1 //===-- MachineFunction.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect native machine code information for a function. This allows 11 // target-specific information about the generated code to be stored with each 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineConstantPool.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionInitializer.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/WinEHFuncInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/ModuleSlotTracker.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetFrameLowering.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "codegen" 49 50 static cl::opt<unsigned> 51 AlignAllFunctions("align-all-functions", 52 cl::desc("Force the alignment of all functions."), 53 cl::init(0), cl::Hidden); 54 55 void MachineFunctionInitializer::anchor() {} 56 57 void MachineFunctionProperties::print(raw_ostream &ROS, bool OnlySet) const { 58 // Leave this function even in NDEBUG as an out-of-line anchor. 59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 60 for (BitVector::size_type i = 0; i < Properties.size(); ++i) { 61 bool HasProperty = Properties[i]; 62 if (OnlySet && !HasProperty) 63 continue; 64 switch(static_cast<Property>(i)) { 65 case Property::IsSSA: 66 ROS << (HasProperty ? "SSA, " : "Post SSA, "); 67 break; 68 case Property::TracksLiveness: 69 ROS << (HasProperty ? "" : "not ") << "tracking liveness, "; 70 break; 71 case Property::AllVRegsAllocated: 72 ROS << (HasProperty ? "AllVRegsAllocated" : "HasVRegs"); 73 break; 74 default: 75 break; 76 } 77 } 78 #endif 79 } 80 81 //===----------------------------------------------------------------------===// 82 // MachineFunction implementation 83 //===----------------------------------------------------------------------===// 84 85 // Out-of-line virtual method. 86 MachineFunctionInfo::~MachineFunctionInfo() {} 87 88 void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 89 MBB->getParent()->DeleteMachineBasicBlock(MBB); 90 } 91 92 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 93 const Function *Fn) { 94 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 95 return Fn->getFnStackAlignment(); 96 return STI->getFrameLowering()->getStackAlignment(); 97 } 98 99 MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM, 100 unsigned FunctionNum, MachineModuleInfo &mmi) 101 : Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()), 102 MMI(mmi) { 103 // Assume the function starts in SSA form with correct liveness. 104 Properties.set(MachineFunctionProperties::Property::IsSSA); 105 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 106 if (STI->getRegisterInfo()) 107 RegInfo = new (Allocator) MachineRegisterInfo(this); 108 else 109 RegInfo = nullptr; 110 111 MFInfo = nullptr; 112 // We can realign the stack if the target supports it and the user hasn't 113 // explicitly asked us not to. 114 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 115 !F->hasFnAttribute("no-realign-stack"); 116 FrameInfo = new (Allocator) MachineFrameInfo( 117 getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP, 118 /*ForceRealign=*/CanRealignSP && 119 F->hasFnAttribute(Attribute::StackAlignment)); 120 121 if (Fn->hasFnAttribute(Attribute::StackAlignment)) 122 FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment()); 123 124 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 125 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 126 127 // FIXME: Shouldn't use pref alignment if explicit alignment is set on Fn. 128 // FIXME: Use Function::optForSize(). 129 if (!Fn->hasFnAttribute(Attribute::OptimizeForSize)) 130 Alignment = std::max(Alignment, 131 STI->getTargetLowering()->getPrefFunctionAlignment()); 132 133 if (AlignAllFunctions) 134 Alignment = AlignAllFunctions; 135 136 FunctionNumber = FunctionNum; 137 JumpTableInfo = nullptr; 138 139 if (isFuncletEHPersonality(classifyEHPersonality( 140 F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) { 141 WinEHInfo = new (Allocator) WinEHFuncInfo(); 142 } 143 144 assert(TM.isCompatibleDataLayout(getDataLayout()) && 145 "Can't create a MachineFunction using a Module with a " 146 "Target-incompatible DataLayout attached\n"); 147 148 PSVManager = llvm::make_unique<PseudoSourceValueManager>(); 149 } 150 151 MachineFunction::~MachineFunction() { 152 // Don't call destructors on MachineInstr and MachineOperand. All of their 153 // memory comes from the BumpPtrAllocator which is about to be purged. 154 // 155 // Do call MachineBasicBlock destructors, it contains std::vectors. 156 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 157 I->Insts.clearAndLeakNodesUnsafely(); 158 159 InstructionRecycler.clear(Allocator); 160 OperandRecycler.clear(Allocator); 161 BasicBlockRecycler.clear(Allocator); 162 if (RegInfo) { 163 RegInfo->~MachineRegisterInfo(); 164 Allocator.Deallocate(RegInfo); 165 } 166 if (MFInfo) { 167 MFInfo->~MachineFunctionInfo(); 168 Allocator.Deallocate(MFInfo); 169 } 170 171 FrameInfo->~MachineFrameInfo(); 172 Allocator.Deallocate(FrameInfo); 173 174 ConstantPool->~MachineConstantPool(); 175 Allocator.Deallocate(ConstantPool); 176 177 if (JumpTableInfo) { 178 JumpTableInfo->~MachineJumpTableInfo(); 179 Allocator.Deallocate(JumpTableInfo); 180 } 181 182 if (WinEHInfo) { 183 WinEHInfo->~WinEHFuncInfo(); 184 Allocator.Deallocate(WinEHInfo); 185 } 186 } 187 188 const DataLayout &MachineFunction::getDataLayout() const { 189 return Fn->getParent()->getDataLayout(); 190 } 191 192 /// Get the JumpTableInfo for this function. 193 /// If it does not already exist, allocate one. 194 MachineJumpTableInfo *MachineFunction:: 195 getOrCreateJumpTableInfo(unsigned EntryKind) { 196 if (JumpTableInfo) return JumpTableInfo; 197 198 JumpTableInfo = new (Allocator) 199 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 200 return JumpTableInfo; 201 } 202 203 /// Should we be emitting segmented stack stuff for the function 204 bool MachineFunction::shouldSplitStack() const { 205 return getFunction()->hasFnAttribute("split-stack"); 206 } 207 208 /// This discards all of the MachineBasicBlock numbers and recomputes them. 209 /// This guarantees that the MBB numbers are sequential, dense, and match the 210 /// ordering of the blocks within the function. If a specific MachineBasicBlock 211 /// is specified, only that block and those after it are renumbered. 212 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 213 if (empty()) { MBBNumbering.clear(); return; } 214 MachineFunction::iterator MBBI, E = end(); 215 if (MBB == nullptr) 216 MBBI = begin(); 217 else 218 MBBI = MBB->getIterator(); 219 220 // Figure out the block number this should have. 221 unsigned BlockNo = 0; 222 if (MBBI != begin()) 223 BlockNo = std::prev(MBBI)->getNumber() + 1; 224 225 for (; MBBI != E; ++MBBI, ++BlockNo) { 226 if (MBBI->getNumber() != (int)BlockNo) { 227 // Remove use of the old number. 228 if (MBBI->getNumber() != -1) { 229 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 230 "MBB number mismatch!"); 231 MBBNumbering[MBBI->getNumber()] = nullptr; 232 } 233 234 // If BlockNo is already taken, set that block's number to -1. 235 if (MBBNumbering[BlockNo]) 236 MBBNumbering[BlockNo]->setNumber(-1); 237 238 MBBNumbering[BlockNo] = &*MBBI; 239 MBBI->setNumber(BlockNo); 240 } 241 } 242 243 // Okay, all the blocks are renumbered. If we have compactified the block 244 // numbering, shrink MBBNumbering now. 245 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 246 MBBNumbering.resize(BlockNo); 247 } 248 249 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 250 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 251 const DebugLoc &DL, 252 bool NoImp) { 253 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 254 MachineInstr(*this, MCID, DL, NoImp); 255 } 256 257 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 258 /// identical in all ways except the instruction has no parent, prev, or next. 259 MachineInstr * 260 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 261 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 262 MachineInstr(*this, *Orig); 263 } 264 265 /// Delete the given MachineInstr. 266 /// 267 /// This function also serves as the MachineInstr destructor - the real 268 /// ~MachineInstr() destructor must be empty. 269 void 270 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 271 // Strip it for parts. The operand array and the MI object itself are 272 // independently recyclable. 273 if (MI->Operands) 274 deallocateOperandArray(MI->CapOperands, MI->Operands); 275 // Don't call ~MachineInstr() which must be trivial anyway because 276 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 277 // destructors. 278 InstructionRecycler.Deallocate(Allocator, MI); 279 } 280 281 /// Allocate a new MachineBasicBlock. Use this instead of 282 /// `new MachineBasicBlock'. 283 MachineBasicBlock * 284 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 285 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 286 MachineBasicBlock(*this, bb); 287 } 288 289 /// Delete the given MachineBasicBlock. 290 void 291 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 292 assert(MBB->getParent() == this && "MBB parent mismatch!"); 293 MBB->~MachineBasicBlock(); 294 BasicBlockRecycler.Deallocate(Allocator, MBB); 295 } 296 297 MachineMemOperand * 298 MachineFunction::getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, 299 uint64_t s, unsigned base_alignment, 300 const AAMDNodes &AAInfo, 301 const MDNode *Ranges) { 302 // FIXME: Get rid of this static_cast and make getMachineOperand take a 303 // MachineMemOperand::Flags param. 304 return new (Allocator) 305 MachineMemOperand(PtrInfo, static_cast<MachineMemOperand::Flags>(f), s, 306 base_alignment, AAInfo, Ranges); 307 } 308 309 MachineMemOperand * 310 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 311 int64_t Offset, uint64_t Size) { 312 if (MMO->getValue()) 313 return new (Allocator) 314 MachineMemOperand(MachinePointerInfo(MMO->getValue(), 315 MMO->getOffset()+Offset), 316 MMO->getFlags(), Size, 317 MMO->getBaseAlignment()); 318 return new (Allocator) 319 MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(), 320 MMO->getOffset()+Offset), 321 MMO->getFlags(), Size, 322 MMO->getBaseAlignment()); 323 } 324 325 MachineInstr::mmo_iterator 326 MachineFunction::allocateMemRefsArray(unsigned long Num) { 327 return Allocator.Allocate<MachineMemOperand *>(Num); 328 } 329 330 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 331 MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 332 MachineInstr::mmo_iterator End) { 333 // Count the number of load mem refs. 334 unsigned Num = 0; 335 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 336 if ((*I)->isLoad()) 337 ++Num; 338 339 // Allocate a new array and populate it with the load information. 340 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 341 unsigned Index = 0; 342 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 343 if ((*I)->isLoad()) { 344 if (!(*I)->isStore()) 345 // Reuse the MMO. 346 Result[Index] = *I; 347 else { 348 // Clone the MMO and unset the store flag. 349 MachineMemOperand *JustLoad = 350 getMachineMemOperand((*I)->getPointerInfo(), 351 (*I)->getFlags() & ~MachineMemOperand::MOStore, 352 (*I)->getSize(), (*I)->getBaseAlignment(), 353 (*I)->getAAInfo()); 354 Result[Index] = JustLoad; 355 } 356 ++Index; 357 } 358 } 359 return std::make_pair(Result, Result + Num); 360 } 361 362 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 363 MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 364 MachineInstr::mmo_iterator End) { 365 // Count the number of load mem refs. 366 unsigned Num = 0; 367 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 368 if ((*I)->isStore()) 369 ++Num; 370 371 // Allocate a new array and populate it with the store information. 372 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 373 unsigned Index = 0; 374 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 375 if ((*I)->isStore()) { 376 if (!(*I)->isLoad()) 377 // Reuse the MMO. 378 Result[Index] = *I; 379 else { 380 // Clone the MMO and unset the load flag. 381 MachineMemOperand *JustStore = 382 getMachineMemOperand((*I)->getPointerInfo(), 383 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 384 (*I)->getSize(), (*I)->getBaseAlignment(), 385 (*I)->getAAInfo()); 386 Result[Index] = JustStore; 387 } 388 ++Index; 389 } 390 } 391 return std::make_pair(Result, Result + Num); 392 } 393 394 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 395 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 396 std::copy(Name.begin(), Name.end(), Dest); 397 Dest[Name.size()] = 0; 398 return Dest; 399 } 400 401 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 402 LLVM_DUMP_METHOD void MachineFunction::dump() const { 403 print(dbgs()); 404 } 405 #endif 406 407 StringRef MachineFunction::getName() const { 408 assert(getFunction() && "No function!"); 409 return getFunction()->getName(); 410 } 411 412 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 413 OS << "# Machine code for function " << getName() << ": "; 414 OS << "Properties: <"; 415 getProperties().print(OS); 416 OS << ">\n"; 417 418 // Print Frame Information 419 FrameInfo->print(*this, OS); 420 421 // Print JumpTable Information 422 if (JumpTableInfo) 423 JumpTableInfo->print(OS); 424 425 // Print Constant Pool 426 ConstantPool->print(OS); 427 428 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 429 430 if (RegInfo && !RegInfo->livein_empty()) { 431 OS << "Function Live Ins: "; 432 for (MachineRegisterInfo::livein_iterator 433 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 434 OS << PrintReg(I->first, TRI); 435 if (I->second) 436 OS << " in " << PrintReg(I->second, TRI); 437 if (std::next(I) != E) 438 OS << ", "; 439 } 440 OS << '\n'; 441 } 442 443 ModuleSlotTracker MST(getFunction()->getParent()); 444 MST.incorporateFunction(*getFunction()); 445 for (const auto &BB : *this) { 446 OS << '\n'; 447 BB.print(OS, MST, Indexes); 448 } 449 450 OS << "\n# End machine code for function " << getName() << ".\n\n"; 451 } 452 453 namespace llvm { 454 template<> 455 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 456 457 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 458 459 static std::string getGraphName(const MachineFunction *F) { 460 return ("CFG for '" + F->getName() + "' function").str(); 461 } 462 463 std::string getNodeLabel(const MachineBasicBlock *Node, 464 const MachineFunction *Graph) { 465 std::string OutStr; 466 { 467 raw_string_ostream OSS(OutStr); 468 469 if (isSimple()) { 470 OSS << "BB#" << Node->getNumber(); 471 if (const BasicBlock *BB = Node->getBasicBlock()) 472 OSS << ": " << BB->getName(); 473 } else 474 Node->print(OSS); 475 } 476 477 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 478 479 // Process string output to make it nicer... 480 for (unsigned i = 0; i != OutStr.length(); ++i) 481 if (OutStr[i] == '\n') { // Left justify 482 OutStr[i] = '\\'; 483 OutStr.insert(OutStr.begin()+i+1, 'l'); 484 } 485 return OutStr; 486 } 487 }; 488 } 489 490 void MachineFunction::viewCFG() const 491 { 492 #ifndef NDEBUG 493 ViewGraph(this, "mf" + getName()); 494 #else 495 errs() << "MachineFunction::viewCFG is only available in debug builds on " 496 << "systems with Graphviz or gv!\n"; 497 #endif // NDEBUG 498 } 499 500 void MachineFunction::viewCFGOnly() const 501 { 502 #ifndef NDEBUG 503 ViewGraph(this, "mf" + getName(), true); 504 #else 505 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 506 << "systems with Graphviz or gv!\n"; 507 #endif // NDEBUG 508 } 509 510 /// Add the specified physical register as a live-in value and 511 /// create a corresponding virtual register for it. 512 unsigned MachineFunction::addLiveIn(unsigned PReg, 513 const TargetRegisterClass *RC) { 514 MachineRegisterInfo &MRI = getRegInfo(); 515 unsigned VReg = MRI.getLiveInVirtReg(PReg); 516 if (VReg) { 517 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 518 (void)VRegRC; 519 // A physical register can be added several times. 520 // Between two calls, the register class of the related virtual register 521 // may have been constrained to match some operation constraints. 522 // In that case, check that the current register class includes the 523 // physical register and is a sub class of the specified RC. 524 assert((VRegRC == RC || (VRegRC->contains(PReg) && 525 RC->hasSubClassEq(VRegRC))) && 526 "Register class mismatch!"); 527 return VReg; 528 } 529 VReg = MRI.createVirtualRegister(RC); 530 MRI.addLiveIn(PReg, VReg); 531 return VReg; 532 } 533 534 /// Return the MCSymbol for the specified non-empty jump table. 535 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 536 /// normal 'L' label is returned. 537 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 538 bool isLinkerPrivate) const { 539 const DataLayout &DL = getDataLayout(); 540 assert(JumpTableInfo && "No jump tables"); 541 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 542 543 const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 544 : DL.getPrivateGlobalPrefix(); 545 SmallString<60> Name; 546 raw_svector_ostream(Name) 547 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 548 return Ctx.getOrCreateSymbol(Name); 549 } 550 551 /// Return a function-local symbol to represent the PIC base. 552 MCSymbol *MachineFunction::getPICBaseSymbol() const { 553 const DataLayout &DL = getDataLayout(); 554 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 555 Twine(getFunctionNumber()) + "$pb"); 556 } 557 558 //===----------------------------------------------------------------------===// 559 // MachineFrameInfo implementation 560 //===----------------------------------------------------------------------===// 561 562 /// Make sure the function is at least Align bytes aligned. 563 void MachineFrameInfo::ensureMaxAlignment(unsigned Align) { 564 if (!StackRealignable) 565 assert(Align <= StackAlignment && 566 "For targets without stack realignment, Align is out of limit!"); 567 if (MaxAlignment < Align) MaxAlignment = Align; 568 } 569 570 /// Clamp the alignment if requested and emit a warning. 571 static inline unsigned clampStackAlignment(bool ShouldClamp, unsigned Align, 572 unsigned StackAlign) { 573 if (!ShouldClamp || Align <= StackAlign) 574 return Align; 575 DEBUG(dbgs() << "Warning: requested alignment " << Align 576 << " exceeds the stack alignment " << StackAlign 577 << " when stack realignment is off" << '\n'); 578 return StackAlign; 579 } 580 581 /// Create a new statically sized stack object, returning a nonnegative 582 /// identifier to represent it. 583 int MachineFrameInfo::CreateStackObject(uint64_t Size, unsigned Alignment, 584 bool isSS, const AllocaInst *Alloca) { 585 assert(Size != 0 && "Cannot allocate zero size stack objects!"); 586 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 587 Objects.push_back(StackObject(Size, Alignment, 0, false, isSS, Alloca, 588 !isSS)); 589 int Index = (int)Objects.size() - NumFixedObjects - 1; 590 assert(Index >= 0 && "Bad frame index!"); 591 ensureMaxAlignment(Alignment); 592 return Index; 593 } 594 595 /// Create a new statically sized stack object that represents a spill slot, 596 /// returning a nonnegative identifier to represent it. 597 int MachineFrameInfo::CreateSpillStackObject(uint64_t Size, 598 unsigned Alignment) { 599 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 600 CreateStackObject(Size, Alignment, true); 601 int Index = (int)Objects.size() - NumFixedObjects - 1; 602 ensureMaxAlignment(Alignment); 603 return Index; 604 } 605 606 /// Notify the MachineFrameInfo object that a variable sized object has been 607 /// created. This must be created whenever a variable sized object is created, 608 /// whether or not the index returned is actually used. 609 int MachineFrameInfo::CreateVariableSizedObject(unsigned Alignment, 610 const AllocaInst *Alloca) { 611 HasVarSizedObjects = true; 612 Alignment = clampStackAlignment(!StackRealignable, Alignment, StackAlignment); 613 Objects.push_back(StackObject(0, Alignment, 0, false, false, Alloca, true)); 614 ensureMaxAlignment(Alignment); 615 return (int)Objects.size()-NumFixedObjects-1; 616 } 617 618 /// Create a new object at a fixed location on the stack. 619 /// All fixed objects should be created before other objects are created for 620 /// efficiency. By default, fixed objects are immutable. This returns an 621 /// index with a negative value. 622 int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 623 bool Immutable, bool isAliased) { 624 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 625 // The alignment of the frame index can be determined from its offset from 626 // the incoming frame position. If the frame object is at offset 32 and 627 // the stack is guaranteed to be 16-byte aligned, then we know that the 628 // object is 16-byte aligned. Note that unlike the non-fixed case, if the 629 // stack needs realignment, we can't assume that the stack will in fact be 630 // aligned. 631 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 632 Align = clampStackAlignment(!StackRealignable, Align, StackAlignment); 633 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable, 634 /*isSS*/ false, 635 /*Alloca*/ nullptr, isAliased)); 636 return -++NumFixedObjects; 637 } 638 639 /// Create a spill slot at a fixed location on the stack. 640 /// Returns an index with a negative value. 641 int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size, 642 int64_t SPOffset) { 643 unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment); 644 Align = clampStackAlignment(!StackRealignable, Align, StackAlignment); 645 Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, 646 /*Immutable*/ true, 647 /*isSS*/ true, 648 /*Alloca*/ nullptr, 649 /*isAliased*/ false)); 650 return -++NumFixedObjects; 651 } 652 653 BitVector MachineFrameInfo::getPristineRegs(const MachineFunction &MF) const { 654 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 655 BitVector BV(TRI->getNumRegs()); 656 657 // Before CSI is calculated, no registers are considered pristine. They can be 658 // freely used and PEI will make sure they are saved. 659 if (!isCalleeSavedInfoValid()) 660 return BV; 661 662 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) 663 BV.set(*CSR); 664 665 // Saved CSRs are not pristine. 666 for (auto &I : getCalleeSavedInfo()) 667 for (MCSubRegIterator S(I.getReg(), TRI, true); S.isValid(); ++S) 668 BV.reset(*S); 669 670 return BV; 671 } 672 673 unsigned MachineFrameInfo::estimateStackSize(const MachineFunction &MF) const { 674 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 675 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 676 unsigned MaxAlign = getMaxAlignment(); 677 int Offset = 0; 678 679 // This code is very, very similar to PEI::calculateFrameObjectOffsets(). 680 // It really should be refactored to share code. Until then, changes 681 // should keep in mind that there's tight coupling between the two. 682 683 for (int i = getObjectIndexBegin(); i != 0; ++i) { 684 int FixedOff = -getObjectOffset(i); 685 if (FixedOff > Offset) Offset = FixedOff; 686 } 687 for (unsigned i = 0, e = getObjectIndexEnd(); i != e; ++i) { 688 if (isDeadObjectIndex(i)) 689 continue; 690 Offset += getObjectSize(i); 691 unsigned Align = getObjectAlignment(i); 692 // Adjust to alignment boundary 693 Offset = (Offset+Align-1)/Align*Align; 694 695 MaxAlign = std::max(Align, MaxAlign); 696 } 697 698 if (adjustsStack() && TFI->hasReservedCallFrame(MF)) 699 Offset += getMaxCallFrameSize(); 700 701 // Round up the size to a multiple of the alignment. If the function has 702 // any calls or alloca's, align to the target's StackAlignment value to 703 // ensure that the callee's frame or the alloca data is suitably aligned; 704 // otherwise, for leaf functions, align to the TransientStackAlignment 705 // value. 706 unsigned StackAlign; 707 if (adjustsStack() || hasVarSizedObjects() || 708 (RegInfo->needsStackRealignment(MF) && getObjectIndexEnd() != 0)) 709 StackAlign = TFI->getStackAlignment(); 710 else 711 StackAlign = TFI->getTransientStackAlignment(); 712 713 // If the frame pointer is eliminated, all frame offsets will be relative to 714 // SP not FP. Align to MaxAlign so this works. 715 StackAlign = std::max(StackAlign, MaxAlign); 716 unsigned AlignMask = StackAlign - 1; 717 Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); 718 719 return (unsigned)Offset; 720 } 721 722 void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 723 if (Objects.empty()) return; 724 725 const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering(); 726 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 727 728 OS << "Frame Objects:\n"; 729 730 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 731 const StackObject &SO = Objects[i]; 732 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 733 if (SO.Size == ~0ULL) { 734 OS << "dead\n"; 735 continue; 736 } 737 if (SO.Size == 0) 738 OS << "variable sized"; 739 else 740 OS << "size=" << SO.Size; 741 OS << ", align=" << SO.Alignment; 742 743 if (i < NumFixedObjects) 744 OS << ", fixed"; 745 if (i < NumFixedObjects || SO.SPOffset != -1) { 746 int64_t Off = SO.SPOffset - ValOffset; 747 OS << ", at location [SP"; 748 if (Off > 0) 749 OS << "+" << Off; 750 else if (Off < 0) 751 OS << Off; 752 OS << "]"; 753 } 754 OS << "\n"; 755 } 756 } 757 758 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 759 void MachineFrameInfo::dump(const MachineFunction &MF) const { 760 print(MF, dbgs()); 761 } 762 #endif 763 764 //===----------------------------------------------------------------------===// 765 // MachineJumpTableInfo implementation 766 //===----------------------------------------------------------------------===// 767 768 /// Return the size of each entry in the jump table. 769 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 770 // The size of a jump table entry is 4 bytes unless the entry is just the 771 // address of a block, in which case it is the pointer size. 772 switch (getEntryKind()) { 773 case MachineJumpTableInfo::EK_BlockAddress: 774 return TD.getPointerSize(); 775 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 776 return 8; 777 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 778 case MachineJumpTableInfo::EK_LabelDifference32: 779 case MachineJumpTableInfo::EK_Custom32: 780 return 4; 781 case MachineJumpTableInfo::EK_Inline: 782 return 0; 783 } 784 llvm_unreachable("Unknown jump table encoding!"); 785 } 786 787 /// Return the alignment of each entry in the jump table. 788 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 789 // The alignment of a jump table entry is the alignment of int32 unless the 790 // entry is just the address of a block, in which case it is the pointer 791 // alignment. 792 switch (getEntryKind()) { 793 case MachineJumpTableInfo::EK_BlockAddress: 794 return TD.getPointerABIAlignment(); 795 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 796 return TD.getABIIntegerTypeAlignment(64); 797 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 798 case MachineJumpTableInfo::EK_LabelDifference32: 799 case MachineJumpTableInfo::EK_Custom32: 800 return TD.getABIIntegerTypeAlignment(32); 801 case MachineJumpTableInfo::EK_Inline: 802 return 1; 803 } 804 llvm_unreachable("Unknown jump table encoding!"); 805 } 806 807 /// Create a new jump table entry in the jump table info. 808 unsigned MachineJumpTableInfo::createJumpTableIndex( 809 const std::vector<MachineBasicBlock*> &DestBBs) { 810 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 811 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 812 return JumpTables.size()-1; 813 } 814 815 /// If Old is the target of any jump tables, update the jump tables to branch 816 /// to New instead. 817 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 818 MachineBasicBlock *New) { 819 assert(Old != New && "Not making a change?"); 820 bool MadeChange = false; 821 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 822 ReplaceMBBInJumpTable(i, Old, New); 823 return MadeChange; 824 } 825 826 /// If Old is a target of the jump tables, update the jump table to branch to 827 /// New instead. 828 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 829 MachineBasicBlock *Old, 830 MachineBasicBlock *New) { 831 assert(Old != New && "Not making a change?"); 832 bool MadeChange = false; 833 MachineJumpTableEntry &JTE = JumpTables[Idx]; 834 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 835 if (JTE.MBBs[j] == Old) { 836 JTE.MBBs[j] = New; 837 MadeChange = true; 838 } 839 return MadeChange; 840 } 841 842 void MachineJumpTableInfo::print(raw_ostream &OS) const { 843 if (JumpTables.empty()) return; 844 845 OS << "Jump Tables:\n"; 846 847 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 848 OS << " jt#" << i << ": "; 849 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 850 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 851 } 852 853 OS << '\n'; 854 } 855 856 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 857 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 858 #endif 859 860 861 //===----------------------------------------------------------------------===// 862 // MachineConstantPool implementation 863 //===----------------------------------------------------------------------===// 864 865 void MachineConstantPoolValue::anchor() { } 866 867 Type *MachineConstantPoolEntry::getType() const { 868 if (isMachineConstantPoolEntry()) 869 return Val.MachineCPVal->getType(); 870 return Val.ConstVal->getType(); 871 } 872 873 bool MachineConstantPoolEntry::needsRelocation() const { 874 if (isMachineConstantPoolEntry()) 875 return true; 876 return Val.ConstVal->needsRelocation(); 877 } 878 879 SectionKind 880 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 881 if (needsRelocation()) 882 return SectionKind::getReadOnlyWithRel(); 883 switch (DL->getTypeAllocSize(getType())) { 884 case 4: 885 return SectionKind::getMergeableConst4(); 886 case 8: 887 return SectionKind::getMergeableConst8(); 888 case 16: 889 return SectionKind::getMergeableConst16(); 890 case 32: 891 return SectionKind::getMergeableConst32(); 892 default: 893 return SectionKind::getReadOnly(); 894 } 895 } 896 897 MachineConstantPool::~MachineConstantPool() { 898 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 899 if (Constants[i].isMachineConstantPoolEntry()) 900 delete Constants[i].Val.MachineCPVal; 901 for (DenseSet<MachineConstantPoolValue*>::iterator I = 902 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 903 I != E; ++I) 904 delete *I; 905 } 906 907 /// Test whether the given two constants can be allocated the same constant pool 908 /// entry. 909 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 910 const DataLayout &DL) { 911 // Handle the trivial case quickly. 912 if (A == B) return true; 913 914 // If they have the same type but weren't the same constant, quickly 915 // reject them. 916 if (A->getType() == B->getType()) return false; 917 918 // We can't handle structs or arrays. 919 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 920 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 921 return false; 922 923 // For now, only support constants with the same size. 924 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 925 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 926 return false; 927 928 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 929 930 // Try constant folding a bitcast of both instructions to an integer. If we 931 // get two identical ConstantInt's, then we are good to share them. We use 932 // the constant folding APIs to do this so that we get the benefit of 933 // DataLayout. 934 if (isa<PointerType>(A->getType())) 935 A = ConstantFoldCastOperand(Instruction::PtrToInt, 936 const_cast<Constant *>(A), IntTy, DL); 937 else if (A->getType() != IntTy) 938 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 939 IntTy, DL); 940 if (isa<PointerType>(B->getType())) 941 B = ConstantFoldCastOperand(Instruction::PtrToInt, 942 const_cast<Constant *>(B), IntTy, DL); 943 else if (B->getType() != IntTy) 944 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 945 IntTy, DL); 946 947 return A == B; 948 } 949 950 /// Create a new entry in the constant pool or return an existing one. 951 /// User must specify the log2 of the minimum required alignment for the object. 952 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 953 unsigned Alignment) { 954 assert(Alignment && "Alignment must be specified!"); 955 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 956 957 // Check to see if we already have this constant. 958 // 959 // FIXME, this could be made much more efficient for large constant pools. 960 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 961 if (!Constants[i].isMachineConstantPoolEntry() && 962 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 963 if ((unsigned)Constants[i].getAlignment() < Alignment) 964 Constants[i].Alignment = Alignment; 965 return i; 966 } 967 968 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 969 return Constants.size()-1; 970 } 971 972 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 973 unsigned Alignment) { 974 assert(Alignment && "Alignment must be specified!"); 975 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 976 977 // Check to see if we already have this constant. 978 // 979 // FIXME, this could be made much more efficient for large constant pools. 980 int Idx = V->getExistingMachineCPValue(this, Alignment); 981 if (Idx != -1) { 982 MachineCPVsSharingEntries.insert(V); 983 return (unsigned)Idx; 984 } 985 986 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 987 return Constants.size()-1; 988 } 989 990 void MachineConstantPool::print(raw_ostream &OS) const { 991 if (Constants.empty()) return; 992 993 OS << "Constant Pool:\n"; 994 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 995 OS << " cp#" << i << ": "; 996 if (Constants[i].isMachineConstantPoolEntry()) 997 Constants[i].Val.MachineCPVal->print(OS); 998 else 999 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1000 OS << ", align=" << Constants[i].getAlignment(); 1001 OS << "\n"; 1002 } 1003 } 1004 1005 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1006 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1007 #endif 1008