Home | History | Annotate | Download | only in bfd
      1 /* BFD back-end for Renesas Super-H COFF binaries.
      2    Copyright (C) 1993-2016 Free Software Foundation, Inc.
      3    Contributed by Cygnus Support.
      4    Written by Steve Chamberlain, <sac (at) cygnus.com>.
      5    Relaxing code written by Ian Lance Taylor, <ian (at) cygnus.com>.
      6 
      7    This file is part of BFD, the Binary File Descriptor library.
      8 
      9    This program is free software; you can redistribute it and/or modify
     10    it under the terms of the GNU General Public License as published by
     11    the Free Software Foundation; either version 3 of the License, or
     12    (at your option) any later version.
     13 
     14    This program is distributed in the hope that it will be useful,
     15    but WITHOUT ANY WARRANTY; without even the implied warranty of
     16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     17    GNU General Public License for more details.
     18 
     19    You should have received a copy of the GNU General Public License
     20    along with this program; if not, write to the Free Software
     21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     22    MA 02110-1301, USA.  */
     23 
     24 #include "sysdep.h"
     25 #include "bfd.h"
     26 #include "libiberty.h"
     27 #include "libbfd.h"
     28 #include "bfdlink.h"
     29 #include "coff/sh.h"
     30 #include "coff/internal.h"
     31 
     32 #undef  bfd_pe_print_pdata
     33 
     34 #ifdef COFF_WITH_PE
     35 #include "coff/pe.h"
     36 
     37 #ifndef COFF_IMAGE_WITH_PE
     38 static bfd_boolean sh_align_load_span
     39   (bfd *, asection *, bfd_byte *,
     40    bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
     41    void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *);
     42 
     43 #define _bfd_sh_align_load_span sh_align_load_span
     44 #endif
     45 
     46 #define	bfd_pe_print_pdata   _bfd_pe_print_ce_compressed_pdata
     47 
     48 #else
     49 
     50 #define	bfd_pe_print_pdata   NULL
     51 
     52 #endif /* COFF_WITH_PE.  */
     53 
     54 #include "libcoff.h"
     55 
     56 /* Internal functions.  */
     57 
     58 #ifdef COFF_WITH_PE
     59 /* Can't build import tables with 2**4 alignment.  */
     60 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	2
     61 #else
     62 /* Default section alignment to 2**4.  */
     63 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	4
     64 #endif
     65 
     66 #ifdef COFF_IMAGE_WITH_PE
     67 /* Align PE executables.  */
     68 #define COFF_PAGE_SIZE 0x1000
     69 #endif
     70 
     71 /* Generate long file names.  */
     72 #define COFF_LONG_FILENAMES
     73 
     74 #ifdef COFF_WITH_PE
     75 /* Return TRUE if this relocation should
     76    appear in the output .reloc section.  */
     77 
     78 static bfd_boolean
     79 in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
     80 	    reloc_howto_type * howto)
     81 {
     82   return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
     83 }
     84 #endif
     85 
     86 static bfd_reloc_status_type
     87 sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
     88 static bfd_boolean
     89 sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
     90 		     bfd_byte *, struct internal_reloc *,
     91 		     struct internal_syment *, asection **);
     92 static bfd_boolean
     93 sh_align_loads (bfd *, asection *, struct internal_reloc *,
     94 		bfd_byte *, bfd_boolean *);
     95 
     96 /* The supported relocations.  There are a lot of relocations defined
     97    in coff/internal.h which we do not expect to ever see.  */
     98 static reloc_howto_type sh_coff_howtos[] =
     99 {
    100   EMPTY_HOWTO (0),
    101   EMPTY_HOWTO (1),
    102 #ifdef COFF_WITH_PE
    103   /* Windows CE */
    104   HOWTO (R_SH_IMM32CE,		/* type */
    105 	 0,			/* rightshift */
    106 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
    107 	 32,			/* bitsize */
    108 	 FALSE,			/* pc_relative */
    109 	 0,			/* bitpos */
    110 	 complain_overflow_bitfield, /* complain_on_overflow */
    111 	 sh_reloc,		/* special_function */
    112 	 "r_imm32ce",		/* name */
    113 	 TRUE,			/* partial_inplace */
    114 	 0xffffffff,		/* src_mask */
    115 	 0xffffffff,		/* dst_mask */
    116 	 FALSE),		/* pcrel_offset */
    117 #else
    118   EMPTY_HOWTO (2),
    119 #endif
    120   EMPTY_HOWTO (3), /* R_SH_PCREL8 */
    121   EMPTY_HOWTO (4), /* R_SH_PCREL16 */
    122   EMPTY_HOWTO (5), /* R_SH_HIGH8 */
    123   EMPTY_HOWTO (6), /* R_SH_IMM24 */
    124   EMPTY_HOWTO (7), /* R_SH_LOW16 */
    125   EMPTY_HOWTO (8),
    126   EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
    127 
    128   HOWTO (R_SH_PCDISP8BY2,	/* type */
    129 	 1,			/* rightshift */
    130 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
    131 	 8,			/* bitsize */
    132 	 TRUE,			/* pc_relative */
    133 	 0,			/* bitpos */
    134 	 complain_overflow_signed, /* complain_on_overflow */
    135 	 sh_reloc,		/* special_function */
    136 	 "r_pcdisp8by2",	/* name */
    137 	 TRUE,			/* partial_inplace */
    138 	 0xff,			/* src_mask */
    139 	 0xff,			/* dst_mask */
    140 	 TRUE),			/* pcrel_offset */
    141 
    142   EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
    143 
    144   HOWTO (R_SH_PCDISP,		/* type */
    145 	 1,			/* rightshift */
    146 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
    147 	 12,			/* bitsize */
    148 	 TRUE,			/* pc_relative */
    149 	 0,			/* bitpos */
    150 	 complain_overflow_signed, /* complain_on_overflow */
    151 	 sh_reloc,		/* special_function */
    152 	 "r_pcdisp12by2",	/* name */
    153 	 TRUE,			/* partial_inplace */
    154 	 0xfff,			/* src_mask */
    155 	 0xfff,			/* dst_mask */
    156 	 TRUE),			/* pcrel_offset */
    157 
    158   EMPTY_HOWTO (13),
    159 
    160   HOWTO (R_SH_IMM32,		/* type */
    161 	 0,			/* rightshift */
    162 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
    163 	 32,			/* bitsize */
    164 	 FALSE,			/* pc_relative */
    165 	 0,			/* bitpos */
    166 	 complain_overflow_bitfield, /* complain_on_overflow */
    167 	 sh_reloc,		/* special_function */
    168 	 "r_imm32",		/* name */
    169 	 TRUE,			/* partial_inplace */
    170 	 0xffffffff,		/* src_mask */
    171 	 0xffffffff,		/* dst_mask */
    172 	 FALSE),		/* pcrel_offset */
    173 
    174   EMPTY_HOWTO (15),
    175 #ifdef COFF_WITH_PE
    176   HOWTO (R_SH_IMAGEBASE,        /* type */
    177 	 0,	                /* rightshift */
    178 	 2,	                /* size (0 = byte, 1 = short, 2 = long) */
    179 	 32,	                /* bitsize */
    180 	 FALSE,	                /* pc_relative */
    181 	 0,	                /* bitpos */
    182 	 complain_overflow_bitfield, /* complain_on_overflow */
    183 	 sh_reloc,       	/* special_function */
    184 	 "rva32",	        /* name */
    185 	 TRUE,	                /* partial_inplace */
    186 	 0xffffffff,            /* src_mask */
    187 	 0xffffffff,            /* dst_mask */
    188 	 FALSE),                /* pcrel_offset */
    189 #else
    190   EMPTY_HOWTO (16), /* R_SH_IMM8 */
    191 #endif
    192   EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
    193   EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
    194   EMPTY_HOWTO (19), /* R_SH_IMM4 */
    195   EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
    196   EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
    197 
    198   HOWTO (R_SH_PCRELIMM8BY2,	/* type */
    199 	 1,			/* rightshift */
    200 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
    201 	 8,			/* bitsize */
    202 	 TRUE,			/* pc_relative */
    203 	 0,			/* bitpos */
    204 	 complain_overflow_unsigned, /* complain_on_overflow */
    205 	 sh_reloc,		/* special_function */
    206 	 "r_pcrelimm8by2",	/* name */
    207 	 TRUE,			/* partial_inplace */
    208 	 0xff,			/* src_mask */
    209 	 0xff,			/* dst_mask */
    210 	 TRUE),			/* pcrel_offset */
    211 
    212   HOWTO (R_SH_PCRELIMM8BY4,	/* type */
    213 	 2,			/* rightshift */
    214 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
    215 	 8,			/* bitsize */
    216 	 TRUE,			/* pc_relative */
    217 	 0,			/* bitpos */
    218 	 complain_overflow_unsigned, /* complain_on_overflow */
    219 	 sh_reloc,		/* special_function */
    220 	 "r_pcrelimm8by4",	/* name */
    221 	 TRUE,			/* partial_inplace */
    222 	 0xff,			/* src_mask */
    223 	 0xff,			/* dst_mask */
    224 	 TRUE),			/* pcrel_offset */
    225 
    226   HOWTO (R_SH_IMM16,		/* type */
    227 	 0,			/* rightshift */
    228 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
    229 	 16,			/* bitsize */
    230 	 FALSE,			/* pc_relative */
    231 	 0,			/* bitpos */
    232 	 complain_overflow_bitfield, /* complain_on_overflow */
    233 	 sh_reloc,		/* special_function */
    234 	 "r_imm16",		/* name */
    235 	 TRUE,			/* partial_inplace */
    236 	 0xffff,		/* src_mask */
    237 	 0xffff,		/* dst_mask */
    238 	 FALSE),		/* pcrel_offset */
    239 
    240   HOWTO (R_SH_SWITCH16,		/* type */
    241 	 0,			/* rightshift */
    242 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
    243 	 16,			/* bitsize */
    244 	 FALSE,			/* pc_relative */
    245 	 0,			/* bitpos */
    246 	 complain_overflow_bitfield, /* complain_on_overflow */
    247 	 sh_reloc,		/* special_function */
    248 	 "r_switch16",		/* name */
    249 	 TRUE,			/* partial_inplace */
    250 	 0xffff,		/* src_mask */
    251 	 0xffff,		/* dst_mask */
    252 	 FALSE),		/* pcrel_offset */
    253 
    254   HOWTO (R_SH_SWITCH32,		/* type */
    255 	 0,			/* rightshift */
    256 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
    257 	 32,			/* bitsize */
    258 	 FALSE,			/* pc_relative */
    259 	 0,			/* bitpos */
    260 	 complain_overflow_bitfield, /* complain_on_overflow */
    261 	 sh_reloc,		/* special_function */
    262 	 "r_switch32",		/* name */
    263 	 TRUE,			/* partial_inplace */
    264 	 0xffffffff,		/* src_mask */
    265 	 0xffffffff,		/* dst_mask */
    266 	 FALSE),		/* pcrel_offset */
    267 
    268   HOWTO (R_SH_USES,		/* type */
    269 	 0,			/* rightshift */
    270 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
    271 	 16,			/* bitsize */
    272 	 FALSE,			/* pc_relative */
    273 	 0,			/* bitpos */
    274 	 complain_overflow_bitfield, /* complain_on_overflow */
    275 	 sh_reloc,		/* special_function */
    276 	 "r_uses",		/* name */
    277 	 TRUE,			/* partial_inplace */
    278 	 0xffff,		/* src_mask */
    279 	 0xffff,		/* dst_mask */
    280 	 FALSE),		/* pcrel_offset */
    281 
    282   HOWTO (R_SH_COUNT,		/* type */
    283 	 0,			/* rightshift */
    284 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
    285 	 32,			/* bitsize */
    286 	 FALSE,			/* pc_relative */
    287 	 0,			/* bitpos */
    288 	 complain_overflow_bitfield, /* complain_on_overflow */
    289 	 sh_reloc,		/* special_function */
    290 	 "r_count",		/* name */
    291 	 TRUE,			/* partial_inplace */
    292 	 0xffffffff,		/* src_mask */
    293 	 0xffffffff,		/* dst_mask */
    294 	 FALSE),		/* pcrel_offset */
    295 
    296   HOWTO (R_SH_ALIGN,		/* type */
    297 	 0,			/* rightshift */
    298 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
    299 	 32,			/* bitsize */
    300 	 FALSE,			/* pc_relative */
    301 	 0,			/* bitpos */
    302 	 complain_overflow_bitfield, /* complain_on_overflow */
    303 	 sh_reloc,		/* special_function */
    304 	 "r_align",		/* name */
    305 	 TRUE,			/* partial_inplace */
    306 	 0xffffffff,		/* src_mask */
    307 	 0xffffffff,		/* dst_mask */
    308 	 FALSE),		/* pcrel_offset */
    309 
    310   HOWTO (R_SH_CODE,		/* type */
    311 	 0,			/* rightshift */
    312 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
    313 	 32,			/* bitsize */
    314 	 FALSE,			/* pc_relative */
    315 	 0,			/* bitpos */
    316 	 complain_overflow_bitfield, /* complain_on_overflow */
    317 	 sh_reloc,		/* special_function */
    318 	 "r_code",		/* name */
    319 	 TRUE,			/* partial_inplace */
    320 	 0xffffffff,		/* src_mask */
    321 	 0xffffffff,		/* dst_mask */
    322 	 FALSE),		/* pcrel_offset */
    323 
    324   HOWTO (R_SH_DATA,		/* type */
    325 	 0,			/* rightshift */
    326 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
    327 	 32,			/* bitsize */
    328 	 FALSE,			/* pc_relative */
    329 	 0,			/* bitpos */
    330 	 complain_overflow_bitfield, /* complain_on_overflow */
    331 	 sh_reloc,		/* special_function */
    332 	 "r_data",		/* name */
    333 	 TRUE,			/* partial_inplace */
    334 	 0xffffffff,		/* src_mask */
    335 	 0xffffffff,		/* dst_mask */
    336 	 FALSE),		/* pcrel_offset */
    337 
    338   HOWTO (R_SH_LABEL,		/* type */
    339 	 0,			/* rightshift */
    340 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
    341 	 32,			/* bitsize */
    342 	 FALSE,			/* pc_relative */
    343 	 0,			/* bitpos */
    344 	 complain_overflow_bitfield, /* complain_on_overflow */
    345 	 sh_reloc,		/* special_function */
    346 	 "r_label",		/* name */
    347 	 TRUE,			/* partial_inplace */
    348 	 0xffffffff,		/* src_mask */
    349 	 0xffffffff,		/* dst_mask */
    350 	 FALSE),		/* pcrel_offset */
    351 
    352   HOWTO (R_SH_SWITCH8,		/* type */
    353 	 0,			/* rightshift */
    354 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
    355 	 8,			/* bitsize */
    356 	 FALSE,			/* pc_relative */
    357 	 0,			/* bitpos */
    358 	 complain_overflow_bitfield, /* complain_on_overflow */
    359 	 sh_reloc,		/* special_function */
    360 	 "r_switch8",		/* name */
    361 	 TRUE,			/* partial_inplace */
    362 	 0xff,			/* src_mask */
    363 	 0xff,			/* dst_mask */
    364 	 FALSE)			/* pcrel_offset */
    365 };
    366 
    367 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
    368 
    369 /* Check for a bad magic number.  */
    370 #define BADMAG(x) SHBADMAG(x)
    371 
    372 /* Customize coffcode.h (this is not currently used).  */
    373 #define SH 1
    374 
    375 /* FIXME: This should not be set here.  */
    376 #define __A_MAGIC_SET__
    377 
    378 #ifndef COFF_WITH_PE
    379 /* Swap the r_offset field in and out.  */
    380 #define SWAP_IN_RELOC_OFFSET  H_GET_32
    381 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
    382 
    383 /* Swap out extra information in the reloc structure.  */
    384 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)	\
    385   do						\
    386     {						\
    387       dst->r_stuff[0] = 'S';			\
    388       dst->r_stuff[1] = 'C';			\
    389     }						\
    390   while (0)
    391 #endif
    392 
    393 /* Get the value of a symbol, when performing a relocation.  */
    394 
    395 static long
    396 get_symbol_value (asymbol *symbol)
    397 {
    398   bfd_vma relocation;
    399 
    400   if (bfd_is_com_section (symbol->section))
    401     relocation = 0;
    402   else
    403     relocation = (symbol->value +
    404 		  symbol->section->output_section->vma +
    405 		  symbol->section->output_offset);
    406 
    407   return relocation;
    408 }
    409 
    410 #ifdef COFF_WITH_PE
    411 /* Convert an rtype to howto for the COFF backend linker.
    412    Copied from coff-i386.  */
    413 #define coff_rtype_to_howto coff_sh_rtype_to_howto
    414 
    415 
    416 static reloc_howto_type *
    417 coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
    418 			asection * sec,
    419 			struct internal_reloc * rel,
    420 			struct coff_link_hash_entry * h,
    421 			struct internal_syment * sym,
    422 			bfd_vma * addendp)
    423 {
    424   reloc_howto_type * howto;
    425 
    426   howto = sh_coff_howtos + rel->r_type;
    427 
    428   *addendp = 0;
    429 
    430   if (howto->pc_relative)
    431     *addendp += sec->vma;
    432 
    433   if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
    434     {
    435       /* This is a common symbol.  The section contents include the
    436 	 size (sym->n_value) as an addend.  The relocate_section
    437 	 function will be adding in the final value of the symbol.  We
    438 	 need to subtract out the current size in order to get the
    439 	 correct result.  */
    440       BFD_ASSERT (h != NULL);
    441     }
    442 
    443   if (howto->pc_relative)
    444     {
    445       *addendp -= 4;
    446 
    447       /* If the symbol is defined, then the generic code is going to
    448          add back the symbol value in order to cancel out an
    449          adjustment it made to the addend.  However, we set the addend
    450          to 0 at the start of this function.  We need to adjust here,
    451          to avoid the adjustment the generic code will make.  FIXME:
    452          This is getting a bit hackish.  */
    453       if (sym != NULL && sym->n_scnum != 0)
    454 	*addendp -= sym->n_value;
    455     }
    456 
    457   if (rel->r_type == R_SH_IMAGEBASE)
    458     *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
    459 
    460   return howto;
    461 }
    462 
    463 #endif /* COFF_WITH_PE */
    464 
    465 /* This structure is used to map BFD reloc codes to SH PE relocs.  */
    466 struct shcoff_reloc_map
    467 {
    468   bfd_reloc_code_real_type bfd_reloc_val;
    469   unsigned char shcoff_reloc_val;
    470 };
    471 
    472 #ifdef COFF_WITH_PE
    473 /* An array mapping BFD reloc codes to SH PE relocs.  */
    474 static const struct shcoff_reloc_map sh_reloc_map[] =
    475 {
    476   { BFD_RELOC_32, R_SH_IMM32CE },
    477   { BFD_RELOC_RVA, R_SH_IMAGEBASE },
    478   { BFD_RELOC_CTOR, R_SH_IMM32CE },
    479 };
    480 #else
    481 /* An array mapping BFD reloc codes to SH PE relocs.  */
    482 static const struct shcoff_reloc_map sh_reloc_map[] =
    483 {
    484   { BFD_RELOC_32, R_SH_IMM32 },
    485   { BFD_RELOC_CTOR, R_SH_IMM32 },
    486 };
    487 #endif
    488 
    489 /* Given a BFD reloc code, return the howto structure for the
    490    corresponding SH PE reloc.  */
    491 #define coff_bfd_reloc_type_lookup	sh_coff_reloc_type_lookup
    492 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
    493 
    494 static reloc_howto_type *
    495 sh_coff_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
    496 			   bfd_reloc_code_real_type code)
    497 {
    498   unsigned int i;
    499 
    500   for (i = ARRAY_SIZE (sh_reloc_map); i--;)
    501     if (sh_reloc_map[i].bfd_reloc_val == code)
    502       return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
    503 
    504   (*_bfd_error_handler) (_("SH Error: unknown reloc type %d"), code);
    505   return NULL;
    506 }
    507 
    508 static reloc_howto_type *
    509 sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
    510 			   const char *r_name)
    511 {
    512   unsigned int i;
    513 
    514   for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
    515     if (sh_coff_howtos[i].name != NULL
    516 	&& strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
    517       return &sh_coff_howtos[i];
    518 
    519   return NULL;
    520 }
    521 
    522 /* This macro is used in coffcode.h to get the howto corresponding to
    523    an internal reloc.  */
    524 
    525 #define RTYPE2HOWTO(relent, internal)		\
    526   ((relent)->howto =				\
    527    ((internal)->r_type < SH_COFF_HOWTO_COUNT	\
    528     ? &sh_coff_howtos[(internal)->r_type]	\
    529     : (reloc_howto_type *) NULL))
    530 
    531 /* This is the same as the macro in coffcode.h, except that it copies
    532    r_offset into reloc_entry->addend for some relocs.  */
    533 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)		\
    534   {								\
    535     coff_symbol_type *coffsym = (coff_symbol_type *) NULL;	\
    536     if (ptr && bfd_asymbol_bfd (ptr) != abfd)			\
    537       coffsym = (obj_symbols (abfd)				\
    538 		 + (cache_ptr->sym_ptr_ptr - symbols));		\
    539     else if (ptr)						\
    540       coffsym = coff_symbol_from (ptr);				\
    541     if (coffsym != (coff_symbol_type *) NULL			\
    542 	&& coffsym->native->u.syment.n_scnum == 0)		\
    543       cache_ptr->addend = 0;					\
    544     else if (ptr && bfd_asymbol_bfd (ptr) == abfd		\
    545 	     && ptr->section != (asection *) NULL)		\
    546       cache_ptr->addend = - (ptr->section->vma + ptr->value);	\
    547     else							\
    548       cache_ptr->addend = 0;					\
    549     if ((reloc).r_type == R_SH_SWITCH8				\
    550 	|| (reloc).r_type == R_SH_SWITCH16			\
    551 	|| (reloc).r_type == R_SH_SWITCH32			\
    552 	|| (reloc).r_type == R_SH_USES				\
    553 	|| (reloc).r_type == R_SH_COUNT				\
    554 	|| (reloc).r_type == R_SH_ALIGN)			\
    555       cache_ptr->addend = (reloc).r_offset;			\
    556   }
    557 
    558 /* This is the howto function for the SH relocations.  */
    559 
    560 static bfd_reloc_status_type
    561 sh_reloc (bfd *      abfd,
    562 	  arelent *  reloc_entry,
    563 	  asymbol *  symbol_in,
    564 	  void *     data,
    565 	  asection * input_section,
    566 	  bfd *      output_bfd,
    567 	  char **    error_message ATTRIBUTE_UNUSED)
    568 {
    569   unsigned long insn;
    570   bfd_vma sym_value;
    571   unsigned short r_type;
    572   bfd_vma addr = reloc_entry->address;
    573   bfd_byte *hit_data = addr + (bfd_byte *) data;
    574 
    575   r_type = reloc_entry->howto->type;
    576 
    577   if (output_bfd != NULL)
    578     {
    579       /* Partial linking--do nothing.  */
    580       reloc_entry->address += input_section->output_offset;
    581       return bfd_reloc_ok;
    582     }
    583 
    584   /* Almost all relocs have to do with relaxing.  If any work must be
    585      done for them, it has been done in sh_relax_section.  */
    586   if (r_type != R_SH_IMM32
    587 #ifdef COFF_WITH_PE
    588       && r_type != R_SH_IMM32CE
    589       && r_type != R_SH_IMAGEBASE
    590 #endif
    591       && (r_type != R_SH_PCDISP
    592 	  || (symbol_in->flags & BSF_LOCAL) != 0))
    593     return bfd_reloc_ok;
    594 
    595   if (symbol_in != NULL
    596       && bfd_is_und_section (symbol_in->section))
    597     return bfd_reloc_undefined;
    598 
    599   sym_value = get_symbol_value (symbol_in);
    600 
    601   switch (r_type)
    602     {
    603     case R_SH_IMM32:
    604 #ifdef COFF_WITH_PE
    605     case R_SH_IMM32CE:
    606 #endif
    607       insn = bfd_get_32 (abfd, hit_data);
    608       insn += sym_value + reloc_entry->addend;
    609       bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
    610       break;
    611 #ifdef COFF_WITH_PE
    612     case R_SH_IMAGEBASE:
    613       insn = bfd_get_32 (abfd, hit_data);
    614       insn += sym_value + reloc_entry->addend;
    615       insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
    616       bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
    617       break;
    618 #endif
    619     case R_SH_PCDISP:
    620       insn = bfd_get_16 (abfd, hit_data);
    621       sym_value += reloc_entry->addend;
    622       sym_value -= (input_section->output_section->vma
    623 		    + input_section->output_offset
    624 		    + addr
    625 		    + 4);
    626       sym_value += (insn & 0xfff) << 1;
    627       if (insn & 0x800)
    628 	sym_value -= 0x1000;
    629       insn = (insn & 0xf000) | (sym_value & 0xfff);
    630       bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
    631       if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
    632 	return bfd_reloc_overflow;
    633       break;
    634     default:
    635       abort ();
    636       break;
    637     }
    638 
    639   return bfd_reloc_ok;
    640 }
    641 
    642 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
    643 
    644 /* We can do relaxing.  */
    645 #define coff_bfd_relax_section sh_relax_section
    646 
    647 /* We use the special COFF backend linker.  */
    648 #define coff_relocate_section sh_relocate_section
    649 
    650 /* When relaxing, we need to use special code to get the relocated
    651    section contents.  */
    652 #define coff_bfd_get_relocated_section_contents \
    653   sh_coff_get_relocated_section_contents
    654 
    655 #include "coffcode.h"
    656 
    657 static bfd_boolean
    659 sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
    660 
    661 /* This function handles relaxing on the SH.
    662 
    663    Function calls on the SH look like this:
    664 
    665        movl  L1,r0
    666        ...
    667        jsr   @r0
    668        ...
    669      L1:
    670        .long function
    671 
    672    The compiler and assembler will cooperate to create R_SH_USES
    673    relocs on the jsr instructions.  The r_offset field of the
    674    R_SH_USES reloc is the PC relative offset to the instruction which
    675    loads the register (the r_offset field is computed as though it
    676    were a jump instruction, so the offset value is actually from four
    677    bytes past the instruction).  The linker can use this reloc to
    678    determine just which function is being called, and thus decide
    679    whether it is possible to replace the jsr with a bsr.
    680 
    681    If multiple function calls are all based on a single register load
    682    (i.e., the same function is called multiple times), the compiler
    683    guarantees that each function call will have an R_SH_USES reloc.
    684    Therefore, if the linker is able to convert each R_SH_USES reloc
    685    which refers to that address, it can safely eliminate the register
    686    load.
    687 
    688    When the assembler creates an R_SH_USES reloc, it examines it to
    689    determine which address is being loaded (L1 in the above example).
    690    It then counts the number of references to that address, and
    691    creates an R_SH_COUNT reloc at that address.  The r_offset field of
    692    the R_SH_COUNT reloc will be the number of references.  If the
    693    linker is able to eliminate a register load, it can use the
    694    R_SH_COUNT reloc to see whether it can also eliminate the function
    695    address.
    696 
    697    SH relaxing also handles another, unrelated, matter.  On the SH, if
    698    a load or store instruction is not aligned on a four byte boundary,
    699    the memory cycle interferes with the 32 bit instruction fetch,
    700    causing a one cycle bubble in the pipeline.  Therefore, we try to
    701    align load and store instructions on four byte boundaries if we
    702    can, by swapping them with one of the adjacent instructions.  */
    703 
    704 static bfd_boolean
    705 sh_relax_section (bfd *abfd,
    706 		  asection *sec,
    707 		  struct bfd_link_info *link_info,
    708 		  bfd_boolean *again)
    709 {
    710   struct internal_reloc *internal_relocs;
    711   bfd_boolean have_code;
    712   struct internal_reloc *irel, *irelend;
    713   bfd_byte *contents = NULL;
    714 
    715   *again = FALSE;
    716 
    717   if (bfd_link_relocatable (link_info)
    718       || (sec->flags & SEC_RELOC) == 0
    719       || sec->reloc_count == 0)
    720     return TRUE;
    721 
    722   if (coff_section_data (abfd, sec) == NULL)
    723     {
    724       bfd_size_type amt = sizeof (struct coff_section_tdata);
    725       sec->used_by_bfd = bfd_zalloc (abfd, amt);
    726       if (sec->used_by_bfd == NULL)
    727 	return FALSE;
    728     }
    729 
    730   internal_relocs = (_bfd_coff_read_internal_relocs
    731 		     (abfd, sec, link_info->keep_memory,
    732 		      (bfd_byte *) NULL, FALSE,
    733 		      (struct internal_reloc *) NULL));
    734   if (internal_relocs == NULL)
    735     goto error_return;
    736 
    737   have_code = FALSE;
    738 
    739   irelend = internal_relocs + sec->reloc_count;
    740   for (irel = internal_relocs; irel < irelend; irel++)
    741     {
    742       bfd_vma laddr, paddr, symval;
    743       unsigned short insn;
    744       struct internal_reloc *irelfn, *irelscan, *irelcount;
    745       struct internal_syment sym;
    746       bfd_signed_vma foff;
    747 
    748       if (irel->r_type == R_SH_CODE)
    749 	have_code = TRUE;
    750 
    751       if (irel->r_type != R_SH_USES)
    752 	continue;
    753 
    754       /* Get the section contents.  */
    755       if (contents == NULL)
    756 	{
    757 	  if (coff_section_data (abfd, sec)->contents != NULL)
    758 	    contents = coff_section_data (abfd, sec)->contents;
    759 	  else
    760 	    {
    761 	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
    762 		goto error_return;
    763 	    }
    764 	}
    765 
    766       /* The r_offset field of the R_SH_USES reloc will point us to
    767          the register load.  The 4 is because the r_offset field is
    768          computed as though it were a jump offset, which are based
    769          from 4 bytes after the jump instruction.  */
    770       laddr = irel->r_vaddr - sec->vma + 4;
    771       /* Careful to sign extend the 32-bit offset.  */
    772       laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
    773       if (laddr >= sec->size)
    774 	{
    775 	  (*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset",
    776 				 abfd, (unsigned long) irel->r_vaddr);
    777 	  continue;
    778 	}
    779       insn = bfd_get_16 (abfd, contents + laddr);
    780 
    781       /* If the instruction is not mov.l NN,rN, we don't know what to do.  */
    782       if ((insn & 0xf000) != 0xd000)
    783 	{
    784 	  ((*_bfd_error_handler)
    785 	   ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
    786 	    abfd, (unsigned long) irel->r_vaddr, insn));
    787 	  continue;
    788 	}
    789 
    790       /* Get the address from which the register is being loaded.  The
    791       	 displacement in the mov.l instruction is quadrupled.  It is a
    792       	 displacement from four bytes after the movl instruction, but,
    793       	 before adding in the PC address, two least significant bits
    794       	 of the PC are cleared.  We assume that the section is aligned
    795       	 on a four byte boundary.  */
    796       paddr = insn & 0xff;
    797       paddr *= 4;
    798       paddr += (laddr + 4) &~ (bfd_vma) 3;
    799       if (paddr >= sec->size)
    800 	{
    801 	  ((*_bfd_error_handler)
    802 	   ("%B: 0x%lx: warning: bad R_SH_USES load offset",
    803 	    abfd, (unsigned long) irel->r_vaddr));
    804 	  continue;
    805 	}
    806 
    807       /* Get the reloc for the address from which the register is
    808          being loaded.  This reloc will tell us which function is
    809          actually being called.  */
    810       paddr += sec->vma;
    811       for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
    812 	if (irelfn->r_vaddr == paddr
    813 #ifdef COFF_WITH_PE
    814 	    && (irelfn->r_type == R_SH_IMM32
    815 		|| irelfn->r_type == R_SH_IMM32CE
    816 		|| irelfn->r_type == R_SH_IMAGEBASE)
    817 
    818 #else
    819 	    && irelfn->r_type == R_SH_IMM32
    820 #endif
    821 	    )
    822 	  break;
    823       if (irelfn >= irelend)
    824 	{
    825 	  ((*_bfd_error_handler)
    826 	   ("%B: 0x%lx: warning: could not find expected reloc",
    827 	    abfd, (unsigned long) paddr));
    828 	  continue;
    829 	}
    830 
    831       /* Get the value of the symbol referred to by the reloc.  */
    832       if (! _bfd_coff_get_external_symbols (abfd))
    833 	goto error_return;
    834       bfd_coff_swap_sym_in (abfd,
    835 			    ((bfd_byte *) obj_coff_external_syms (abfd)
    836 			     + (irelfn->r_symndx
    837 				* bfd_coff_symesz (abfd))),
    838 			    &sym);
    839       if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
    840 	{
    841 	  ((*_bfd_error_handler)
    842 	   ("%B: 0x%lx: warning: symbol in unexpected section",
    843 	    abfd, (unsigned long) paddr));
    844 	  continue;
    845 	}
    846 
    847       if (sym.n_sclass != C_EXT)
    848 	{
    849 	  symval = (sym.n_value
    850 		    - sec->vma
    851 		    + sec->output_section->vma
    852 		    + sec->output_offset);
    853 	}
    854       else
    855 	{
    856 	  struct coff_link_hash_entry *h;
    857 
    858 	  h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
    859 	  BFD_ASSERT (h != NULL);
    860 	  if (h->root.type != bfd_link_hash_defined
    861 	      && h->root.type != bfd_link_hash_defweak)
    862 	    {
    863 	      /* This appears to be a reference to an undefined
    864                  symbol.  Just ignore it--it will be caught by the
    865                  regular reloc processing.  */
    866 	      continue;
    867 	    }
    868 
    869 	  symval = (h->root.u.def.value
    870 		    + h->root.u.def.section->output_section->vma
    871 		    + h->root.u.def.section->output_offset);
    872 	}
    873 
    874       symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
    875 
    876       /* See if this function call can be shortened.  */
    877       foff = (symval
    878 	      - (irel->r_vaddr
    879 		 - sec->vma
    880 		 + sec->output_section->vma
    881 		 + sec->output_offset
    882 		 + 4));
    883       if (foff < -0x1000 || foff >= 0x1000)
    884 	{
    885 	  /* After all that work, we can't shorten this function call.  */
    886 	  continue;
    887 	}
    888 
    889       /* Shorten the function call.  */
    890 
    891       /* For simplicity of coding, we are going to modify the section
    892 	 contents, the section relocs, and the BFD symbol table.  We
    893 	 must tell the rest of the code not to free up this
    894 	 information.  It would be possible to instead create a table
    895 	 of changes which have to be made, as is done in coff-mips.c;
    896 	 that would be more work, but would require less memory when
    897 	 the linker is run.  */
    898 
    899       coff_section_data (abfd, sec)->relocs = internal_relocs;
    900       coff_section_data (abfd, sec)->keep_relocs = TRUE;
    901 
    902       coff_section_data (abfd, sec)->contents = contents;
    903       coff_section_data (abfd, sec)->keep_contents = TRUE;
    904 
    905       obj_coff_keep_syms (abfd) = TRUE;
    906 
    907       /* Replace the jsr with a bsr.  */
    908 
    909       /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
    910          replace the jsr with a bsr.  */
    911       irel->r_type = R_SH_PCDISP;
    912       irel->r_symndx = irelfn->r_symndx;
    913       if (sym.n_sclass != C_EXT)
    914 	{
    915 	  /* If this needs to be changed because of future relaxing,
    916              it will be handled here like other internal PCDISP
    917              relocs.  */
    918 	  bfd_put_16 (abfd,
    919 		      (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
    920 		      contents + irel->r_vaddr - sec->vma);
    921 	}
    922       else
    923 	{
    924 	  /* We can't fully resolve this yet, because the external
    925              symbol value may be changed by future relaxing.  We let
    926              the final link phase handle it.  */
    927 	  bfd_put_16 (abfd, (bfd_vma) 0xb000,
    928 		      contents + irel->r_vaddr - sec->vma);
    929 	}
    930 
    931       /* See if there is another R_SH_USES reloc referring to the same
    932          register load.  */
    933       for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
    934 	if (irelscan->r_type == R_SH_USES
    935 	    && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
    936 	  break;
    937       if (irelscan < irelend)
    938 	{
    939 	  /* Some other function call depends upon this register load,
    940 	     and we have not yet converted that function call.
    941 	     Indeed, we may never be able to convert it.  There is
    942 	     nothing else we can do at this point.  */
    943 	  continue;
    944 	}
    945 
    946       /* Look for a R_SH_COUNT reloc on the location where the
    947          function address is stored.  Do this before deleting any
    948          bytes, to avoid confusion about the address.  */
    949       for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
    950 	if (irelcount->r_vaddr == paddr
    951 	    && irelcount->r_type == R_SH_COUNT)
    952 	  break;
    953 
    954       /* Delete the register load.  */
    955       if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
    956 	goto error_return;
    957 
    958       /* That will change things, so, just in case it permits some
    959          other function call to come within range, we should relax
    960          again.  Note that this is not required, and it may be slow.  */
    961       *again = TRUE;
    962 
    963       /* Now check whether we got a COUNT reloc.  */
    964       if (irelcount >= irelend)
    965 	{
    966 	  ((*_bfd_error_handler)
    967 	   ("%B: 0x%lx: warning: could not find expected COUNT reloc",
    968 	    abfd, (unsigned long) paddr));
    969 	  continue;
    970 	}
    971 
    972       /* The number of uses is stored in the r_offset field.  We've
    973          just deleted one.  */
    974       if (irelcount->r_offset == 0)
    975 	{
    976 	  ((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count",
    977 				  abfd, (unsigned long) paddr));
    978 	  continue;
    979 	}
    980 
    981       --irelcount->r_offset;
    982 
    983       /* If there are no more uses, we can delete the address.  Reload
    984          the address from irelfn, in case it was changed by the
    985          previous call to sh_relax_delete_bytes.  */
    986       if (irelcount->r_offset == 0)
    987 	{
    988 	  if (! sh_relax_delete_bytes (abfd, sec,
    989 				       irelfn->r_vaddr - sec->vma, 4))
    990 	    goto error_return;
    991 	}
    992 
    993       /* We've done all we can with that function call.  */
    994     }
    995 
    996   /* Look for load and store instructions that we can align on four
    997      byte boundaries.  */
    998   if (have_code)
    999     {
   1000       bfd_boolean swapped;
   1001 
   1002       /* Get the section contents.  */
   1003       if (contents == NULL)
   1004 	{
   1005 	  if (coff_section_data (abfd, sec)->contents != NULL)
   1006 	    contents = coff_section_data (abfd, sec)->contents;
   1007 	  else
   1008 	    {
   1009 	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
   1010 		goto error_return;
   1011 	    }
   1012 	}
   1013 
   1014       if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
   1015 	goto error_return;
   1016 
   1017       if (swapped)
   1018 	{
   1019 	  coff_section_data (abfd, sec)->relocs = internal_relocs;
   1020 	  coff_section_data (abfd, sec)->keep_relocs = TRUE;
   1021 
   1022 	  coff_section_data (abfd, sec)->contents = contents;
   1023 	  coff_section_data (abfd, sec)->keep_contents = TRUE;
   1024 
   1025 	  obj_coff_keep_syms (abfd) = TRUE;
   1026 	}
   1027     }
   1028 
   1029   if (internal_relocs != NULL
   1030       && internal_relocs != coff_section_data (abfd, sec)->relocs)
   1031     {
   1032       if (! link_info->keep_memory)
   1033 	free (internal_relocs);
   1034       else
   1035 	coff_section_data (abfd, sec)->relocs = internal_relocs;
   1036     }
   1037 
   1038   if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
   1039     {
   1040       if (! link_info->keep_memory)
   1041 	free (contents);
   1042       else
   1043 	/* Cache the section contents for coff_link_input_bfd.  */
   1044 	coff_section_data (abfd, sec)->contents = contents;
   1045     }
   1046 
   1047   return TRUE;
   1048 
   1049  error_return:
   1050   if (internal_relocs != NULL
   1051       && internal_relocs != coff_section_data (abfd, sec)->relocs)
   1052     free (internal_relocs);
   1053   if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
   1054     free (contents);
   1055   return FALSE;
   1056 }
   1057 
   1058 /* Delete some bytes from a section while relaxing.  */
   1059 
   1060 static bfd_boolean
   1061 sh_relax_delete_bytes (bfd *abfd,
   1062 		       asection *sec,
   1063 		       bfd_vma addr,
   1064 		       int count)
   1065 {
   1066   bfd_byte *contents;
   1067   struct internal_reloc *irel, *irelend;
   1068   struct internal_reloc *irelalign;
   1069   bfd_vma toaddr;
   1070   bfd_byte *esym, *esymend;
   1071   bfd_size_type symesz;
   1072   struct coff_link_hash_entry **sym_hash;
   1073   asection *o;
   1074 
   1075   contents = coff_section_data (abfd, sec)->contents;
   1076 
   1077   /* The deletion must stop at the next ALIGN reloc for an aligment
   1078      power larger than the number of bytes we are deleting.  */
   1079 
   1080   irelalign = NULL;
   1081   toaddr = sec->size;
   1082 
   1083   irel = coff_section_data (abfd, sec)->relocs;
   1084   irelend = irel + sec->reloc_count;
   1085   for (; irel < irelend; irel++)
   1086     {
   1087       if (irel->r_type == R_SH_ALIGN
   1088 	  && irel->r_vaddr - sec->vma > addr
   1089 	  && count < (1 << irel->r_offset))
   1090 	{
   1091 	  irelalign = irel;
   1092 	  toaddr = irel->r_vaddr - sec->vma;
   1093 	  break;
   1094 	}
   1095     }
   1096 
   1097   /* Actually delete the bytes.  */
   1098   memmove (contents + addr, contents + addr + count,
   1099 	   (size_t) (toaddr - addr - count));
   1100   if (irelalign == NULL)
   1101     sec->size -= count;
   1102   else
   1103     {
   1104       int i;
   1105 
   1106 #define NOP_OPCODE (0x0009)
   1107 
   1108       BFD_ASSERT ((count & 1) == 0);
   1109       for (i = 0; i < count; i += 2)
   1110 	bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
   1111     }
   1112 
   1113   /* Adjust all the relocs.  */
   1114   for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
   1115     {
   1116       bfd_vma nraddr, stop;
   1117       bfd_vma start = 0;
   1118       int insn = 0;
   1119       struct internal_syment sym;
   1120       int off, adjust, oinsn;
   1121       bfd_signed_vma voff = 0;
   1122       bfd_boolean overflow;
   1123 
   1124       /* Get the new reloc address.  */
   1125       nraddr = irel->r_vaddr - sec->vma;
   1126       if ((irel->r_vaddr - sec->vma > addr
   1127 	   && irel->r_vaddr - sec->vma < toaddr)
   1128 	  || (irel->r_type == R_SH_ALIGN
   1129 	      && irel->r_vaddr - sec->vma == toaddr))
   1130 	nraddr -= count;
   1131 
   1132       /* See if this reloc was for the bytes we have deleted, in which
   1133 	 case we no longer care about it.  Don't delete relocs which
   1134 	 represent addresses, though.  */
   1135       if (irel->r_vaddr - sec->vma >= addr
   1136 	  && irel->r_vaddr - sec->vma < addr + count
   1137 	  && irel->r_type != R_SH_ALIGN
   1138 	  && irel->r_type != R_SH_CODE
   1139 	  && irel->r_type != R_SH_DATA
   1140 	  && irel->r_type != R_SH_LABEL)
   1141 	irel->r_type = R_SH_UNUSED;
   1142 
   1143       /* If this is a PC relative reloc, see if the range it covers
   1144          includes the bytes we have deleted.  */
   1145       switch (irel->r_type)
   1146 	{
   1147 	default:
   1148 	  break;
   1149 
   1150 	case R_SH_PCDISP8BY2:
   1151 	case R_SH_PCDISP:
   1152 	case R_SH_PCRELIMM8BY2:
   1153 	case R_SH_PCRELIMM8BY4:
   1154 	  start = irel->r_vaddr - sec->vma;
   1155 	  insn = bfd_get_16 (abfd, contents + nraddr);
   1156 	  break;
   1157 	}
   1158 
   1159       switch (irel->r_type)
   1160 	{
   1161 	default:
   1162 	  start = stop = addr;
   1163 	  break;
   1164 
   1165 	case R_SH_IMM32:
   1166 #ifdef COFF_WITH_PE
   1167 	case R_SH_IMM32CE:
   1168 	case R_SH_IMAGEBASE:
   1169 #endif
   1170 	  /* If this reloc is against a symbol defined in this
   1171              section, and the symbol will not be adjusted below, we
   1172              must check the addend to see it will put the value in
   1173              range to be adjusted, and hence must be changed.  */
   1174 	  bfd_coff_swap_sym_in (abfd,
   1175 				((bfd_byte *) obj_coff_external_syms (abfd)
   1176 				 + (irel->r_symndx
   1177 				    * bfd_coff_symesz (abfd))),
   1178 				&sym);
   1179 	  if (sym.n_sclass != C_EXT
   1180 	      && sym.n_scnum == sec->target_index
   1181 	      && ((bfd_vma) sym.n_value <= addr
   1182 		  || (bfd_vma) sym.n_value >= toaddr))
   1183 	    {
   1184 	      bfd_vma val;
   1185 
   1186 	      val = bfd_get_32 (abfd, contents + nraddr);
   1187 	      val += sym.n_value;
   1188 	      if (val > addr && val < toaddr)
   1189 		bfd_put_32 (abfd, val - count, contents + nraddr);
   1190 	    }
   1191 	  start = stop = addr;
   1192 	  break;
   1193 
   1194 	case R_SH_PCDISP8BY2:
   1195 	  off = insn & 0xff;
   1196 	  if (off & 0x80)
   1197 	    off -= 0x100;
   1198 	  stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
   1199 	  break;
   1200 
   1201 	case R_SH_PCDISP:
   1202 	  bfd_coff_swap_sym_in (abfd,
   1203 				((bfd_byte *) obj_coff_external_syms (abfd)
   1204 				 + (irel->r_symndx
   1205 				    * bfd_coff_symesz (abfd))),
   1206 				&sym);
   1207 	  if (sym.n_sclass == C_EXT)
   1208 	    start = stop = addr;
   1209 	  else
   1210 	    {
   1211 	      off = insn & 0xfff;
   1212 	      if (off & 0x800)
   1213 		off -= 0x1000;
   1214 	      stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
   1215 	    }
   1216 	  break;
   1217 
   1218 	case R_SH_PCRELIMM8BY2:
   1219 	  off = insn & 0xff;
   1220 	  stop = start + 4 + off * 2;
   1221 	  break;
   1222 
   1223 	case R_SH_PCRELIMM8BY4:
   1224 	  off = insn & 0xff;
   1225 	  stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
   1226 	  break;
   1227 
   1228 	case R_SH_SWITCH8:
   1229 	case R_SH_SWITCH16:
   1230 	case R_SH_SWITCH32:
   1231 	  /* These relocs types represent
   1232 	       .word L2-L1
   1233 	     The r_offset field holds the difference between the reloc
   1234 	     address and L1.  That is the start of the reloc, and
   1235 	     adding in the contents gives us the top.  We must adjust
   1236 	     both the r_offset field and the section contents.  */
   1237 
   1238 	  start = irel->r_vaddr - sec->vma;
   1239 	  stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
   1240 
   1241 	  if (start > addr
   1242 	      && start < toaddr
   1243 	      && (stop <= addr || stop >= toaddr))
   1244 	    irel->r_offset += count;
   1245 	  else if (stop > addr
   1246 		   && stop < toaddr
   1247 		   && (start <= addr || start >= toaddr))
   1248 	    irel->r_offset -= count;
   1249 
   1250 	  start = stop;
   1251 
   1252 	  if (irel->r_type == R_SH_SWITCH16)
   1253 	    voff = bfd_get_signed_16 (abfd, contents + nraddr);
   1254 	  else if (irel->r_type == R_SH_SWITCH8)
   1255 	    voff = bfd_get_8 (abfd, contents + nraddr);
   1256 	  else
   1257 	    voff = bfd_get_signed_32 (abfd, contents + nraddr);
   1258 	  stop = (bfd_vma) ((bfd_signed_vma) start + voff);
   1259 
   1260 	  break;
   1261 
   1262 	case R_SH_USES:
   1263 	  start = irel->r_vaddr - sec->vma;
   1264 	  stop = (bfd_vma) ((bfd_signed_vma) start
   1265 			    + (long) irel->r_offset
   1266 			    + 4);
   1267 	  break;
   1268 	}
   1269 
   1270       if (start > addr
   1271 	  && start < toaddr
   1272 	  && (stop <= addr || stop >= toaddr))
   1273 	adjust = count;
   1274       else if (stop > addr
   1275 	       && stop < toaddr
   1276 	       && (start <= addr || start >= toaddr))
   1277 	adjust = - count;
   1278       else
   1279 	adjust = 0;
   1280 
   1281       if (adjust != 0)
   1282 	{
   1283 	  oinsn = insn;
   1284 	  overflow = FALSE;
   1285 	  switch (irel->r_type)
   1286 	    {
   1287 	    default:
   1288 	      abort ();
   1289 	      break;
   1290 
   1291 	    case R_SH_PCDISP8BY2:
   1292 	    case R_SH_PCRELIMM8BY2:
   1293 	      insn += adjust / 2;
   1294 	      if ((oinsn & 0xff00) != (insn & 0xff00))
   1295 		overflow = TRUE;
   1296 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
   1297 	      break;
   1298 
   1299 	    case R_SH_PCDISP:
   1300 	      insn += adjust / 2;
   1301 	      if ((oinsn & 0xf000) != (insn & 0xf000))
   1302 		overflow = TRUE;
   1303 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
   1304 	      break;
   1305 
   1306 	    case R_SH_PCRELIMM8BY4:
   1307 	      BFD_ASSERT (adjust == count || count >= 4);
   1308 	      if (count >= 4)
   1309 		insn += adjust / 4;
   1310 	      else
   1311 		{
   1312 		  if ((irel->r_vaddr & 3) == 0)
   1313 		    ++insn;
   1314 		}
   1315 	      if ((oinsn & 0xff00) != (insn & 0xff00))
   1316 		overflow = TRUE;
   1317 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
   1318 	      break;
   1319 
   1320 	    case R_SH_SWITCH8:
   1321 	      voff += adjust;
   1322 	      if (voff < 0 || voff >= 0xff)
   1323 		overflow = TRUE;
   1324 	      bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
   1325 	      break;
   1326 
   1327 	    case R_SH_SWITCH16:
   1328 	      voff += adjust;
   1329 	      if (voff < - 0x8000 || voff >= 0x8000)
   1330 		overflow = TRUE;
   1331 	      bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
   1332 	      break;
   1333 
   1334 	    case R_SH_SWITCH32:
   1335 	      voff += adjust;
   1336 	      bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
   1337 	      break;
   1338 
   1339 	    case R_SH_USES:
   1340 	      irel->r_offset += adjust;
   1341 	      break;
   1342 	    }
   1343 
   1344 	  if (overflow)
   1345 	    {
   1346 	      ((*_bfd_error_handler)
   1347 	       ("%B: 0x%lx: fatal: reloc overflow while relaxing",
   1348 		abfd, (unsigned long) irel->r_vaddr));
   1349 	      bfd_set_error (bfd_error_bad_value);
   1350 	      return FALSE;
   1351 	    }
   1352 	}
   1353 
   1354       irel->r_vaddr = nraddr + sec->vma;
   1355     }
   1356 
   1357   /* Look through all the other sections.  If there contain any IMM32
   1358      relocs against internal symbols which we are not going to adjust
   1359      below, we may need to adjust the addends.  */
   1360   for (o = abfd->sections; o != NULL; o = o->next)
   1361     {
   1362       struct internal_reloc *internal_relocs;
   1363       struct internal_reloc *irelscan, *irelscanend;
   1364       bfd_byte *ocontents;
   1365 
   1366       if (o == sec
   1367 	  || (o->flags & SEC_RELOC) == 0
   1368 	  || o->reloc_count == 0)
   1369 	continue;
   1370 
   1371       /* We always cache the relocs.  Perhaps, if info->keep_memory is
   1372          FALSE, we should free them, if we are permitted to, when we
   1373          leave sh_coff_relax_section.  */
   1374       internal_relocs = (_bfd_coff_read_internal_relocs
   1375 			 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
   1376 			  (struct internal_reloc *) NULL));
   1377       if (internal_relocs == NULL)
   1378 	return FALSE;
   1379 
   1380       ocontents = NULL;
   1381       irelscanend = internal_relocs + o->reloc_count;
   1382       for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
   1383 	{
   1384 	  struct internal_syment sym;
   1385 
   1386 #ifdef COFF_WITH_PE
   1387 	  if (irelscan->r_type != R_SH_IMM32
   1388 	      && irelscan->r_type != R_SH_IMAGEBASE
   1389 	      && irelscan->r_type != R_SH_IMM32CE)
   1390 #else
   1391 	  if (irelscan->r_type != R_SH_IMM32)
   1392 #endif
   1393 	    continue;
   1394 
   1395 	  bfd_coff_swap_sym_in (abfd,
   1396 				((bfd_byte *) obj_coff_external_syms (abfd)
   1397 				 + (irelscan->r_symndx
   1398 				    * bfd_coff_symesz (abfd))),
   1399 				&sym);
   1400 	  if (sym.n_sclass != C_EXT
   1401 	      && sym.n_scnum == sec->target_index
   1402 	      && ((bfd_vma) sym.n_value <= addr
   1403 		  || (bfd_vma) sym.n_value >= toaddr))
   1404 	    {
   1405 	      bfd_vma val;
   1406 
   1407 	      if (ocontents == NULL)
   1408 		{
   1409 		  if (coff_section_data (abfd, o)->contents != NULL)
   1410 		    ocontents = coff_section_data (abfd, o)->contents;
   1411 		  else
   1412 		    {
   1413 		      if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
   1414 			return FALSE;
   1415 		      /* We always cache the section contents.
   1416                          Perhaps, if info->keep_memory is FALSE, we
   1417                          should free them, if we are permitted to,
   1418                          when we leave sh_coff_relax_section.  */
   1419 		      coff_section_data (abfd, o)->contents = ocontents;
   1420 		    }
   1421 		}
   1422 
   1423 	      val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
   1424 	      val += sym.n_value;
   1425 	      if (val > addr && val < toaddr)
   1426 		bfd_put_32 (abfd, val - count,
   1427 			    ocontents + irelscan->r_vaddr - o->vma);
   1428 
   1429 	      coff_section_data (abfd, o)->keep_contents = TRUE;
   1430 	    }
   1431 	}
   1432     }
   1433 
   1434   /* Adjusting the internal symbols will not work if something has
   1435      already retrieved the generic symbols.  It would be possible to
   1436      make this work by adjusting the generic symbols at the same time.
   1437      However, this case should not arise in normal usage.  */
   1438   if (obj_symbols (abfd) != NULL
   1439       || obj_raw_syments (abfd) != NULL)
   1440     {
   1441       ((*_bfd_error_handler)
   1442        ("%B: fatal: generic symbols retrieved before relaxing", abfd));
   1443       bfd_set_error (bfd_error_invalid_operation);
   1444       return FALSE;
   1445     }
   1446 
   1447   /* Adjust all the symbols.  */
   1448   sym_hash = obj_coff_sym_hashes (abfd);
   1449   symesz = bfd_coff_symesz (abfd);
   1450   esym = (bfd_byte *) obj_coff_external_syms (abfd);
   1451   esymend = esym + obj_raw_syment_count (abfd) * symesz;
   1452   while (esym < esymend)
   1453     {
   1454       struct internal_syment isym;
   1455 
   1456       bfd_coff_swap_sym_in (abfd, esym, &isym);
   1457 
   1458       if (isym.n_scnum == sec->target_index
   1459 	  && (bfd_vma) isym.n_value > addr
   1460 	  && (bfd_vma) isym.n_value < toaddr)
   1461 	{
   1462 	  isym.n_value -= count;
   1463 
   1464 	  bfd_coff_swap_sym_out (abfd, &isym, esym);
   1465 
   1466 	  if (*sym_hash != NULL)
   1467 	    {
   1468 	      BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
   1469 			  || (*sym_hash)->root.type == bfd_link_hash_defweak);
   1470 	      BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
   1471 			  && (*sym_hash)->root.u.def.value < toaddr);
   1472 	      (*sym_hash)->root.u.def.value -= count;
   1473 	    }
   1474 	}
   1475 
   1476       esym += (isym.n_numaux + 1) * symesz;
   1477       sym_hash += isym.n_numaux + 1;
   1478     }
   1479 
   1480   /* See if we can move the ALIGN reloc forward.  We have adjusted
   1481      r_vaddr for it already.  */
   1482   if (irelalign != NULL)
   1483     {
   1484       bfd_vma alignto, alignaddr;
   1485 
   1486       alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
   1487       alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
   1488 			     1 << irelalign->r_offset);
   1489       if (alignto != alignaddr)
   1490 	{
   1491 	  /* Tail recursion.  */
   1492 	  return sh_relax_delete_bytes (abfd, sec, alignaddr,
   1493 					(int) (alignto - alignaddr));
   1494 	}
   1495     }
   1496 
   1497   return TRUE;
   1498 }
   1499 
   1500 /* This is yet another version of the SH opcode table, used to rapidly
   1502    get information about a particular instruction.  */
   1503 
   1504 /* The opcode map is represented by an array of these structures.  The
   1505    array is indexed by the high order four bits in the instruction.  */
   1506 
   1507 struct sh_major_opcode
   1508 {
   1509   /* A pointer to the instruction list.  This is an array which
   1510      contains all the instructions with this major opcode.  */
   1511   const struct sh_minor_opcode *minor_opcodes;
   1512   /* The number of elements in minor_opcodes.  */
   1513   unsigned short count;
   1514 };
   1515 
   1516 /* This structure holds information for a set of SH opcodes.  The
   1517    instruction code is anded with the mask value, and the resulting
   1518    value is used to search the order opcode list.  */
   1519 
   1520 struct sh_minor_opcode
   1521 {
   1522   /* The sorted opcode list.  */
   1523   const struct sh_opcode *opcodes;
   1524   /* The number of elements in opcodes.  */
   1525   unsigned short count;
   1526   /* The mask value to use when searching the opcode list.  */
   1527   unsigned short mask;
   1528 };
   1529 
   1530 /* This structure holds information for an SH instruction.  An array
   1531    of these structures is sorted in order by opcode.  */
   1532 
   1533 struct sh_opcode
   1534 {
   1535   /* The code for this instruction, after it has been anded with the
   1536      mask value in the sh_major_opcode structure.  */
   1537   unsigned short opcode;
   1538   /* Flags for this instruction.  */
   1539   unsigned long flags;
   1540 };
   1541 
   1542 /* Flag which appear in the sh_opcode structure.  */
   1543 
   1544 /* This instruction loads a value from memory.  */
   1545 #define LOAD (0x1)
   1546 
   1547 /* This instruction stores a value to memory.  */
   1548 #define STORE (0x2)
   1549 
   1550 /* This instruction is a branch.  */
   1551 #define BRANCH (0x4)
   1552 
   1553 /* This instruction has a delay slot.  */
   1554 #define DELAY (0x8)
   1555 
   1556 /* This instruction uses the value in the register in the field at
   1557    mask 0x0f00 of the instruction.  */
   1558 #define USES1 (0x10)
   1559 #define USES1_REG(x) ((x & 0x0f00) >> 8)
   1560 
   1561 /* This instruction uses the value in the register in the field at
   1562    mask 0x00f0 of the instruction.  */
   1563 #define USES2 (0x20)
   1564 #define USES2_REG(x) ((x & 0x00f0) >> 4)
   1565 
   1566 /* This instruction uses the value in register 0.  */
   1567 #define USESR0 (0x40)
   1568 
   1569 /* This instruction sets the value in the register in the field at
   1570    mask 0x0f00 of the instruction.  */
   1571 #define SETS1 (0x80)
   1572 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
   1573 
   1574 /* This instruction sets the value in the register in the field at
   1575    mask 0x00f0 of the instruction.  */
   1576 #define SETS2 (0x100)
   1577 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
   1578 
   1579 /* This instruction sets register 0.  */
   1580 #define SETSR0 (0x200)
   1581 
   1582 /* This instruction sets a special register.  */
   1583 #define SETSSP (0x400)
   1584 
   1585 /* This instruction uses a special register.  */
   1586 #define USESSP (0x800)
   1587 
   1588 /* This instruction uses the floating point register in the field at
   1589    mask 0x0f00 of the instruction.  */
   1590 #define USESF1 (0x1000)
   1591 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
   1592 
   1593 /* This instruction uses the floating point register in the field at
   1594    mask 0x00f0 of the instruction.  */
   1595 #define USESF2 (0x2000)
   1596 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
   1597 
   1598 /* This instruction uses floating point register 0.  */
   1599 #define USESF0 (0x4000)
   1600 
   1601 /* This instruction sets the floating point register in the field at
   1602    mask 0x0f00 of the instruction.  */
   1603 #define SETSF1 (0x8000)
   1604 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
   1605 
   1606 #define USESAS (0x10000)
   1607 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
   1608 #define USESR8 (0x20000)
   1609 #define SETSAS (0x40000)
   1610 #define SETSAS_REG(x) USESAS_REG (x)
   1611 
   1612 #define MAP(a) a, sizeof a / sizeof a[0]
   1613 
   1614 #ifndef COFF_IMAGE_WITH_PE
   1615 
   1616 /* The opcode maps.  */
   1617 
   1618 static const struct sh_opcode sh_opcode00[] =
   1619 {
   1620   { 0x0008, SETSSP },			/* clrt */
   1621   { 0x0009, 0 },			/* nop */
   1622   { 0x000b, BRANCH | DELAY | USESSP },	/* rts */
   1623   { 0x0018, SETSSP },			/* sett */
   1624   { 0x0019, SETSSP },			/* div0u */
   1625   { 0x001b, 0 },			/* sleep */
   1626   { 0x0028, SETSSP },			/* clrmac */
   1627   { 0x002b, BRANCH | DELAY | SETSSP },	/* rte */
   1628   { 0x0038, USESSP | SETSSP },		/* ldtlb */
   1629   { 0x0048, SETSSP },			/* clrs */
   1630   { 0x0058, SETSSP }			/* sets */
   1631 };
   1632 
   1633 static const struct sh_opcode sh_opcode01[] =
   1634 {
   1635   { 0x0003, BRANCH | DELAY | USES1 | SETSSP },	/* bsrf rn */
   1636   { 0x000a, SETS1 | USESSP },			/* sts mach,rn */
   1637   { 0x001a, SETS1 | USESSP },			/* sts macl,rn */
   1638   { 0x0023, BRANCH | DELAY | USES1 },		/* braf rn */
   1639   { 0x0029, SETS1 | USESSP },			/* movt rn */
   1640   { 0x002a, SETS1 | USESSP },			/* sts pr,rn */
   1641   { 0x005a, SETS1 | USESSP },			/* sts fpul,rn */
   1642   { 0x006a, SETS1 | USESSP },			/* sts fpscr,rn / sts dsr,rn */
   1643   { 0x0083, LOAD | USES1 },			/* pref @rn */
   1644   { 0x007a, SETS1 | USESSP },			/* sts a0,rn */
   1645   { 0x008a, SETS1 | USESSP },			/* sts x0,rn */
   1646   { 0x009a, SETS1 | USESSP },			/* sts x1,rn */
   1647   { 0x00aa, SETS1 | USESSP },			/* sts y0,rn */
   1648   { 0x00ba, SETS1 | USESSP }			/* sts y1,rn */
   1649 };
   1650 
   1651 static const struct sh_opcode sh_opcode02[] =
   1652 {
   1653   { 0x0002, SETS1 | USESSP },			/* stc <special_reg>,rn */
   1654   { 0x0004, STORE | USES1 | USES2 | USESR0 },	/* mov.b rm,@(r0,rn) */
   1655   { 0x0005, STORE | USES1 | USES2 | USESR0 },	/* mov.w rm,@(r0,rn) */
   1656   { 0x0006, STORE | USES1 | USES2 | USESR0 },	/* mov.l rm,@(r0,rn) */
   1657   { 0x0007, SETSSP | USES1 | USES2 },		/* mul.l rm,rn */
   1658   { 0x000c, LOAD | SETS1 | USES2 | USESR0 },	/* mov.b @(r0,rm),rn */
   1659   { 0x000d, LOAD | SETS1 | USES2 | USESR0 },	/* mov.w @(r0,rm),rn */
   1660   { 0x000e, LOAD | SETS1 | USES2 | USESR0 },	/* mov.l @(r0,rm),rn */
   1661   { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
   1662 };
   1663 
   1664 static const struct sh_minor_opcode sh_opcode0[] =
   1665 {
   1666   { MAP (sh_opcode00), 0xffff },
   1667   { MAP (sh_opcode01), 0xf0ff },
   1668   { MAP (sh_opcode02), 0xf00f }
   1669 };
   1670 
   1671 static const struct sh_opcode sh_opcode10[] =
   1672 {
   1673   { 0x1000, STORE | USES1 | USES2 }	/* mov.l rm,@(disp,rn) */
   1674 };
   1675 
   1676 static const struct sh_minor_opcode sh_opcode1[] =
   1677 {
   1678   { MAP (sh_opcode10), 0xf000 }
   1679 };
   1680 
   1681 static const struct sh_opcode sh_opcode20[] =
   1682 {
   1683   { 0x2000, STORE | USES1 | USES2 },		/* mov.b rm,@rn */
   1684   { 0x2001, STORE | USES1 | USES2 },		/* mov.w rm,@rn */
   1685   { 0x2002, STORE | USES1 | USES2 },		/* mov.l rm,@rn */
   1686   { 0x2004, STORE | SETS1 | USES1 | USES2 },	/* mov.b rm,@-rn */
   1687   { 0x2005, STORE | SETS1 | USES1 | USES2 },	/* mov.w rm,@-rn */
   1688   { 0x2006, STORE | SETS1 | USES1 | USES2 },	/* mov.l rm,@-rn */
   1689   { 0x2007, SETSSP | USES1 | USES2 | USESSP },	/* div0s */
   1690   { 0x2008, SETSSP | USES1 | USES2 },		/* tst rm,rn */
   1691   { 0x2009, SETS1 | USES1 | USES2 },		/* and rm,rn */
   1692   { 0x200a, SETS1 | USES1 | USES2 },		/* xor rm,rn */
   1693   { 0x200b, SETS1 | USES1 | USES2 },		/* or rm,rn */
   1694   { 0x200c, SETSSP | USES1 | USES2 },		/* cmp/str rm,rn */
   1695   { 0x200d, SETS1 | USES1 | USES2 },		/* xtrct rm,rn */
   1696   { 0x200e, SETSSP | USES1 | USES2 },		/* mulu.w rm,rn */
   1697   { 0x200f, SETSSP | USES1 | USES2 }		/* muls.w rm,rn */
   1698 };
   1699 
   1700 static const struct sh_minor_opcode sh_opcode2[] =
   1701 {
   1702   { MAP (sh_opcode20), 0xf00f }
   1703 };
   1704 
   1705 static const struct sh_opcode sh_opcode30[] =
   1706 {
   1707   { 0x3000, SETSSP | USES1 | USES2 },		/* cmp/eq rm,rn */
   1708   { 0x3002, SETSSP | USES1 | USES2 },		/* cmp/hs rm,rn */
   1709   { 0x3003, SETSSP | USES1 | USES2 },		/* cmp/ge rm,rn */
   1710   { 0x3004, SETSSP | USESSP | USES1 | USES2 },	/* div1 rm,rn */
   1711   { 0x3005, SETSSP | USES1 | USES2 },		/* dmulu.l rm,rn */
   1712   { 0x3006, SETSSP | USES1 | USES2 },		/* cmp/hi rm,rn */
   1713   { 0x3007, SETSSP | USES1 | USES2 },		/* cmp/gt rm,rn */
   1714   { 0x3008, SETS1 | USES1 | USES2 },		/* sub rm,rn */
   1715   { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
   1716   { 0x300b, SETS1 | SETSSP | USES1 | USES2 },	/* subv rm,rn */
   1717   { 0x300c, SETS1 | USES1 | USES2 },		/* add rm,rn */
   1718   { 0x300d, SETSSP | USES1 | USES2 },		/* dmuls.l rm,rn */
   1719   { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
   1720   { 0x300f, SETS1 | SETSSP | USES1 | USES2 }	/* addv rm,rn */
   1721 };
   1722 
   1723 static const struct sh_minor_opcode sh_opcode3[] =
   1724 {
   1725   { MAP (sh_opcode30), 0xf00f }
   1726 };
   1727 
   1728 static const struct sh_opcode sh_opcode40[] =
   1729 {
   1730   { 0x4000, SETS1 | SETSSP | USES1 },		/* shll rn */
   1731   { 0x4001, SETS1 | SETSSP | USES1 },		/* shlr rn */
   1732   { 0x4002, STORE | SETS1 | USES1 | USESSP },	/* sts.l mach,@-rn */
   1733   { 0x4004, SETS1 | SETSSP | USES1 },		/* rotl rn */
   1734   { 0x4005, SETS1 | SETSSP | USES1 },		/* rotr rn */
   1735   { 0x4006, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,mach */
   1736   { 0x4008, SETS1 | USES1 },			/* shll2 rn */
   1737   { 0x4009, SETS1 | USES1 },			/* shlr2 rn */
   1738   { 0x400a, SETSSP | USES1 },			/* lds rm,mach */
   1739   { 0x400b, BRANCH | DELAY | USES1 },		/* jsr @rn */
   1740   { 0x4010, SETS1 | SETSSP | USES1 },		/* dt rn */
   1741   { 0x4011, SETSSP | USES1 },			/* cmp/pz rn */
   1742   { 0x4012, STORE | SETS1 | USES1 | USESSP },	/* sts.l macl,@-rn */
   1743   { 0x4014, SETSSP | USES1 },			/* setrc rm */
   1744   { 0x4015, SETSSP | USES1 },			/* cmp/pl rn */
   1745   { 0x4016, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,macl */
   1746   { 0x4018, SETS1 | USES1 },			/* shll8 rn */
   1747   { 0x4019, SETS1 | USES1 },			/* shlr8 rn */
   1748   { 0x401a, SETSSP | USES1 },			/* lds rm,macl */
   1749   { 0x401b, LOAD | SETSSP | USES1 },		/* tas.b @rn */
   1750   { 0x4020, SETS1 | SETSSP | USES1 },		/* shal rn */
   1751   { 0x4021, SETS1 | SETSSP | USES1 },		/* shar rn */
   1752   { 0x4022, STORE | SETS1 | USES1 | USESSP },	/* sts.l pr,@-rn */
   1753   { 0x4024, SETS1 | SETSSP | USES1 | USESSP },	/* rotcl rn */
   1754   { 0x4025, SETS1 | SETSSP | USES1 | USESSP },	/* rotcr rn */
   1755   { 0x4026, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,pr */
   1756   { 0x4028, SETS1 | USES1 },			/* shll16 rn */
   1757   { 0x4029, SETS1 | USES1 },			/* shlr16 rn */
   1758   { 0x402a, SETSSP | USES1 },			/* lds rm,pr */
   1759   { 0x402b, BRANCH | DELAY | USES1 },		/* jmp @rn */
   1760   { 0x4052, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpul,@-rn */
   1761   { 0x4056, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpul */
   1762   { 0x405a, SETSSP | USES1 },			/* lds.l rm,fpul */
   1763   { 0x4062, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpscr / dsr,@-rn */
   1764   { 0x4066, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpscr / dsr */
   1765   { 0x406a, SETSSP | USES1 },			/* lds rm,fpscr / lds rm,dsr */
   1766   { 0x4072, STORE | SETS1 | USES1 | USESSP },	/* sts.l a0,@-rn */
   1767   { 0x4076, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,a0 */
   1768   { 0x407a, SETSSP | USES1 },			/* lds.l rm,a0 */
   1769   { 0x4082, STORE | SETS1 | USES1 | USESSP },	/* sts.l x0,@-rn */
   1770   { 0x4086, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x0 */
   1771   { 0x408a, SETSSP | USES1 },			/* lds.l rm,x0 */
   1772   { 0x4092, STORE | SETS1 | USES1 | USESSP },	/* sts.l x1,@-rn */
   1773   { 0x4096, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x1 */
   1774   { 0x409a, SETSSP | USES1 },			/* lds.l rm,x1 */
   1775   { 0x40a2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y0,@-rn */
   1776   { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y0 */
   1777   { 0x40aa, SETSSP | USES1 },			/* lds.l rm,y0 */
   1778   { 0x40b2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y1,@-rn */
   1779   { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y1 */
   1780   { 0x40ba, SETSSP | USES1 }			/* lds.l rm,y1 */
   1781 };
   1782 
   1783 static const struct sh_opcode sh_opcode41[] =
   1784 {
   1785   { 0x4003, STORE | SETS1 | USES1 | USESSP },	/* stc.l <special_reg>,@-rn */
   1786   { 0x4007, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,<special_reg> */
   1787   { 0x400c, SETS1 | USES1 | USES2 },		/* shad rm,rn */
   1788   { 0x400d, SETS1 | USES1 | USES2 },		/* shld rm,rn */
   1789   { 0x400e, SETSSP | USES1 },			/* ldc rm,<special_reg> */
   1790   { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
   1791 };
   1792 
   1793 static const struct sh_minor_opcode sh_opcode4[] =
   1794 {
   1795   { MAP (sh_opcode40), 0xf0ff },
   1796   { MAP (sh_opcode41), 0xf00f }
   1797 };
   1798 
   1799 static const struct sh_opcode sh_opcode50[] =
   1800 {
   1801   { 0x5000, LOAD | SETS1 | USES2 }	/* mov.l @(disp,rm),rn */
   1802 };
   1803 
   1804 static const struct sh_minor_opcode sh_opcode5[] =
   1805 {
   1806   { MAP (sh_opcode50), 0xf000 }
   1807 };
   1808 
   1809 static const struct sh_opcode sh_opcode60[] =
   1810 {
   1811   { 0x6000, LOAD | SETS1 | USES2 },		/* mov.b @rm,rn */
   1812   { 0x6001, LOAD | SETS1 | USES2 },		/* mov.w @rm,rn */
   1813   { 0x6002, LOAD | SETS1 | USES2 },		/* mov.l @rm,rn */
   1814   { 0x6003, SETS1 | USES2 },			/* mov rm,rn */
   1815   { 0x6004, LOAD | SETS1 | SETS2 | USES2 },	/* mov.b @rm+,rn */
   1816   { 0x6005, LOAD | SETS1 | SETS2 | USES2 },	/* mov.w @rm+,rn */
   1817   { 0x6006, LOAD | SETS1 | SETS2 | USES2 },	/* mov.l @rm+,rn */
   1818   { 0x6007, SETS1 | USES2 },			/* not rm,rn */
   1819   { 0x6008, SETS1 | USES2 },			/* swap.b rm,rn */
   1820   { 0x6009, SETS1 | USES2 },			/* swap.w rm,rn */
   1821   { 0x600a, SETS1 | SETSSP | USES2 | USESSP },	/* negc rm,rn */
   1822   { 0x600b, SETS1 | USES2 },			/* neg rm,rn */
   1823   { 0x600c, SETS1 | USES2 },			/* extu.b rm,rn */
   1824   { 0x600d, SETS1 | USES2 },			/* extu.w rm,rn */
   1825   { 0x600e, SETS1 | USES2 },			/* exts.b rm,rn */
   1826   { 0x600f, SETS1 | USES2 }			/* exts.w rm,rn */
   1827 };
   1828 
   1829 static const struct sh_minor_opcode sh_opcode6[] =
   1830 {
   1831   { MAP (sh_opcode60), 0xf00f }
   1832 };
   1833 
   1834 static const struct sh_opcode sh_opcode70[] =
   1835 {
   1836   { 0x7000, SETS1 | USES1 }		/* add #imm,rn */
   1837 };
   1838 
   1839 static const struct sh_minor_opcode sh_opcode7[] =
   1840 {
   1841   { MAP (sh_opcode70), 0xf000 }
   1842 };
   1843 
   1844 static const struct sh_opcode sh_opcode80[] =
   1845 {
   1846   { 0x8000, STORE | USES2 | USESR0 },	/* mov.b r0,@(disp,rn) */
   1847   { 0x8100, STORE | USES2 | USESR0 },	/* mov.w r0,@(disp,rn) */
   1848   { 0x8200, SETSSP },			/* setrc #imm */
   1849   { 0x8400, LOAD | SETSR0 | USES2 },	/* mov.b @(disp,rm),r0 */
   1850   { 0x8500, LOAD | SETSR0 | USES2 },	/* mov.w @(disp,rn),r0 */
   1851   { 0x8800, SETSSP | USESR0 },		/* cmp/eq #imm,r0 */
   1852   { 0x8900, BRANCH | USESSP },		/* bt label */
   1853   { 0x8b00, BRANCH | USESSP },		/* bf label */
   1854   { 0x8c00, SETSSP },			/* ldrs @(disp,pc) */
   1855   { 0x8d00, BRANCH | DELAY | USESSP },	/* bt/s label */
   1856   { 0x8e00, SETSSP },			/* ldre @(disp,pc) */
   1857   { 0x8f00, BRANCH | DELAY | USESSP }	/* bf/s label */
   1858 };
   1859 
   1860 static const struct sh_minor_opcode sh_opcode8[] =
   1861 {
   1862   { MAP (sh_opcode80), 0xff00 }
   1863 };
   1864 
   1865 static const struct sh_opcode sh_opcode90[] =
   1866 {
   1867   { 0x9000, LOAD | SETS1 }	/* mov.w @(disp,pc),rn */
   1868 };
   1869 
   1870 static const struct sh_minor_opcode sh_opcode9[] =
   1871 {
   1872   { MAP (sh_opcode90), 0xf000 }
   1873 };
   1874 
   1875 static const struct sh_opcode sh_opcodea0[] =
   1876 {
   1877   { 0xa000, BRANCH | DELAY }	/* bra label */
   1878 };
   1879 
   1880 static const struct sh_minor_opcode sh_opcodea[] =
   1881 {
   1882   { MAP (sh_opcodea0), 0xf000 }
   1883 };
   1884 
   1885 static const struct sh_opcode sh_opcodeb0[] =
   1886 {
   1887   { 0xb000, BRANCH | DELAY }	/* bsr label */
   1888 };
   1889 
   1890 static const struct sh_minor_opcode sh_opcodeb[] =
   1891 {
   1892   { MAP (sh_opcodeb0), 0xf000 }
   1893 };
   1894 
   1895 static const struct sh_opcode sh_opcodec0[] =
   1896 {
   1897   { 0xc000, STORE | USESR0 | USESSP },		/* mov.b r0,@(disp,gbr) */
   1898   { 0xc100, STORE | USESR0 | USESSP },		/* mov.w r0,@(disp,gbr) */
   1899   { 0xc200, STORE | USESR0 | USESSP },		/* mov.l r0,@(disp,gbr) */
   1900   { 0xc300, BRANCH | USESSP },			/* trapa #imm */
   1901   { 0xc400, LOAD | SETSR0 | USESSP },		/* mov.b @(disp,gbr),r0 */
   1902   { 0xc500, LOAD | SETSR0 | USESSP },		/* mov.w @(disp,gbr),r0 */
   1903   { 0xc600, LOAD | SETSR0 | USESSP },		/* mov.l @(disp,gbr),r0 */
   1904   { 0xc700, SETSR0 },				/* mova @(disp,pc),r0 */
   1905   { 0xc800, SETSSP | USESR0 },			/* tst #imm,r0 */
   1906   { 0xc900, SETSR0 | USESR0 },			/* and #imm,r0 */
   1907   { 0xca00, SETSR0 | USESR0 },			/* xor #imm,r0 */
   1908   { 0xcb00, SETSR0 | USESR0 },			/* or #imm,r0 */
   1909   { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },	/* tst.b #imm,@(r0,gbr) */
   1910   { 0xcd00, LOAD | STORE | USESR0 | USESSP },	/* and.b #imm,@(r0,gbr) */
   1911   { 0xce00, LOAD | STORE | USESR0 | USESSP },	/* xor.b #imm,@(r0,gbr) */
   1912   { 0xcf00, LOAD | STORE | USESR0 | USESSP }	/* or.b #imm,@(r0,gbr) */
   1913 };
   1914 
   1915 static const struct sh_minor_opcode sh_opcodec[] =
   1916 {
   1917   { MAP (sh_opcodec0), 0xff00 }
   1918 };
   1919 
   1920 static const struct sh_opcode sh_opcoded0[] =
   1921 {
   1922   { 0xd000, LOAD | SETS1 }		/* mov.l @(disp,pc),rn */
   1923 };
   1924 
   1925 static const struct sh_minor_opcode sh_opcoded[] =
   1926 {
   1927   { MAP (sh_opcoded0), 0xf000 }
   1928 };
   1929 
   1930 static const struct sh_opcode sh_opcodee0[] =
   1931 {
   1932   { 0xe000, SETS1 }		/* mov #imm,rn */
   1933 };
   1934 
   1935 static const struct sh_minor_opcode sh_opcodee[] =
   1936 {
   1937   { MAP (sh_opcodee0), 0xf000 }
   1938 };
   1939 
   1940 static const struct sh_opcode sh_opcodef0[] =
   1941 {
   1942   { 0xf000, SETSF1 | USESF1 | USESF2 },		/* fadd fm,fn */
   1943   { 0xf001, SETSF1 | USESF1 | USESF2 },		/* fsub fm,fn */
   1944   { 0xf002, SETSF1 | USESF1 | USESF2 },		/* fmul fm,fn */
   1945   { 0xf003, SETSF1 | USESF1 | USESF2 },		/* fdiv fm,fn */
   1946   { 0xf004, SETSSP | USESF1 | USESF2 },		/* fcmp/eq fm,fn */
   1947   { 0xf005, SETSSP | USESF1 | USESF2 },		/* fcmp/gt fm,fn */
   1948   { 0xf006, LOAD | SETSF1 | USES2 | USESR0 },	/* fmov.s @(r0,rm),fn */
   1949   { 0xf007, STORE | USES1 | USESF2 | USESR0 },	/* fmov.s fm,@(r0,rn) */
   1950   { 0xf008, LOAD | SETSF1 | USES2 },		/* fmov.s @rm,fn */
   1951   { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },	/* fmov.s @rm+,fn */
   1952   { 0xf00a, STORE | USES1 | USESF2 },		/* fmov.s fm,@rn */
   1953   { 0xf00b, STORE | SETS1 | USES1 | USESF2 },	/* fmov.s fm,@-rn */
   1954   { 0xf00c, SETSF1 | USESF2 },			/* fmov fm,fn */
   1955   { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 }	/* fmac f0,fm,fn */
   1956 };
   1957 
   1958 static const struct sh_opcode sh_opcodef1[] =
   1959 {
   1960   { 0xf00d, SETSF1 | USESSP },	/* fsts fpul,fn */
   1961   { 0xf01d, SETSSP | USESF1 },	/* flds fn,fpul */
   1962   { 0xf02d, SETSF1 | USESSP },	/* float fpul,fn */
   1963   { 0xf03d, SETSSP | USESF1 },	/* ftrc fn,fpul */
   1964   { 0xf04d, SETSF1 | USESF1 },	/* fneg fn */
   1965   { 0xf05d, SETSF1 | USESF1 },	/* fabs fn */
   1966   { 0xf06d, SETSF1 | USESF1 },	/* fsqrt fn */
   1967   { 0xf07d, SETSSP | USESF1 },	/* ftst/nan fn */
   1968   { 0xf08d, SETSF1 },		/* fldi0 fn */
   1969   { 0xf09d, SETSF1 }		/* fldi1 fn */
   1970 };
   1971 
   1972 static const struct sh_minor_opcode sh_opcodef[] =
   1973 {
   1974   { MAP (sh_opcodef0), 0xf00f },
   1975   { MAP (sh_opcodef1), 0xf0ff }
   1976 };
   1977 
   1978 static struct sh_major_opcode sh_opcodes[] =
   1979 {
   1980   { MAP (sh_opcode0) },
   1981   { MAP (sh_opcode1) },
   1982   { MAP (sh_opcode2) },
   1983   { MAP (sh_opcode3) },
   1984   { MAP (sh_opcode4) },
   1985   { MAP (sh_opcode5) },
   1986   { MAP (sh_opcode6) },
   1987   { MAP (sh_opcode7) },
   1988   { MAP (sh_opcode8) },
   1989   { MAP (sh_opcode9) },
   1990   { MAP (sh_opcodea) },
   1991   { MAP (sh_opcodeb) },
   1992   { MAP (sh_opcodec) },
   1993   { MAP (sh_opcoded) },
   1994   { MAP (sh_opcodee) },
   1995   { MAP (sh_opcodef) }
   1996 };
   1997 
   1998 /* The double data transfer / parallel processing insns are not
   1999    described here.  This will cause sh_align_load_span to leave them alone.  */
   2000 
   2001 static const struct sh_opcode sh_dsp_opcodef0[] =
   2002 {
   2003   { 0xf400, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @-as,ds */
   2004   { 0xf401, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@-as */
   2005   { 0xf404, USESAS | LOAD | SETSSP },		/* movs.x @as,ds */
   2006   { 0xf405, USESAS | STORE | USESSP },		/* movs.x ds,@as */
   2007   { 0xf408, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @as+,ds */
   2008   { 0xf409, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@as+ */
   2009   { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 },	/* movs.x @as+r8,ds */
   2010   { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 }	/* movs.x ds,@as+r8 */
   2011 };
   2012 
   2013 static const struct sh_minor_opcode sh_dsp_opcodef[] =
   2014 {
   2015   { MAP (sh_dsp_opcodef0), 0xfc0d }
   2016 };
   2017 
   2018 /* Given an instruction, return a pointer to the corresponding
   2019    sh_opcode structure.  Return NULL if the instruction is not
   2020    recognized.  */
   2021 
   2022 static const struct sh_opcode *
   2023 sh_insn_info (unsigned int insn)
   2024 {
   2025   const struct sh_major_opcode *maj;
   2026   const struct sh_minor_opcode *min, *minend;
   2027 
   2028   maj = &sh_opcodes[(insn & 0xf000) >> 12];
   2029   min = maj->minor_opcodes;
   2030   minend = min + maj->count;
   2031   for (; min < minend; min++)
   2032     {
   2033       unsigned int l;
   2034       const struct sh_opcode *op, *opend;
   2035 
   2036       l = insn & min->mask;
   2037       op = min->opcodes;
   2038       opend = op + min->count;
   2039 
   2040       /* Since the opcodes tables are sorted, we could use a binary
   2041          search here if the count were above some cutoff value.  */
   2042       for (; op < opend; op++)
   2043 	if (op->opcode == l)
   2044 	  return op;
   2045     }
   2046 
   2047   return NULL;
   2048 }
   2049 
   2050 /* See whether an instruction uses a general purpose register.  */
   2051 
   2052 static bfd_boolean
   2053 sh_insn_uses_reg (unsigned int insn,
   2054 		  const struct sh_opcode *op,
   2055 		  unsigned int reg)
   2056 {
   2057   unsigned int f;
   2058 
   2059   f = op->flags;
   2060 
   2061   if ((f & USES1) != 0
   2062       && USES1_REG (insn) == reg)
   2063     return TRUE;
   2064   if ((f & USES2) != 0
   2065       && USES2_REG (insn) == reg)
   2066     return TRUE;
   2067   if ((f & USESR0) != 0
   2068       && reg == 0)
   2069     return TRUE;
   2070   if ((f & USESAS) && reg == USESAS_REG (insn))
   2071     return TRUE;
   2072   if ((f & USESR8) && reg == 8)
   2073     return TRUE;
   2074 
   2075   return FALSE;
   2076 }
   2077 
   2078 /* See whether an instruction sets a general purpose register.  */
   2079 
   2080 static bfd_boolean
   2081 sh_insn_sets_reg (unsigned int insn,
   2082 		  const struct sh_opcode *op,
   2083 		  unsigned int reg)
   2084 {
   2085   unsigned int f;
   2086 
   2087   f = op->flags;
   2088 
   2089   if ((f & SETS1) != 0
   2090       && SETS1_REG (insn) == reg)
   2091     return TRUE;
   2092   if ((f & SETS2) != 0
   2093       && SETS2_REG (insn) == reg)
   2094     return TRUE;
   2095   if ((f & SETSR0) != 0
   2096       && reg == 0)
   2097     return TRUE;
   2098   if ((f & SETSAS) && reg == SETSAS_REG (insn))
   2099     return TRUE;
   2100 
   2101   return FALSE;
   2102 }
   2103 
   2104 /* See whether an instruction uses or sets a general purpose register */
   2105 
   2106 static bfd_boolean
   2107 sh_insn_uses_or_sets_reg (unsigned int insn,
   2108 			  const struct sh_opcode *op,
   2109 			  unsigned int reg)
   2110 {
   2111   if (sh_insn_uses_reg (insn, op, reg))
   2112     return TRUE;
   2113 
   2114   return sh_insn_sets_reg (insn, op, reg);
   2115 }
   2116 
   2117 /* See whether an instruction uses a floating point register.  */
   2118 
   2119 static bfd_boolean
   2120 sh_insn_uses_freg (unsigned int insn,
   2121 		   const struct sh_opcode *op,
   2122 		   unsigned int freg)
   2123 {
   2124   unsigned int f;
   2125 
   2126   f = op->flags;
   2127 
   2128   /* We can't tell if this is a double-precision insn, so just play safe
   2129      and assume that it might be.  So not only have we test FREG against
   2130      itself, but also even FREG against FREG+1 - if the using insn uses
   2131      just the low part of a double precision value - but also an odd
   2132      FREG against FREG-1 -  if the setting insn sets just the low part
   2133      of a double precision value.
   2134      So what this all boils down to is that we have to ignore the lowest
   2135      bit of the register number.  */
   2136 
   2137   if ((f & USESF1) != 0
   2138       && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
   2139     return TRUE;
   2140   if ((f & USESF2) != 0
   2141       && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
   2142     return TRUE;
   2143   if ((f & USESF0) != 0
   2144       && freg == 0)
   2145     return TRUE;
   2146 
   2147   return FALSE;
   2148 }
   2149 
   2150 /* See whether an instruction sets a floating point register.  */
   2151 
   2152 static bfd_boolean
   2153 sh_insn_sets_freg (unsigned int insn,
   2154 		   const struct sh_opcode *op,
   2155 		   unsigned int freg)
   2156 {
   2157   unsigned int f;
   2158 
   2159   f = op->flags;
   2160 
   2161   /* We can't tell if this is a double-precision insn, so just play safe
   2162      and assume that it might be.  So not only have we test FREG against
   2163      itself, but also even FREG against FREG+1 - if the using insn uses
   2164      just the low part of a double precision value - but also an odd
   2165      FREG against FREG-1 -  if the setting insn sets just the low part
   2166      of a double precision value.
   2167      So what this all boils down to is that we have to ignore the lowest
   2168      bit of the register number.  */
   2169 
   2170   if ((f & SETSF1) != 0
   2171       && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
   2172     return TRUE;
   2173 
   2174   return FALSE;
   2175 }
   2176 
   2177 /* See whether an instruction uses or sets a floating point register */
   2178 
   2179 static bfd_boolean
   2180 sh_insn_uses_or_sets_freg (unsigned int insn,
   2181 			   const struct sh_opcode *op,
   2182 			   unsigned int reg)
   2183 {
   2184   if (sh_insn_uses_freg (insn, op, reg))
   2185     return TRUE;
   2186 
   2187   return sh_insn_sets_freg (insn, op, reg);
   2188 }
   2189 
   2190 /* See whether instructions I1 and I2 conflict, assuming I1 comes
   2191    before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
   2192    This should return TRUE if there is a conflict, or FALSE if the
   2193    instructions can be swapped safely.  */
   2194 
   2195 static bfd_boolean
   2196 sh_insns_conflict (unsigned int i1,
   2197 		   const struct sh_opcode *op1,
   2198 		   unsigned int i2,
   2199 		   const struct sh_opcode *op2)
   2200 {
   2201   unsigned int f1, f2;
   2202 
   2203   f1 = op1->flags;
   2204   f2 = op2->flags;
   2205 
   2206   /* Load of fpscr conflicts with floating point operations.
   2207      FIXME: shouldn't test raw opcodes here.  */
   2208   if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
   2209       || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
   2210     return TRUE;
   2211 
   2212   if ((f1 & (BRANCH | DELAY)) != 0
   2213       || (f2 & (BRANCH | DELAY)) != 0)
   2214     return TRUE;
   2215 
   2216   if (((f1 | f2) & SETSSP)
   2217       && (f1 & (SETSSP | USESSP))
   2218       && (f2 & (SETSSP | USESSP)))
   2219     return TRUE;
   2220 
   2221   if ((f1 & SETS1) != 0
   2222       && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
   2223     return TRUE;
   2224   if ((f1 & SETS2) != 0
   2225       && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
   2226     return TRUE;
   2227   if ((f1 & SETSR0) != 0
   2228       && sh_insn_uses_or_sets_reg (i2, op2, 0))
   2229     return TRUE;
   2230   if ((f1 & SETSAS)
   2231       && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
   2232     return TRUE;
   2233   if ((f1 & SETSF1) != 0
   2234       && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
   2235     return TRUE;
   2236 
   2237   if ((f2 & SETS1) != 0
   2238       && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
   2239     return TRUE;
   2240   if ((f2 & SETS2) != 0
   2241       && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
   2242     return TRUE;
   2243   if ((f2 & SETSR0) != 0
   2244       && sh_insn_uses_or_sets_reg (i1, op1, 0))
   2245     return TRUE;
   2246   if ((f2 & SETSAS)
   2247       && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
   2248     return TRUE;
   2249   if ((f2 & SETSF1) != 0
   2250       && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
   2251     return TRUE;
   2252 
   2253   /* The instructions do not conflict.  */
   2254   return FALSE;
   2255 }
   2256 
   2257 /* I1 is a load instruction, and I2 is some other instruction.  Return
   2258    TRUE if I1 loads a register which I2 uses.  */
   2259 
   2260 static bfd_boolean
   2261 sh_load_use (unsigned int i1,
   2262 	     const struct sh_opcode *op1,
   2263 	     unsigned int i2,
   2264 	     const struct sh_opcode *op2)
   2265 {
   2266   unsigned int f1;
   2267 
   2268   f1 = op1->flags;
   2269 
   2270   if ((f1 & LOAD) == 0)
   2271     return FALSE;
   2272 
   2273   /* If both SETS1 and SETSSP are set, that means a load to a special
   2274      register using postincrement addressing mode, which we don't care
   2275      about here.  */
   2276   if ((f1 & SETS1) != 0
   2277       && (f1 & SETSSP) == 0
   2278       && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
   2279     return TRUE;
   2280 
   2281   if ((f1 & SETSR0) != 0
   2282       && sh_insn_uses_reg (i2, op2, 0))
   2283     return TRUE;
   2284 
   2285   if ((f1 & SETSF1) != 0
   2286       && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
   2287     return TRUE;
   2288 
   2289   return FALSE;
   2290 }
   2291 
   2292 /* Try to align loads and stores within a span of memory.  This is
   2293    called by both the ELF and the COFF sh targets.  ABFD and SEC are
   2294    the BFD and section we are examining.  CONTENTS is the contents of
   2295    the section.  SWAP is the routine to call to swap two instructions.
   2296    RELOCS is a pointer to the internal relocation information, to be
   2297    passed to SWAP.  PLABEL is a pointer to the current label in a
   2298    sorted list of labels; LABEL_END is the end of the list.  START and
   2299    STOP are the range of memory to examine.  If a swap is made,
   2300    *PSWAPPED is set to TRUE.  */
   2301 
   2302 #ifdef COFF_WITH_PE
   2303 static
   2304 #endif
   2305 bfd_boolean
   2306 _bfd_sh_align_load_span (bfd *abfd,
   2307 			 asection *sec,
   2308 			 bfd_byte *contents,
   2309 			 bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
   2310 			 void * relocs,
   2311 			 bfd_vma **plabel,
   2312 			 bfd_vma *label_end,
   2313 			 bfd_vma start,
   2314 			 bfd_vma stop,
   2315 			 bfd_boolean *pswapped)
   2316 {
   2317   int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
   2318 	     || abfd->arch_info->mach == bfd_mach_sh3_dsp);
   2319   bfd_vma i;
   2320 
   2321   /* The SH4 has a Harvard architecture, hence aligning loads is not
   2322      desirable.  In fact, it is counter-productive, since it interferes
   2323      with the schedules generated by the compiler.  */
   2324   if (abfd->arch_info->mach == bfd_mach_sh4)
   2325     return TRUE;
   2326 
   2327   /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
   2328      instructions.  */
   2329   if (dsp)
   2330     {
   2331       sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
   2332       sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
   2333     }
   2334 
   2335   /* Instructions should be aligned on 2 byte boundaries.  */
   2336   if ((start & 1) == 1)
   2337     ++start;
   2338 
   2339   /* Now look through the unaligned addresses.  */
   2340   i = start;
   2341   if ((i & 2) == 0)
   2342     i += 2;
   2343   for (; i < stop; i += 4)
   2344     {
   2345       unsigned int insn;
   2346       const struct sh_opcode *op;
   2347       unsigned int prev_insn = 0;
   2348       const struct sh_opcode *prev_op = NULL;
   2349 
   2350       insn = bfd_get_16 (abfd, contents + i);
   2351       op = sh_insn_info (insn);
   2352       if (op == NULL
   2353 	  || (op->flags & (LOAD | STORE)) == 0)
   2354 	continue;
   2355 
   2356       /* This is a load or store which is not on a four byte boundary.  */
   2357 
   2358       while (*plabel < label_end && **plabel < i)
   2359 	++*plabel;
   2360 
   2361       if (i > start)
   2362 	{
   2363 	  prev_insn = bfd_get_16 (abfd, contents + i - 2);
   2364 	  /* If INSN is the field b of a parallel processing insn, it is not
   2365 	     a load / store after all.  Note that the test here might mistake
   2366 	     the field_b of a pcopy insn for the starting code of a parallel
   2367 	     processing insn; this might miss a swapping opportunity, but at
   2368 	     least we're on the safe side.  */
   2369 	  if (dsp && (prev_insn & 0xfc00) == 0xf800)
   2370 	    continue;
   2371 
   2372 	  /* Check if prev_insn is actually the field b of a parallel
   2373 	     processing insn.  Again, this can give a spurious match
   2374 	     after a pcopy.  */
   2375 	  if (dsp && i - 2 > start)
   2376 	    {
   2377 	      unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
   2378 
   2379 	      if ((pprev_insn & 0xfc00) == 0xf800)
   2380 		prev_op = NULL;
   2381 	      else
   2382 		prev_op = sh_insn_info (prev_insn);
   2383 	    }
   2384 	  else
   2385 	    prev_op = sh_insn_info (prev_insn);
   2386 
   2387 	  /* If the load/store instruction is in a delay slot, we
   2388 	     can't swap.  */
   2389 	  if (prev_op == NULL
   2390 	      || (prev_op->flags & DELAY) != 0)
   2391 	    continue;
   2392 	}
   2393       if (i > start
   2394 	  && (*plabel >= label_end || **plabel != i)
   2395 	  && prev_op != NULL
   2396 	  && (prev_op->flags & (LOAD | STORE)) == 0
   2397 	  && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
   2398 	{
   2399 	  bfd_boolean ok;
   2400 
   2401 	  /* The load/store instruction does not have a label, and
   2402 	     there is a previous instruction; PREV_INSN is not
   2403 	     itself a load/store instruction, and PREV_INSN and
   2404 	     INSN do not conflict.  */
   2405 
   2406 	  ok = TRUE;
   2407 
   2408 	  if (i >= start + 4)
   2409 	    {
   2410 	      unsigned int prev2_insn;
   2411 	      const struct sh_opcode *prev2_op;
   2412 
   2413 	      prev2_insn = bfd_get_16 (abfd, contents + i - 4);
   2414 	      prev2_op = sh_insn_info (prev2_insn);
   2415 
   2416 	      /* If the instruction before PREV_INSN has a delay
   2417 		 slot--that is, PREV_INSN is in a delay slot--we
   2418 		 can not swap.  */
   2419 	      if (prev2_op == NULL
   2420 		  || (prev2_op->flags & DELAY) != 0)
   2421 		ok = FALSE;
   2422 
   2423 	      /* If the instruction before PREV_INSN is a load,
   2424 		 and it sets a register which INSN uses, then
   2425 		 putting INSN immediately after PREV_INSN will
   2426 		 cause a pipeline bubble, so there is no point to
   2427 		 making the swap.  */
   2428 	      if (ok
   2429 		  && (prev2_op->flags & LOAD) != 0
   2430 		  && sh_load_use (prev2_insn, prev2_op, insn, op))
   2431 		ok = FALSE;
   2432 	    }
   2433 
   2434 	  if (ok)
   2435 	    {
   2436 	      if (! (*swap) (abfd, sec, relocs, contents, i - 2))
   2437 		return FALSE;
   2438 	      *pswapped = TRUE;
   2439 	      continue;
   2440 	    }
   2441 	}
   2442 
   2443       while (*plabel < label_end && **plabel < i + 2)
   2444 	++*plabel;
   2445 
   2446       if (i + 2 < stop
   2447 	  && (*plabel >= label_end || **plabel != i + 2))
   2448 	{
   2449 	  unsigned int next_insn;
   2450 	  const struct sh_opcode *next_op;
   2451 
   2452 	  /* There is an instruction after the load/store
   2453 	     instruction, and it does not have a label.  */
   2454 	  next_insn = bfd_get_16 (abfd, contents + i + 2);
   2455 	  next_op = sh_insn_info (next_insn);
   2456 	  if (next_op != NULL
   2457 	      && (next_op->flags & (LOAD | STORE)) == 0
   2458 	      && ! sh_insns_conflict (insn, op, next_insn, next_op))
   2459 	    {
   2460 	      bfd_boolean ok;
   2461 
   2462 	      /* NEXT_INSN is not itself a load/store instruction,
   2463 		 and it does not conflict with INSN.  */
   2464 
   2465 	      ok = TRUE;
   2466 
   2467 	      /* If PREV_INSN is a load, and it sets a register
   2468 		 which NEXT_INSN uses, then putting NEXT_INSN
   2469 		 immediately after PREV_INSN will cause a pipeline
   2470 		 bubble, so there is no reason to make this swap.  */
   2471 	      if (prev_op != NULL
   2472 		  && (prev_op->flags & LOAD) != 0
   2473 		  && sh_load_use (prev_insn, prev_op, next_insn, next_op))
   2474 		ok = FALSE;
   2475 
   2476 	      /* If INSN is a load, and it sets a register which
   2477 		 the insn after NEXT_INSN uses, then doing the
   2478 		 swap will cause a pipeline bubble, so there is no
   2479 		 reason to make the swap.  However, if the insn
   2480 		 after NEXT_INSN is itself a load or store
   2481 		 instruction, then it is misaligned, so
   2482 		 optimistically hope that it will be swapped
   2483 		 itself, and just live with the pipeline bubble if
   2484 		 it isn't.  */
   2485 	      if (ok
   2486 		  && i + 4 < stop
   2487 		  && (op->flags & LOAD) != 0)
   2488 		{
   2489 		  unsigned int next2_insn;
   2490 		  const struct sh_opcode *next2_op;
   2491 
   2492 		  next2_insn = bfd_get_16 (abfd, contents + i + 4);
   2493 		  next2_op = sh_insn_info (next2_insn);
   2494 		  if (next2_op == NULL
   2495 		      || ((next2_op->flags & (LOAD | STORE)) == 0
   2496 			  && sh_load_use (insn, op, next2_insn, next2_op)))
   2497 		    ok = FALSE;
   2498 		}
   2499 
   2500 	      if (ok)
   2501 		{
   2502 		  if (! (*swap) (abfd, sec, relocs, contents, i))
   2503 		    return FALSE;
   2504 		  *pswapped = TRUE;
   2505 		  continue;
   2506 		}
   2507 	    }
   2508 	}
   2509     }
   2510 
   2511   return TRUE;
   2512 }
   2513 #endif /* not COFF_IMAGE_WITH_PE */
   2514 
   2515 /* Swap two SH instructions.  */
   2516 
   2517 static bfd_boolean
   2518 sh_swap_insns (bfd *      abfd,
   2519 	       asection * sec,
   2520 	       void *     relocs,
   2521 	       bfd_byte * contents,
   2522 	       bfd_vma    addr)
   2523 {
   2524   struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
   2525   unsigned short i1, i2;
   2526   struct internal_reloc *irel, *irelend;
   2527 
   2528   /* Swap the instructions themselves.  */
   2529   i1 = bfd_get_16 (abfd, contents + addr);
   2530   i2 = bfd_get_16 (abfd, contents + addr + 2);
   2531   bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
   2532   bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
   2533 
   2534   /* Adjust all reloc addresses.  */
   2535   irelend = internal_relocs + sec->reloc_count;
   2536   for (irel = internal_relocs; irel < irelend; irel++)
   2537     {
   2538       int type, add;
   2539 
   2540       /* There are a few special types of relocs that we don't want to
   2541          adjust.  These relocs do not apply to the instruction itself,
   2542          but are only associated with the address.  */
   2543       type = irel->r_type;
   2544       if (type == R_SH_ALIGN
   2545 	  || type == R_SH_CODE
   2546 	  || type == R_SH_DATA
   2547 	  || type == R_SH_LABEL)
   2548 	continue;
   2549 
   2550       /* If an R_SH_USES reloc points to one of the addresses being
   2551          swapped, we must adjust it.  It would be incorrect to do this
   2552          for a jump, though, since we want to execute both
   2553          instructions after the jump.  (We have avoided swapping
   2554          around a label, so the jump will not wind up executing an
   2555          instruction it shouldn't).  */
   2556       if (type == R_SH_USES)
   2557 	{
   2558 	  bfd_vma off;
   2559 
   2560 	  off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
   2561 	  if (off == addr)
   2562 	    irel->r_offset += 2;
   2563 	  else if (off == addr + 2)
   2564 	    irel->r_offset -= 2;
   2565 	}
   2566 
   2567       if (irel->r_vaddr - sec->vma == addr)
   2568 	{
   2569 	  irel->r_vaddr += 2;
   2570 	  add = -2;
   2571 	}
   2572       else if (irel->r_vaddr - sec->vma == addr + 2)
   2573 	{
   2574 	  irel->r_vaddr -= 2;
   2575 	  add = 2;
   2576 	}
   2577       else
   2578 	add = 0;
   2579 
   2580       if (add != 0)
   2581 	{
   2582 	  bfd_byte *loc;
   2583 	  unsigned short insn, oinsn;
   2584 	  bfd_boolean overflow;
   2585 
   2586 	  loc = contents + irel->r_vaddr - sec->vma;
   2587 	  overflow = FALSE;
   2588 	  switch (type)
   2589 	    {
   2590 	    default:
   2591 	      break;
   2592 
   2593 	    case R_SH_PCDISP8BY2:
   2594 	    case R_SH_PCRELIMM8BY2:
   2595 	      insn = bfd_get_16 (abfd, loc);
   2596 	      oinsn = insn;
   2597 	      insn += add / 2;
   2598 	      if ((oinsn & 0xff00) != (insn & 0xff00))
   2599 		overflow = TRUE;
   2600 	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
   2601 	      break;
   2602 
   2603 	    case R_SH_PCDISP:
   2604 	      insn = bfd_get_16 (abfd, loc);
   2605 	      oinsn = insn;
   2606 	      insn += add / 2;
   2607 	      if ((oinsn & 0xf000) != (insn & 0xf000))
   2608 		overflow = TRUE;
   2609 	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
   2610 	      break;
   2611 
   2612 	    case R_SH_PCRELIMM8BY4:
   2613 	      /* This reloc ignores the least significant 3 bits of
   2614                  the program counter before adding in the offset.
   2615                  This means that if ADDR is at an even address, the
   2616                  swap will not affect the offset.  If ADDR is an at an
   2617                  odd address, then the instruction will be crossing a
   2618                  four byte boundary, and must be adjusted.  */
   2619 	      if ((addr & 3) != 0)
   2620 		{
   2621 		  insn = bfd_get_16 (abfd, loc);
   2622 		  oinsn = insn;
   2623 		  insn += add / 2;
   2624 		  if ((oinsn & 0xff00) != (insn & 0xff00))
   2625 		    overflow = TRUE;
   2626 		  bfd_put_16 (abfd, (bfd_vma) insn, loc);
   2627 		}
   2628 
   2629 	      break;
   2630 	    }
   2631 
   2632 	  if (overflow)
   2633 	    {
   2634 	      ((*_bfd_error_handler)
   2635 	       ("%B: 0x%lx: fatal: reloc overflow while relaxing",
   2636 		abfd, (unsigned long) irel->r_vaddr));
   2637 	      bfd_set_error (bfd_error_bad_value);
   2638 	      return FALSE;
   2639 	    }
   2640 	}
   2641     }
   2642 
   2643   return TRUE;
   2644 }
   2645 
   2646 /* Look for loads and stores which we can align to four byte
   2647    boundaries.  See the longer comment above sh_relax_section for why
   2648    this is desirable.  This sets *PSWAPPED if some instruction was
   2649    swapped.  */
   2650 
   2651 static bfd_boolean
   2652 sh_align_loads (bfd *abfd,
   2653 		asection *sec,
   2654 		struct internal_reloc *internal_relocs,
   2655 		bfd_byte *contents,
   2656 		bfd_boolean *pswapped)
   2657 {
   2658   struct internal_reloc *irel, *irelend;
   2659   bfd_vma *labels = NULL;
   2660   bfd_vma *label, *label_end;
   2661   bfd_size_type amt;
   2662 
   2663   *pswapped = FALSE;
   2664 
   2665   irelend = internal_relocs + sec->reloc_count;
   2666 
   2667   /* Get all the addresses with labels on them.  */
   2668   amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
   2669   labels = (bfd_vma *) bfd_malloc (amt);
   2670   if (labels == NULL)
   2671     goto error_return;
   2672   label_end = labels;
   2673   for (irel = internal_relocs; irel < irelend; irel++)
   2674     {
   2675       if (irel->r_type == R_SH_LABEL)
   2676 	{
   2677 	  *label_end = irel->r_vaddr - sec->vma;
   2678 	  ++label_end;
   2679 	}
   2680     }
   2681 
   2682   /* Note that the assembler currently always outputs relocs in
   2683      address order.  If that ever changes, this code will need to sort
   2684      the label values and the relocs.  */
   2685 
   2686   label = labels;
   2687 
   2688   for (irel = internal_relocs; irel < irelend; irel++)
   2689     {
   2690       bfd_vma start, stop;
   2691 
   2692       if (irel->r_type != R_SH_CODE)
   2693 	continue;
   2694 
   2695       start = irel->r_vaddr - sec->vma;
   2696 
   2697       for (irel++; irel < irelend; irel++)
   2698 	if (irel->r_type == R_SH_DATA)
   2699 	  break;
   2700       if (irel < irelend)
   2701 	stop = irel->r_vaddr - sec->vma;
   2702       else
   2703 	stop = sec->size;
   2704 
   2705       if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
   2706 				     internal_relocs, &label,
   2707 				     label_end, start, stop, pswapped))
   2708 	goto error_return;
   2709     }
   2710 
   2711   free (labels);
   2712 
   2713   return TRUE;
   2714 
   2715  error_return:
   2716   if (labels != NULL)
   2717     free (labels);
   2718   return FALSE;
   2719 }
   2720 
   2721 /* This is a modification of _bfd_coff_generic_relocate_section, which
   2723    will handle SH relaxing.  */
   2724 
   2725 static bfd_boolean
   2726 sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
   2727 		     struct bfd_link_info *info,
   2728 		     bfd *input_bfd,
   2729 		     asection *input_section,
   2730 		     bfd_byte *contents,
   2731 		     struct internal_reloc *relocs,
   2732 		     struct internal_syment *syms,
   2733 		     asection **sections)
   2734 {
   2735   struct internal_reloc *rel;
   2736   struct internal_reloc *relend;
   2737 
   2738   rel = relocs;
   2739   relend = rel + input_section->reloc_count;
   2740   for (; rel < relend; rel++)
   2741     {
   2742       long symndx;
   2743       struct coff_link_hash_entry *h;
   2744       struct internal_syment *sym;
   2745       bfd_vma addend;
   2746       bfd_vma val;
   2747       reloc_howto_type *howto;
   2748       bfd_reloc_status_type rstat;
   2749 
   2750       /* Almost all relocs have to do with relaxing.  If any work must
   2751          be done for them, it has been done in sh_relax_section.  */
   2752       if (rel->r_type != R_SH_IMM32
   2753 #ifdef COFF_WITH_PE
   2754 	  && rel->r_type != R_SH_IMM32CE
   2755 	  && rel->r_type != R_SH_IMAGEBASE
   2756 #endif
   2757 	  && rel->r_type != R_SH_PCDISP)
   2758 	continue;
   2759 
   2760       symndx = rel->r_symndx;
   2761 
   2762       if (symndx == -1)
   2763 	{
   2764 	  h = NULL;
   2765 	  sym = NULL;
   2766 	}
   2767       else
   2768 	{
   2769 	  if (symndx < 0
   2770 	      || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
   2771 	    {
   2772 	      (*_bfd_error_handler)
   2773 		("%B: illegal symbol index %ld in relocs",
   2774 		 input_bfd, symndx);
   2775 	      bfd_set_error (bfd_error_bad_value);
   2776 	      return FALSE;
   2777 	    }
   2778 	  h = obj_coff_sym_hashes (input_bfd)[symndx];
   2779 	  sym = syms + symndx;
   2780 	}
   2781 
   2782       if (sym != NULL && sym->n_scnum != 0)
   2783 	addend = - sym->n_value;
   2784       else
   2785 	addend = 0;
   2786 
   2787       if (rel->r_type == R_SH_PCDISP)
   2788 	addend -= 4;
   2789 
   2790       if (rel->r_type >= SH_COFF_HOWTO_COUNT)
   2791 	howto = NULL;
   2792       else
   2793 	howto = &sh_coff_howtos[rel->r_type];
   2794 
   2795       if (howto == NULL)
   2796 	{
   2797 	  bfd_set_error (bfd_error_bad_value);
   2798 	  return FALSE;
   2799 	}
   2800 
   2801 #ifdef COFF_WITH_PE
   2802       if (rel->r_type == R_SH_IMAGEBASE)
   2803 	addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
   2804 #endif
   2805 
   2806       val = 0;
   2807 
   2808       if (h == NULL)
   2809 	{
   2810 	  asection *sec;
   2811 
   2812 	  /* There is nothing to do for an internal PCDISP reloc.  */
   2813 	  if (rel->r_type == R_SH_PCDISP)
   2814 	    continue;
   2815 
   2816 	  if (symndx == -1)
   2817 	    {
   2818 	      sec = bfd_abs_section_ptr;
   2819 	      val = 0;
   2820 	    }
   2821 	  else
   2822 	    {
   2823 	      sec = sections[symndx];
   2824               val = (sec->output_section->vma
   2825 		     + sec->output_offset
   2826 		     + sym->n_value
   2827 		     - sec->vma);
   2828 	    }
   2829 	}
   2830       else
   2831 	{
   2832 	  if (h->root.type == bfd_link_hash_defined
   2833 	      || h->root.type == bfd_link_hash_defweak)
   2834 	    {
   2835 	      asection *sec;
   2836 
   2837 	      sec = h->root.u.def.section;
   2838 	      val = (h->root.u.def.value
   2839 		     + sec->output_section->vma
   2840 		     + sec->output_offset);
   2841 	    }
   2842 	  else if (! bfd_link_relocatable (info))
   2843 	    (*info->callbacks->undefined_symbol)
   2844 	      (info, h->root.root.string, input_bfd, input_section,
   2845 	       rel->r_vaddr - input_section->vma, TRUE);
   2846 	}
   2847 
   2848       rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
   2849 					contents,
   2850 					rel->r_vaddr - input_section->vma,
   2851 					val, addend);
   2852 
   2853       switch (rstat)
   2854 	{
   2855 	default:
   2856 	  abort ();
   2857 	case bfd_reloc_ok:
   2858 	  break;
   2859 	case bfd_reloc_overflow:
   2860 	  {
   2861 	    const char *name;
   2862 	    char buf[SYMNMLEN + 1];
   2863 
   2864 	    if (symndx == -1)
   2865 	      name = "*ABS*";
   2866 	    else if (h != NULL)
   2867 	      name = NULL;
   2868 	    else if (sym->_n._n_n._n_zeroes == 0
   2869 		     && sym->_n._n_n._n_offset != 0)
   2870 	      name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
   2871 	    else
   2872 	      {
   2873  		strncpy (buf, sym->_n._n_name, SYMNMLEN);
   2874 		buf[SYMNMLEN] = '\0';
   2875 		name = buf;
   2876 	      }
   2877 
   2878 	    (*info->callbacks->reloc_overflow)
   2879 	      (info, (h ? &h->root : NULL), name, howto->name,
   2880 	       (bfd_vma) 0, input_bfd, input_section,
   2881 	       rel->r_vaddr - input_section->vma);
   2882 	  }
   2883 	}
   2884     }
   2885 
   2886   return TRUE;
   2887 }
   2888 
   2889 /* This is a version of bfd_generic_get_relocated_section_contents
   2890    which uses sh_relocate_section.  */
   2891 
   2892 static bfd_byte *
   2893 sh_coff_get_relocated_section_contents (bfd *output_bfd,
   2894 					struct bfd_link_info *link_info,
   2895 					struct bfd_link_order *link_order,
   2896 					bfd_byte *data,
   2897 					bfd_boolean relocatable,
   2898 					asymbol **symbols)
   2899 {
   2900   asection *input_section = link_order->u.indirect.section;
   2901   bfd *input_bfd = input_section->owner;
   2902   asection **sections = NULL;
   2903   struct internal_reloc *internal_relocs = NULL;
   2904   struct internal_syment *internal_syms = NULL;
   2905 
   2906   /* We only need to handle the case of relaxing, or of having a
   2907      particular set of section contents, specially.  */
   2908   if (relocatable
   2909       || coff_section_data (input_bfd, input_section) == NULL
   2910       || coff_section_data (input_bfd, input_section)->contents == NULL)
   2911     return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
   2912 						       link_order, data,
   2913 						       relocatable,
   2914 						       symbols);
   2915 
   2916   memcpy (data, coff_section_data (input_bfd, input_section)->contents,
   2917 	  (size_t) input_section->size);
   2918 
   2919   if ((input_section->flags & SEC_RELOC) != 0
   2920       && input_section->reloc_count > 0)
   2921     {
   2922       bfd_size_type symesz = bfd_coff_symesz (input_bfd);
   2923       bfd_byte *esym, *esymend;
   2924       struct internal_syment *isymp;
   2925       asection **secpp;
   2926       bfd_size_type amt;
   2927 
   2928       if (! _bfd_coff_get_external_symbols (input_bfd))
   2929 	goto error_return;
   2930 
   2931       internal_relocs = (_bfd_coff_read_internal_relocs
   2932 			 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
   2933 			  FALSE, (struct internal_reloc *) NULL));
   2934       if (internal_relocs == NULL)
   2935 	goto error_return;
   2936 
   2937       amt = obj_raw_syment_count (input_bfd);
   2938       amt *= sizeof (struct internal_syment);
   2939       internal_syms = (struct internal_syment *) bfd_malloc (amt);
   2940       if (internal_syms == NULL)
   2941 	goto error_return;
   2942 
   2943       amt = obj_raw_syment_count (input_bfd);
   2944       amt *= sizeof (asection *);
   2945       sections = (asection **) bfd_malloc (amt);
   2946       if (sections == NULL)
   2947 	goto error_return;
   2948 
   2949       isymp = internal_syms;
   2950       secpp = sections;
   2951       esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
   2952       esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
   2953       while (esym < esymend)
   2954 	{
   2955 	  bfd_coff_swap_sym_in (input_bfd, esym, isymp);
   2956 
   2957 	  if (isymp->n_scnum != 0)
   2958 	    *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
   2959 	  else
   2960 	    {
   2961 	      if (isymp->n_value == 0)
   2962 		*secpp = bfd_und_section_ptr;
   2963 	      else
   2964 		*secpp = bfd_com_section_ptr;
   2965 	    }
   2966 
   2967 	  esym += (isymp->n_numaux + 1) * symesz;
   2968 	  secpp += isymp->n_numaux + 1;
   2969 	  isymp += isymp->n_numaux + 1;
   2970 	}
   2971 
   2972       if (! sh_relocate_section (output_bfd, link_info, input_bfd,
   2973 				 input_section, data, internal_relocs,
   2974 				 internal_syms, sections))
   2975 	goto error_return;
   2976 
   2977       free (sections);
   2978       sections = NULL;
   2979       free (internal_syms);
   2980       internal_syms = NULL;
   2981       free (internal_relocs);
   2982       internal_relocs = NULL;
   2983     }
   2984 
   2985   return data;
   2986 
   2987  error_return:
   2988   if (internal_relocs != NULL)
   2989     free (internal_relocs);
   2990   if (internal_syms != NULL)
   2991     free (internal_syms);
   2992   if (sections != NULL)
   2993     free (sections);
   2994   return NULL;
   2995 }
   2996 
   2997 /* The target vectors.  */
   2998 
   2999 #ifndef TARGET_SHL_SYM
   3000 CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
   3001 #endif
   3002 
   3003 #ifdef TARGET_SHL_SYM
   3004 #define TARGET_SYM TARGET_SHL_SYM
   3005 #else
   3006 #define TARGET_SYM sh_coff_le_vec
   3007 #endif
   3008 
   3009 #ifndef TARGET_SHL_NAME
   3010 #define TARGET_SHL_NAME "coff-shl"
   3011 #endif
   3012 
   3013 #ifdef COFF_WITH_PE
   3014 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
   3015 			       SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
   3016 #else
   3017 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
   3018 			       0, '_', NULL, COFF_SWAP_TABLE)
   3019 #endif
   3020 
   3021 #ifndef TARGET_SHL_SYM
   3022 
   3023 /* Some people want versions of the SH COFF target which do not align
   3024    to 16 byte boundaries.  We implement that by adding a couple of new
   3025    target vectors.  These are just like the ones above, but they
   3026    change the default section alignment.  To generate them in the
   3027    assembler, use -small.  To use them in the linker, use -b
   3028    coff-sh{l}-small and -oformat coff-sh{l}-small.
   3029 
   3030    Yes, this is a horrible hack.  A general solution for setting
   3031    section alignment in COFF is rather complex.  ELF handles this
   3032    correctly.  */
   3033 
   3034 /* Only recognize the small versions if the target was not defaulted.
   3035    Otherwise we won't recognize the non default endianness.  */
   3036 
   3037 static const bfd_target *
   3038 coff_small_object_p (bfd *abfd)
   3039 {
   3040   if (abfd->target_defaulted)
   3041     {
   3042       bfd_set_error (bfd_error_wrong_format);
   3043       return NULL;
   3044     }
   3045   return coff_object_p (abfd);
   3046 }
   3047 
   3048 /* Set the section alignment for the small versions.  */
   3049 
   3050 static bfd_boolean
   3051 coff_small_new_section_hook (bfd *abfd, asection *section)
   3052 {
   3053   if (! coff_new_section_hook (abfd, section))
   3054     return FALSE;
   3055 
   3056   /* We must align to at least a four byte boundary, because longword
   3057      accesses must be on a four byte boundary.  */
   3058   if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
   3059     section->alignment_power = 2;
   3060 
   3061   return TRUE;
   3062 }
   3063 
   3064 /* This is copied from bfd_coff_std_swap_table so that we can change
   3065    the default section alignment power.  */
   3066 
   3067 static bfd_coff_backend_data bfd_coff_small_swap_table =
   3068 {
   3069   coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
   3070   coff_swap_aux_out, coff_swap_sym_out,
   3071   coff_swap_lineno_out, coff_swap_reloc_out,
   3072   coff_swap_filehdr_out, coff_swap_aouthdr_out,
   3073   coff_swap_scnhdr_out,
   3074   FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
   3075 #ifdef COFF_LONG_FILENAMES
   3076   TRUE,
   3077 #else
   3078   FALSE,
   3079 #endif
   3080   COFF_DEFAULT_LONG_SECTION_NAMES,
   3081   2,
   3082 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
   3083   TRUE,
   3084 #else
   3085   FALSE,
   3086 #endif
   3087 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
   3088   4,
   3089 #else
   3090   2,
   3091 #endif
   3092   32768,
   3093   coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
   3094   coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
   3095   coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
   3096   coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
   3097   coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
   3098   coff_classify_symbol, coff_compute_section_file_positions,
   3099   coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
   3100   coff_adjust_symndx, coff_link_add_one_symbol,
   3101   coff_link_output_has_begun, coff_final_link_postscript,
   3102   bfd_pe_print_pdata
   3103 };
   3104 
   3105 #define coff_small_close_and_cleanup \
   3106   coff_close_and_cleanup
   3107 #define coff_small_bfd_free_cached_info \
   3108   coff_bfd_free_cached_info
   3109 #define coff_small_get_section_contents \
   3110   coff_get_section_contents
   3111 #define coff_small_get_section_contents_in_window \
   3112   coff_get_section_contents_in_window
   3113 
   3114 extern const bfd_target sh_coff_small_le_vec;
   3115 
   3116 const bfd_target sh_coff_small_vec =
   3117 {
   3118   "coff-sh-small",		/* name */
   3119   bfd_target_coff_flavour,
   3120   BFD_ENDIAN_BIG,		/* data byte order is big */
   3121   BFD_ENDIAN_BIG,		/* header byte order is big */
   3122 
   3123   (HAS_RELOC | EXEC_P |		/* object flags */
   3124    HAS_LINENO | HAS_DEBUG |
   3125    HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
   3126 
   3127   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
   3128   '_',				/* leading symbol underscore */
   3129   '/',				/* ar_pad_char */
   3130   15,				/* ar_max_namelen */
   3131   0,				/* match priority.  */
   3132   bfd_getb64, bfd_getb_signed_64, bfd_putb64,
   3133   bfd_getb32, bfd_getb_signed_32, bfd_putb32,
   3134   bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
   3135   bfd_getb64, bfd_getb_signed_64, bfd_putb64,
   3136   bfd_getb32, bfd_getb_signed_32, bfd_putb32,
   3137   bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
   3138 
   3139   {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
   3140      bfd_generic_archive_p, _bfd_dummy_target},
   3141   {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
   3142      bfd_false},
   3143   {bfd_false, coff_write_object_contents, /* bfd_write_contents */
   3144      _bfd_write_archive_contents, bfd_false},
   3145 
   3146   BFD_JUMP_TABLE_GENERIC (coff_small),
   3147   BFD_JUMP_TABLE_COPY (coff),
   3148   BFD_JUMP_TABLE_CORE (_bfd_nocore),
   3149   BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
   3150   BFD_JUMP_TABLE_SYMBOLS (coff),
   3151   BFD_JUMP_TABLE_RELOCS (coff),
   3152   BFD_JUMP_TABLE_WRITE (coff),
   3153   BFD_JUMP_TABLE_LINK (coff),
   3154   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
   3155 
   3156   & sh_coff_small_le_vec,
   3157 
   3158   & bfd_coff_small_swap_table
   3159 };
   3160 
   3161 const bfd_target sh_coff_small_le_vec =
   3162 {
   3163   "coff-shl-small",		/* name */
   3164   bfd_target_coff_flavour,
   3165   BFD_ENDIAN_LITTLE,		/* data byte order is little */
   3166   BFD_ENDIAN_LITTLE,		/* header byte order is little endian too*/
   3167 
   3168   (HAS_RELOC | EXEC_P |		/* object flags */
   3169    HAS_LINENO | HAS_DEBUG |
   3170    HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
   3171 
   3172   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
   3173   '_',				/* leading symbol underscore */
   3174   '/',				/* ar_pad_char */
   3175   15,				/* ar_max_namelen */
   3176   0,				/* match priority.  */
   3177   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
   3178   bfd_getl32, bfd_getl_signed_32, bfd_putl32,
   3179   bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
   3180   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
   3181   bfd_getl32, bfd_getl_signed_32, bfd_putl32,
   3182   bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
   3183 
   3184   {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
   3185      bfd_generic_archive_p, _bfd_dummy_target},
   3186   {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
   3187      bfd_false},
   3188   {bfd_false, coff_write_object_contents, /* bfd_write_contents */
   3189      _bfd_write_archive_contents, bfd_false},
   3190 
   3191   BFD_JUMP_TABLE_GENERIC (coff_small),
   3192   BFD_JUMP_TABLE_COPY (coff),
   3193   BFD_JUMP_TABLE_CORE (_bfd_nocore),
   3194   BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
   3195   BFD_JUMP_TABLE_SYMBOLS (coff),
   3196   BFD_JUMP_TABLE_RELOCS (coff),
   3197   BFD_JUMP_TABLE_WRITE (coff),
   3198   BFD_JUMP_TABLE_LINK (coff),
   3199   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
   3200 
   3201   & sh_coff_small_vec,
   3202 
   3203   & bfd_coff_small_swap_table
   3204 };
   3205 #endif
   3206