Home | History | Annotate | Download | only in vulkan
      1 /*
      2  * Copyright  2016 Red Hat.
      3  * Copyright  2016 Bas Nieuwenhuizen
      4  *
      5  * based in part on anv driver which is:
      6  * Copyright  2015 Intel Corporation
      7  *
      8  * Permission is hereby granted, free of charge, to any person obtaining a
      9  * copy of this software and associated documentation files (the "Software"),
     10  * to deal in the Software without restriction, including without limitation
     11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     12  * and/or sell copies of the Software, and to permit persons to whom the
     13  * Software is furnished to do so, subject to the following conditions:
     14  *
     15  * The above copyright notice and this permission notice (including the next
     16  * paragraph) shall be included in all copies or substantial portions of the
     17  * Software.
     18  *
     19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     24  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     25  * IN THE SOFTWARE.
     26  */
     27 
     28 #include "util/mesa-sha1.h"
     29 #include "radv_private.h"
     30 #include "nir/nir.h"
     31 #include "nir/nir_builder.h"
     32 #include "spirv/nir_spirv.h"
     33 
     34 #include <llvm-c/Core.h>
     35 #include <llvm-c/TargetMachine.h>
     36 
     37 #include "sid.h"
     38 #include "r600d_common.h"
     39 #include "ac_binary.h"
     40 #include "ac_llvm_util.h"
     41 #include "ac_nir_to_llvm.h"
     42 #include "vk_format.h"
     43 #include "util/debug.h"
     44 void radv_shader_variant_destroy(struct radv_device *device,
     45                                  struct radv_shader_variant *variant);
     46 
     47 static const struct nir_shader_compiler_options nir_options = {
     48 	.vertex_id_zero_based = true,
     49 	.lower_scmp = true,
     50 	.lower_flrp32 = true,
     51 	.lower_fsat = true,
     52 	.lower_pack_snorm_2x16 = true,
     53 	.lower_pack_snorm_4x8 = true,
     54 	.lower_pack_unorm_2x16 = true,
     55 	.lower_pack_unorm_4x8 = true,
     56 	.lower_unpack_snorm_2x16 = true,
     57 	.lower_unpack_snorm_4x8 = true,
     58 	.lower_unpack_unorm_2x16 = true,
     59 	.lower_unpack_unorm_4x8 = true,
     60 	.lower_extract_byte = true,
     61 	.lower_extract_word = true,
     62 };
     63 
     64 VkResult radv_CreateShaderModule(
     65 	VkDevice                                    _device,
     66 	const VkShaderModuleCreateInfo*             pCreateInfo,
     67 	const VkAllocationCallbacks*                pAllocator,
     68 	VkShaderModule*                             pShaderModule)
     69 {
     70 	RADV_FROM_HANDLE(radv_device, device, _device);
     71 	struct radv_shader_module *module;
     72 
     73 	assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
     74 	assert(pCreateInfo->flags == 0);
     75 
     76 	module = vk_alloc2(&device->alloc, pAllocator,
     77 			     sizeof(*module) + pCreateInfo->codeSize, 8,
     78 			     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
     79 	if (module == NULL)
     80 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
     81 
     82 	module->nir = NULL;
     83 	module->size = pCreateInfo->codeSize;
     84 	memcpy(module->data, pCreateInfo->pCode, module->size);
     85 
     86 	_mesa_sha1_compute(module->data, module->size, module->sha1);
     87 
     88 	*pShaderModule = radv_shader_module_to_handle(module);
     89 
     90 	return VK_SUCCESS;
     91 }
     92 
     93 void radv_DestroyShaderModule(
     94 	VkDevice                                    _device,
     95 	VkShaderModule                              _module,
     96 	const VkAllocationCallbacks*                pAllocator)
     97 {
     98 	RADV_FROM_HANDLE(radv_device, device, _device);
     99 	RADV_FROM_HANDLE(radv_shader_module, module, _module);
    100 
    101 	if (!module)
    102 		return;
    103 
    104 	vk_free2(&device->alloc, pAllocator, module);
    105 }
    106 
    107 void radv_DestroyPipeline(
    108 	VkDevice                                    _device,
    109 	VkPipeline                                  _pipeline,
    110 	const VkAllocationCallbacks*                pAllocator)
    111 {
    112 	RADV_FROM_HANDLE(radv_device, device, _device);
    113 	RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
    114 
    115 	if (!_pipeline)
    116 		return;
    117 
    118 	for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
    119 		if (pipeline->shaders[i])
    120 			radv_shader_variant_destroy(device, pipeline->shaders[i]);
    121 
    122 	vk_free2(&device->alloc, pAllocator, pipeline);
    123 }
    124 
    125 
    126 static void
    127 radv_optimize_nir(struct nir_shader *shader)
    128 {
    129         bool progress;
    130 
    131         do {
    132                 progress = false;
    133 
    134                 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
    135                 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
    136                 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
    137 
    138                 NIR_PASS(progress, shader, nir_copy_prop);
    139                 NIR_PASS(progress, shader, nir_opt_remove_phis);
    140                 NIR_PASS(progress, shader, nir_opt_dce);
    141                 NIR_PASS(progress, shader, nir_opt_dead_cf);
    142                 NIR_PASS(progress, shader, nir_opt_cse);
    143                 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
    144                 NIR_PASS(progress, shader, nir_opt_algebraic);
    145                 NIR_PASS(progress, shader, nir_opt_constant_folding);
    146                 NIR_PASS(progress, shader, nir_opt_undef);
    147                 NIR_PASS(progress, shader, nir_opt_conditional_discard);
    148         } while (progress);
    149 }
    150 
    151 static nir_shader *
    152 radv_shader_compile_to_nir(struct radv_device *device,
    153 			   struct radv_shader_module *module,
    154 			   const char *entrypoint_name,
    155 			   gl_shader_stage stage,
    156 			   const VkSpecializationInfo *spec_info,
    157 			   bool dump)
    158 {
    159 	if (strcmp(entrypoint_name, "main") != 0) {
    160 		radv_finishme("Multiple shaders per module not really supported");
    161 	}
    162 
    163 	nir_shader *nir;
    164 	nir_function *entry_point;
    165 	if (module->nir) {
    166 		/* Some things such as our meta clear/blit code will give us a NIR
    167 		 * shader directly.  In that case, we just ignore the SPIR-V entirely
    168 		 * and just use the NIR shader */
    169 		nir = module->nir;
    170 		nir->options = &nir_options;
    171 		nir_validate_shader(nir);
    172 
    173 		assert(exec_list_length(&nir->functions) == 1);
    174 		struct exec_node *node = exec_list_get_head(&nir->functions);
    175 		entry_point = exec_node_data(nir_function, node, node);
    176 	} else {
    177 		uint32_t *spirv = (uint32_t *) module->data;
    178 		assert(module->size % 4 == 0);
    179 
    180 		uint32_t num_spec_entries = 0;
    181 		struct nir_spirv_specialization *spec_entries = NULL;
    182 		if (spec_info && spec_info->mapEntryCount > 0) {
    183 			num_spec_entries = spec_info->mapEntryCount;
    184 			spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
    185 			for (uint32_t i = 0; i < num_spec_entries; i++) {
    186 				VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
    187 				const void *data = spec_info->pData + entry.offset;
    188 				assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
    189 
    190 				spec_entries[i].id = spec_info->pMapEntries[i].constantID;
    191 				if (spec_info->dataSize == 8)
    192 					spec_entries[i].data64 = *(const uint64_t *)data;
    193 				else
    194 					spec_entries[i].data32 = *(const uint32_t *)data;
    195 			}
    196 		}
    197 		const struct nir_spirv_supported_extensions supported_ext = {
    198 		};
    199 		entry_point = spirv_to_nir(spirv, module->size / 4,
    200 					   spec_entries, num_spec_entries,
    201 					   stage, entrypoint_name, &supported_ext, &nir_options);
    202 		nir = entry_point->shader;
    203 		assert(nir->stage == stage);
    204 		nir_validate_shader(nir);
    205 
    206 		free(spec_entries);
    207 
    208 		/* We have to lower away local constant initializers right before we
    209 		 * inline functions.  That way they get properly initialized at the top
    210 		 * of the function and not at the top of its caller.
    211 		 */
    212 		NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
    213 		NIR_PASS_V(nir, nir_lower_returns);
    214 		NIR_PASS_V(nir, nir_inline_functions);
    215 
    216 		/* Pick off the single entrypoint that we want */
    217 		foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
    218 			if (func != entry_point)
    219 				exec_node_remove(&func->node);
    220 		}
    221 		assert(exec_list_length(&nir->functions) == 1);
    222 		entry_point->name = ralloc_strdup(entry_point, "main");
    223 
    224 		NIR_PASS_V(nir, nir_remove_dead_variables,
    225 		           nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
    226 
    227 		/* Now that we've deleted all but the main function, we can go ahead and
    228 		 * lower the rest of the constant initializers.
    229 		 */
    230 		NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
    231 		NIR_PASS_V(nir, nir_lower_system_values);
    232 	}
    233 
    234 	/* Vulkan uses the separate-shader linking model */
    235 	nir->info->separate_shader = true;
    236 
    237 	//   nir = brw_preprocess_nir(compiler, nir);
    238 
    239 	nir_shader_gather_info(nir, entry_point->impl);
    240 
    241 	nir_variable_mode indirect_mask = 0;
    242 	//   if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
    243 	indirect_mask |= nir_var_shader_in;
    244 	//   if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
    245 	indirect_mask |= nir_var_local;
    246 
    247 	nir_lower_indirect_derefs(nir, indirect_mask);
    248 
    249 	static const nir_lower_tex_options tex_options = {
    250 	  .lower_txp = ~0,
    251 	};
    252 
    253 	nir_lower_tex(nir, &tex_options);
    254 
    255 	nir_lower_vars_to_ssa(nir);
    256 	nir_lower_var_copies(nir);
    257 	nir_lower_global_vars_to_local(nir);
    258 	nir_remove_dead_variables(nir, nir_var_local);
    259 	radv_optimize_nir(nir);
    260 
    261 	if (dump)
    262 		nir_print_shader(nir, stderr);
    263 
    264 	return nir;
    265 }
    266 
    267 static const char *radv_get_shader_name(struct radv_shader_variant *var,
    268 					gl_shader_stage stage)
    269 {
    270 	switch (stage) {
    271 	case MESA_SHADER_VERTEX: return "Vertex Shader as VS";
    272 	case MESA_SHADER_FRAGMENT: return "Pixel Shader";
    273 	case MESA_SHADER_COMPUTE: return "Compute Shader";
    274 	default:
    275 		return "Unknown shader";
    276 	};
    277 
    278 }
    279 static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline)
    280 {
    281 	unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
    282 	struct radv_shader_variant *var;
    283 	struct ac_shader_config *conf;
    284 	int i;
    285 	FILE *file = stderr;
    286 	unsigned max_simd_waves = 10;
    287 	unsigned lds_per_wave = 0;
    288 
    289 	for (i = 0; i < MESA_SHADER_STAGES; i++) {
    290 		if (!pipeline->shaders[i])
    291 			continue;
    292 		var = pipeline->shaders[i];
    293 
    294 		conf = &var->config;
    295 
    296 		if (i == MESA_SHADER_FRAGMENT) {
    297 			lds_per_wave = conf->lds_size * lds_increment +
    298 				align(var->info.fs.num_interp * 48, lds_increment);
    299 		}
    300 
    301 		if (conf->num_sgprs) {
    302 			if (device->physical_device->rad_info.chip_class >= VI)
    303 				max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
    304 			else
    305 				max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
    306 		}
    307 
    308 		if (conf->num_vgprs)
    309 			max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
    310 
    311 		/* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
    312 		 * that PS can use.
    313 		 */
    314 		if (lds_per_wave)
    315 			max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
    316 
    317 		fprintf(file, "\n%s:\n",
    318 			radv_get_shader_name(var, i));
    319 		if (i == MESA_SHADER_FRAGMENT) {
    320 			fprintf(file, "*** SHADER CONFIG ***\n"
    321 				"SPI_PS_INPUT_ADDR = 0x%04x\n"
    322 				"SPI_PS_INPUT_ENA  = 0x%04x\n",
    323 				conf->spi_ps_input_addr, conf->spi_ps_input_ena);
    324 		}
    325 		fprintf(file, "*** SHADER STATS ***\n"
    326 			"SGPRS: %d\n"
    327 			"VGPRS: %d\n"
    328 		        "Spilled SGPRs: %d\n"
    329 			"Spilled VGPRs: %d\n"
    330 			"Code Size: %d bytes\n"
    331 			"LDS: %d blocks\n"
    332 			"Scratch: %d bytes per wave\n"
    333 			"Max Waves: %d\n"
    334 			"********************\n\n\n",
    335 			conf->num_sgprs, conf->num_vgprs,
    336 			conf->spilled_sgprs, conf->spilled_vgprs, var->code_size,
    337 			conf->lds_size, conf->scratch_bytes_per_wave,
    338 			max_simd_waves);
    339 	}
    340 }
    341 
    342 void radv_shader_variant_destroy(struct radv_device *device,
    343                                  struct radv_shader_variant *variant)
    344 {
    345 	if (__sync_fetch_and_sub(&variant->ref_count, 1) != 1)
    346 		return;
    347 
    348 	device->ws->buffer_destroy(variant->bo);
    349 	free(variant);
    350 }
    351 
    352 static void radv_fill_shader_variant(struct radv_device *device,
    353 				     struct radv_shader_variant *variant,
    354 				     struct ac_shader_binary *binary,
    355 				     gl_shader_stage stage)
    356 {
    357 	variant->code_size = binary->code_size;
    358 	bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
    359 	unsigned vgpr_comp_cnt = 0;
    360 
    361 	if (scratch_enabled)
    362 		radv_finishme("shader scratch space");
    363 
    364 	switch (stage) {
    365 	case MESA_SHADER_VERTEX:
    366 		variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
    367 			S_00B12C_SCRATCH_EN(scratch_enabled);
    368 		vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
    369 		break;
    370 	case MESA_SHADER_FRAGMENT:
    371 		variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
    372 			S_00B12C_SCRATCH_EN(scratch_enabled);
    373 		break;
    374 	case MESA_SHADER_COMPUTE:
    375 		variant->rsrc2 = S_00B84C_USER_SGPR(variant->info.num_user_sgprs) |
    376 			S_00B84C_SCRATCH_EN(scratch_enabled) |
    377 			S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
    378 			S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
    379 			S_00B84C_TG_SIZE_EN(1) |
    380 			S_00B84C_LDS_SIZE(variant->config.lds_size);
    381 		break;
    382 	default:
    383 		unreachable("unsupported shader type");
    384 		break;
    385 	}
    386 
    387 	variant->rsrc1 =  S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
    388 		S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
    389 		S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
    390 		S_00B848_DX10_CLAMP(1) |
    391 		S_00B848_FLOAT_MODE(variant->config.float_mode);
    392 
    393 	variant->bo = device->ws->buffer_create(device->ws, binary->code_size, 256,
    394 						RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS);
    395 
    396 	void *ptr = device->ws->buffer_map(variant->bo);
    397 	memcpy(ptr, binary->code, binary->code_size);
    398 	device->ws->buffer_unmap(variant->bo);
    399 
    400 
    401 }
    402 
    403 static struct radv_shader_variant *radv_shader_variant_create(struct radv_device *device,
    404 							      struct nir_shader *shader,
    405 							      struct radv_pipeline_layout *layout,
    406 							      const union ac_shader_variant_key *key,
    407 							      void** code_out,
    408 							      unsigned *code_size_out,
    409 							      bool dump)
    410 {
    411 	struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
    412 	enum radeon_family chip_family = device->physical_device->rad_info.family;
    413 	LLVMTargetMachineRef tm;
    414 	if (!variant)
    415 		return NULL;
    416 
    417 	struct ac_nir_compiler_options options = {0};
    418 	options.layout = layout;
    419 	if (key)
    420 		options.key = *key;
    421 
    422 	struct ac_shader_binary binary;
    423 
    424 	options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH);
    425 	options.family = chip_family;
    426 	options.chip_class = device->physical_device->rad_info.chip_class;
    427 	tm = ac_create_target_machine(chip_family);
    428 	ac_compile_nir_shader(tm, &binary, &variant->config,
    429 			      &variant->info, shader, &options, dump);
    430 	LLVMDisposeTargetMachine(tm);
    431 
    432 	radv_fill_shader_variant(device, variant, &binary, shader->stage);
    433 
    434 	if (code_out) {
    435 		*code_out = binary.code;
    436 		*code_size_out = binary.code_size;
    437 	} else
    438 		free(binary.code);
    439 	free(binary.config);
    440 	free(binary.rodata);
    441 	free(binary.global_symbol_offsets);
    442 	free(binary.relocs);
    443 	free(binary.disasm_string);
    444 	variant->ref_count = 1;
    445 	return variant;
    446 }
    447 
    448 
    449 static struct radv_shader_variant *
    450 radv_pipeline_compile(struct radv_pipeline *pipeline,
    451 		      struct radv_pipeline_cache *cache,
    452 		      struct radv_shader_module *module,
    453 		      const char *entrypoint,
    454 		      gl_shader_stage stage,
    455 		      const VkSpecializationInfo *spec_info,
    456 		      struct radv_pipeline_layout *layout,
    457 		      const union ac_shader_variant_key *key)
    458 {
    459 	unsigned char sha1[20];
    460 	struct radv_shader_variant *variant;
    461 	nir_shader *nir;
    462 	void *code = NULL;
    463 	unsigned code_size = 0;
    464 	bool dump = (pipeline->device->debug_flags & RADV_DEBUG_DUMP_SHADERS);
    465 
    466 	if (module->nir)
    467 		_mesa_sha1_compute(module->nir->info->name,
    468 				   strlen(module->nir->info->name),
    469 				   module->sha1);
    470 
    471 	radv_hash_shader(sha1, module, entrypoint, spec_info, layout, key);
    472 
    473 	if (cache) {
    474 		variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device,
    475 									 cache,
    476 									 sha1);
    477 		if (variant)
    478 			return variant;
    479 	}
    480 
    481 	nir = radv_shader_compile_to_nir(pipeline->device,
    482 				         module, entrypoint, stage,
    483 					 spec_info, dump);
    484 	if (nir == NULL)
    485 		return NULL;
    486 
    487 	variant = radv_shader_variant_create(pipeline->device, nir, layout, key,
    488 					     &code, &code_size, dump);
    489 	if (!module->nir)
    490 			ralloc_free(nir);
    491 
    492 	if (variant && cache)
    493 		variant = radv_pipeline_cache_insert_shader(cache, sha1, variant,
    494 							    code, code_size);
    495 
    496 	if (code)
    497 		free(code);
    498 	return variant;
    499 }
    500 
    501 static uint32_t si_translate_blend_function(VkBlendOp op)
    502 {
    503 	switch (op) {
    504 	case VK_BLEND_OP_ADD:
    505 		return V_028780_COMB_DST_PLUS_SRC;
    506 	case VK_BLEND_OP_SUBTRACT:
    507 		return V_028780_COMB_SRC_MINUS_DST;
    508 	case VK_BLEND_OP_REVERSE_SUBTRACT:
    509 		return V_028780_COMB_DST_MINUS_SRC;
    510 	case VK_BLEND_OP_MIN:
    511 		return V_028780_COMB_MIN_DST_SRC;
    512 	case VK_BLEND_OP_MAX:
    513 		return V_028780_COMB_MAX_DST_SRC;
    514 	default:
    515 		return 0;
    516 	}
    517 }
    518 
    519 static uint32_t si_translate_blend_factor(VkBlendFactor factor)
    520 {
    521 	switch (factor) {
    522 	case VK_BLEND_FACTOR_ZERO:
    523 		return V_028780_BLEND_ZERO;
    524 	case VK_BLEND_FACTOR_ONE:
    525 		return V_028780_BLEND_ONE;
    526 	case VK_BLEND_FACTOR_SRC_COLOR:
    527 		return V_028780_BLEND_SRC_COLOR;
    528 	case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
    529 		return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
    530 	case VK_BLEND_FACTOR_DST_COLOR:
    531 		return V_028780_BLEND_DST_COLOR;
    532 	case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
    533 		return V_028780_BLEND_ONE_MINUS_DST_COLOR;
    534 	case VK_BLEND_FACTOR_SRC_ALPHA:
    535 		return V_028780_BLEND_SRC_ALPHA;
    536 	case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
    537 		return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
    538 	case VK_BLEND_FACTOR_DST_ALPHA:
    539 		return V_028780_BLEND_DST_ALPHA;
    540 	case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
    541 		return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
    542 	case VK_BLEND_FACTOR_CONSTANT_COLOR:
    543 		return V_028780_BLEND_CONSTANT_COLOR;
    544 	case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
    545 		return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
    546 	case VK_BLEND_FACTOR_CONSTANT_ALPHA:
    547 		return V_028780_BLEND_CONSTANT_ALPHA;
    548 	case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
    549 		return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
    550 	case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
    551 		return V_028780_BLEND_SRC_ALPHA_SATURATE;
    552 	case VK_BLEND_FACTOR_SRC1_COLOR:
    553 		return V_028780_BLEND_SRC1_COLOR;
    554 	case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
    555 		return V_028780_BLEND_INV_SRC1_COLOR;
    556 	case VK_BLEND_FACTOR_SRC1_ALPHA:
    557 		return V_028780_BLEND_SRC1_ALPHA;
    558 	case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
    559 		return V_028780_BLEND_INV_SRC1_ALPHA;
    560 	default:
    561 		return 0;
    562 	}
    563 }
    564 
    565 static bool is_dual_src(VkBlendFactor factor)
    566 {
    567 	switch (factor) {
    568 	case VK_BLEND_FACTOR_SRC1_COLOR:
    569 	case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
    570 	case VK_BLEND_FACTOR_SRC1_ALPHA:
    571 	case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
    572 		return true;
    573 	default:
    574 		return false;
    575 	}
    576 }
    577 
    578 static unsigned si_choose_spi_color_format(VkFormat vk_format,
    579 					    bool blend_enable,
    580 					    bool blend_need_alpha)
    581 {
    582 	const struct vk_format_description *desc = vk_format_description(vk_format);
    583 	unsigned format, ntype, swap;
    584 
    585 	/* Alpha is needed for alpha-to-coverage.
    586 	 * Blending may be with or without alpha.
    587 	 */
    588 	unsigned normal = 0; /* most optimal, may not support blending or export alpha */
    589 	unsigned alpha = 0; /* exports alpha, but may not support blending */
    590 	unsigned blend = 0; /* supports blending, but may not export alpha */
    591 	unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
    592 
    593 	format = radv_translate_colorformat(vk_format);
    594 	ntype = radv_translate_color_numformat(vk_format, desc,
    595 					       vk_format_get_first_non_void_channel(vk_format));
    596 	swap = radv_translate_colorswap(vk_format, false);
    597 
    598 	/* Choose the SPI color formats. These are required values for Stoney/RB+.
    599 	 * Other chips have multiple choices, though they are not necessarily better.
    600 	 */
    601 	switch (format) {
    602 	case V_028C70_COLOR_5_6_5:
    603 	case V_028C70_COLOR_1_5_5_5:
    604 	case V_028C70_COLOR_5_5_5_1:
    605 	case V_028C70_COLOR_4_4_4_4:
    606 	case V_028C70_COLOR_10_11_11:
    607 	case V_028C70_COLOR_11_11_10:
    608 	case V_028C70_COLOR_8:
    609 	case V_028C70_COLOR_8_8:
    610 	case V_028C70_COLOR_8_8_8_8:
    611 	case V_028C70_COLOR_10_10_10_2:
    612 	case V_028C70_COLOR_2_10_10_10:
    613 		if (ntype == V_028C70_NUMBER_UINT)
    614 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
    615 		else if (ntype == V_028C70_NUMBER_SINT)
    616 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
    617 		else
    618 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
    619 		break;
    620 
    621 	case V_028C70_COLOR_16:
    622 	case V_028C70_COLOR_16_16:
    623 	case V_028C70_COLOR_16_16_16_16:
    624 		if (ntype == V_028C70_NUMBER_UNORM ||
    625 		    ntype == V_028C70_NUMBER_SNORM) {
    626 			/* UNORM16 and SNORM16 don't support blending */
    627 			if (ntype == V_028C70_NUMBER_UNORM)
    628 				normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
    629 			else
    630 				normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
    631 
    632 			/* Use 32 bits per channel for blending. */
    633 			if (format == V_028C70_COLOR_16) {
    634 				if (swap == V_028C70_SWAP_STD) { /* R */
    635 					blend = V_028714_SPI_SHADER_32_R;
    636 					blend_alpha = V_028714_SPI_SHADER_32_AR;
    637 				} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
    638 					blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
    639 				else
    640 					assert(0);
    641 			} else if (format == V_028C70_COLOR_16_16) {
    642 				if (swap == V_028C70_SWAP_STD) { /* RG */
    643 					blend = V_028714_SPI_SHADER_32_GR;
    644 					blend_alpha = V_028714_SPI_SHADER_32_ABGR;
    645 				} else if (swap == V_028C70_SWAP_ALT) /* RA */
    646 					blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
    647 				else
    648 					assert(0);
    649 			} else /* 16_16_16_16 */
    650 				blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
    651 		} else if (ntype == V_028C70_NUMBER_UINT)
    652 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
    653 		else if (ntype == V_028C70_NUMBER_SINT)
    654 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
    655 		else if (ntype == V_028C70_NUMBER_FLOAT)
    656 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
    657 		else
    658 			assert(0);
    659 		break;
    660 
    661 	case V_028C70_COLOR_32:
    662 		if (swap == V_028C70_SWAP_STD) { /* R */
    663 			blend = normal = V_028714_SPI_SHADER_32_R;
    664 			alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
    665 		} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
    666 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
    667 		else
    668 			assert(0);
    669 		break;
    670 
    671 	case V_028C70_COLOR_32_32:
    672 		if (swap == V_028C70_SWAP_STD) { /* RG */
    673 			blend = normal = V_028714_SPI_SHADER_32_GR;
    674 			alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
    675 		} else if (swap == V_028C70_SWAP_ALT) /* RA */
    676 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
    677 		else
    678 			assert(0);
    679 		break;
    680 
    681 	case V_028C70_COLOR_32_32_32_32:
    682 	case V_028C70_COLOR_8_24:
    683 	case V_028C70_COLOR_24_8:
    684 	case V_028C70_COLOR_X24_8_32_FLOAT:
    685 		alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
    686 		break;
    687 
    688 	default:
    689 		unreachable("unhandled blend format");
    690 	}
    691 
    692 	if (blend_enable && blend_need_alpha)
    693 		return blend_alpha;
    694 	else if(blend_need_alpha)
    695 		return alpha;
    696 	else if(blend_enable)
    697 		return blend;
    698 	else
    699 		return normal;
    700 }
    701 
    702 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
    703 {
    704 	unsigned i, cb_shader_mask = 0;
    705 
    706 	for (i = 0; i < 8; i++) {
    707 		switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
    708 		case V_028714_SPI_SHADER_ZERO:
    709 			break;
    710 		case V_028714_SPI_SHADER_32_R:
    711 			cb_shader_mask |= 0x1 << (i * 4);
    712 			break;
    713 		case V_028714_SPI_SHADER_32_GR:
    714 			cb_shader_mask |= 0x3 << (i * 4);
    715 			break;
    716 		case V_028714_SPI_SHADER_32_AR:
    717 			cb_shader_mask |= 0x9 << (i * 4);
    718 			break;
    719 		case V_028714_SPI_SHADER_FP16_ABGR:
    720 		case V_028714_SPI_SHADER_UNORM16_ABGR:
    721 		case V_028714_SPI_SHADER_SNORM16_ABGR:
    722 		case V_028714_SPI_SHADER_UINT16_ABGR:
    723 		case V_028714_SPI_SHADER_SINT16_ABGR:
    724 		case V_028714_SPI_SHADER_32_ABGR:
    725 			cb_shader_mask |= 0xf << (i * 4);
    726 			break;
    727 		default:
    728 			assert(0);
    729 		}
    730 	}
    731 	return cb_shader_mask;
    732 }
    733 
    734 static void
    735 radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
    736 					const VkGraphicsPipelineCreateInfo *pCreateInfo,
    737 					uint32_t blend_enable,
    738 					uint32_t blend_need_alpha,
    739 					bool single_cb_enable,
    740 					bool blend_mrt0_is_dual_src)
    741 {
    742 	RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
    743 	struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
    744 	struct radv_blend_state *blend = &pipeline->graphics.blend;
    745 	unsigned col_format = 0;
    746 
    747 	for (unsigned i = 0; i < (single_cb_enable ? 1 : subpass->color_count); ++i) {
    748 		struct radv_render_pass_attachment *attachment;
    749 		unsigned cf;
    750 
    751 		attachment = pass->attachments + subpass->color_attachments[i].attachment;
    752 
    753 		cf = si_choose_spi_color_format(attachment->format,
    754 						blend_enable & (1 << i),
    755 						blend_need_alpha & (1 << i));
    756 
    757 		col_format |= cf << (4 * i);
    758 	}
    759 
    760 	blend->cb_shader_mask = si_get_cb_shader_mask(col_format);
    761 
    762 	if (blend_mrt0_is_dual_src)
    763 		col_format |= (col_format & 0xf) << 4;
    764 	if (!col_format)
    765 		col_format |= V_028714_SPI_SHADER_32_R;
    766 	blend->spi_shader_col_format = col_format;
    767 }
    768 
    769 static bool
    770 format_is_int8(VkFormat format)
    771 {
    772 	const struct vk_format_description *desc = vk_format_description(format);
    773 	int channel =  vk_format_get_first_non_void_channel(format);
    774 
    775 	return channel >= 0 && desc->channel[channel].pure_integer &&
    776 	       desc->channel[channel].size == 8;
    777 }
    778 
    779 unsigned radv_format_meta_fs_key(VkFormat format)
    780 {
    781 	unsigned col_format = si_choose_spi_color_format(format, false, false) - 1;
    782 	bool is_int8 = format_is_int8(format);
    783 
    784 	return col_format + (is_int8 ? 3 : 0);
    785 }
    786 
    787 static unsigned
    788 radv_pipeline_compute_is_int8(const VkGraphicsPipelineCreateInfo *pCreateInfo)
    789 {
    790 	RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
    791 	struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
    792 	unsigned is_int8 = 0;
    793 
    794 	for (unsigned i = 0; i < subpass->color_count; ++i) {
    795 		struct radv_render_pass_attachment *attachment;
    796 
    797 		attachment = pass->attachments + subpass->color_attachments[i].attachment;
    798 
    799 		if (format_is_int8(attachment->format))
    800 			is_int8 |= 1 << i;
    801 	}
    802 
    803 	return is_int8;
    804 }
    805 
    806 static void
    807 radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
    808 			       const VkGraphicsPipelineCreateInfo *pCreateInfo,
    809 			       const struct radv_graphics_pipeline_create_info *extra)
    810 {
    811 	const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
    812 	struct radv_blend_state *blend = &pipeline->graphics.blend;
    813 	unsigned mode = V_028808_CB_NORMAL;
    814 	uint32_t blend_enable = 0, blend_need_alpha = 0;
    815 	bool blend_mrt0_is_dual_src = false;
    816 	int i;
    817 	bool single_cb_enable = false;
    818 
    819 	if (!vkblend)
    820 		return;
    821 
    822 	if (extra && extra->custom_blend_mode) {
    823 		single_cb_enable = true;
    824 		mode = extra->custom_blend_mode;
    825 	}
    826 	blend->cb_color_control = 0;
    827 	if (vkblend->logicOpEnable)
    828 		blend->cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4));
    829 	else
    830 		blend->cb_color_control |= S_028808_ROP3(0xcc);
    831 
    832 	blend->db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) |
    833 		S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
    834 		S_028B70_ALPHA_TO_MASK_OFFSET2(2) |
    835 		S_028B70_ALPHA_TO_MASK_OFFSET3(2);
    836 
    837 	blend->cb_target_mask = 0;
    838 	for (i = 0; i < vkblend->attachmentCount; i++) {
    839 		const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
    840 		unsigned blend_cntl = 0;
    841 		VkBlendOp eqRGB = att->colorBlendOp;
    842 		VkBlendFactor srcRGB = att->srcColorBlendFactor;
    843 		VkBlendFactor dstRGB = att->dstColorBlendFactor;
    844 		VkBlendOp eqA = att->alphaBlendOp;
    845 		VkBlendFactor srcA = att->srcAlphaBlendFactor;
    846 		VkBlendFactor dstA = att->dstAlphaBlendFactor;
    847 
    848 		blend->sx_mrt0_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
    849 
    850 		if (!att->colorWriteMask)
    851 			continue;
    852 
    853 		blend->cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
    854 		if (!att->blendEnable) {
    855 			blend->cb_blend_control[i] = blend_cntl;
    856 			continue;
    857 		}
    858 
    859 		if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
    860 			if (i == 0)
    861 				blend_mrt0_is_dual_src = true;
    862 
    863 		if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
    864 			srcRGB = VK_BLEND_FACTOR_ONE;
    865 			dstRGB = VK_BLEND_FACTOR_ONE;
    866 		}
    867 		if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
    868 			srcA = VK_BLEND_FACTOR_ONE;
    869 			dstA = VK_BLEND_FACTOR_ONE;
    870 		}
    871 
    872 		blend_cntl |= S_028780_ENABLE(1);
    873 
    874 		blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
    875 		blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
    876 		blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
    877 		if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
    878 			blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
    879 			blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
    880 			blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
    881 			blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
    882 		}
    883 		blend->cb_blend_control[i] = blend_cntl;
    884 
    885 		blend_enable |= 1 << i;
    886 
    887 		if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
    888 		    dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
    889 		    srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
    890 		    dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
    891 		    srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
    892 		    dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
    893 			blend_need_alpha |= 1 << i;
    894 	}
    895 	for (i = vkblend->attachmentCount; i < 8; i++)
    896 		blend->cb_blend_control[i] = 0;
    897 
    898 	if (blend->cb_target_mask)
    899 		blend->cb_color_control |= S_028808_MODE(mode);
    900 	else
    901 		blend->cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
    902 
    903 	radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo,
    904 						blend_enable, blend_need_alpha, single_cb_enable, blend_mrt0_is_dual_src);
    905 }
    906 
    907 static uint32_t si_translate_stencil_op(enum VkStencilOp op)
    908 {
    909 	switch (op) {
    910 	case VK_STENCIL_OP_KEEP:
    911 		return V_02842C_STENCIL_KEEP;
    912 	case VK_STENCIL_OP_ZERO:
    913 		return V_02842C_STENCIL_ZERO;
    914 	case VK_STENCIL_OP_REPLACE:
    915 		return V_02842C_STENCIL_REPLACE_TEST;
    916 	case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
    917 		return V_02842C_STENCIL_ADD_CLAMP;
    918 	case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
    919 		return V_02842C_STENCIL_SUB_CLAMP;
    920 	case VK_STENCIL_OP_INVERT:
    921 		return V_02842C_STENCIL_INVERT;
    922 	case VK_STENCIL_OP_INCREMENT_AND_WRAP:
    923 		return V_02842C_STENCIL_ADD_WRAP;
    924 	case VK_STENCIL_OP_DECREMENT_AND_WRAP:
    925 		return V_02842C_STENCIL_SUB_WRAP;
    926 	default:
    927 		return 0;
    928 	}
    929 }
    930 static void
    931 radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline,
    932 				       const VkGraphicsPipelineCreateInfo *pCreateInfo,
    933 				       const struct radv_graphics_pipeline_create_info *extra)
    934 {
    935 	const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState;
    936 	struct radv_depth_stencil_state *ds = &pipeline->graphics.ds;
    937 
    938 	memset(ds, 0, sizeof(*ds));
    939 	if (!vkds)
    940 		return;
    941 	ds->db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
    942 		S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
    943 		S_028800_ZFUNC(vkds->depthCompareOp) |
    944 		S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
    945 
    946 	if (vkds->stencilTestEnable) {
    947 		ds->db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
    948 		ds->db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
    949 		ds->db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
    950 		ds->db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
    951 		ds->db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
    952 
    953 		ds->db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
    954 		ds->db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
    955 		ds->db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
    956 		ds->db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
    957 	}
    958 
    959 	if (extra) {
    960 
    961 		ds->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
    962 		ds->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
    963 
    964 		ds->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize);
    965 		ds->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace);
    966 		ds->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace);
    967 		ds->db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
    968 		ds->db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
    969 	}
    970 }
    971 
    972 static uint32_t si_translate_fill(VkPolygonMode func)
    973 {
    974 	switch(func) {
    975 	case VK_POLYGON_MODE_FILL:
    976 		return V_028814_X_DRAW_TRIANGLES;
    977 	case VK_POLYGON_MODE_LINE:
    978 		return V_028814_X_DRAW_LINES;
    979 	case VK_POLYGON_MODE_POINT:
    980 		return V_028814_X_DRAW_POINTS;
    981 	default:
    982 		assert(0);
    983 		return V_028814_X_DRAW_POINTS;
    984 	}
    985 }
    986 static void
    987 radv_pipeline_init_raster_state(struct radv_pipeline *pipeline,
    988 				const VkGraphicsPipelineCreateInfo *pCreateInfo)
    989 {
    990 	const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
    991 	struct radv_raster_state *raster = &pipeline->graphics.raster;
    992 
    993 	memset(raster, 0, sizeof(*raster));
    994 
    995 	raster->spi_interp_control =
    996 		S_0286D4_FLAT_SHADE_ENA(1) |
    997 		S_0286D4_PNT_SPRITE_ENA(1) |
    998 		S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
    999 		S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
   1000 		S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
   1001 		S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
   1002 		S_0286D4_PNT_SPRITE_TOP_1(0); // vulkan is top to bottom - 1.0 at bottom
   1003 
   1004 	raster->pa_cl_vs_out_cntl = S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(1);
   1005 	raster->pa_cl_clip_cntl = S_028810_PS_UCP_MODE(3) |
   1006 		S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
   1007 		S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
   1008 		S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
   1009 		S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
   1010 		S_028810_DX_LINEAR_ATTR_CLIP_ENA(1);
   1011 
   1012 	raster->pa_su_vtx_cntl =
   1013 		S_028BE4_PIX_CENTER(1) | // TODO verify
   1014 		S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
   1015 		S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH);
   1016 
   1017 	raster->pa_su_sc_mode_cntl =
   1018 		S_028814_FACE(vkraster->frontFace) |
   1019 		S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
   1020 		S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
   1021 		S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
   1022 		S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
   1023 		S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
   1024 		S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
   1025 		S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
   1026 		S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0);
   1027 
   1028 }
   1029 
   1030 static void
   1031 radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
   1032 				     const VkGraphicsPipelineCreateInfo *pCreateInfo)
   1033 {
   1034 	const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
   1035 	struct radv_blend_state *blend = &pipeline->graphics.blend;
   1036 	struct radv_multisample_state *ms = &pipeline->graphics.ms;
   1037 	unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
   1038 	int ps_iter_samples = 1;
   1039 	uint32_t mask = 0xffff;
   1040 
   1041 	ms->num_samples = vkms->rasterizationSamples;
   1042 
   1043 	if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.force_persample) {
   1044 		ps_iter_samples = vkms->rasterizationSamples;
   1045 	}
   1046 
   1047 	ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
   1048 	ms->pa_sc_aa_config = 0;
   1049 	ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
   1050 		S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
   1051 	ms->pa_sc_mode_cntl_1 =
   1052 		S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
   1053 		S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
   1054 		/* always 1: */
   1055 		S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
   1056 		S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
   1057 		S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
   1058 		S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
   1059 		EG_S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
   1060 		EG_S_028A4C_FORCE_EOV_REZ_ENABLE(1);
   1061 
   1062 	if (vkms->rasterizationSamples > 1) {
   1063 		unsigned log_samples = util_logbase2(vkms->rasterizationSamples);
   1064 		unsigned log_ps_iter_samples = util_logbase2(util_next_power_of_two(ps_iter_samples));
   1065 		ms->pa_sc_mode_cntl_0 = S_028A48_MSAA_ENABLE(1);
   1066 		ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
   1067 		ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) |
   1068 			S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
   1069 			S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
   1070 			S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
   1071 		ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
   1072 			S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) |
   1073 			S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
   1074 		ms->pa_sc_mode_cntl_1 |= EG_S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
   1075 	}
   1076 
   1077 	if (vkms->alphaToCoverageEnable)
   1078 		blend->db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
   1079 
   1080 	if (vkms->pSampleMask) {
   1081 		mask = vkms->pSampleMask[0] & 0xffff;
   1082 	}
   1083 
   1084 	ms->pa_sc_aa_mask[0] = mask | (mask << 16);
   1085 	ms->pa_sc_aa_mask[1] = mask | (mask << 16);
   1086 }
   1087 
   1088 static uint32_t
   1089 si_translate_prim(enum VkPrimitiveTopology topology)
   1090 {
   1091 	switch (topology) {
   1092 	case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
   1093 		return V_008958_DI_PT_POINTLIST;
   1094 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
   1095 		return V_008958_DI_PT_LINELIST;
   1096 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
   1097 		return V_008958_DI_PT_LINESTRIP;
   1098 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
   1099 		return V_008958_DI_PT_TRILIST;
   1100 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
   1101 		return V_008958_DI_PT_TRISTRIP;
   1102 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
   1103 		return V_008958_DI_PT_TRIFAN;
   1104 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
   1105 		return V_008958_DI_PT_LINELIST_ADJ;
   1106 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
   1107 		return V_008958_DI_PT_LINESTRIP_ADJ;
   1108 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
   1109 		return V_008958_DI_PT_TRILIST_ADJ;
   1110 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
   1111 		return V_008958_DI_PT_TRISTRIP_ADJ;
   1112 	case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
   1113 		return V_008958_DI_PT_PATCH;
   1114 	default:
   1115 		assert(0);
   1116 		return 0;
   1117 	}
   1118 }
   1119 
   1120 static uint32_t
   1121 si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
   1122 {
   1123 	switch (topology) {
   1124 	case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
   1125 	case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
   1126 		return V_028A6C_OUTPRIM_TYPE_POINTLIST;
   1127 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
   1128 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
   1129 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
   1130 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
   1131 		return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
   1132 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
   1133 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
   1134 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
   1135 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
   1136 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
   1137 		return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
   1138 	default:
   1139 		assert(0);
   1140 		return 0;
   1141 	}
   1142 }
   1143 
   1144 static unsigned si_map_swizzle(unsigned swizzle)
   1145 {
   1146 	switch (swizzle) {
   1147 	case VK_SWIZZLE_Y:
   1148 		return V_008F0C_SQ_SEL_Y;
   1149 	case VK_SWIZZLE_Z:
   1150 		return V_008F0C_SQ_SEL_Z;
   1151 	case VK_SWIZZLE_W:
   1152 		return V_008F0C_SQ_SEL_W;
   1153 	case VK_SWIZZLE_0:
   1154 		return V_008F0C_SQ_SEL_0;
   1155 	case VK_SWIZZLE_1:
   1156 		return V_008F0C_SQ_SEL_1;
   1157 	default: /* VK_SWIZZLE_X */
   1158 		return V_008F0C_SQ_SEL_X;
   1159 	}
   1160 }
   1161 
   1162 static void
   1163 radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
   1164 				 const VkGraphicsPipelineCreateInfo *pCreateInfo)
   1165 {
   1166 	radv_cmd_dirty_mask_t states = RADV_CMD_DIRTY_DYNAMIC_ALL;
   1167 	RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
   1168 	struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
   1169 
   1170 	pipeline->dynamic_state = default_dynamic_state;
   1171 
   1172 	if (pCreateInfo->pDynamicState) {
   1173 		/* Remove all of the states that are marked as dynamic */
   1174 		uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
   1175 		for (uint32_t s = 0; s < count; s++)
   1176 			states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
   1177 	}
   1178 
   1179 	struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
   1180 
   1181 	/* Section 9.2 of the Vulkan 1.0.15 spec says:
   1182 	 *
   1183 	 *    pViewportState is [...] NULL if the pipeline
   1184 	 *    has rasterization disabled.
   1185 	 */
   1186 	if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
   1187 		assert(pCreateInfo->pViewportState);
   1188 
   1189 		dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
   1190 		if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
   1191 			typed_memcpy(dynamic->viewport.viewports,
   1192 				     pCreateInfo->pViewportState->pViewports,
   1193 				     pCreateInfo->pViewportState->viewportCount);
   1194 		}
   1195 
   1196 		dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
   1197 		if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
   1198 			typed_memcpy(dynamic->scissor.scissors,
   1199 				     pCreateInfo->pViewportState->pScissors,
   1200 				     pCreateInfo->pViewportState->scissorCount);
   1201 		}
   1202 	}
   1203 
   1204 	if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
   1205 		assert(pCreateInfo->pRasterizationState);
   1206 		dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
   1207 	}
   1208 
   1209 	if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
   1210 		assert(pCreateInfo->pRasterizationState);
   1211 		dynamic->depth_bias.bias =
   1212 			pCreateInfo->pRasterizationState->depthBiasConstantFactor;
   1213 		dynamic->depth_bias.clamp =
   1214 			pCreateInfo->pRasterizationState->depthBiasClamp;
   1215 		dynamic->depth_bias.slope =
   1216 			pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
   1217 	}
   1218 
   1219 	/* Section 9.2 of the Vulkan 1.0.15 spec says:
   1220 	 *
   1221 	 *    pColorBlendState is [...] NULL if the pipeline has rasterization
   1222 	 *    disabled or if the subpass of the render pass the pipeline is
   1223 	 *    created against does not use any color attachments.
   1224 	 */
   1225 	bool uses_color_att = false;
   1226 	for (unsigned i = 0; i < subpass->color_count; ++i) {
   1227 		if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
   1228 			uses_color_att = true;
   1229 			break;
   1230 		}
   1231 	}
   1232 
   1233 	if (uses_color_att && states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
   1234 		assert(pCreateInfo->pColorBlendState);
   1235 		typed_memcpy(dynamic->blend_constants,
   1236 			     pCreateInfo->pColorBlendState->blendConstants, 4);
   1237 	}
   1238 
   1239 	/* If there is no depthstencil attachment, then don't read
   1240 	 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
   1241 	 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
   1242 	 * no need to override the depthstencil defaults in
   1243 	 * radv_pipeline::dynamic_state when there is no depthstencil attachment.
   1244 	 *
   1245 	 * Section 9.2 of the Vulkan 1.0.15 spec says:
   1246 	 *
   1247 	 *    pDepthStencilState is [...] NULL if the pipeline has rasterization
   1248 	 *    disabled or if the subpass of the render pass the pipeline is created
   1249 	 *    against does not use a depth/stencil attachment.
   1250 	 */
   1251 	if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
   1252 	    subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
   1253 		assert(pCreateInfo->pDepthStencilState);
   1254 
   1255 		if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
   1256 			dynamic->depth_bounds.min =
   1257 				pCreateInfo->pDepthStencilState->minDepthBounds;
   1258 			dynamic->depth_bounds.max =
   1259 				pCreateInfo->pDepthStencilState->maxDepthBounds;
   1260 		}
   1261 
   1262 		if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
   1263 			dynamic->stencil_compare_mask.front =
   1264 				pCreateInfo->pDepthStencilState->front.compareMask;
   1265 			dynamic->stencil_compare_mask.back =
   1266 				pCreateInfo->pDepthStencilState->back.compareMask;
   1267 		}
   1268 
   1269 		if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
   1270 			dynamic->stencil_write_mask.front =
   1271 				pCreateInfo->pDepthStencilState->front.writeMask;
   1272 			dynamic->stencil_write_mask.back =
   1273 				pCreateInfo->pDepthStencilState->back.writeMask;
   1274 		}
   1275 
   1276 		if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
   1277 			dynamic->stencil_reference.front =
   1278 				pCreateInfo->pDepthStencilState->front.reference;
   1279 			dynamic->stencil_reference.back =
   1280 				pCreateInfo->pDepthStencilState->back.reference;
   1281 		}
   1282 	}
   1283 
   1284 	pipeline->dynamic_state_mask = states;
   1285 }
   1286 
   1287 static union ac_shader_variant_key
   1288 radv_compute_vs_key(const VkGraphicsPipelineCreateInfo *pCreateInfo)
   1289 {
   1290 	union ac_shader_variant_key key;
   1291 	const VkPipelineVertexInputStateCreateInfo *input_state =
   1292 	                                         pCreateInfo->pVertexInputState;
   1293 
   1294 	memset(&key, 0, sizeof(key));
   1295 	key.vs.instance_rate_inputs = 0;
   1296 
   1297 	for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
   1298 		unsigned binding;
   1299 		binding = input_state->pVertexAttributeDescriptions[i].binding;
   1300 		if (input_state->pVertexBindingDescriptions[binding].inputRate)
   1301 			key.vs.instance_rate_inputs |= 1u << input_state->pVertexAttributeDescriptions[i].location;
   1302 	}
   1303 	return key;
   1304 }
   1305 
   1306 VkResult
   1307 radv_pipeline_init(struct radv_pipeline *pipeline,
   1308 		   struct radv_device *device,
   1309 		   struct radv_pipeline_cache *cache,
   1310 		   const VkGraphicsPipelineCreateInfo *pCreateInfo,
   1311 		   const struct radv_graphics_pipeline_create_info *extra,
   1312 		   const VkAllocationCallbacks *alloc)
   1313 {
   1314 	struct radv_shader_module fs_m = {0};
   1315 
   1316 	if (alloc == NULL)
   1317 		alloc = &device->alloc;
   1318 
   1319 	pipeline->device = device;
   1320 	pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
   1321 
   1322 	radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
   1323 	const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
   1324 	struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
   1325 	for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
   1326 		gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
   1327 		pStages[stage] = &pCreateInfo->pStages[i];
   1328 		modules[stage] = radv_shader_module_from_handle(pStages[stage]->module);
   1329 	}
   1330 
   1331 	radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
   1332 
   1333 	/* */
   1334 	if (modules[MESA_SHADER_VERTEX]) {
   1335 		union ac_shader_variant_key key = radv_compute_vs_key(pCreateInfo);
   1336 
   1337 		pipeline->shaders[MESA_SHADER_VERTEX] =
   1338 			 radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_VERTEX],
   1339 					       pStages[MESA_SHADER_VERTEX]->pName,
   1340 					       MESA_SHADER_VERTEX,
   1341 					       pStages[MESA_SHADER_VERTEX]->pSpecializationInfo,
   1342 					       pipeline->layout, &key);
   1343 
   1344 		pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_VERTEX);
   1345 	}
   1346 
   1347 	if (!modules[MESA_SHADER_FRAGMENT]) {
   1348 		nir_builder fs_b;
   1349 		nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
   1350 		fs_b.shader->info->name = ralloc_strdup(fs_b.shader, "noop_fs");
   1351 		fs_m.nir = fs_b.shader;
   1352 		modules[MESA_SHADER_FRAGMENT] = &fs_m;
   1353 	}
   1354 
   1355 	if (modules[MESA_SHADER_FRAGMENT]) {
   1356 		union ac_shader_variant_key key;
   1357 		key.fs.col_format = pipeline->graphics.blend.spi_shader_col_format;
   1358 		key.fs.is_int8 = radv_pipeline_compute_is_int8(pCreateInfo);
   1359 
   1360 		const VkPipelineShaderStageCreateInfo *stage = pStages[MESA_SHADER_FRAGMENT];
   1361 
   1362 		pipeline->shaders[MESA_SHADER_FRAGMENT] =
   1363 			 radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_FRAGMENT],
   1364 					       stage ? stage->pName : "main",
   1365 					       MESA_SHADER_FRAGMENT,
   1366 					       stage ? stage->pSpecializationInfo : NULL,
   1367 					       pipeline->layout, &key);
   1368 		pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_FRAGMENT);
   1369 	}
   1370 
   1371 	if (fs_m.nir)
   1372 		ralloc_free(fs_m.nir);
   1373 
   1374 	radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo, extra);
   1375 	radv_pipeline_init_raster_state(pipeline, pCreateInfo);
   1376 	radv_pipeline_init_multisample_state(pipeline, pCreateInfo);
   1377 	pipeline->graphics.prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
   1378 	pipeline->graphics.gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
   1379 	if (extra && extra->use_rectlist) {
   1380 		pipeline->graphics.prim = V_008958_DI_PT_RECTLIST;
   1381 		pipeline->graphics.gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
   1382 	}
   1383 	pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
   1384 
   1385 	const VkPipelineVertexInputStateCreateInfo *vi_info =
   1386 		pCreateInfo->pVertexInputState;
   1387 	for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
   1388 		const VkVertexInputAttributeDescription *desc =
   1389 			&vi_info->pVertexAttributeDescriptions[i];
   1390 		unsigned loc = desc->location;
   1391 		const struct vk_format_description *format_desc;
   1392 		int first_non_void;
   1393 		uint32_t num_format, data_format;
   1394 		format_desc = vk_format_description(desc->format);
   1395 		first_non_void = vk_format_get_first_non_void_channel(desc->format);
   1396 
   1397 		num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
   1398 		data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
   1399 
   1400 		pipeline->va_rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) |
   1401 			S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) |
   1402 			S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) |
   1403 			S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) |
   1404 			S_008F0C_NUM_FORMAT(num_format) |
   1405 			S_008F0C_DATA_FORMAT(data_format);
   1406 		pipeline->va_format_size[loc] = format_desc->block.bits / 8;
   1407 		pipeline->va_offset[loc] = desc->offset;
   1408 		pipeline->va_binding[loc] = desc->binding;
   1409 		pipeline->num_vertex_attribs = MAX2(pipeline->num_vertex_attribs, loc + 1);
   1410 	}
   1411 
   1412 	for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
   1413 		const VkVertexInputBindingDescription *desc =
   1414 			&vi_info->pVertexBindingDescriptions[i];
   1415 
   1416 		pipeline->binding_stride[desc->binding] = desc->stride;
   1417 	}
   1418 
   1419 	if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
   1420 		radv_dump_pipeline_stats(device, pipeline);
   1421 	}
   1422 
   1423 	return VK_SUCCESS;
   1424 }
   1425 
   1426 VkResult
   1427 radv_graphics_pipeline_create(
   1428 	VkDevice _device,
   1429 	VkPipelineCache _cache,
   1430 	const VkGraphicsPipelineCreateInfo *pCreateInfo,
   1431 	const struct radv_graphics_pipeline_create_info *extra,
   1432 	const VkAllocationCallbacks *pAllocator,
   1433 	VkPipeline *pPipeline)
   1434 {
   1435 	RADV_FROM_HANDLE(radv_device, device, _device);
   1436 	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
   1437 	struct radv_pipeline *pipeline;
   1438 	VkResult result;
   1439 
   1440 	pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
   1441 			       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   1442 	if (pipeline == NULL)
   1443 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
   1444 
   1445 	memset(pipeline, 0, sizeof(*pipeline));
   1446 	result = radv_pipeline_init(pipeline, device, cache,
   1447 				    pCreateInfo, extra, pAllocator);
   1448 	if (result != VK_SUCCESS) {
   1449 		vk_free2(&device->alloc, pAllocator, pipeline);
   1450 		return result;
   1451 	}
   1452 
   1453 	*pPipeline = radv_pipeline_to_handle(pipeline);
   1454 
   1455 	return VK_SUCCESS;
   1456 }
   1457 
   1458 VkResult radv_CreateGraphicsPipelines(
   1459 	VkDevice                                    _device,
   1460 	VkPipelineCache                             pipelineCache,
   1461 	uint32_t                                    count,
   1462 	const VkGraphicsPipelineCreateInfo*         pCreateInfos,
   1463 	const VkAllocationCallbacks*                pAllocator,
   1464 	VkPipeline*                                 pPipelines)
   1465 {
   1466 	VkResult result = VK_SUCCESS;
   1467 	unsigned i = 0;
   1468 
   1469 	for (; i < count; i++) {
   1470 		VkResult r;
   1471 		r = radv_graphics_pipeline_create(_device,
   1472 						  pipelineCache,
   1473 						  &pCreateInfos[i],
   1474 						  NULL, pAllocator, &pPipelines[i]);
   1475 		if (r != VK_SUCCESS) {
   1476 			result = r;
   1477 			pPipelines[i] = VK_NULL_HANDLE;
   1478 		}
   1479 	}
   1480 
   1481 	return result;
   1482 }
   1483 
   1484 static VkResult radv_compute_pipeline_create(
   1485 	VkDevice                                    _device,
   1486 	VkPipelineCache                             _cache,
   1487 	const VkComputePipelineCreateInfo*          pCreateInfo,
   1488 	const VkAllocationCallbacks*                pAllocator,
   1489 	VkPipeline*                                 pPipeline)
   1490 {
   1491 	RADV_FROM_HANDLE(radv_device, device, _device);
   1492 	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
   1493 	RADV_FROM_HANDLE(radv_shader_module, module, pCreateInfo->stage.module);
   1494 	struct radv_pipeline *pipeline;
   1495 
   1496 	pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
   1497 			       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
   1498 	if (pipeline == NULL)
   1499 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
   1500 
   1501 	memset(pipeline, 0, sizeof(*pipeline));
   1502 	pipeline->device = device;
   1503 	pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
   1504 
   1505 	pipeline->shaders[MESA_SHADER_COMPUTE] =
   1506 		 radv_pipeline_compile(pipeline, cache, module,
   1507 				       pCreateInfo->stage.pName,
   1508 				       MESA_SHADER_COMPUTE,
   1509 				       pCreateInfo->stage.pSpecializationInfo,
   1510 				       pipeline->layout, NULL);
   1511 
   1512 	*pPipeline = radv_pipeline_to_handle(pipeline);
   1513 
   1514 	if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
   1515 		radv_dump_pipeline_stats(device, pipeline);
   1516 	}
   1517 	return VK_SUCCESS;
   1518 }
   1519 VkResult radv_CreateComputePipelines(
   1520 	VkDevice                                    _device,
   1521 	VkPipelineCache                             pipelineCache,
   1522 	uint32_t                                    count,
   1523 	const VkComputePipelineCreateInfo*          pCreateInfos,
   1524 	const VkAllocationCallbacks*                pAllocator,
   1525 	VkPipeline*                                 pPipelines)
   1526 {
   1527 	VkResult result = VK_SUCCESS;
   1528 
   1529 	unsigned i = 0;
   1530 	for (; i < count; i++) {
   1531 		VkResult r;
   1532 		r = radv_compute_pipeline_create(_device, pipelineCache,
   1533 						 &pCreateInfos[i],
   1534 						 pAllocator, &pPipelines[i]);
   1535 		if (r != VK_SUCCESS) {
   1536 			result = r;
   1537 			pPipelines[i] = VK_NULL_HANDLE;
   1538 		}
   1539 	}
   1540 
   1541 	return result;
   1542 }
   1543