the question and the record should match. 1325 1326 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question. 1327 // LocalOnly authoritative answers are exempt. LocalOnly authoritative answers are used for /etc/host entries. 1328 // We don't want a local process to be able to create a fake LocalOnly address record for "www.bigbank.com" which would then 1329 // cause other applications (e.g. Safari) to connect to the wrong address. The rpc to register records filters out records 1330 // with names that don't end in local and have mDNSInterface_LocalOnly set. 1331 // 1332 // Note: The check is bypassed for LocalOnly and for P2P it is not needed as only .local records are registered and for 1333 // a question to match its names, it also has to end in .local and that question can't be a unicast question (See 1334 // Question_uDNS macro and its usage). As P2P does not enforce .local only registrations we still make this check 1335 // and also makes it future proof. 1336 1337 if (ar->ARType != AuthRecordLocalOnly && rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse); 1338 1339 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class. 1340 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse); 1341 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse); 1342 1343 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname)); 1344 } 1345 1346 mDNSexport mDNSBool AnyTypeRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q) 1347 { 1348 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records 1349 // are handled in LocalOnlyRecordAnswersQuestion 1350 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P)) 1351 { 1352 LogMsg("AnyTypeRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID); 1353 return mDNSfalse; 1354 } 1355 if (rr->InterfaceID && 1356 q ->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && 1357 rr->InterfaceID != q->InterfaceID) return(mDNSfalse); 1358 1359 // Resource record received via unicast, the DNSServer entries should match ? 1360 // Note that Auth Records are normally setup with NULL InterfaceID and 1361 // both the DNSServers are assumed to be NULL in that case 1362 if (!rr->InterfaceID && rr->rDNSServer != q->qDNSServer) return(mDNSfalse); 1363 1364 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question 1365 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse); 1366 1367 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse); 1368 1369 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname)); 1370 } 1371 1372 // This is called with both unicast resource record and multicast resource record. The question that 1373 // received the unicast response could be the regular unicast response from a DNS server or a response 1374 // to a mDNS QU query. The main reason we need this function is that we can't compare DNSServers between the 1375 // question and the resource record because the resource record is not completely initialized in 1376 // mDNSCoreReceiveResponse when this function is called. 1377 mDNSexport mDNSBool ResourceRecordAnswersUnicastResponse(const ResourceRecord *const rr, const DNSQuestion *const q) 1378 { 1379 // For resource records created using multicast, the InterfaceIDs have to match 1380 if (rr->InterfaceID && 1381 q->InterfaceID && rr->InterfaceID != q->InterfaceID) return(mDNSfalse); 1382 1383 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question. 1384 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse); 1385 1386 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class. 1387 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse); 1388 1389 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse); 1390 1391 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname)); 1392 } 1393 1394 mDNSexport mDNSu16 GetRDLength(const ResourceRecord *const rr, mDNSBool estimate) 1395 { 1396 const RDataBody2 *const rd = (RDataBody2 *)rr->rdata->u.data; 1397 const domainname *const name = estimate ? rr->name : mDNSNULL; 1398 if (rr->rrclass == kDNSQClass_ANY) return(rr->rdlength); // Used in update packets to mean "Delete An RRset" (RFC 2136) 1399 else switch (rr->rrtype) 1400 { 1401 case kDNSType_A: return(sizeof(rd->ipv4)); 1402 1403 case kDNSType_NS: 1404 case kDNSType_CNAME: 1405 case kDNSType_PTR: 1406 case kDNSType_DNAME:return(CompressedDomainNameLength(&rd->name, name)); 1407 1408 case kDNSType_SOA: return(mDNSu16)(CompressedDomainNameLength(&rd->soa.mname, name) + 1409 CompressedDomainNameLength(&rd->soa.rname, name) + 1410 5 * sizeof(mDNSOpaque32)); 1411 1412 case kDNSType_NULL: 1413 case kDNSType_TSIG: 1414 case kDNSType_TXT: 1415 case kDNSType_X25: 1416 case kDNSType_ISDN: 1417 case kDNSType_LOC: 1418 case kDNSType_DHCID:return(rr->rdlength); // Not self-describing, so have to just trust rdlength 1419 1420 case kDNSType_HINFO:return(mDNSu16)(2 + (int)rd->data[0] + (int)rd->data[1 + (int)rd->data[0]]); 1421 1422 case kDNSType_MX: 1423 case kDNSType_AFSDB: 1424 case kDNSType_RT: 1425 case kDNSType_KX: return(mDNSu16)(2 + CompressedDomainNameLength(&rd->mx.exchange, name)); 1426 1427 case kDNSType_RP: return(mDNSu16)(CompressedDomainNameLength(&rd->rp.mbox, name) + 1428 CompressedDomainNameLength(&rd->rp.txt, name)); 1429 1430 case kDNSType_PX: return(mDNSu16)(2 + CompressedDomainNameLength(&rd->px.map822, name) + 1431 CompressedDomainNameLength(&rd->px.mapx400, name)); 1432 1433 case kDNSType_AAAA: return(sizeof(rd->ipv6)); 1434 1435 case kDNSType_SRV: return(mDNSu16)(6 + CompressedDomainNameLength(&rd->srv.target, name)); 1436 1437 case kDNSType_OPT: return(rr->rdlength); 1438 1439 case kDNSType_NSEC: { 1440 int i; 1441 for (i=sizeof(rdataNSEC); i>0; i--) if (rd->nsec.bitmap[i-1]) break; 1442 // For our simplified use of NSEC synthetic records: 1443 // nextname is always the record's own name, 1444 // and if we have at least one record type that exists, 1445 // - the block number is always 0, 1446 // - the count byte is a value in the range 1-32, 1447 // - followed by the 1-32 data bytes 1448 return(mDNSu16)((estimate ? 2 : DomainNameLength(rr->name)) + (i ? (2 + i) : 0)); 1449 } 1450 1451 default: debugf("Warning! Don't know how to get length of resource type %d", rr->rrtype); 1452 return(rr->rdlength); 1453 } 1454 } 1455 1456 // When a local client registers (or updates) a record, we use this routine to do some simple validation checks 1457 // to help reduce the risk of bogus malformed data on the network 1458 mDNSexport mDNSBool ValidateRData(const mDNSu16 rrtype, const mDNSu16 rdlength, const RData *const rd) 1459 { 1460 mDNSu16 len; 1461 1462 switch(rrtype) 1463 { 1464 case kDNSType_A: return(rdlength == sizeof(mDNSv4Addr)); 1465 1466 case kDNSType_NS: // Same as PTR 1467 case kDNSType_MD: // Same as PTR 1468 case kDNSType_MF: // Same as PTR 1469 case kDNSType_CNAME:// Same as PTR 1470 //case kDNSType_SOA not checked 1471 case kDNSType_MB: // Same as PTR 1472 case kDNSType_MG: // Same as PTR 1473 case kDNSType_MR: // Same as PTR 1474 //case kDNSType_NULL not checked (no specified format, so always valid) 1475 //case kDNSType_WKS not checked 1476 case kDNSType_PTR: len = DomainNameLengthLimit(&rd->u.name, rd->u.data + rdlength); 1477 return(len <= MAX_DOMAIN_NAME && rdlength == len); 1478 1479 case kDNSType_HINFO:// Same as TXT (roughly) 1480 case kDNSType_MINFO:// Same as TXT (roughly) 1481 case kDNSType_TXT: if (!rdlength) return(mDNSfalse); // TXT record has to be at least one byte (RFC 1035) 1482 { 1483 const mDNSu8 *ptr = rd->u.txt.c; 1484 const mDNSu8 *end = rd->u.txt.c + rdlength; 1485 while (ptr < end) ptr += 1 + ptr[0]; 1486 return (ptr == end); 1487 } 1488 1489 case kDNSType_AAAA: return(rdlength == sizeof(mDNSv6Addr)); 1490 1491 case kDNSType_MX: // Must be at least two-byte preference, plus domainname 1492 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us 1493 len = DomainNameLengthLimit(&rd->u.mx.exchange, rd->u.data + rdlength); 1494 return(len <= MAX_DOMAIN_NAME && rdlength == 2+len); 1495 1496 case kDNSType_SRV: // Must be at least priority+weight+port, plus domainname 1497 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us 1498 len = DomainNameLengthLimit(&rd->u.srv.target, rd->u.data + rdlength); 1499 return(len <= MAX_DOMAIN_NAME && rdlength == 6+len); 1500 1501 //case kDNSType_NSEC not checked 1502 1503 default: return(mDNStrue); // Allow all other types without checking 1504 } 1505 } 1506 1507 // *************************************************************************** 1508 #if COMPILER_LIKES_PRAGMA_MARK 1509 #pragma mark - 1510 #pragma mark - DNS Message Creation Functions 1511 #endif 1512 1513 mDNSexport void InitializeDNSMessage(DNSMessageHeader *h, mDNSOpaque16 id, mDNSOpaque16 flags) 1514 { 1515 h->id = id; 1516 h->flags = flags; 1517 h->numQuestions = 0; 1518 h->numAnswers = 0; 1519 h->numAuthorities = 0; 1520 h->numAdditionals = 0; 1521 } 1522 1523 mDNSexport const mDNSu8 *FindCompressionPointer(const mDNSu8 *const base, const mDNSu8 *const end, const mDNSu8 *const domname) 1524 { 1525 const mDNSu8 *result = end - *domname - 1; 1526 1527 if (*domname == 0) return(mDNSNULL); // There's no point trying to match just the root label 1528 1529 // This loop examines each possible starting position in packet, starting end of the packet and working backwards 1530 while (result >= base) 1531 { 1532 // If the length byte and first character of the label match, then check further to see 1533 // if this location in the packet will yield a useful name compression pointer. 1534 if (result[0] == domname[0] && result[1] == domname[1]) 1535 { 1536 const mDNSu8 *name = domname; 1537 const mDNSu8 *targ = result; 1538 while (targ + *name < end) 1539 { 1540 // First see if this label matches 1541 int i; 1542 const mDNSu8 *pointertarget; 1543 for (i=0; i <= *name; i++) if (targ[i] != name[i]) break; 1544 if (i <= *name) break; // If label did not match, bail out 1545 targ += 1 + *name; // Else, did match, so advance target pointer 1546 name += 1 + *name; // and proceed to check next label 1547 if (*name == 0 && *targ == 0) return(result); // If no more labels, we found a match! 1548 if (*name == 0) break; // If no more labels to match, we failed, so bail out 1549 1550 // The label matched, so now follow the pointer (if appropriate) and then see if the next label matches 1551 if (targ[0] < 0x40) continue; // If length value, continue to check next label 1552 if (targ[0] < 0xC0) break; // If 40-BF, not valid 1553 if (targ+1 >= end) break; // Second byte not present! 1554 pointertarget = base + (((mDNSu16)(targ[0] & 0x3F)) << 8) + targ[1]; 1555 if (targ < pointertarget) break; // Pointertarget must point *backwards* in the packet 1556 if (pointertarget[0] >= 0x40) break; // Pointertarget must point to a valid length byte 1557 targ = pointertarget; 1558 } 1559 } 1560 result--; // We failed to match at this search position, so back up the tentative result pointer and try again 1561 } 1562 return(mDNSNULL); 1563 } 1564 1565 // Put a string of dot-separated labels as length-prefixed labels 1566 // domainname is a fully-qualified name (i.e. assumed to be ending in a dot, even if it doesn't) 1567 // msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers) 1568 // end points to the end of the message so far 1569 // ptr points to where we want to put the name 1570 // limit points to one byte past the end of the buffer that we must not overrun 1571 // domainname is the name to put 1572 mDNSexport mDNSu8 *putDomainNameAsLabels(const DNSMessage *const msg, 1573 mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name) 1574 { 1575 const mDNSu8 *const base = (const mDNSu8 *)msg; 1576 const mDNSu8 * np = name->c; 1577 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid 1578 const mDNSu8 * pointer = mDNSNULL; 1579 const mDNSu8 *const searchlimit = ptr; 1580 1581 if (!ptr) { LogMsg("putDomainNameAsLabels %##s ptr is null", name->c); return(mDNSNULL); } 1582 1583 if (!*np) // If just writing one-byte root label, make sure we have space for that 1584 { 1585 if (ptr >= limit) return(mDNSNULL); 1586 } 1587 else // else, loop through writing labels and/or a compression offset 1588 { 1589 do { 1590 if (*np > MAX_DOMAIN_LABEL) 1591 { LogMsg("Malformed domain name %##s (label more than 63 bytes)", name->c); return(mDNSNULL); } 1592 1593 // This check correctly allows for the final trailing root label: 1594 // e.g. 1595 // Suppose our domain name is exactly 256 bytes long, including the final trailing root label. 1596 // Suppose np is now at name->c[249], and we're about to write our last non-null label ("local"). 1597 // We know that max will be at name->c[256] 1598 // That means that np + 1 + 5 == max - 1, so we (just) pass the "if" test below, write our 1599 // six bytes, then exit the loop, write the final terminating root label, and the domain 1600 // name we've written is exactly 256 bytes long, exactly at the correct legal limit. 1601 // If the name is one byte longer, then we fail the "if" test below, and correctly bail out. 1602 if (np + 1 + *np >= max) 1603 { LogMsg("Malformed domain name %##s (more than 256 bytes)", name->c); return(mDNSNULL); } 1604 1605 if (base) pointer = FindCompressionPointer(base, searchlimit, np); 1606 if (pointer) // Use a compression pointer if we can 1607 { 1608 const mDNSu16 offset = (mDNSu16)(pointer - base); 1609 if (ptr+2 > limit) return(mDNSNULL); // If we don't have two bytes of space left, give up 1610 *ptr++ = (mDNSu8)(0xC0 | (offset >> 8)); 1611 *ptr++ = (mDNSu8)( offset & 0xFF); 1612 return(ptr); 1613 } 1614 else // Else copy one label and try again 1615 { 1616 int i; 1617 mDNSu8 len = *np++; 1618 // If we don't at least have enough space for this label *plus* a terminating zero on the end, give up 1619 if (ptr + 1 + len >= limit) return(mDNSNULL); 1620 *ptr++ = len; 1621 for (i=0; i<len; i++) *ptr++ = *np++; 1622 } 1623 } while (*np); // While we've got characters remaining in the name, continue 1624 } 1625 1626 *ptr++ = 0; // Put the final root label 1627 return(ptr); 1628 } 1629 1630 mDNSlocal mDNSu8 *putVal16(mDNSu8 *ptr, mDNSu16 val) 1631 { 1632 ptr[0] = (mDNSu8)((val >> 8 ) & 0xFF); 1633 ptr[1] = (mDNSu8)((val ) & 0xFF); 1634 return ptr + sizeof(mDNSOpaque16); 1635 } 1636 1637 mDNSlocal mDNSu8 *putVal32(mDNSu8 *ptr, mDNSu32 val) 1638 { 1639 ptr[0] = (mDNSu8)((val >> 24) & 0xFF); 1640 ptr[1] = (mDNSu8)((val >> 16) & 0xFF); 1641 ptr[2] = (mDNSu8)((val >> 8) & 0xFF); 1642 ptr[3] = (mDNSu8)((val ) & 0xFF); 1643 return ptr + sizeof(mDNSu32); 1644 } 1645 1646 // msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers) 1647 mDNSexport mDNSu8 *putRData(const DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const ResourceRecord *const rr) 1648 { 1649 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data; 1650 switch (rr->rrtype) 1651 { 1652 case kDNSType_A: if (rr->rdlength != 4) 1653 { debugf("putRData: Illegal length %d for kDNSType_A", rr->rdlength); return(mDNSNULL); } 1654 if (ptr + 4 > limit) return(mDNSNULL); 1655 *ptr++ = rdb->ipv4.b[0]; 1656 *ptr++ = rdb->ipv4.b[1]; 1657 *ptr++ = rdb->ipv4.b[2]; 1658 *ptr++ = rdb->ipv4.b[3]; 1659 return(ptr); 1660 1661 case kDNSType_NS: 1662 case kDNSType_CNAME: 1663 case kDNSType_PTR: 1664 case kDNSType_DNAME:return(putDomainNameAsLabels(msg, ptr, limit, &rdb->name)); 1665 1666 case kDNSType_SOA: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.mname); 1667 if (!ptr) return(mDNSNULL); 1668 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.rname); 1669 if (!ptr || ptr + 20 > limit) return(mDNSNULL); 1670 ptr = putVal32(ptr, rdb->soa.serial); 1671 ptr = putVal32(ptr, rdb->soa.refresh); 1672 ptr = putVal32(ptr, rdb->soa.retry); 1673 ptr = putVal32(ptr, rdb->soa.expire); 1674 ptr = putVal32(ptr, rdb->soa.min); 1675 return(ptr); 1676 1677 case kDNSType_NULL: 1678 case kDNSType_HINFO: 1679 case kDNSType_TSIG: 1680 case kDNSType_TXT: 1681 case kDNSType_X25: 1682 case kDNSType_ISDN: 1683 case kDNSType_LOC: 1684 case kDNSType_DHCID:if (ptr + rr->rdlength > limit) return(mDNSNULL); 1685 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength); 1686 return(ptr + rr->rdlength); 1687 1688 case kDNSType_MX: 1689 case kDNSType_AFSDB: 1690 case kDNSType_RT: 1691 case kDNSType_KX: if (ptr + 3 > limit) return(mDNSNULL); 1692 ptr = putVal16(ptr, rdb->mx.preference); 1693 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->mx.exchange)); 1694 1695 case kDNSType_RP: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.mbox); 1696 if (!ptr) return(mDNSNULL); 1697 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.txt); 1698 return(ptr); 1699 1700 case kDNSType_PX: if (ptr + 5 > limit) return(mDNSNULL); 1701 ptr = putVal16(ptr, rdb->px.preference); 1702 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.map822); 1703 if (!ptr) return(mDNSNULL); 1704 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.mapx400); 1705 return(ptr); 1706 1707 case kDNSType_AAAA: if (rr->rdlength != sizeof(rdb->ipv6)) 1708 { debugf("putRData: Illegal length %d for kDNSType_AAAA", rr->rdlength); return(mDNSNULL); } 1709 if (ptr + sizeof(rdb->ipv6) > limit) return(mDNSNULL); 1710 mDNSPlatformMemCopy(ptr, &rdb->ipv6, sizeof(rdb->ipv6)); 1711 return(ptr + sizeof(rdb->ipv6)); 1712 1713 case kDNSType_SRV: if (ptr + 7 > limit) return(mDNSNULL); 1714 *ptr++ = (mDNSu8)(rdb->srv.priority >> 8); 1715 *ptr++ = (mDNSu8)(rdb->srv.priority & 0xFF); 1716 *ptr++ = (mDNSu8)(rdb->srv.weight >> 8); 1717 *ptr++ = (mDNSu8)(rdb->srv.weight & 0xFF); 1718 *ptr++ = rdb->srv.port.b[0]; 1719 *ptr++ = rdb->srv.port.b[1]; 1720 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->srv.target)); 1721 1722 case kDNSType_OPT: { 1723 int len = 0; 1724 const rdataOPT *opt; 1725 const rdataOPT *const end = (const rdataOPT *)&rr->rdata->u.data[rr->rdlength]; 1726 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++) len += DNSOpt_Data_Space(opt); 1727 if (ptr + len > limit) { LogMsg("ERROR: putOptRData - out of space"); return mDNSNULL; } 1728 1729 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++) 1730 { 1731 const int space = DNSOpt_Data_Space(opt); 1732 ptr = putVal16(ptr, opt->opt); 1733 ptr = putVal16(ptr, (mDNSu16)space - 4); 1734 switch (opt->opt) 1735 { 1736 case kDNSOpt_LLQ: 1737 ptr = putVal16(ptr, opt->u.llq.vers); 1738 ptr = putVal16(ptr, opt->u.llq.llqOp); 1739 ptr = putVal16(ptr, opt->u.llq.err); 1740 mDNSPlatformMemCopy(ptr, opt->u.llq.id.b, 8); // 8-byte id 1741 ptr += 8; 1742 ptr = putVal32(ptr, opt->u.llq.llqlease); 1743 break; 1744 case kDNSOpt_Lease: 1745 ptr = putVal32(ptr, opt->u.updatelease); 1746 break; 1747 case kDNSOpt_Owner: 1748 *ptr++ = opt->u.owner.vers; 1749 *ptr++ = opt->u.owner.seq; 1750 mDNSPlatformMemCopy(ptr, opt->u.owner.HMAC.b, 6); // 6-byte Host identifier 1751 ptr += 6; 1752 if (space >= DNSOpt_OwnerData_ID_Wake_Space) 1753 { 1754 mDNSPlatformMemCopy(ptr, opt->u.owner.IMAC.b, 6); // 6-byte interface MAC 1755 ptr += 6; 1756 if (space > DNSOpt_OwnerData_ID_Wake_Space) 1757 { 1758 mDNSPlatformMemCopy(ptr, opt->u.owner.password.b, space - DNSOpt_OwnerData_ID_Wake_Space); 1759 ptr += space - DNSOpt_OwnerData_ID_Wake_Space; 1760 } 1761 } 1762 break; 1763 } 1764 } 1765 return ptr; 1766 } 1767 1768 case kDNSType_NSEC: { 1769 // For our simplified use of NSEC synthetic records: 1770 // nextname is always the record's own name, 1771 // the block number is always 0, 1772 // the count byte is a value in the range 1-32, 1773 // followed by the 1-32 data bytes 1774 int i, j; 1775 for (i=sizeof(rdataNSEC); i>0; i--) if (rdb->nsec.bitmap[i-1]) break; 1776 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name); 1777 if (!ptr) return(mDNSNULL); 1778 if (i) // Only put a block if at least one type exists for this name 1779 { 1780 if (ptr + 2 + i > limit) return(mDNSNULL); 1781 *ptr++ = 0; 1782 *ptr++ = (mDNSu8)i; 1783 for (j=0; j<i; j++) *ptr++ = rdb->nsec.bitmap[j]; 1784 } 1785 return ptr; 1786 } 1787 1788 default: debugf("putRData: Warning! Writing unknown resource type %d as raw data", rr->rrtype); 1789 if (ptr + rr->rdlength > limit) return(mDNSNULL); 1790 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength); 1791 return(ptr + rr->rdlength); 1792 } 1793 } 1794 1795 #define IsUnicastUpdate(X) (!mDNSOpaque16IsZero((X)->h.id) && ((X)->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update) 1796 1797 mDNSexport mDNSu8 *PutResourceRecordTTLWithLimit(DNSMessage *const msg, mDNSu8 *ptr, mDNSu16 *count, ResourceRecord *rr, mDNSu32 ttl, const mDNSu8 *limit) 1798 { 1799 mDNSu8 *endofrdata; 1800 mDNSu16 actualLength; 1801 // When sending SRV to conventional DNS server (i.e. in DNS update requests) we should not do name compression on the rdata (RFC 2782) 1802 const DNSMessage *const rdatacompressionbase = (IsUnicastUpdate(msg) && rr->rrtype == kDNSType_SRV) ? mDNSNULL : msg; 1803 1804 if (rr->RecordType == kDNSRecordTypeUnregistered) 1805 { 1806 LogMsg("PutResourceRecord ERROR! Attempt to put kDNSRecordTypeUnregistered %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype)); 1807 return(ptr); 1808 } 1809 1810 if (!ptr) { LogMsg("PutResourceRecordTTLWithLimit ptr is null"); return(mDNSNULL); } 1811 1812 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name); 1813 if (!ptr || ptr + 10 >= limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL 1814 ptr[0] = (mDNSu8)(rr->rrtype >> 8); 1815 ptr[1] = (mDNSu8)(rr->rrtype & 0xFF); 1816 ptr[2] = (mDNSu8)(rr->rrclass >> 8); 1817 ptr[3] = (mDNSu8)(rr->rrclass & 0xFF); 1818 ptr[4] = (mDNSu8)((ttl >> 24) & 0xFF); 1819 ptr[5] = (mDNSu8)((ttl >> 16) & 0xFF); 1820 ptr[6] = (mDNSu8)((ttl >> 8) & 0xFF); 1821 ptr[7] = (mDNSu8)( ttl & 0xFF); 1822 // ptr[8] and ptr[9] filled in *after* we find out how much space the rdata takes 1823 1824 endofrdata = putRData(rdatacompressionbase, ptr+10, limit, rr); 1825 if (!endofrdata) { verbosedebugf("Ran out of space in PutResourceRecord for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype)); return(mDNSNULL); } 1826 1827 // Go back and fill in the actual number of data bytes we wrote 1828 // (actualLength can be less than rdlength when domain name compression is used) 1829 actualLength = (mDNSu16)(endofrdata - ptr - 10); 1830 ptr[8] = (mDNSu8)(actualLength >> 8); 1831 ptr[9] = (mDNSu8)(actualLength & 0xFF); 1832 1833 if (count) (*count)++; 1834 else LogMsg("PutResourceRecordTTL: ERROR: No target count to update for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype)); 1835 return(endofrdata); 1836 } 1837 1838 mDNSlocal mDNSu8 *putEmptyResourceRecord(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, mDNSu16 *count, const AuthRecord *rr) 1839 { 1840 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->resrec.name); 1841 if (!ptr || ptr + 10 > limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL 1842 ptr[0] = (mDNSu8)(rr->resrec.rrtype >> 8); // Put type 1843 ptr[1] = (mDNSu8)(rr->resrec.rrtype & 0xFF); 1844 ptr[2] = (mDNSu8)(rr->resrec.rrclass >> 8); // Put class 1845 ptr[3] = (mDNSu8)(rr->resrec.rrclass & 0xFF); 1846 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // TTL is zero 1847 ptr[8] = ptr[9] = 0; // RDATA length is zero 1848 (*count)++; 1849 return(ptr + 10); 1850 } 1851 1852 mDNSexport mDNSu8 *putQuestion(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name, mDNSu16 rrtype, mDNSu16 rrclass) 1853 { 1854 ptr = putDomainNameAsLabels(msg, ptr, limit, name); 1855 if (!ptr || ptr+4 >= limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL 1856 ptr[0] = (mDNSu8)(rrtype >> 8); 1857 ptr[1] = (mDNSu8)(rrtype & 0xFF); 1858 ptr[2] = (mDNSu8)(rrclass >> 8); 1859 ptr[3] = (mDNSu8)(rrclass & 0xFF); 1860 msg->h.numQuestions++; 1861 return(ptr+4); 1862 } 1863 1864 // for dynamic updates 1865 mDNSexport mDNSu8 *putZone(DNSMessage *const msg, mDNSu8 *ptr, mDNSu8 *limit, const domainname *zone, mDNSOpaque16 zoneClass) 1866 { 1867 ptr = putDomainNameAsLabels(msg, ptr, limit, zone); 1868 if (!ptr || ptr + 4 > limit) return mDNSNULL; // If we're out-of-space, return NULL 1869 *ptr++ = (mDNSu8)(kDNSType_SOA >> 8); 1870 *ptr++ = (mDNSu8)(kDNSType_SOA & 0xFF); 1871 *ptr++ = zoneClass.b[0]; 1872 *ptr++ = zoneClass.b[1]; 1873 msg->h.mDNS_numZones++; 1874 return ptr; 1875 } 1876 1877 // for dynamic updates 1878 mDNSexport mDNSu8 *putPrereqNameNotInUse(const domainname *const name, DNSMessage *const msg, mDNSu8 *const ptr, mDNSu8 *const end) 1879 { 1880 AuthRecord prereq; 1881 mDNS_SetupResourceRecord(&prereq, mDNSNULL, mDNSInterface_Any, kDNSQType_ANY, kStandardTTL, 0, AuthRecordAny, mDNSNULL, mDNSNULL); 1882 AssignDomainName(&prereq.namestorage, name); 1883 prereq.resrec.rrtype = kDNSQType_ANY; 1884 prereq.resrec.rrclass = kDNSClass_NONE; 1885 return putEmptyResourceRecord(msg, ptr, end, &msg->h.mDNS_numPrereqs, &prereq); 1886 } 1887 1888 // for dynamic updates 1889 mDNSexport mDNSu8 *putDeletionRecord(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr) 1890 { 1891 // deletion: specify record w/ TTL 0, class NONE 1892 const mDNSu16 origclass = rr->rrclass; 1893 rr->rrclass = kDNSClass_NONE; 1894 ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0); 1895 rr->rrclass = origclass; 1896 return ptr; 1897 } 1898 1899 // for dynamic updates 1900 mDNSexport mDNSu8 *putDeletionRecordWithLimit(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr, mDNSu8 *limit) 1901 { 1902 // deletion: specify record w/ TTL 0, class NONE 1903 const mDNSu16 origclass = rr->rrclass; 1904 rr->rrclass = kDNSClass_NONE; 1905 ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0, limit); 1906 rr->rrclass = origclass; 1907 return ptr; 1908 } 1909 1910 mDNSexport mDNSu8 *putDeleteRRSetWithLimit(DNSMessage *msg, mDNSu8 *ptr, const domainname *name, mDNSu16 rrtype, mDNSu8 *limit) 1911 { 1912 mDNSu16 class = kDNSQClass_ANY; 1913 1914 ptr = putDomainNameAsLabels(msg, ptr, limit, name); 1915 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL 1916 ptr[0] = (mDNSu8)(rrtype >> 8); 1917 ptr[1] = (mDNSu8)(rrtype & 0xFF); 1918 ptr[2] = (mDNSu8)(class >> 8); 1919 ptr[3] = (mDNSu8)(class & 0xFF); 1920 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl 1921 ptr[8] = ptr[9] = 0; // zero rdlength/rdata 1922 1923 msg->h.mDNS_numUpdates++; 1924 return ptr + 10; 1925 } 1926 1927 // for dynamic updates 1928 mDNSexport mDNSu8 *putDeleteAllRRSets(DNSMessage *msg, mDNSu8 *ptr, const domainname *name) 1929 { 1930 const mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData; 1931 mDNSu16 class = kDNSQClass_ANY; 1932 mDNSu16 rrtype = kDNSQType_ANY; 1933 1934 ptr = putDomainNameAsLabels(msg, ptr, limit, name); 1935 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL 1936 ptr[0] = (mDNSu8)(rrtype >> 8); 1937 ptr[1] = (mDNSu8)(rrtype & 0xFF); 1938 ptr[2] = (mDNSu8)(class >> 8); 1939 ptr[3] = (mDNSu8)(class & 0xFF); 1940 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl 1941 ptr[8] = ptr[9] = 0; // zero rdlength/rdata 1942 1943 msg->h.mDNS_numUpdates++; 1944 return ptr + 10; 1945 } 1946 1947 // for dynamic updates 1948 mDNSexport mDNSu8 *putUpdateLease(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease) 1949 { 1950 AuthRecord rr; 1951 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL); 1952 rr.resrec.rrclass = NormalMaxDNSMessageData; 1953 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record 1954 rr.resrec.rdestimate = sizeof(rdataOPT); 1955 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease; 1956 rr.resrec.rdata->u.opt[0].u.updatelease = lease; 1957 end = PutResourceRecordTTLJumbo(msg, end, &msg->h.numAdditionals, &rr.resrec, 0); 1958 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTL"); return mDNSNULL; } 1959 return end; 1960 } 1961 1962 // for dynamic updates 1963 mDNSexport mDNSu8 *putUpdateLeaseWithLimit(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease, mDNSu8 *limit) 1964 { 1965 AuthRecord rr; 1966 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL); 1967 rr.resrec.rrclass = NormalMaxDNSMessageData; 1968 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record 1969 rr.resrec.rdestimate = sizeof(rdataOPT); 1970 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease; 1971 rr.resrec.rdata->u.opt[0].u.updatelease = lease; 1972 end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, 0, limit); 1973 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTLWithLimit"); return mDNSNULL; } 1974 return end; 1975 } 1976 1977 mDNSexport mDNSu8 *putHINFO(const mDNS *const m, DNSMessage *const msg, mDNSu8 *end, DomainAuthInfo *authInfo, mDNSu8 *limit) 1978 { 1979 if (authInfo && authInfo->AutoTunnel) 1980 { 1981 AuthRecord hinfo; 1982 mDNSu8 *h = hinfo.rdatastorage.u.data; 1983 mDNSu16 len = 2 + m->HIHardware.c[0] + m->HISoftware.c[0]; 1984 mDNSu8 *newptr; 1985 mDNS_SetupResourceRecord(&hinfo, mDNSNULL, mDNSInterface_Any, kDNSType_HINFO, 0, kDNSRecordTypeUnique, AuthRecordAny, mDNSNULL, mDNSNULL); 1986 AppendDomainLabel(&hinfo.namestorage, &m->hostlabel); 1987 AppendDomainName (&hinfo.namestorage, &authInfo->domain); 1988 hinfo.resrec.rroriginalttl = 0; 1989 mDNSPlatformMemCopy(h, &m->HIHardware, 1 + (mDNSu32)m->HIHardware.c[0]); 1990 h += 1 + (int)h[0]; 1991 mDNSPlatformMemCopy(h, &m->HISoftware, 1 + (mDNSu32)m->HISoftware.c[0]); 1992 hinfo.resrec.rdlength = len; 1993 hinfo.resrec.rdestimate = len; 1994 newptr = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &hinfo.resrec, 0, limit); 1995 return newptr; 1996 } 1997 else 1998 return end; 1999 } 2000 2001 // *************************************************************************** 2002 #if COMPILER_LIKES_PRAGMA_MARK 2003 #pragma mark - 2004 #pragma mark - DNS Message Parsing Functions 2005 #endif 2006 2007 mDNSexport mDNSu32 DomainNameHashValue(const domainname *const name) 2008 { 2009 mDNSu32 sum = 0; 2010 const mDNSu8 *c; 2011 2012 for (c = name->c; c[0] != 0 && c[1] != 0; c += 2) 2013 { 2014 sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8) | 2015 (mDNSIsUpperCase(c[1]) ? c[1] + 'a' - 'A' : c[1]); 2016 sum = (sum<<3) | (sum>>29); 2017 } 2018 if (c[0]) sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8); 2019 return(sum); 2020 } 2021 2022 mDNSexport void SetNewRData(ResourceRecord *const rr, RData *NewRData, mDNSu16 rdlength) 2023 { 2024 domainname *target; 2025 if (NewRData) 2026 { 2027 rr->rdata = NewRData; 2028 rr->rdlength = rdlength; 2029 } 2030 // Must not try to get target pointer until after updating rr->rdata 2031 target = GetRRDomainNameTarget(rr); 2032 rr->rdlength = GetRDLength(rr, mDNSfalse); 2033 rr->rdestimate = GetRDLength(rr, mDNStrue); 2034 rr->rdatahash = target ? DomainNameHashValue(target) : RDataHashValue(rr); 2035 } 2036 2037 mDNSexport const mDNSu8 *skipDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end) 2038 { 2039 mDNSu16 total = 0; 2040 2041 if (ptr < (mDNSu8*)msg || ptr >= end) 2042 { debugf("skipDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); } 2043 2044 while (1) // Read sequence of labels 2045 { 2046 const mDNSu8 len = *ptr++; // Read length of this label 2047 if (len == 0) return(ptr); // If length is zero, that means this name is complete 2048 switch (len & 0xC0) 2049 { 2050 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label 2051 { debugf("skipDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); } 2052 if (total + 1 + len >= MAX_DOMAIN_NAME) // Remember: expect at least one more byte for the root label 2053 { debugf("skipDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); } 2054 ptr += len; 2055 total += 1 + len; 2056 break; 2057 2058 case 0x40: debugf("skipDomainName: Extended EDNS0 label types 0x%X not supported", len); return(mDNSNULL); 2059 case 0x80: debugf("skipDomainName: Illegal label length 0x%X", len); return(mDNSNULL); 2060 case 0xC0: return(ptr+1); 2061 } 2062 } 2063 } 2064 2065 // Routine to fetch an FQDN from the DNS message, following compression pointers if necessary. 2066 mDNSexport const mDNSu8 *getDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end, 2067 domainname *const name) 2068 { 2069 const mDNSu8 *nextbyte = mDNSNULL; // Record where we got to before we started following pointers 2070 mDNSu8 *np = name->c; // Name pointer 2071 const mDNSu8 *const limit = np + MAX_DOMAIN_NAME; // Limit so we don't overrun buffer 2072 2073 if (ptr < (mDNSu8*)msg || ptr >= end) 2074 { debugf("getDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); } 2075 2076 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels) 2077 2078 while (1) // Read sequence of labels 2079 { 2080 const mDNSu8 len = *ptr++; // Read length of this label 2081 if (len == 0) break; // If length is zero, that means this name is complete 2082 switch (len & 0xC0) 2083 { 2084 int i; 2085 mDNSu16 offset; 2086 2087 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label 2088 { debugf("getDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); } 2089 if (np + 1 + len >= limit) // Remember: expect at least one more byte for the root label 2090 { debugf("getDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); } 2091 *np++ = len; 2092 for (i=0; i<len; i++) *np++ = *ptr++; 2093 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels) 2094 break; 2095 2096 case 0x40: debugf("getDomainName: Extended EDNS0 label types 0x%X not supported in name %##s", len, name->c); 2097 return(mDNSNULL); 2098 2099 case 0x80: debugf("getDomainName: Illegal label length 0x%X in domain name %##s", len, name->c); return(mDNSNULL); 2100 2101 case 0xC0: offset = (mDNSu16)((((mDNSu16)(len & 0x3F)) << 8) | *ptr++); 2102 if (!nextbyte) nextbyte = ptr; // Record where we got to before we started following pointers 2103 ptr = (mDNSu8 *)msg + offset; 2104 if (ptr < (mDNSu8*)msg || ptr >= end) 2105 { debugf("getDomainName: Illegal compression pointer not within packet boundaries"); return(mDNSNULL); } 2106 if (*ptr & 0xC0) 2107 { debugf("getDomainName: Compression pointer must point to real label"); return(mDNSNULL); } 2108 break; 2109 } 2110 } 2111 2112 if (nextbyte) return(nextbyte); 2113 else return(ptr); 2114 } 2115 2116 mDNSexport const mDNSu8 *skipResourceRecord(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end) 2117 { 2118 mDNSu16 pktrdlength; 2119 2120 ptr = skipDomainName(msg, ptr, end); 2121 if (!ptr) { debugf("skipResourceRecord: Malformed RR name"); return(mDNSNULL); } 2122 2123 if (ptr + 10 > end) { debugf("skipResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); } 2124 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]); 2125 ptr += 10; 2126 if (ptr + pktrdlength > end) { debugf("skipResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); } 2127 2128 return(ptr + pktrdlength); 2129 } 2130 2131 mDNSexport const mDNSu8 *GetLargeResourceRecord(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr, 2132 const mDNSu8 *end, const mDNSInterfaceID InterfaceID, mDNSu8 RecordType, LargeCacheRecord *const largecr) 2133 { 2134 CacheRecord *const rr = &largecr->r; 2135 RDataBody2 *const rdb = (RDataBody2 *)rr->smallrdatastorage.data; 2136 mDNSu16 pktrdlength; 2137 2138 if (largecr == &m->rec && m->rec.r.resrec.RecordType) 2139 { 2140 LogMsg("GetLargeResourceRecord: m->rec appears to be already in use for %s", CRDisplayString(m, &m->rec.r)); 2141 #if ForceAlerts 2142 *(long*)0 = 0; 2143 #endif 2144 } 2145 2146 rr->next = mDNSNULL; 2147 rr->resrec.name = &largecr->namestorage; 2148 2149 rr->NextInKAList = mDNSNULL; 2150 rr->TimeRcvd = m ? m->timenow : 0; 2151 rr->DelayDelivery = 0; 2152 rr->NextRequiredQuery = m ? m->timenow : 0; // Will be updated to the real value when we call SetNextCacheCheckTimeForRecord() 2153 rr->LastUsed = m ? m->timenow : 0; 2154 rr->CRActiveQuestion = mDNSNULL; 2155 rr->UnansweredQueries = 0; 2156 rr->LastUnansweredTime= 0; 2157 #if ENABLE_MULTI_PACKET_QUERY_SNOOPING 2158 rr->MPUnansweredQ = 0; 2159 rr->MPLastUnansweredQT= 0; 2160 rr->MPUnansweredKA = 0; 2161 rr->MPExpectingKA = mDNSfalse; 2162 #endif 2163 rr->NextInCFList = mDNSNULL; 2164 2165 rr->resrec.InterfaceID = InterfaceID; 2166 rr->resrec.rDNSServer = mDNSNULL; 2167 2168 ptr = getDomainName(msg, ptr, end, &largecr->namestorage); // Will bail out correctly if ptr is NULL 2169 if (!ptr) { debugf("GetLargeResourceRecord: Malformed RR name"); return(mDNSNULL); } 2170 rr->resrec.namehash = DomainNameHashValue(rr->resrec.name); 2171 2172 if (ptr + 10 > end) { debugf("GetLargeResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); } 2173 2174 rr->resrec.rrtype = (mDNSu16) ((mDNSu16)ptr[0] << 8 | ptr[1]); 2175 rr->resrec.rrclass = (mDNSu16)(((mDNSu16)ptr[2] << 8 | ptr[3]) & kDNSClass_Mask); 2176 rr->resrec.rroriginalttl = (mDNSu32) ((mDNSu32)ptr[4] << 24 | (mDNSu32)ptr[5] << 16 | (mDNSu32)ptr[6] << 8 | ptr[7]); 2177 if (rr->resrec.rroriginalttl > 0x70000000UL / mDNSPlatformOneSecond && (mDNSs32)rr->resrec.rroriginalttl != -1) 2178 rr->resrec.rroriginalttl = 0x70000000UL / mDNSPlatformOneSecond; 2179 // Note: We don't have to adjust m->NextCacheCheck here -- this is just getting a record into memory for 2180 // us to look at. If we decide to copy it into the cache, then we'll update m->NextCacheCheck accordingly. 2181 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]); 2182 2183 // If mDNS record has cache-flush bit set, we mark it unique 2184 // For uDNS records, all are implicitly deemed unique (a single DNS server is always 2185 // authoritative for the entire RRSet), unless this is a truncated response 2186 if (ptr[2] & (kDNSClass_UniqueRRSet >> 8) || (!InterfaceID && !(msg->h.flags.b[0] & kDNSFlag0_TC))) 2187 RecordType |= kDNSRecordTypePacketUniqueMask; 2188 ptr += 10; 2189 if (ptr + pktrdlength > end) { debugf("GetLargeResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); } 2190 end = ptr + pktrdlength; // Adjust end to indicate the end of the rdata for this resource record 2191 2192 rr->resrec.rdata = (RData*)&rr->smallrdatastorage; 2193 rr->resrec.rdata->MaxRDLength = MaximumRDSize; 2194 2195 if (!RecordType) LogMsg("GetLargeResourceRecord: No RecordType for %##s", rr->resrec.name->c); 2196 2197 // IMPORTANT: Any record type we understand and unpack into a structure containing domainnames needs to have corresponding 2198 // cases in SameRDataBody() and RDataHashValue() to do a semantic comparison (or checksum) of the structure instead of a blind 2199 // bitwise memory compare (or sum). This is because a domainname is a fixed size structure holding variable-length data. 2200 // Any bytes past the logical end of the name are undefined, and a blind bitwise memory compare may indicate that 2201 // two domainnames are different when semantically they are the same name and it's only the unused bytes that differ. 2202 if (rr->resrec.rrclass == kDNSQClass_ANY && pktrdlength == 0) // Used in update packets to mean "Delete An RRset" (RFC 2136) 2203 rr->resrec.rdlength = 0; 2204 else switch (rr->resrec.rrtype) 2205 { 2206 case kDNSType_A: if (pktrdlength != sizeof(mDNSv4Addr)) goto fail; 2207 rdb->ipv4.b[0] = ptr[0]; 2208 rdb->ipv4.b[1] = ptr[1]; 2209 rdb->ipv4.b[2] = ptr[2]; 2210 rdb->ipv4.b[3] = ptr[3]; 2211 break; 2212 2213 case kDNSType_NS: 2214 case kDNSType_CNAME: 2215 case kDNSType_PTR: 2216 case kDNSType_DNAME:ptr = getDomainName(msg, ptr, end, &rdb->name); 2217 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed CNAME/PTR RDATA name"); goto fail; } 2218 //debugf("%##s PTR %##s rdlen %d", rr->resrec.name.c, rdb->name.c, pktrdlength); 2219 break; 2220 2221 case kDNSType_SOA: ptr = getDomainName(msg, ptr, end, &rdb->soa.mname); 2222 if (!ptr) { debugf("GetLargeResourceRecord: Malformed SOA RDATA mname"); goto fail; } 2223 ptr = getDomainName(msg, ptr, end, &rdb->soa.rname); 2224 if (!ptr) { debugf("GetLargeResourceRecord: Malformed SOA RDATA rname"); goto fail; } 2225 if (ptr + 0x14 != end) { debugf("GetLargeResourceRecord: Malformed SOA RDATA"); goto fail; } 2226 rdb->soa.serial = (mDNSs32) ((mDNSs32)ptr[0x00] << 24 | (mDNSs32)ptr[0x01] << 16 | (mDNSs32)ptr[0x02] << 8 | ptr[0x03]); 2227 rdb->soa.refresh = (mDNSu32) ((mDNSu32)ptr[0x04] << 24 | (mDNSu32)ptr[0x05] << 16 | (mDNSu32)ptr[0x06] << 8 | ptr[0x07]); 2228 rdb->soa.retry = (mDNSu32) ((mDNSu32)ptr[0x08] << 24 | (mDNSu32)ptr[0x09] << 16 | (mDNSu32)ptr[0x0A] << 8 | ptr[0x0B]); 2229 rdb->soa.expire = (mDNSu32) ((mDNSu32)ptr[0x0C] << 24 | (mDNSu32)ptr[0x0D] << 16 | (mDNSu32)ptr[0x0E] << 8 | ptr[0x0F]); 2230 rdb->soa.min = (mDNSu32) ((mDNSu32)ptr[0x10] << 24 | (mDNSu32)ptr[0x11] << 16 | (mDNSu32)ptr[0x12] << 8 | ptr[0x13]); 2231 break; 2232 2233 case kDNSType_NULL: 2234 case kDNSType_HINFO: 2235 case kDNSType_TSIG: 2236 case kDNSType_TXT: 2237 case kDNSType_X25: 2238 case kDNSType_ISDN: 2239 case kDNSType_LOC: 2240 case kDNSType_DHCID:if (pktrdlength > rr->resrec.rdata->MaxRDLength) 2241 { 2242 debugf("GetLargeResourceRecord: %s rdata size (%d) exceeds storage (%d)", 2243 DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength); 2244 goto fail; 2245 } 2246 rr->resrec.rdlength = pktrdlength; 2247 mDNSPlatformMemCopy(rdb->data, ptr, pktrdlength); 2248 break; 2249 2250 case kDNSType_MX: 2251 case kDNSType_AFSDB: 2252 case kDNSType_RT: 2253 case kDNSType_KX: if (pktrdlength < 3) goto fail; // Preference + domainname 2254 rdb->mx.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); 2255 ptr = getDomainName(msg, ptr+2, end, &rdb->mx.exchange); 2256 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed MX name"); goto fail; } 2257 //debugf("%##s SRV %##s rdlen %d", rr->resrec.name.c, rdb->srv.target.c, pktrdlength); 2258 break; 2259 2260 case kDNSType_RP: ptr = getDomainName(msg, ptr, end, &rdb->rp.mbox); // Domainname + domainname 2261 if (!ptr) { debugf("GetLargeResourceRecord: Malformed RP mbox"); goto fail; } 2262 ptr = getDomainName(msg, ptr, end, &rdb->rp.txt); 2263 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed RP txt"); goto fail; } 2264 break; 2265 2266 case kDNSType_PX: if (pktrdlength < 4) goto fail; // Preference + domainname + domainname 2267 rdb->px.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); 2268 ptr = getDomainName(msg, ptr, end, &rdb->px.map822); 2269 if (!ptr) { debugf("GetLargeResourceRecord: Malformed PX map822"); goto fail; } 2270 ptr = getDomainName(msg, ptr, end, &rdb->px.mapx400); 2271 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed PX mapx400"); goto fail; } 2272 break; 2273 2274 case kDNSType_AAAA: if (pktrdlength != sizeof(mDNSv6Addr)) goto fail; 2275 mDNSPlatformMemCopy(&rdb->ipv6, ptr, sizeof(rdb->ipv6)); 2276 break; 2277 2278 case kDNSType_SRV: if (pktrdlength < 7) goto fail; // Priority + weight + port + domainname 2279 rdb->srv.priority = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); 2280 rdb->srv.weight = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]); 2281 rdb->srv.port.b[0] = ptr[4]; 2282 rdb->srv.port.b[1] = ptr[5]; 2283 ptr = getDomainName(msg, ptr+6, end, &rdb->srv.target); 2284 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed SRV RDATA name"); goto fail; } 2285 //debugf("%##s SRV %##s rdlen %d", rr->resrec.name.c, rdb->srv.target.c, pktrdlength); 2286 break; 2287 2288 case kDNSType_OPT: { 2289 rdataOPT *opt = rr->resrec.rdata->u.opt; 2290 rr->resrec.rdlength = 0; 2291 while (ptr < end && (mDNSu8 *)(opt+1) < &rr->resrec.rdata->u.data[MaximumRDSize]) 2292 { 2293 const rdataOPT *const currentopt = opt; 2294 if (ptr + 4 > end) { LogInfo("GetLargeResourceRecord: OPT RDATA ptr + 4 > end"); goto fail; } 2295 opt->opt = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); 2296 opt->optlen = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]); 2297 ptr += 4; 2298 if (ptr + opt->optlen > end) { LogInfo("GetLargeResourceRecord: ptr + opt->optlen > end"); goto fail; } 2299 switch (opt->opt) 2300 { 2301 case kDNSOpt_LLQ: 2302 if (opt->optlen == DNSOpt_LLQData_Space - 4) 2303 { 2304 opt->u.llq.vers = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); 2305 opt->u.llq.llqOp = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]); 2306 opt->u.llq.err = (mDNSu16)((mDNSu16)ptr[4] << 8 | ptr[5]); 2307 mDNSPlatformMemCopy(opt->u.llq.id.b, ptr+6, 8); 2308 opt->u.llq.llqlease = (mDNSu32) ((mDNSu32)ptr[14] << 24 | (mDNSu32)ptr[15] << 16 | (mDNSu32)ptr[16] << 8 | ptr[17]); 2309 if (opt->u.llq.llqlease > 0x70000000UL / mDNSPlatformOneSecond) 2310 opt->u.llq.llqlease = 0x70000000UL / mDNSPlatformOneSecond; 2311 opt++; 2312 } 2313 break; 2314 case kDNSOpt_Lease: 2315 if (opt->optlen == DNSOpt_LeaseData_Space - 4) 2316 { 2317 opt->u.updatelease = (mDNSu32) ((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]); 2318 if (opt->u.updatelease > 0x70000000UL / mDNSPlatformOneSecond) 2319 opt->u.updatelease = 0x70000000UL / mDNSPlatformOneSecond; 2320 opt++; 2321 } 2322 break; 2323 case kDNSOpt_Owner: 2324 if (ValidOwnerLength(opt->optlen)) 2325 { 2326 opt->u.owner.vers = ptr[0]; 2327 opt->u.owner.seq = ptr[1]; 2328 mDNSPlatformMemCopy(opt->u.owner.HMAC.b, ptr+2, 6); // 6-byte MAC address 2329 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+2, 6); // 6-byte MAC address 2330 opt->u.owner.password = zeroEthAddr; 2331 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4) 2332 { 2333 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+8, 6); // 6-byte MAC address 2334 // This mDNSPlatformMemCopy is safe because the ValidOwnerLength(opt->optlen) check above 2335 // ensures that opt->optlen is no more than DNSOpt_OwnerData_ID_Wake_PW6_Space - 4 2336 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4) 2337 mDNSPlatformMemCopy(opt->u.owner.password.b, ptr+14, opt->optlen - (DNSOpt_OwnerData_ID_Wake_Space-4)); 2338 } 2339 opt++; 2340 } 2341 break; 2342 } 2343 ptr += currentopt->optlen; 2344 } 2345 rr->resrec.rdlength = (mDNSu16)((mDNSu8*)opt - rr->resrec.rdata->u.data); 2346 if (ptr != end) { LogInfo("GetLargeResourceRecord: Malformed OptRdata"); goto fail; } 2347 break; 2348 } 2349 2350 case kDNSType_NSEC: { 2351 unsigned int i, j; 2352 domainname d; 2353 ptr = getDomainName(msg, ptr, end, &d); // Ignored for our simplified use of NSEC synthetic records 2354 if (!ptr) { LogInfo("GetLargeResourceRecord: Malformed NSEC nextname"); goto fail; } 2355 mDNSPlatformMemZero(rdb->nsec.bitmap, sizeof(rdb->nsec.bitmap)); 2356 if (ptr < end) 2357 { 2358 if (*ptr++ != 0) { debugf("GetLargeResourceRecord: We only handle block zero NSECs"); goto fail; } 2359 i = *ptr++; 2360 if (i > sizeof(rdataNSEC)) { debugf("GetLargeResourceRecord: invalid block length %d", i); goto fail; } 2361 for (j=0; j<i; j++) rdb->nsec.bitmap[j] = *ptr++; 2362 } 2363 if (ptr != end) { debugf("GetLargeResourceRecord: Malformed NSEC"); goto fail; } 2364 break; 2365 } 2366 2367 default: if (pktrdlength > rr->resrec.rdata->MaxRDLength) 2368 { 2369 debugf("GetLargeResourceRecord: rdata %d (%s) size (%d) exceeds storage (%d)", 2370 rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength); 2371 goto fail; 2372 } 2373 debugf("GetLargeResourceRecord: Warning! Reading resource type %d (%s) as opaque data", 2374 rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype)); 2375 // Note: Just because we don't understand the record type, that doesn't 2376 // mean we fail. The DNS protocol specifies rdlength, so we can 2377 // safely skip over unknown records and ignore them. 2378 // We also grab a binary copy of the rdata anyway, since the caller 2379 // might know how to interpret it even if we don't. 2380 rr->resrec.rdlength = pktrdlength; 2381 mDNSPlatformMemCopy(rdb->data, ptr, pktrdlength); 2382 break; 2383 } 2384 2385 SetNewRData(&rr->resrec, mDNSNULL, 0); // Sets rdlength, rdestimate, rdatahash for us 2386 2387 // Success! Now fill in RecordType to show this record contains valid data 2388 rr->resrec.RecordType = RecordType; 2389 return(end); 2390 2391 fail: 2392 // If we were unable to parse the rdata in this record, we indicate that by 2393 // returing a 'kDNSRecordTypePacketNegative' record with rdlength set to zero 2394 rr->resrec.RecordType = kDNSRecordTypePacketNegative; 2395 rr->resrec.rdlength = 0; 2396 rr->resrec.rdestimate = 0; 2397 rr->resrec.rdatahash = 0; 2398 return(end); 2399 } 2400 2401 mDNSexport const mDNSu8 *skipQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end) 2402 { 2403 ptr = skipDomainName(msg, ptr, end); 2404 if (!ptr) { debugf("skipQuestion: Malformed domain name in DNS question section"); return(mDNSNULL); } 2405 if (ptr+4 > end) { debugf("skipQuestion: Malformed DNS question section -- no query type and class!"); return(mDNSNULL); } 2406 return(ptr+4); 2407 } 2408 2409 mDNSexport const mDNSu8 *getQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end, const mDNSInterfaceID InterfaceID, 2410 DNSQuestion *question) 2411 { 2412 mDNSPlatformMemZero(question, sizeof(*question)); 2413 question->InterfaceID = InterfaceID; 2414 if (!InterfaceID) question->TargetQID = onesID; // In DNSQuestions we use TargetQID as the indicator of whether it's unicast or multicast 2415 ptr = getDomainName(msg, ptr, end, &question->qname); 2416 if (!ptr) { debugf("Malformed domain name in DNS question section"); return(mDNSNULL); } 2417 if (ptr+4 > end) { debugf("Malformed DNS question section -- no query type and class!"); return(mDNSNULL); } 2418 2419 question->qnamehash = DomainNameHashValue(&question->qname); 2420 question->qtype = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); // Get type 2421 question->qclass = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]); // and class 2422 return(ptr+4); 2423 } 2424 2425 mDNSexport const mDNSu8 *LocateAnswers(const DNSMessage *const msg, const mDNSu8 *const end) 2426 { 2427 int i; 2428 const mDNSu8 *ptr = msg->data; 2429 for (i = 0; i < msg->h.numQuestions && ptr; i++) ptr = skipQuestion(msg, ptr, end); 2430 return(ptr); 2431 } 2432 2433 mDNSexport const mDNSu8 *LocateAuthorities(const DNSMessage *const msg, const mDNSu8 *const end) 2434 { 2435 int i; 2436 const mDNSu8 *ptr = LocateAnswers(msg, end); 2437 for (i = 0; i < msg->h.numAnswers && ptr; i++) ptr = skipResourceRecord(msg, ptr, end); 2438 return(ptr); 2439 } 2440 2441 mDNSexport const mDNSu8 *LocateAdditionals(const DNSMessage *const msg, const mDNSu8 *const end) 2442 { 2443 int i; 2444 const mDNSu8 *ptr = LocateAuthorities(msg, end); 2445 for (i = 0; i < msg->h.numAuthorities; i++) ptr = skipResourceRecord(msg, ptr, end); 2446 return (ptr); 2447 } 2448 2449 mDNSexport const mDNSu8 *LocateOptRR(const DNSMessage *const msg, const mDNSu8 *const end, int minsize) 2450 { 2451 int i; 2452 const mDNSu8 *ptr = LocateAdditionals(msg, end); 2453 2454 // Locate the OPT record. 2455 // According to RFC 2671, "One OPT pseudo-RR can be added to the additional data section of either a request or a response." 2456 // This implies that there may be *at most* one OPT record per DNS message, in the Additional Section, 2457 // but not necessarily the *last* entry in the Additional Section. 2458 for (i = 0; ptr && i < msg->h.numAdditionals; i++) 2459 { 2460 if (ptr + DNSOpt_Header_Space + minsize <= end && // Make sure we have 11+minsize bytes of data 2461 ptr[0] == 0 && // Name must be root label 2462 ptr[1] == (kDNSType_OPT >> 8 ) && // rrtype OPT 2463 ptr[2] == (kDNSType_OPT & 0xFF) && 2464 ((mDNSu16)ptr[9] << 8 | (mDNSu16)ptr[10]) >= (mDNSu16)minsize) 2465 return(ptr); 2466 else 2467 ptr = skipResourceRecord(msg, ptr, end); 2468 } 2469 return(mDNSNULL); 2470 } 2471 2472 // On success, GetLLQOptData returns pointer to storage within shared "m->rec"; 2473 // it is caller's responsibilty to clear m->rec.r.resrec.RecordType after use 2474 // Note: An OPT RDataBody actually contains one or more variable-length rdataOPT objects packed together 2475 // The code that currently calls this assumes there's only one, instead of iterating through the set 2476 mDNSexport const rdataOPT *GetLLQOptData(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *const end) 2477 { 2478 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LLQData_Space); 2479 if (ptr) 2480 { 2481 ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec); 2482 if (ptr && m->rec.r.resrec.RecordType != kDNSRecordTypePacketNegative) return(&m->rec.r.resrec.rdata->u.opt[0]); 2483 } 2484 return(mDNSNULL); 2485 } 2486 2487 // Get the lease life of records in a dynamic update 2488 // returns 0 on error or if no lease present 2489 mDNSexport mDNSu32 GetPktLease(mDNS *m, DNSMessage *msg, const mDNSu8 *end) 2490 { 2491 mDNSu32 result = 0; 2492 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LeaseData_Space); 2493 if (ptr) ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec); 2494 if (ptr && m->rec.r.resrec.rdlength >= DNSOpt_LeaseData_Space && m->rec.r.resrec.rdata->u.opt[0].opt == kDNSOpt_Lease) 2495 result = m->rec.r.resrec.rdata->u.opt[0].u.updatelease; 2496 m->rec.r.resrec.RecordType = 0; // Clear RecordType to show we're not still using it 2497 return(result); 2498 } 2499 2500 mDNSlocal const mDNSu8 *DumpRecords(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end, int count, char *label) 2501 { 2502 int i; 2503 LogMsg("%2d %s", count, label); 2504 for (i = 0; i < count && ptr; i++) 2505 { 2506 // This puts a LargeCacheRecord on the stack instead of using the shared m->rec storage, 2507 // but since it's only used for debugging (and probably only on OS X, not on 2508 // embedded systems) putting a 9kB object on the stack isn't a big problem. 2509 LargeCacheRecord largecr; 2510 ptr = GetLargeResourceRecord(m, msg, ptr, end, mDNSInterface_Any, kDNSRecordTypePacketAns, &largecr); 2511 if (ptr) LogMsg("%2d TTL%8d %s", i, largecr.r.resrec.rroriginalttl, CRDisplayString(m, &largecr.r)); 2512 } 2513 if (!ptr) LogMsg("ERROR: Premature end of packet data"); 2514 return(ptr); 2515 } 2516 2517 #define DNS_OP_Name(X) ( \ 2518 (X) == kDNSFlag0_OP_StdQuery ? "" : \ 2519 (X) == kDNSFlag0_OP_Iquery ? "Iquery " : \ 2520 (X) == kDNSFlag0_OP_Status ? "Status " : \ 2521 (X) == kDNSFlag0_OP_Unused3 ? "Unused3 " : \ 2522 (X) == kDNSFlag0_OP_Notify ? "Notify " : \ 2523 (X) == kDNSFlag0_OP_Update ? "Update " : "?? " ) 2524 2525 #define DNS_RC_Name(X) ( \ 2526 (X) == kDNSFlag1_RC_NoErr ? "NoErr" : \ 2527 (X) == kDNSFlag1_RC_FormErr ? "FormErr" : \ 2528 (X) == kDNSFlag1_RC_ServFail ? "ServFail" : \ 2529 (X) == kDNSFlag1_RC_NXDomain ? "NXDomain" : \ 2530 (X) == kDNSFlag1_RC_NotImpl ? "NotImpl" : \ 2531 (X) == kDNSFlag1_RC_Refused ? "Refused" : \ 2532 (X) == kDNSFlag1_RC_YXDomain ? "YXDomain" : \ 2533 (X) == kDNSFlag1_RC_YXRRSet ? "YXRRSet" : \ 2534 (X) == kDNSFlag1_RC_NXRRSet ? "NXRRSet" : \ 2535 (X) == kDNSFlag1_RC_NotAuth ? "NotAuth" : \ 2536 (X) == kDNSFlag1_RC_NotZone ? "NotZone" : "??" ) 2537 2538 // Note: DumpPacket expects the packet header fields in host byte order, not network byte order 2539 mDNSexport void DumpPacket(mDNS *const m, mStatus status, mDNSBool sent, char *transport, 2540 const mDNSAddr *srcaddr, mDNSIPPort srcport, 2541 const mDNSAddr *dstaddr, mDNSIPPort dstport, const DNSMessage *const msg, const mDNSu8 *const end) 2542 { 2543 mDNSBool IsUpdate = ((msg->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update); 2544 const mDNSu8 *ptr = msg->data; 2545 int i; 2546 DNSQuestion q; 2547 char tbuffer[64], sbuffer[64], dbuffer[64] = ""; 2548 if (!status) tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), sent ? "Sent" : "Received" )] = 0; 2549 else tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), "ERROR %d %sing", status, sent ? "Send" : "Receiv")] = 0; 2550 if (sent) sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "port " )] = 0; 2551 else sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "%#a:", srcaddr)] = 0; 2552 if (dstaddr || !mDNSIPPortIsZero(dstport)) 2553 dbuffer[mDNS_snprintf(dbuffer, sizeof(dbuffer), " to %#a:%d", dstaddr, mDNSVal16(dstport))] = 0; 2554 2555 LogMsg("-- %s %s DNS %s%s (flags %02X%02X) RCODE: %s (%d) %s%s%s%s%s%sID: %d %d bytes from %s%d%s%s --", 2556 tbuffer, transport, 2557 DNS_OP_Name(msg->h.flags.b[0] & kDNSFlag0_OP_Mask), 2558 msg->h.flags.b[0] & kDNSFlag0_QR_Response ? "Response" : "Query", 2559 msg->h.flags.b[0], msg->h.flags.b[1], 2560 DNS_RC_Name(msg->h.flags.b[1] & kDNSFlag1_RC_Mask), 2561 msg->h.flags.b[1] & kDNSFlag1_RC_Mask, 2562 msg->h.flags.b[0] & kDNSFlag0_AA ? "AA " : "", 2563 msg->h.flags.b[0] & kDNSFlag0_TC ? "TC " : "", 2564 msg->h.flags.b[0] & kDNSFlag0_RD ? "RD " : "", 2565 msg->h.flags.b[1] & kDNSFlag1_RA ? "RA " : "", 2566 msg->h.flags.b[1] & kDNSFlag1_AD ? "AD " : "", 2567 msg->h.flags.b[1] & kDNSFlag1_CD ? "CD " : "", 2568 mDNSVal16(msg->h.id), 2569 end - msg->data, 2570 sbuffer, mDNSVal16(srcport), dbuffer, 2571 (msg->h.flags.b[0] & kDNSFlag0_TC) ? " (truncated)" : "" 2572 ); 2573 2574 LogMsg("%2d %s", msg->h.numQuestions, IsUpdate ? "Zone" : "Questions"); 2575 for (i = 0; i < msg->h.numQuestions && ptr; i++) 2576 { 2577 ptr = getQuestion(msg, ptr, end, mDNSInterface_Any, &q); 2578 if (ptr) LogMsg("%2d %##s %s", i, q.qname.c, DNSTypeName(q.qtype)); 2579 } 2580 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAnswers, IsUpdate ? "Prerequisites" : "Answers"); 2581 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAuthorities, IsUpdate ? "Updates" : "Authorities"); 2582 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAdditionals, "Additionals"); 2583 LogMsg("--------------"); 2584 } 2585 2586 // *************************************************************************** 2587 #if COMPILER_LIKES_PRAGMA_MARK 2588 #pragma mark - 2589 #pragma mark - Packet Sending Functions 2590 #endif 2591 2592 // Stub definition of TCPSocket_struct so we can access flags field. (Rest of TCPSocket_struct is platform-dependent.) 2593 struct TCPSocket_struct { TCPSocketFlags flags; /* ... */ }; 2594 2595 struct UDPSocket_struct 2596 { 2597 mDNSIPPort port; // MUST BE FIRST FIELD -- mDNSCoreReceive expects every UDPSocket_struct to begin with mDNSIPPort port 2598 }; 2599 2600 // Note: When we sign a DNS message using DNSDigest_SignMessage(), the current real-time clock value is used, which 2601 // is why we generally defer signing until we send the message, to ensure the signature is as fresh as possible. 2602 mDNSexport mStatus mDNSSendDNSMessage(mDNS *const m, DNSMessage *const msg, mDNSu8 *end, 2603 mDNSInterfaceID InterfaceID, UDPSocket *src, const mDNSAddr *dst, mDNSIPPort dstport, TCPSocket *sock, DomainAuthInfo *authInfo) 2604 { 2605 mStatus status = mStatus_NoError; 2606 const mDNSu16 numAdditionals = msg->h.numAdditionals; 2607 mDNSu8 *newend; 2608 mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData; 2609 2610 // Zero-length message data is okay (e.g. for a DNS Update ack, where all we need is an ID and an error code 2611 if (end < msg->data || end - msg->data > AbsoluteMaxDNSMessageData) 2612 { 2613 LogMsg("mDNSSendDNSMessage: invalid message %p %p %d", msg->data, end, end - msg->data); 2614 return mStatus_BadParamErr; 2615 } 2616 2617 newend = putHINFO(m, msg, end, authInfo, limit); 2618 if (!newend) LogMsg("mDNSSendDNSMessage: putHINFO failed msg %p end %p, limit %p", msg->data, end, limit); // Not fatal 2619 else end = newend; 2620 2621 // Put all the integer values in IETF byte-order (MSB first, LSB second) 2622 SwapDNSHeaderBytes(msg); 2623 2624 if (authInfo) DNSDigest_SignMessage(msg, &end, authInfo, 0); // DNSDigest_SignMessage operates on message in network byte order 2625 if (!end) { LogMsg("mDNSSendDNSMessage: DNSDigest_SignMessage failed"); status = mStatus_NoMemoryErr; } 2626 else 2627 { 2628 // Send the packet on the wire 2629 if (!sock) 2630 status = mDNSPlatformSendUDP(m, msg, end, InterfaceID, src, dst, dstport); 2631 else 2632 { 2633 mDNSu16 msglen = (mDNSu16)(end - (mDNSu8 *)msg); 2634 mDNSu8 lenbuf[2] = { (mDNSu8)(msglen >> 8), (mDNSu8)(msglen & 0xFF) }; 2635 long nsent = mDNSPlatformWriteTCP(sock, (char*)lenbuf, 2); // Should do scatter/gather here -- this is probably going out as two packets 2636 if (nsent != 2) { LogMsg("mDNSSendDNSMessage: write msg length failed %d/%d", nsent, 2); status = mStatus_ConnFailed; } 2637 else 2638 { 2639 nsent = mDNSPlatformWriteTCP(sock, (char *)msg, msglen); 2640 if (nsent != msglen) { LogMsg("mDNSSendDNSMessage: write msg body failed %d/%d", nsent, msglen); status = mStatus_ConnFailed; } 2641 } 2642 } 2643 } 2644 2645 // Swap the integer values back the way they were (remember that numAdditionals may have been changed by putHINFO and/or SignMessage) 2646 SwapDNSHeaderBytes(msg); 2647 2648 // Dump the packet with the HINFO and TSIG 2649 if (mDNS_PacketLoggingEnabled && !mDNSOpaque16IsZero(msg->h.id)) 2650 DumpPacket(m, status, mDNStrue, sock && (sock->flags & kTCPSocketFlags_UseTLS) ? "TLS" : sock ? "TCP" : "UDP", mDNSNULL, src ? src->port : MulticastDNSPort, dst, dstport, msg, end); 2651 2652 // put the number of additionals back the way it was 2653 msg->h.numAdditionals = numAdditionals; 2654 2655 return(status); 2656 } 2657 2658 // *************************************************************************** 2659 #if COMPILER_LIKES_PRAGMA_MARK 2660 #pragma mark - 2661 #pragma mark - RR List Management & Task Management 2662 #endif 2663 2664 mDNSexport void mDNS_Lock_(mDNS *const m, const char * const functionname) 2665 { 2666 // MUST grab the platform lock FIRST! 2667 mDNSPlatformLock(m); 2668 2669 // Normally, mDNS_reentrancy is zero and so is mDNS_busy 2670 // However, when we call a client callback mDNS_busy is one, and we increment mDNS_reentrancy too 2671 // If that client callback does mDNS API calls, mDNS_reentrancy and mDNS_busy will both be one 2672 // If mDNS_busy != mDNS_reentrancy that's a bad sign 2673 if (m->mDNS_busy != m->mDNS_reentrancy) 2674 { 2675 LogMsg("%s: mDNS_Lock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy); 2676 #if ForceAlerts 2677 *(long*)0 = 0; 2678 #endif 2679 } 2680 2681 // If this is an initial entry into the mDNSCore code, set m->timenow 2682 // else, if this is a re-entrant entry into the mDNSCore code, m->timenow should already be set 2683 if (m->mDNS_busy == 0) 2684 { 2685 if (m->timenow) 2686 LogMsg("%s: mDNS_Lock: m->timenow already set (%ld/%ld)", functionname, m->timenow, mDNS_TimeNow_NoLock(m)); 2687 m->timenow = mDNS_TimeNow_NoLock(m); 2688 if (m->timenow == 0) m->timenow = 1; 2689 } 2690 else if (m->timenow == 0) 2691 { 2692 LogMsg("%s: mDNS_Lock: m->mDNS_busy is %ld but m->timenow not set", functionname, m->mDNS_busy); 2693 m->timenow = mDNS_TimeNow_NoLock(m); 2694 if (m->timenow == 0) m->timenow = 1; 2695 } 2696 2697 if (m->timenow_last - m->timenow > 0) 2698 { 2699 m->timenow_adjust += m->timenow_last - m->timenow; 2700 LogMsg("%s: mDNSPlatformRawTime went backwards by %ld ticks; setting correction factor to %ld", functionname, m->timenow_last - m->timenow, m->timenow_adjust); 2701 m->timenow = m->timenow_last; 2702 } 2703 m->timenow_last = m->timenow; 2704 2705 // Increment mDNS_busy so we'll recognise re-entrant calls 2706 m->mDNS_busy++; 2707 } 2708 2709 mDNSlocal AuthRecord *AnyLocalRecordReady(const mDNS *const m) 2710 { 2711 AuthRecord *rr; 2712 for (rr = m->NewLocalRecords; rr; rr = rr->next) 2713 if (LocalRecordReady(rr)) return rr; 2714 return mDNSNULL; 2715 } 2716 2717 mDNSlocal mDNSs32 GetNextScheduledEvent(const mDNS *const m) 2718 { 2719 mDNSs32 e = m->timenow + 0x78000000; 2720 if (m->mDNSPlatformStatus != mStatus_NoError) return(e); 2721 if (m->NewQuestions) 2722 { 2723 if (m->NewQuestions->DelayAnswering) e = m->NewQuestions->DelayAnswering; 2724 else return(m->timenow); 2725 } 2726 if (m->NewLocalOnlyQuestions) return(m->timenow); 2727 if (m->NewLocalRecords && AnyLocalRecordReady(m)) return(m->timenow); 2728 if (m->NewLocalOnlyRecords) return(m->timenow); 2729 if (m->SPSProxyListChanged) return(m->timenow); 2730 if (m->LocalRemoveEvents) return(m->timenow); 2731 2732 #ifndef UNICAST_DISABLED 2733 if (e - m->NextuDNSEvent > 0) e = m->NextuDNSEvent; 2734 if (e - m->NextScheduledNATOp > 0) e = m->NextScheduledNATOp; 2735 if (m->NextSRVUpdate && e - m->NextSRVUpdate > 0) e = m->NextSRVUpdate; 2736 #endif 2737 2738 if (e - m->NextCacheCheck > 0) e = m->NextCacheCheck; 2739 if (e - m->NextScheduledSPS > 0) e = m->NextScheduledSPS; 2740 // NextScheduledSPRetry only valid when DelaySleep not set 2741 if (!m->DelaySleep && m->SleepLimit && e - m->NextScheduledSPRetry > 0) e = m->NextScheduledSPRetry; 2742 if (m->DelaySleep && e - m->DelaySleep > 0) e = m->DelaySleep; 2743 2744 if (m->SuppressSending) 2745 { 2746 if (e - m->SuppressSending > 0) e = m->SuppressSending; 2747 } 2748 else 2749 { 2750 if (e - m->NextScheduledQuery > 0) e = m->NextScheduledQuery; 2751 if (e - m->NextScheduledProbe > 0) e = m->NextScheduledProbe; 2752 if (e - m->NextScheduledResponse > 0) e = m->NextScheduledResponse; 2753 } 2754 if (e - m->NextScheduledStopTime > 0) e = m->NextScheduledStopTime; 2755 return(e); 2756 } 2757 2758 mDNSexport void ShowTaskSchedulingError(mDNS *const m) 2759 { 2760 AuthRecord *rr; 2761 mDNS_Lock(m); 2762 2763 LogMsg("Task Scheduling Error: Continuously busy for more than a second"); 2764 2765 // Note: To accurately diagnose *why* we're busy, the debugging code here needs to mirror the logic in GetNextScheduledEvent above 2766 2767 if (m->NewQuestions && (!m->NewQuestions->DelayAnswering || m->timenow - m->NewQuestions->DelayAnswering >= 0)) 2768 LogMsg("Task Scheduling Error: NewQuestion %##s (%s)", 2769 m->NewQuestions->qname.c, DNSTypeName(m->NewQuestions->qtype)); 2770 2771 if (m->NewLocalOnlyQuestions) 2772 LogMsg("Task Scheduling Error: NewLocalOnlyQuestions %##s (%s)", 2773 m->NewLocalOnlyQuestions->qname.c, DNSTypeName(m->NewLocalOnlyQuestions->qtype)); 2774 2775 if (m->NewLocalRecords) 2776 { 2777 rr = AnyLocalRecordReady(m); 2778 if (rr) LogMsg("Task Scheduling Error: NewLocalRecords %s", ARDisplayString(m, rr)); 2779 } 2780 2781 if (m->NewLocalOnlyRecords) LogMsg("Task Scheduling Error: NewLocalOnlyRecords"); 2782 2783 if (m->SPSProxyListChanged) LogMsg("Task Scheduling Error: SPSProxyListChanged"); 2784 if (m->LocalRemoveEvents) LogMsg("Task Scheduling Error: LocalRemoveEvents"); 2785 2786 if (m->timenow - m->NextScheduledEvent >= 0) 2787 LogMsg("Task Scheduling Error: m->NextScheduledEvent %d", m->timenow - m->NextScheduledEvent); 2788 2789 #ifndef UNICAST_DISABLED 2790 if (m->timenow - m->NextuDNSEvent >= 0) 2791 LogMsg("Task Scheduling Error: m->NextuDNSEvent %d", m->timenow - m->NextuDNSEvent); 2792 if (m->timenow - m->NextScheduledNATOp >= 0) 2793 LogMsg("Task Scheduling Error: m->NextScheduledNATOp %d", m->timenow - m->NextScheduledNATOp); 2794 if (m->NextSRVUpdate && m->timenow - m->NextSRVUpdate >= 0) 2795 LogMsg("Task Scheduling Error: m->NextSRVUpdate %d", m->timenow - m->NextSRVUpdate); 2796 #endif 2797 2798 if (m->timenow - m->NextCacheCheck >= 0) 2799 LogMsg("Task Scheduling Error: m->NextCacheCheck %d", m->timenow - m->NextCacheCheck); 2800 if (m->timenow - m->NextScheduledSPS >= 0) 2801 LogMsg("Task Scheduling Error: m->NextScheduledSPS %d", m->timenow - m->NextScheduledSPS); 2802 if (!m->DelaySleep && m->SleepLimit && m->timenow - m->NextScheduledSPRetry >= 0) 2803 LogMsg("Task Scheduling Error: m->NextScheduledSPRetry %d", m->timenow - m->NextScheduledSPRetry); 2804 if (m->DelaySleep && m->timenow - m->DelaySleep >= 0) 2805 LogMsg("Task Scheduling Error: m->DelaySleep %d", m->timenow - m->DelaySleep); 2806 2807 if (m->SuppressSending && m->timenow - m->SuppressSending >= 0) 2808 LogMsg("Task Scheduling Error: m->SuppressSending %d", m->timenow - m->SuppressSending); 2809 if (m->timenow - m->NextScheduledQuery >= 0) 2810 LogMsg("Task Scheduling Error: m->NextScheduledQuery %d", m->timenow - m->NextScheduledQuery); 2811 if (m->timenow - m->NextScheduledProbe >= 0) 2812 LogMsg("Task Scheduling Error: m->NextScheduledProbe %d", m->timenow - m->NextScheduledProbe); 2813 if (m->timenow - m->NextScheduledResponse >= 0) 2814 LogMsg("Task Scheduling Error: m->NextScheduledResponse %d", m->timenow - m->NextScheduledResponse); 2815 2816 mDNS_Unlock(m); 2817 } 2818 2819 mDNSexport void mDNS_Unlock_(mDNS *const m, const char * const functionname) 2820 { 2821 // Decrement mDNS_busy 2822 m->mDNS_busy--; 2823 2824 // Check for locking failures 2825 if (m->mDNS_busy != m->mDNS_reentrancy) 2826 { 2827 LogMsg("%s: mDNS_Unlock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy); 2828 #if ForceAlerts 2829 *(long*)0 = 0; 2830 #endif 2831 } 2832 2833 // If this is a final exit from the mDNSCore code, set m->NextScheduledEvent and clear m->timenow 2834 if (m->mDNS_busy == 0) 2835 { 2836 m->NextScheduledEvent = GetNextScheduledEvent(m); 2837 if (m->timenow == 0) LogMsg("%s: mDNS_Unlock: ERROR! m->timenow aready zero", functionname); 2838 m->timenow = 0; 2839 } 2840 2841 // MUST release the platform lock LAST! 2842 mDNSPlatformUnlock(m); 2843 } 2844 2845 // *************************************************************************** 2846 #if COMPILER_LIKES_PRAGMA_MARK 2847 #pragma mark - 2848 #pragma mark - Specialized mDNS version of vsnprintf 2849 #endif 2850 2851 static const struct mDNSprintf_format 2852 { 2853 unsigned leftJustify : 1; 2854 unsigned forceSign : 1; 2855 unsigned zeroPad : 1; 2856 unsigned havePrecision : 1; 2857 unsigned hSize : 1; 2858 unsigned lSize : 1; 2859 char altForm; 2860 char sign; // +, - or space 2861 unsigned int fieldWidth; 2862 unsigned int precision; 2863 } mDNSprintf_format_default = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 2864 2865 mDNSexport mDNSu32 mDNS_vsnprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, va_list arg) 2866 { 2867 mDNSu32 nwritten = 0; 2868 int c; 2869 if (buflen == 0) return(0); 2870 buflen--; // Pre-reserve one space in the buffer for the terminating null 2871 if (buflen == 0) goto exit; 2872 2873 for (c = *fmt; c != 0; c = *++fmt) 2874 { 2875 if (c != '%') 2876 { 2877 *sbuffer++ = (char)c; 2878 if (++nwritten >= buflen) goto exit; 2879 } 2880 else 2881 { 2882 unsigned int i=0, j; 2883 // The mDNS Vsprintf Argument Conversion Buffer is used as a temporary holding area for 2884 // generating decimal numbers, hexdecimal numbers, IP addresses, domain name strings, etc. 2885 // The size needs to be enough for a 256-byte domain name plus some error text. 2886 #define mDNS_VACB_Size 300 2887 char mDNS_VACB[mDNS_VACB_Size]; 2888 #define mDNS_VACB_Lim (&mDNS_VACB[mDNS_VACB_Size]) 2889 #define mDNS_VACB_Remain(s) ((mDNSu32)(mDNS_VACB_Lim - s)) 2890 char *s = mDNS_VACB_Lim, *digits; 2891 struct mDNSprintf_format F = mDNSprintf_format_default; 2892 2893 while (1) // decode flags 2894 { 2895 c = *++fmt; 2896 if (c == '-') F.leftJustify = 1; 2897 else if (c == '+') F.forceSign = 1; 2898 else if (c == ' ') F.sign = ' '; 2899 else if (c == '#') F.altForm++; 2900 else if (c == '0') F.zeroPad = 1; 2901 else break; 2902 } 2903 2904 if (c == '*') // decode field width 2905 { 2906 int f = va_arg(arg, int); 2907 if (f < 0) { f = -f; F.leftJustify = 1; } 2908 F.fieldWidth = (unsigned int)f; 2909 c = *++fmt; 2910 } 2911 else 2912 { 2913 for (; c >= '0' && c <= '9'; c = *++fmt) 2914 F.fieldWidth = (10 * F.fieldWidth) + (c - '0'); 2915 } 2916 2917 if (c == '.') // decode precision 2918 { 2919 if ((c = *++fmt) == '*') 2920 { F.precision = va_arg(arg, unsigned int); c = *++fmt; } 2921 else for (; c >= '0' && c <= '9'; c = *++fmt) 2922 F.precision = (10 * F.precision) + (c - '0'); 2923 F.havePrecision = 1; 2924 } 2925 2926 if (F.leftJustify) F.zeroPad = 0; 2927 2928 conv: 2929 switch (c) // perform appropriate conversion 2930 { 2931 unsigned long n; 2932 case 'h' : F.hSize = 1; c = *++fmt; goto conv; 2933 case 'l' : // fall through 2934 case 'L' : F.lSize = 1; c = *++fmt; goto conv; 2935 case 'd' : 2936 case 'i' : if (F.lSize) n = (unsigned long)va_arg(arg, long); 2937 else n = (unsigned long)va_arg(arg, int); 2938 if (F.hSize) n = (short) n; 2939 if ((long) n < 0) { n = (unsigned long)-(long)n; F.sign = '-'; } 2940 else if (F.forceSign) F.sign = '+'; 2941 goto decimal; 2942 case 'u' : if (F.lSize) n = va_arg(arg, unsigned long); 2943 else n = va_arg(arg, unsigned int); 2944 if (F.hSize) n = (unsigned short) n; 2945 F.sign = 0; 2946 goto decimal; 2947 decimal: if (!F.havePrecision) 2948 { 2949 if (F.zeroPad) 2950 { 2951 F.precision = F.fieldWidth; 2952 if (F.sign) --F.precision; 2953 } 2954 if (F.precision < 1) F.precision = 1; 2955 } 2956 if (F.precision > mDNS_VACB_Size - 1) 2957 F.precision = mDNS_VACB_Size - 1; 2958 for (i = 0; n; n /= 10, i++) *--s = (char)(n % 10 + '0'); 2959 for (; i < F.precision; i++) *--s = '0'; 2960 if (F.sign) { *--s = F.sign; i++; } 2961 break; 2962 2963 case 'o' : if (F.lSize) n = va_arg(arg, unsigned long); 2964 else n = va_arg(arg, unsigned int); 2965 if (F.hSize) n = (unsigned short) n; 2966 if (!F.havePrecision) 2967 { 2968 if (F.zeroPad) F.precision = F.fieldWidth; 2969 if (F.precision < 1) F.precision = 1; 2970 } 2971 if (F.precision > mDNS_VACB_Size - 1) 2972 F.precision = mDNS_VACB_Size - 1; 2973 for (i = 0; n; n /= 8, i++) *--s = (char)(n % 8 + '0'); 2974 if (F.altForm && i && *s != '0') { *--s = '0'; i++; } 2975 for (; i < F.precision; i++) *--s = '0'; 2976 break; 2977 2978 case 'a' : { 2979 unsigned char *a = va_arg(arg, unsigned char *); 2980 if (!a) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; } 2981 else 2982 { 2983 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end 2984 if (F.altForm) 2985 { 2986 mDNSAddr *ip = (mDNSAddr*)a; 2987 switch (ip->type) 2988 { 2989 case mDNSAddrType_IPv4: F.precision = 4; a = (unsigned char *)&ip->ip.v4; break; 2990 case mDNSAddrType_IPv6: F.precision = 16; a = (unsigned char *)&ip->ip.v6; break; 2991 default: F.precision = 0; break; 2992 } 2993 } 2994 if (F.altForm && !F.precision) 2995 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "ZERO ADDRESS"); 2996 else switch (F.precision) 2997 { 2998 case 4: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%d.%d.%d.%d", 2999 a[0], a[1], a[2], a[3]); break; 3000 case 6: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%02X:%02X:%02X:%02X:%02X:%02X", 3001 a[0], a[1], a[2], a[3], a[4], a[5]); break; 3002 case 16: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), 3003 "%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X", 3004 a[0x0], a[0x1], a[0x2], a[0x3], a[0x4], a[0x5], a[0x6], a[0x7], 3005 a[0x8], a[0x9], a[0xA], a[0xB], a[0xC], a[0xD], a[0xE], a[0xF]); break; 3006 default: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%s", "<< ERROR: Must specify" 3007 " address size (i.e. %.4a=IPv4, %.6a=Ethernet, %.16a=IPv6) >>"); break; 3008 } 3009 } 3010 } 3011 break; 3012 3013 case 'p' : F.havePrecision = F.lSize = 1; 3014 F.precision = sizeof(void*) * 2; // 8 characters on 32-bit; 16 characters on 64-bit 3015 case 'X' : digits = "0123456789ABCDEF"; 3016 goto hexadecimal; 3017 case 'x' : digits = "0123456789abcdef"; 3018 hexadecimal:if (F.lSize) n = va_arg(arg, unsigned long); 3019 else n = va_arg(arg, unsigned int); 3020 if (F.hSize) n = (unsigned short) n; 3021 if (!F.havePrecision) 3022 { 3023 if (F.zeroPad) 3024 { 3025 F.precision = F.fieldWidth; 3026 if (F.altForm) F.precision -= 2; 3027 } 3028 if (F.precision < 1) F.precision = 1; 3029 } 3030 if (F.precision > mDNS_VACB_Size - 1) 3031 F.precision = mDNS_VACB_Size - 1; 3032 for (i = 0; n; n /= 16, i++) *--s = digits[n % 16]; 3033 for (; i < F.precision; i++) *--s = '0'; 3034 if (F.altForm) { *--s = (char)c; *--s = '0'; i += 2; } 3035 break; 3036 3037 case 'c' : *--s = (char)va_arg(arg, int); i = 1; break; 3038 3039 case 's' : s = va_arg(arg, char *); 3040 if (!s) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; } 3041 else switch (F.altForm) 3042 { 3043 case 0: i=0; 3044 if (!F.havePrecision) // C string 3045 while (s[i]) i++; 3046 else 3047 { 3048 while ((i < F.precision) && s[i]) i++; 3049 // Make sure we don't truncate in the middle of a UTF-8 character 3050 // If last character we got was any kind of UTF-8 multi-byte character, 3051 // then see if we have to back up. 3052 // This is not as easy as the similar checks below, because 3053 // here we can't assume it's safe to examine the *next* byte, so we 3054 // have to confine ourselves to working only backwards in the string. 3055 j = i; // Record where we got to 3056 // Now, back up until we find first non-continuation-char 3057 while (i>0 && (s[i-1] & 0xC0) == 0x80) i--; 3058 // Now s[i-1] is the first non-continuation-char 3059 // and (j-i) is the number of continuation-chars we found 3060 if (i>0 && (s[i-1] & 0xC0) == 0xC0) // If we found a start-char 3061 { 3062 i--; // Tentatively eliminate this start-char as well 3063 // Now (j-i) is the number of characters we're considering eliminating. 3064 // To be legal UTF-8, the start-char must contain (j-i) one-bits, 3065 // followed by a zero bit. If we shift it right by (7-(j-i)) bits 3066 // (with sign extension) then the result has to be 0xFE. 3067 // If this is right, then we reinstate the tentatively eliminated bytes. 3068 if (((j-i) < 7) && (((s[i] >> (7-(j-i))) & 0xFF) == 0xFE)) i = j; 3069 } 3070 } 3071 break; 3072 case 1: i = (unsigned char) *s++; break; // Pascal string 3073 case 2: { // DNS label-sequence name 3074 unsigned char *a = (unsigned char *)s; 3075 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end 3076 if (*a == 0) *s++ = '.'; // Special case for root DNS name 3077 while (*a) 3078 { 3079 char buf[63*4+1]; 3080 if (*a > 63) 3081 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<INVALID LABEL LENGTH %u>>", *a); break; } 3082 if (s + *a >= &mDNS_VACB[254]) 3083 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<NAME TOO LONG>>"); break; } 3084 // Need to use ConvertDomainLabelToCString to do proper escaping here, 3085 // so it's clear what's a literal dot and what's a label separator 3086 ConvertDomainLabelToCString((domainlabel*)a, buf); 3087 s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "%s.", buf); 3088 a += 1 + *a; 3089 } 3090 i = (mDNSu32)(s - mDNS_VACB); 3091 s = mDNS_VACB; // Reset s back to the start of the buffer 3092 break; 3093 } 3094 } 3095 // Make sure we don't truncate in the middle of a UTF-8 character (see similar comment below) 3096 if (F.havePrecision && i > F.precision) 3097 { i = F.precision; while (i>0 && (s[i] & 0xC0) == 0x80) i--; } 3098 break; 3099 3100 case 'n' : s = va_arg(arg, char *); 3101 if (F.hSize) * (short *) s = (short)nwritten; 3102 else if (F.lSize) * (long *) s = (long)nwritten; 3103 else * (int *) s = (int)nwritten; 3104 continue; 3105 3106 default: s = mDNS_VACB; 3107 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "<<UNKNOWN FORMAT CONVERSION CODE %%%c>>", c); 3108 3109 case '%' : *sbuffer++ = (char)c; 3110 if (++nwritten >= buflen) goto exit; 3111 break; 3112 } 3113 3114 if (i < F.fieldWidth && !F.leftJustify) // Pad on the left 3115 do { 3116 *sbuffer++ = ' '; 3117 if (++nwritten >= buflen) goto exit; 3118 } while (i < --F.fieldWidth); 3119 3120 // Make sure we don't truncate in the middle of a UTF-8 character. 3121 // Note: s[i] is the first eliminated character; i.e. the next character *after* the last character of the 3122 // allowed output. If s[i] is a UTF-8 continuation character, then we've cut a unicode character in half, 3123 // so back up 'i' until s[i] is no longer a UTF-8 continuation character. (if the input was proprly 3124 // formed, s[i] will now be the UTF-8 start character of the multi-byte character we just eliminated). 3125 if (i > buflen - nwritten) 3126 { i = buflen - nwritten; while (i>0 && (s[i] & 0xC0) == 0x80) i--; } 3127 for (j=0; j<i; j++) *sbuffer++ = *s++; // Write the converted result 3128 nwritten += i; 3129 if (nwritten >= buflen) goto exit; 3130 3131 for (; i < F.fieldWidth; i++) // Pad on the right 3132 { 3133 *sbuffer++ = ' '; 3134 if (++nwritten >= buflen) goto exit; 3135 } 3136 } 3137 } 3138 exit: 3139 *sbuffer++ = 0; 3140 return(nwritten); 3141 } 3142 3143 mDNSexport mDNSu32 mDNS_snprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, ...) 3144 { 3145 mDNSu32 length; 3146 3147 va_list ptr; 3148 va_start(ptr,fmt); 3149 length = mDNS_vsnprintf(sbuffer, buflen, fmt, ptr); 3150 va_end(ptr); 3151 3152 return(length); 3153 } 3154