1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/APValue.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/Builtins.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalVariable.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // ConstStructBuilder 33 //===----------------------------------------------------------------------===// 34 35 namespace { 36 class ConstExprEmitter; 37 class ConstStructBuilder { 38 CodeGenModule &CGM; 39 CodeGenFunction *CGF; 40 41 bool Packed; 42 CharUnits NextFieldOffsetInChars; 43 CharUnits LLVMStructAlignment; 44 SmallVector<llvm::Constant *, 32> Elements; 45 public: 46 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CFG, 47 ConstExprEmitter *Emitter, 48 llvm::ConstantStruct *Base, 49 InitListExpr *Updater); 50 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, 51 InitListExpr *ILE); 52 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, 53 const APValue &Value, QualType ValTy); 54 55 private: 56 ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) 57 : CGM(CGM), CGF(CGF), Packed(false), 58 NextFieldOffsetInChars(CharUnits::Zero()), 59 LLVMStructAlignment(CharUnits::One()) { } 60 61 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 62 llvm::Constant *InitExpr); 63 64 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 65 66 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 67 llvm::ConstantInt *InitExpr); 68 69 void AppendPadding(CharUnits PadSize); 70 71 void AppendTailPadding(CharUnits RecordSize); 72 73 void ConvertStructToPacked(); 74 75 bool Build(InitListExpr *ILE); 76 bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base, 77 InitListExpr *Updater); 78 void Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 79 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 80 llvm::Constant *Finalize(QualType Ty); 81 82 CharUnits getAlignment(const llvm::Constant *C) const { 83 if (Packed) return CharUnits::One(); 84 return CharUnits::fromQuantity( 85 CGM.getDataLayout().getABITypeAlignment(C->getType())); 86 } 87 88 CharUnits getSizeInChars(const llvm::Constant *C) const { 89 return CharUnits::fromQuantity( 90 CGM.getDataLayout().getTypeAllocSize(C->getType())); 91 } 92 }; 93 94 void ConstStructBuilder:: 95 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 96 llvm::Constant *InitCst) { 97 const ASTContext &Context = CGM.getContext(); 98 99 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 100 101 AppendBytes(FieldOffsetInChars, InitCst); 102 } 103 104 void ConstStructBuilder:: 105 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 106 107 assert(NextFieldOffsetInChars <= FieldOffsetInChars 108 && "Field offset mismatch!"); 109 110 CharUnits FieldAlignment = getAlignment(InitCst); 111 112 // Round up the field offset to the alignment of the field type. 113 CharUnits AlignedNextFieldOffsetInChars = 114 NextFieldOffsetInChars.alignTo(FieldAlignment); 115 116 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 117 // We need to append padding. 118 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 119 120 assert(NextFieldOffsetInChars == FieldOffsetInChars && 121 "Did not add enough padding!"); 122 123 AlignedNextFieldOffsetInChars = 124 NextFieldOffsetInChars.alignTo(FieldAlignment); 125 } 126 127 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 128 assert(!Packed && "Alignment is wrong even with a packed struct!"); 129 130 // Convert the struct to a packed struct. 131 ConvertStructToPacked(); 132 133 // After we pack the struct, we may need to insert padding. 134 if (NextFieldOffsetInChars < FieldOffsetInChars) { 135 // We need to append padding. 136 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 137 138 assert(NextFieldOffsetInChars == FieldOffsetInChars && 139 "Did not add enough padding!"); 140 } 141 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 142 } 143 144 // Add the field. 145 Elements.push_back(InitCst); 146 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 147 getSizeInChars(InitCst); 148 149 if (Packed) 150 assert(LLVMStructAlignment == CharUnits::One() && 151 "Packed struct not byte-aligned!"); 152 else 153 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 154 } 155 156 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 157 uint64_t FieldOffset, 158 llvm::ConstantInt *CI) { 159 const ASTContext &Context = CGM.getContext(); 160 const uint64_t CharWidth = Context.getCharWidth(); 161 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 162 if (FieldOffset > NextFieldOffsetInBits) { 163 // We need to add padding. 164 CharUnits PadSize = Context.toCharUnitsFromBits( 165 llvm::alignTo(FieldOffset - NextFieldOffsetInBits, 166 Context.getTargetInfo().getCharAlign())); 167 168 AppendPadding(PadSize); 169 } 170 171 uint64_t FieldSize = Field->getBitWidthValue(Context); 172 173 llvm::APInt FieldValue = CI->getValue(); 174 175 // Promote the size of FieldValue if necessary 176 // FIXME: This should never occur, but currently it can because initializer 177 // constants are cast to bool, and because clang is not enforcing bitfield 178 // width limits. 179 if (FieldSize > FieldValue.getBitWidth()) 180 FieldValue = FieldValue.zext(FieldSize); 181 182 // Truncate the size of FieldValue to the bit field size. 183 if (FieldSize < FieldValue.getBitWidth()) 184 FieldValue = FieldValue.trunc(FieldSize); 185 186 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 187 if (FieldOffset < NextFieldOffsetInBits) { 188 // Either part of the field or the entire field can go into the previous 189 // byte. 190 assert(!Elements.empty() && "Elements can't be empty!"); 191 192 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 193 194 bool FitsCompletelyInPreviousByte = 195 BitsInPreviousByte >= FieldValue.getBitWidth(); 196 197 llvm::APInt Tmp = FieldValue; 198 199 if (!FitsCompletelyInPreviousByte) { 200 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 201 202 if (CGM.getDataLayout().isBigEndian()) { 203 Tmp = Tmp.lshr(NewFieldWidth); 204 Tmp = Tmp.trunc(BitsInPreviousByte); 205 206 // We want the remaining high bits. 207 FieldValue = FieldValue.trunc(NewFieldWidth); 208 } else { 209 Tmp = Tmp.trunc(BitsInPreviousByte); 210 211 // We want the remaining low bits. 212 FieldValue = FieldValue.lshr(BitsInPreviousByte); 213 FieldValue = FieldValue.trunc(NewFieldWidth); 214 } 215 } 216 217 Tmp = Tmp.zext(CharWidth); 218 if (CGM.getDataLayout().isBigEndian()) { 219 if (FitsCompletelyInPreviousByte) 220 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 221 } else { 222 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 223 } 224 225 // 'or' in the bits that go into the previous byte. 226 llvm::Value *LastElt = Elements.back(); 227 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 228 Tmp |= Val->getValue(); 229 else { 230 assert(isa<llvm::UndefValue>(LastElt)); 231 // If there is an undef field that we're adding to, it can either be a 232 // scalar undef (in which case, we just replace it with our field) or it 233 // is an array. If it is an array, we have to pull one byte off the 234 // array so that the other undef bytes stay around. 235 if (!isa<llvm::IntegerType>(LastElt->getType())) { 236 // The undef padding will be a multibyte array, create a new smaller 237 // padding and then an hole for our i8 to get plopped into. 238 assert(isa<llvm::ArrayType>(LastElt->getType()) && 239 "Expected array padding of undefs"); 240 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 241 assert(AT->getElementType()->isIntegerTy(CharWidth) && 242 AT->getNumElements() != 0 && 243 "Expected non-empty array padding of undefs"); 244 245 // Remove the padding array. 246 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 247 Elements.pop_back(); 248 249 // Add the padding back in two chunks. 250 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 251 AppendPadding(CharUnits::One()); 252 assert(isa<llvm::UndefValue>(Elements.back()) && 253 Elements.back()->getType()->isIntegerTy(CharWidth) && 254 "Padding addition didn't work right"); 255 } 256 } 257 258 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 259 260 if (FitsCompletelyInPreviousByte) 261 return; 262 } 263 264 while (FieldValue.getBitWidth() > CharWidth) { 265 llvm::APInt Tmp; 266 267 if (CGM.getDataLayout().isBigEndian()) { 268 // We want the high bits. 269 Tmp = 270 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 271 } else { 272 // We want the low bits. 273 Tmp = FieldValue.trunc(CharWidth); 274 275 FieldValue = FieldValue.lshr(CharWidth); 276 } 277 278 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 279 ++NextFieldOffsetInChars; 280 281 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 282 } 283 284 assert(FieldValue.getBitWidth() > 0 && 285 "Should have at least one bit left!"); 286 assert(FieldValue.getBitWidth() <= CharWidth && 287 "Should not have more than a byte left!"); 288 289 if (FieldValue.getBitWidth() < CharWidth) { 290 if (CGM.getDataLayout().isBigEndian()) { 291 unsigned BitWidth = FieldValue.getBitWidth(); 292 293 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 294 } else 295 FieldValue = FieldValue.zext(CharWidth); 296 } 297 298 // Append the last element. 299 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 300 FieldValue)); 301 ++NextFieldOffsetInChars; 302 } 303 304 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 305 if (PadSize.isZero()) 306 return; 307 308 llvm::Type *Ty = CGM.Int8Ty; 309 if (PadSize > CharUnits::One()) 310 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 311 312 llvm::Constant *C = llvm::UndefValue::get(Ty); 313 Elements.push_back(C); 314 assert(getAlignment(C) == CharUnits::One() && 315 "Padding must have 1 byte alignment!"); 316 317 NextFieldOffsetInChars += getSizeInChars(C); 318 } 319 320 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 321 assert(NextFieldOffsetInChars <= RecordSize && 322 "Size mismatch!"); 323 324 AppendPadding(RecordSize - NextFieldOffsetInChars); 325 } 326 327 void ConstStructBuilder::ConvertStructToPacked() { 328 SmallVector<llvm::Constant *, 16> PackedElements; 329 CharUnits ElementOffsetInChars = CharUnits::Zero(); 330 331 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 332 llvm::Constant *C = Elements[i]; 333 334 CharUnits ElementAlign = CharUnits::fromQuantity( 335 CGM.getDataLayout().getABITypeAlignment(C->getType())); 336 CharUnits AlignedElementOffsetInChars = 337 ElementOffsetInChars.alignTo(ElementAlign); 338 339 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 340 // We need some padding. 341 CharUnits NumChars = 342 AlignedElementOffsetInChars - ElementOffsetInChars; 343 344 llvm::Type *Ty = CGM.Int8Ty; 345 if (NumChars > CharUnits::One()) 346 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 347 348 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 349 PackedElements.push_back(Padding); 350 ElementOffsetInChars += getSizeInChars(Padding); 351 } 352 353 PackedElements.push_back(C); 354 ElementOffsetInChars += getSizeInChars(C); 355 } 356 357 assert(ElementOffsetInChars == NextFieldOffsetInChars && 358 "Packing the struct changed its size!"); 359 360 Elements.swap(PackedElements); 361 LLVMStructAlignment = CharUnits::One(); 362 Packed = true; 363 } 364 365 bool ConstStructBuilder::Build(InitListExpr *ILE) { 366 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 367 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 368 369 unsigned FieldNo = 0; 370 unsigned ElementNo = 0; 371 372 // Bail out if we have base classes. We could support these, but they only 373 // arise in C++1z where we will have already constant folded most interesting 374 // cases. FIXME: There are still a few more cases we can handle this way. 375 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 376 if (CXXRD->getNumBases()) 377 return false; 378 379 for (RecordDecl::field_iterator Field = RD->field_begin(), 380 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 381 // If this is a union, skip all the fields that aren't being initialized. 382 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 383 continue; 384 385 // Don't emit anonymous bitfields, they just affect layout. 386 if (Field->isUnnamedBitfield()) 387 continue; 388 389 // Get the initializer. A struct can include fields without initializers, 390 // we just use explicit null values for them. 391 llvm::Constant *EltInit; 392 if (ElementNo < ILE->getNumInits()) 393 EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++), 394 Field->getType(), CGF); 395 else 396 EltInit = CGM.EmitNullConstant(Field->getType()); 397 398 if (!EltInit) 399 return false; 400 401 if (!Field->isBitField()) { 402 // Handle non-bitfield members. 403 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 404 } else { 405 // Otherwise we have a bitfield. 406 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 407 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 408 } else { 409 // We are trying to initialize a bitfield with a non-trivial constant, 410 // this must require run-time code. 411 return false; 412 } 413 } 414 } 415 416 return true; 417 } 418 419 namespace { 420 struct BaseInfo { 421 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 422 : Decl(Decl), Offset(Offset), Index(Index) { 423 } 424 425 const CXXRecordDecl *Decl; 426 CharUnits Offset; 427 unsigned Index; 428 429 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 430 }; 431 } 432 433 void ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 434 bool IsPrimaryBase, 435 const CXXRecordDecl *VTableClass, 436 CharUnits Offset) { 437 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 438 439 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 440 // Add a vtable pointer, if we need one and it hasn't already been added. 441 if (CD->isDynamicClass() && !IsPrimaryBase) { 442 llvm::Constant *VTableAddressPoint = 443 CGM.getCXXABI().getVTableAddressPointForConstExpr( 444 BaseSubobject(CD, Offset), VTableClass); 445 AppendBytes(Offset, VTableAddressPoint); 446 } 447 448 // Accumulate and sort bases, in order to visit them in address order, which 449 // may not be the same as declaration order. 450 SmallVector<BaseInfo, 8> Bases; 451 Bases.reserve(CD->getNumBases()); 452 unsigned BaseNo = 0; 453 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 454 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 455 assert(!Base->isVirtual() && "should not have virtual bases here"); 456 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 457 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 458 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 459 } 460 std::stable_sort(Bases.begin(), Bases.end()); 461 462 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 463 BaseInfo &Base = Bases[I]; 464 465 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 466 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 467 VTableClass, Offset + Base.Offset); 468 } 469 } 470 471 unsigned FieldNo = 0; 472 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 473 474 for (RecordDecl::field_iterator Field = RD->field_begin(), 475 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 476 // If this is a union, skip all the fields that aren't being initialized. 477 if (RD->isUnion() && Val.getUnionField() != *Field) 478 continue; 479 480 // Don't emit anonymous bitfields, they just affect layout. 481 if (Field->isUnnamedBitfield()) 482 continue; 483 484 // Emit the value of the initializer. 485 const APValue &FieldValue = 486 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 487 llvm::Constant *EltInit = 488 CGM.EmitConstantValueForMemory(FieldValue, Field->getType(), CGF); 489 assert(EltInit && "EmitConstantValue can't fail"); 490 491 if (!Field->isBitField()) { 492 // Handle non-bitfield members. 493 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 494 } else { 495 // Otherwise we have a bitfield. 496 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 497 cast<llvm::ConstantInt>(EltInit)); 498 } 499 } 500 } 501 502 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 503 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 504 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 505 506 CharUnits LayoutSizeInChars = Layout.getSize(); 507 508 if (NextFieldOffsetInChars > LayoutSizeInChars) { 509 // If the struct is bigger than the size of the record type, 510 // we must have a flexible array member at the end. 511 assert(RD->hasFlexibleArrayMember() && 512 "Must have flexible array member if struct is bigger than type!"); 513 514 // No tail padding is necessary. 515 } else { 516 // Append tail padding if necessary. 517 CharUnits LLVMSizeInChars = 518 NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 519 520 if (LLVMSizeInChars != LayoutSizeInChars) 521 AppendTailPadding(LayoutSizeInChars); 522 523 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 524 525 // Check if we need to convert the struct to a packed struct. 526 if (NextFieldOffsetInChars <= LayoutSizeInChars && 527 LLVMSizeInChars > LayoutSizeInChars) { 528 assert(!Packed && "Size mismatch!"); 529 530 ConvertStructToPacked(); 531 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 532 "Converting to packed did not help!"); 533 } 534 535 LLVMSizeInChars = NextFieldOffsetInChars.alignTo(LLVMStructAlignment); 536 537 assert(LayoutSizeInChars == LLVMSizeInChars && 538 "Tail padding mismatch!"); 539 } 540 541 // Pick the type to use. If the type is layout identical to the ConvertType 542 // type then use it, otherwise use whatever the builder produced for us. 543 llvm::StructType *STy = 544 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 545 Elements, Packed); 546 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 547 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 548 if (ValSTy->isLayoutIdentical(STy)) 549 STy = ValSTy; 550 } 551 552 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 553 554 assert(NextFieldOffsetInChars.alignTo(getAlignment(Result)) == 555 getSizeInChars(Result) && 556 "Size mismatch!"); 557 558 return Result; 559 } 560 561 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 562 CodeGenFunction *CGF, 563 ConstExprEmitter *Emitter, 564 llvm::ConstantStruct *Base, 565 InitListExpr *Updater) { 566 ConstStructBuilder Builder(CGM, CGF); 567 if (!Builder.Build(Emitter, Base, Updater)) 568 return nullptr; 569 return Builder.Finalize(Updater->getType()); 570 } 571 572 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 573 CodeGenFunction *CGF, 574 InitListExpr *ILE) { 575 ConstStructBuilder Builder(CGM, CGF); 576 577 if (!Builder.Build(ILE)) 578 return nullptr; 579 580 return Builder.Finalize(ILE->getType()); 581 } 582 583 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 584 CodeGenFunction *CGF, 585 const APValue &Val, 586 QualType ValTy) { 587 ConstStructBuilder Builder(CGM, CGF); 588 589 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 590 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 591 Builder.Build(Val, RD, false, CD, CharUnits::Zero()); 592 593 return Builder.Finalize(ValTy); 594 } 595 596 597 //===----------------------------------------------------------------------===// 598 // ConstExprEmitter 599 //===----------------------------------------------------------------------===// 600 601 /// This class only needs to handle two cases: 602 /// 1) Literals (this is used by APValue emission to emit literals). 603 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 604 /// constant fold these types). 605 class ConstExprEmitter : 606 public StmtVisitor<ConstExprEmitter, llvm::Constant*> { 607 CodeGenModule &CGM; 608 CodeGenFunction *CGF; 609 llvm::LLVMContext &VMContext; 610 public: 611 ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) 612 : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { 613 } 614 615 //===--------------------------------------------------------------------===// 616 // Visitor Methods 617 //===--------------------------------------------------------------------===// 618 619 llvm::Constant *VisitStmt(Stmt *S) { 620 return nullptr; 621 } 622 623 llvm::Constant *VisitParenExpr(ParenExpr *PE) { 624 return Visit(PE->getSubExpr()); 625 } 626 627 llvm::Constant * 628 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 629 return Visit(PE->getReplacement()); 630 } 631 632 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 633 return Visit(GE->getResultExpr()); 634 } 635 636 llvm::Constant *VisitChooseExpr(ChooseExpr *CE) { 637 return Visit(CE->getChosenSubExpr()); 638 } 639 640 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 641 return Visit(E->getInitializer()); 642 } 643 644 llvm::Constant *VisitCastExpr(CastExpr* E) { 645 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 646 CGM.EmitExplicitCastExprType(ECE, CGF); 647 Expr *subExpr = E->getSubExpr(); 648 llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF); 649 if (!C) return nullptr; 650 651 llvm::Type *destType = ConvertType(E->getType()); 652 653 switch (E->getCastKind()) { 654 case CK_ToUnion: { 655 // GCC cast to union extension 656 assert(E->getType()->isUnionType() && 657 "Destination type is not union type!"); 658 659 // Build a struct with the union sub-element as the first member, 660 // and padded to the appropriate size 661 SmallVector<llvm::Constant*, 2> Elts; 662 SmallVector<llvm::Type*, 2> Types; 663 Elts.push_back(C); 664 Types.push_back(C->getType()); 665 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 666 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destType); 667 668 assert(CurSize <= TotalSize && "Union size mismatch!"); 669 if (unsigned NumPadBytes = TotalSize - CurSize) { 670 llvm::Type *Ty = CGM.Int8Ty; 671 if (NumPadBytes > 1) 672 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 673 674 Elts.push_back(llvm::UndefValue::get(Ty)); 675 Types.push_back(Ty); 676 } 677 678 llvm::StructType* STy = 679 llvm::StructType::get(C->getType()->getContext(), Types, false); 680 return llvm::ConstantStruct::get(STy, Elts); 681 } 682 683 case CK_AddressSpaceConversion: 684 return llvm::ConstantExpr::getAddrSpaceCast(C, destType); 685 686 case CK_LValueToRValue: 687 case CK_AtomicToNonAtomic: 688 case CK_NonAtomicToAtomic: 689 case CK_NoOp: 690 case CK_ConstructorConversion: 691 return C; 692 693 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 694 695 case CK_BuiltinFnToFnPtr: 696 llvm_unreachable("builtin functions are handled elsewhere"); 697 698 case CK_ReinterpretMemberPointer: 699 case CK_DerivedToBaseMemberPointer: 700 case CK_BaseToDerivedMemberPointer: 701 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 702 703 // These will never be supported. 704 case CK_ObjCObjectLValueCast: 705 case CK_ARCProduceObject: 706 case CK_ARCConsumeObject: 707 case CK_ARCReclaimReturnedObject: 708 case CK_ARCExtendBlockObject: 709 case CK_CopyAndAutoreleaseBlockObject: 710 return nullptr; 711 712 // These don't need to be handled here because Evaluate knows how to 713 // evaluate them in the cases where they can be folded. 714 case CK_BitCast: 715 case CK_ToVoid: 716 case CK_Dynamic: 717 case CK_LValueBitCast: 718 case CK_NullToMemberPointer: 719 case CK_UserDefinedConversion: 720 case CK_CPointerToObjCPointerCast: 721 case CK_BlockPointerToObjCPointerCast: 722 case CK_AnyPointerToBlockPointerCast: 723 case CK_ArrayToPointerDecay: 724 case CK_FunctionToPointerDecay: 725 case CK_BaseToDerived: 726 case CK_DerivedToBase: 727 case CK_UncheckedDerivedToBase: 728 case CK_MemberPointerToBoolean: 729 case CK_VectorSplat: 730 case CK_FloatingRealToComplex: 731 case CK_FloatingComplexToReal: 732 case CK_FloatingComplexToBoolean: 733 case CK_FloatingComplexCast: 734 case CK_FloatingComplexToIntegralComplex: 735 case CK_IntegralRealToComplex: 736 case CK_IntegralComplexToReal: 737 case CK_IntegralComplexToBoolean: 738 case CK_IntegralComplexCast: 739 case CK_IntegralComplexToFloatingComplex: 740 case CK_PointerToIntegral: 741 case CK_PointerToBoolean: 742 case CK_NullToPointer: 743 case CK_IntegralCast: 744 case CK_BooleanToSignedIntegral: 745 case CK_IntegralToPointer: 746 case CK_IntegralToBoolean: 747 case CK_IntegralToFloating: 748 case CK_FloatingToIntegral: 749 case CK_FloatingToBoolean: 750 case CK_FloatingCast: 751 case CK_ZeroToOCLEvent: 752 return nullptr; 753 } 754 llvm_unreachable("Invalid CastKind"); 755 } 756 757 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 758 return Visit(DAE->getExpr()); 759 } 760 761 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 762 // No need for a DefaultInitExprScope: we don't handle 'this' in a 763 // constant expression. 764 return Visit(DIE->getExpr()); 765 } 766 767 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E) { 768 if (!E->cleanupsHaveSideEffects()) 769 return Visit(E->getSubExpr()); 770 return nullptr; 771 } 772 773 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) { 774 return Visit(E->GetTemporaryExpr()); 775 } 776 777 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { 778 if (ILE->isStringLiteralInit()) 779 return Visit(ILE->getInit(0)); 780 781 llvm::ArrayType *AType = 782 cast<llvm::ArrayType>(ConvertType(ILE->getType())); 783 llvm::Type *ElemTy = AType->getElementType(); 784 unsigned NumInitElements = ILE->getNumInits(); 785 unsigned NumElements = AType->getNumElements(); 786 787 // Initialising an array requires us to automatically 788 // initialise any elements that have not been initialised explicitly 789 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 790 791 // Initialize remaining array elements. 792 // FIXME: This doesn't handle member pointers correctly! 793 llvm::Constant *fillC; 794 if (Expr *filler = ILE->getArrayFiller()) 795 fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF); 796 else 797 fillC = llvm::Constant::getNullValue(ElemTy); 798 if (!fillC) 799 return nullptr; 800 801 // Try to use a ConstantAggregateZero if we can. 802 if (fillC->isNullValue() && !NumInitableElts) 803 return llvm::ConstantAggregateZero::get(AType); 804 805 // Copy initializer elements. 806 std::vector<llvm::Constant*> Elts; 807 Elts.reserve(NumInitableElts + NumElements); 808 809 bool RewriteType = false; 810 for (unsigned i = 0; i < NumInitableElts; ++i) { 811 Expr *Init = ILE->getInit(i); 812 llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); 813 if (!C) 814 return nullptr; 815 RewriteType |= (C->getType() != ElemTy); 816 Elts.push_back(C); 817 } 818 819 RewriteType |= (fillC->getType() != ElemTy); 820 Elts.resize(NumElements, fillC); 821 822 if (RewriteType) { 823 // FIXME: Try to avoid packing the array 824 std::vector<llvm::Type*> Types; 825 Types.reserve(NumInitableElts + NumElements); 826 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 827 Types.push_back(Elts[i]->getType()); 828 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 829 Types, true); 830 return llvm::ConstantStruct::get(SType, Elts); 831 } 832 833 return llvm::ConstantArray::get(AType, Elts); 834 } 835 836 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE) { 837 return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); 838 } 839 840 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { 841 return CGM.EmitNullConstant(E->getType()); 842 } 843 844 llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { 845 if (ILE->getType()->isArrayType()) 846 return EmitArrayInitialization(ILE); 847 848 if (ILE->getType()->isRecordType()) 849 return EmitRecordInitialization(ILE); 850 851 return nullptr; 852 } 853 854 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 855 InitListExpr *Updater) { 856 QualType ExprType = Updater->getType(); 857 858 if (ExprType->isArrayType()) { 859 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(ExprType)); 860 llvm::Type *ElemType = AType->getElementType(); 861 862 unsigned NumInitElements = Updater->getNumInits(); 863 unsigned NumElements = AType->getNumElements(); 864 865 std::vector<llvm::Constant *> Elts; 866 Elts.reserve(NumElements); 867 868 if (llvm::ConstantDataArray *DataArray = 869 dyn_cast<llvm::ConstantDataArray>(Base)) 870 for (unsigned i = 0; i != NumElements; ++i) 871 Elts.push_back(DataArray->getElementAsConstant(i)); 872 else if (llvm::ConstantArray *Array = 873 dyn_cast<llvm::ConstantArray>(Base)) 874 for (unsigned i = 0; i != NumElements; ++i) 875 Elts.push_back(Array->getOperand(i)); 876 else 877 return nullptr; // FIXME: other array types not implemented 878 879 llvm::Constant *fillC = nullptr; 880 if (Expr *filler = Updater->getArrayFiller()) 881 if (!isa<NoInitExpr>(filler)) 882 fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF); 883 bool RewriteType = (fillC && fillC->getType() != ElemType); 884 885 for (unsigned i = 0; i != NumElements; ++i) { 886 Expr *Init = nullptr; 887 if (i < NumInitElements) 888 Init = Updater->getInit(i); 889 890 if (!Init && fillC) 891 Elts[i] = fillC; 892 else if (!Init || isa<NoInitExpr>(Init)) 893 ; // Do nothing. 894 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 895 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE); 896 else 897 Elts[i] = CGM.EmitConstantExpr(Init, Init->getType(), CGF); 898 899 if (!Elts[i]) 900 return nullptr; 901 RewriteType |= (Elts[i]->getType() != ElemType); 902 } 903 904 if (RewriteType) { 905 std::vector<llvm::Type *> Types; 906 Types.reserve(NumElements); 907 for (unsigned i = 0; i != NumElements; ++i) 908 Types.push_back(Elts[i]->getType()); 909 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 910 Types, true); 911 return llvm::ConstantStruct::get(SType, Elts); 912 } 913 914 return llvm::ConstantArray::get(AType, Elts); 915 } 916 917 if (ExprType->isRecordType()) 918 return ConstStructBuilder::BuildStruct(CGM, CGF, this, 919 dyn_cast<llvm::ConstantStruct>(Base), Updater); 920 921 return nullptr; 922 } 923 924 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 925 return EmitDesignatedInitUpdater( 926 CGM.EmitConstantExpr(E->getBase(), E->getType(), CGF), 927 E->getUpdater()); 928 } 929 930 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) { 931 if (!E->getConstructor()->isTrivial()) 932 return nullptr; 933 934 QualType Ty = E->getType(); 935 936 // FIXME: We should not have to call getBaseElementType here. 937 const RecordType *RT = 938 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 939 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 940 941 // If the class doesn't have a trivial destructor, we can't emit it as a 942 // constant expr. 943 if (!RD->hasTrivialDestructor()) 944 return nullptr; 945 946 // Only copy and default constructors can be trivial. 947 948 949 if (E->getNumArgs()) { 950 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 951 assert(E->getConstructor()->isCopyOrMoveConstructor() && 952 "trivial ctor has argument but isn't a copy/move ctor"); 953 954 Expr *Arg = E->getArg(0); 955 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 956 "argument to copy ctor is of wrong type"); 957 958 return Visit(Arg); 959 } 960 961 return CGM.EmitNullConstant(Ty); 962 } 963 964 llvm::Constant *VisitStringLiteral(StringLiteral *E) { 965 return CGM.GetConstantArrayFromStringLiteral(E); 966 } 967 968 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { 969 // This must be an @encode initializing an array in a static initializer. 970 // Don't emit it as the address of the string, emit the string data itself 971 // as an inline array. 972 std::string Str; 973 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 974 QualType T = E->getType(); 975 if (T->getTypeClass() == Type::TypeOfExpr) 976 T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType(); 977 const ConstantArrayType *CAT = cast<ConstantArrayType>(T); 978 979 // Resize the string to the right size, adding zeros at the end, or 980 // truncating as needed. 981 Str.resize(CAT->getSize().getZExtValue(), '\0'); 982 return llvm::ConstantDataArray::getString(VMContext, Str, false); 983 } 984 985 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { 986 return Visit(E->getSubExpr()); 987 } 988 989 // Utility methods 990 llvm::Type *ConvertType(QualType T) { 991 return CGM.getTypes().ConvertType(T); 992 } 993 994 public: 995 ConstantAddress EmitLValue(APValue::LValueBase LVBase) { 996 if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) { 997 if (Decl->hasAttr<WeakRefAttr>()) 998 return CGM.GetWeakRefReference(Decl); 999 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) 1000 return ConstantAddress(CGM.GetAddrOfFunction(FD), CharUnits::One()); 1001 if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) { 1002 // We can never refer to a variable with local storage. 1003 if (!VD->hasLocalStorage()) { 1004 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1005 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1006 return ConstantAddress(CGM.GetAddrOfGlobalVar(VD), Align); 1007 else if (VD->isLocalVarDecl()) { 1008 auto Ptr = CGM.getOrCreateStaticVarDecl( 1009 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1010 return ConstantAddress(Ptr, Align); 1011 } 1012 } 1013 } 1014 return ConstantAddress::invalid(); 1015 } 1016 1017 Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>()); 1018 switch (E->getStmtClass()) { 1019 default: break; 1020 case Expr::CompoundLiteralExprClass: { 1021 // Note that due to the nature of compound literals, this is guaranteed 1022 // to be the only use of the variable, so we just generate it here. 1023 CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 1024 llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(), 1025 CLE->getType(), CGF); 1026 // FIXME: "Leaked" on failure. 1027 if (!C) return ConstantAddress::invalid(); 1028 1029 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 1030 1031 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1032 E->getType().isConstant(CGM.getContext()), 1033 llvm::GlobalValue::InternalLinkage, 1034 C, ".compoundliteral", nullptr, 1035 llvm::GlobalVariable::NotThreadLocal, 1036 CGM.getContext().getTargetAddressSpace(E->getType())); 1037 GV->setAlignment(Align.getQuantity()); 1038 return ConstantAddress(GV, Align); 1039 } 1040 case Expr::StringLiteralClass: 1041 return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E)); 1042 case Expr::ObjCEncodeExprClass: 1043 return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E)); 1044 case Expr::ObjCStringLiteralClass: { 1045 ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E); 1046 ConstantAddress C = 1047 CGM.getObjCRuntime().GenerateConstantString(SL->getString()); 1048 return C.getElementBitCast(ConvertType(E->getType())); 1049 } 1050 case Expr::PredefinedExprClass: { 1051 unsigned Type = cast<PredefinedExpr>(E)->getIdentType(); 1052 if (CGF) { 1053 LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1054 return cast<ConstantAddress>(Res.getAddress()); 1055 } else if (Type == PredefinedExpr::PrettyFunction) { 1056 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 1057 } 1058 1059 return CGM.GetAddrOfConstantCString("", ".tmp"); 1060 } 1061 case Expr::AddrLabelExprClass: { 1062 assert(CGF && "Invalid address of label expression outside function."); 1063 llvm::Constant *Ptr = 1064 CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel()); 1065 Ptr = llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType())); 1066 return ConstantAddress(Ptr, CharUnits::One()); 1067 } 1068 case Expr::CallExprClass: { 1069 CallExpr* CE = cast<CallExpr>(E); 1070 unsigned builtin = CE->getBuiltinCallee(); 1071 if (builtin != 1072 Builtin::BI__builtin___CFStringMakeConstantString && 1073 builtin != 1074 Builtin::BI__builtin___NSStringMakeConstantString) 1075 break; 1076 const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); 1077 const StringLiteral *Literal = cast<StringLiteral>(Arg); 1078 if (builtin == 1079 Builtin::BI__builtin___NSStringMakeConstantString) { 1080 return CGM.getObjCRuntime().GenerateConstantString(Literal); 1081 } 1082 // FIXME: need to deal with UCN conversion issues. 1083 return CGM.GetAddrOfConstantCFString(Literal); 1084 } 1085 case Expr::BlockExprClass: { 1086 std::string FunctionName; 1087 if (CGF) 1088 FunctionName = CGF->CurFn->getName(); 1089 else 1090 FunctionName = "global"; 1091 1092 // This is not really an l-value. 1093 llvm::Constant *Ptr = 1094 CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str()); 1095 return ConstantAddress(Ptr, CGM.getPointerAlign()); 1096 } 1097 case Expr::CXXTypeidExprClass: { 1098 CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E); 1099 QualType T; 1100 if (Typeid->isTypeOperand()) 1101 T = Typeid->getTypeOperand(CGM.getContext()); 1102 else 1103 T = Typeid->getExprOperand()->getType(); 1104 return ConstantAddress(CGM.GetAddrOfRTTIDescriptor(T), 1105 CGM.getPointerAlign()); 1106 } 1107 case Expr::CXXUuidofExprClass: { 1108 return CGM.GetAddrOfUuidDescriptor(cast<CXXUuidofExpr>(E)); 1109 } 1110 case Expr::MaterializeTemporaryExprClass: { 1111 MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); 1112 assert(MTE->getStorageDuration() == SD_Static); 1113 SmallVector<const Expr *, 2> CommaLHSs; 1114 SmallVector<SubobjectAdjustment, 2> Adjustments; 1115 const Expr *Inner = MTE->GetTemporaryExpr() 1116 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1117 return CGM.GetAddrOfGlobalTemporary(MTE, Inner); 1118 } 1119 } 1120 1121 return ConstantAddress::invalid(); 1122 } 1123 }; 1124 1125 } // end anonymous namespace. 1126 1127 bool ConstStructBuilder::Build(ConstExprEmitter *Emitter, 1128 llvm::ConstantStruct *Base, 1129 InitListExpr *Updater) { 1130 assert(Base && "base expression should not be empty"); 1131 1132 QualType ExprType = Updater->getType(); 1133 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1134 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1135 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1136 Base->getType()); 1137 unsigned FieldNo = -1; 1138 unsigned ElementNo = 0; 1139 1140 // Bail out if we have base classes. We could support these, but they only 1141 // arise in C++1z where we will have already constant folded most interesting 1142 // cases. FIXME: There are still a few more cases we can handle this way. 1143 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1144 if (CXXRD->getNumBases()) 1145 return false; 1146 1147 for (FieldDecl *Field : RD->fields()) { 1148 ++FieldNo; 1149 1150 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1151 continue; 1152 1153 // Skip anonymous bitfields. 1154 if (Field->isUnnamedBitfield()) 1155 continue; 1156 1157 llvm::Constant *EltInit = Base->getOperand(ElementNo); 1158 1159 // Bail out if the type of the ConstantStruct does not have the same layout 1160 // as the type of the InitListExpr. 1161 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1162 Layout.getFieldOffset(ElementNo) != 1163 BaseLayout->getElementOffsetInBits(ElementNo)) 1164 return false; 1165 1166 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1167 // we use values from the base expression. 1168 Expr *Init = nullptr; 1169 if (ElementNo < Updater->getNumInits()) 1170 Init = Updater->getInit(ElementNo); 1171 1172 if (!Init || isa<NoInitExpr>(Init)) 1173 ; // Do nothing. 1174 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1175 EltInit = Emitter->EmitDesignatedInitUpdater(EltInit, ChildILE); 1176 else 1177 EltInit = CGM.EmitConstantExpr(Init, Field->getType(), CGF); 1178 1179 ++ElementNo; 1180 1181 if (!EltInit) 1182 return false; 1183 1184 if (!Field->isBitField()) 1185 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1186 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1187 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1188 else 1189 // Initializing a bitfield with a non-trivial constant? 1190 return false; 1191 } 1192 1193 return true; 1194 } 1195 1196 llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D, 1197 CodeGenFunction *CGF) { 1198 // Make a quick check if variable can be default NULL initialized 1199 // and avoid going through rest of code which may do, for c++11, 1200 // initialization of memory to all NULLs. 1201 if (!D.hasLocalStorage()) { 1202 QualType Ty = D.getType(); 1203 if (Ty->isArrayType()) 1204 Ty = Context.getBaseElementType(Ty); 1205 if (Ty->isRecordType()) 1206 if (const CXXConstructExpr *E = 1207 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1208 const CXXConstructorDecl *CD = E->getConstructor(); 1209 if (CD->isTrivial() && CD->isDefaultConstructor()) 1210 return EmitNullConstant(D.getType()); 1211 } 1212 } 1213 1214 if (const APValue *Value = D.evaluateValue()) 1215 return EmitConstantValueForMemory(*Value, D.getType(), CGF); 1216 1217 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1218 // reference is a constant expression, and the reference binds to a temporary, 1219 // then constant initialization is performed. ConstExprEmitter will 1220 // incorrectly emit a prvalue constant in this case, and the calling code 1221 // interprets that as the (pointer) value of the reference, rather than the 1222 // desired value of the referee. 1223 if (D.getType()->isReferenceType()) 1224 return nullptr; 1225 1226 const Expr *E = D.getInit(); 1227 assert(E && "No initializer to emit"); 1228 1229 llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); 1230 if (C && C->getType()->isIntegerTy(1)) { 1231 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); 1232 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1233 } 1234 return C; 1235 } 1236 1237 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, 1238 QualType DestType, 1239 CodeGenFunction *CGF) { 1240 Expr::EvalResult Result; 1241 1242 bool Success = false; 1243 1244 if (DestType->isReferenceType()) 1245 Success = E->EvaluateAsLValue(Result, Context); 1246 else 1247 Success = E->EvaluateAsRValue(Result, Context); 1248 1249 llvm::Constant *C = nullptr; 1250 if (Success && !Result.HasSideEffects) 1251 C = EmitConstantValue(Result.Val, DestType, CGF); 1252 else 1253 C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); 1254 1255 if (C && C->getType()->isIntegerTy(1)) { 1256 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); 1257 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1258 } 1259 return C; 1260 } 1261 1262 llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value, 1263 QualType DestType, 1264 CodeGenFunction *CGF) { 1265 // For an _Atomic-qualified constant, we may need to add tail padding. 1266 if (auto *AT = DestType->getAs<AtomicType>()) { 1267 QualType InnerType = AT->getValueType(); 1268 auto *Inner = EmitConstantValue(Value, InnerType, CGF); 1269 1270 uint64_t InnerSize = Context.getTypeSize(InnerType); 1271 uint64_t OuterSize = Context.getTypeSize(DestType); 1272 if (InnerSize == OuterSize) 1273 return Inner; 1274 1275 assert(InnerSize < OuterSize && "emitted over-large constant for atomic"); 1276 llvm::Constant *Elts[] = { 1277 Inner, 1278 llvm::ConstantAggregateZero::get( 1279 llvm::ArrayType::get(Int8Ty, (OuterSize - InnerSize) / 8)) 1280 }; 1281 return llvm::ConstantStruct::getAnon(Elts); 1282 } 1283 1284 switch (Value.getKind()) { 1285 case APValue::Uninitialized: 1286 llvm_unreachable("Constant expressions should be initialized."); 1287 case APValue::LValue: { 1288 llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); 1289 llvm::Constant *Offset = 1290 llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity()); 1291 1292 llvm::Constant *C = nullptr; 1293 if (APValue::LValueBase LVBase = Value.getLValueBase()) { 1294 // An array can be represented as an lvalue referring to the base. 1295 if (isa<llvm::ArrayType>(DestTy)) { 1296 assert(Offset->isNullValue() && "offset on array initializer"); 1297 return ConstExprEmitter(*this, CGF).Visit( 1298 const_cast<Expr*>(LVBase.get<const Expr*>())); 1299 } 1300 1301 C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase).getPointer(); 1302 1303 // Apply offset if necessary. 1304 if (!Offset->isNullValue()) { 1305 unsigned AS = C->getType()->getPointerAddressSpace(); 1306 llvm::Type *CharPtrTy = Int8Ty->getPointerTo(AS); 1307 llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, CharPtrTy); 1308 Casted = llvm::ConstantExpr::getGetElementPtr(Int8Ty, Casted, Offset); 1309 C = llvm::ConstantExpr::getPointerCast(Casted, C->getType()); 1310 } 1311 1312 // Convert to the appropriate type; this could be an lvalue for 1313 // an integer. 1314 if (isa<llvm::PointerType>(DestTy)) 1315 return llvm::ConstantExpr::getPointerCast(C, DestTy); 1316 1317 return llvm::ConstantExpr::getPtrToInt(C, DestTy); 1318 } else { 1319 C = Offset; 1320 1321 // Convert to the appropriate type; this could be an lvalue for 1322 // an integer. 1323 if (isa<llvm::PointerType>(DestTy)) { 1324 // Convert the integer to a pointer-sized integer before converting it 1325 // to a pointer. 1326 C = llvm::ConstantExpr::getIntegerCast( 1327 C, getDataLayout().getIntPtrType(DestTy), 1328 /*isSigned=*/false); 1329 return llvm::ConstantExpr::getIntToPtr(C, DestTy); 1330 } 1331 1332 // If the types don't match this should only be a truncate. 1333 if (C->getType() != DestTy) 1334 return llvm::ConstantExpr::getTrunc(C, DestTy); 1335 1336 return C; 1337 } 1338 } 1339 case APValue::Int: 1340 return llvm::ConstantInt::get(VMContext, Value.getInt()); 1341 case APValue::ComplexInt: { 1342 llvm::Constant *Complex[2]; 1343 1344 Complex[0] = llvm::ConstantInt::get(VMContext, 1345 Value.getComplexIntReal()); 1346 Complex[1] = llvm::ConstantInt::get(VMContext, 1347 Value.getComplexIntImag()); 1348 1349 // FIXME: the target may want to specify that this is packed. 1350 llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), 1351 Complex[1]->getType(), 1352 nullptr); 1353 return llvm::ConstantStruct::get(STy, Complex); 1354 } 1355 case APValue::Float: { 1356 const llvm::APFloat &Init = Value.getFloat(); 1357 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf && 1358 !Context.getLangOpts().NativeHalfType && 1359 !Context.getLangOpts().HalfArgsAndReturns) 1360 return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt()); 1361 else 1362 return llvm::ConstantFP::get(VMContext, Init); 1363 } 1364 case APValue::ComplexFloat: { 1365 llvm::Constant *Complex[2]; 1366 1367 Complex[0] = llvm::ConstantFP::get(VMContext, 1368 Value.getComplexFloatReal()); 1369 Complex[1] = llvm::ConstantFP::get(VMContext, 1370 Value.getComplexFloatImag()); 1371 1372 // FIXME: the target may want to specify that this is packed. 1373 llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), 1374 Complex[1]->getType(), 1375 nullptr); 1376 return llvm::ConstantStruct::get(STy, Complex); 1377 } 1378 case APValue::Vector: { 1379 unsigned NumElts = Value.getVectorLength(); 1380 SmallVector<llvm::Constant *, 4> Inits(NumElts); 1381 1382 for (unsigned I = 0; I != NumElts; ++I) { 1383 const APValue &Elt = Value.getVectorElt(I); 1384 if (Elt.isInt()) 1385 Inits[I] = llvm::ConstantInt::get(VMContext, Elt.getInt()); 1386 else if (Elt.isFloat()) 1387 Inits[I] = llvm::ConstantFP::get(VMContext, Elt.getFloat()); 1388 else 1389 llvm_unreachable("unsupported vector element type"); 1390 } 1391 return llvm::ConstantVector::get(Inits); 1392 } 1393 case APValue::AddrLabelDiff: { 1394 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1395 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1396 llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF); 1397 llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF); 1398 1399 // Compute difference 1400 llvm::Type *ResultType = getTypes().ConvertType(DestType); 1401 LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy); 1402 RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy); 1403 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1404 1405 // LLVM is a bit sensitive about the exact format of the 1406 // address-of-label difference; make sure to truncate after 1407 // the subtraction. 1408 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1409 } 1410 case APValue::Struct: 1411 case APValue::Union: 1412 return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType); 1413 case APValue::Array: { 1414 const ArrayType *CAT = Context.getAsArrayType(DestType); 1415 unsigned NumElements = Value.getArraySize(); 1416 unsigned NumInitElts = Value.getArrayInitializedElts(); 1417 1418 // Emit array filler, if there is one. 1419 llvm::Constant *Filler = nullptr; 1420 if (Value.hasArrayFiller()) 1421 Filler = EmitConstantValueForMemory(Value.getArrayFiller(), 1422 CAT->getElementType(), CGF); 1423 1424 // Emit initializer elements. 1425 llvm::Type *CommonElementType = 1426 getTypes().ConvertType(CAT->getElementType()); 1427 1428 // Try to use a ConstantAggregateZero if we can. 1429 if (Filler && Filler->isNullValue() && !NumInitElts) { 1430 llvm::ArrayType *AType = 1431 llvm::ArrayType::get(CommonElementType, NumElements); 1432 return llvm::ConstantAggregateZero::get(AType); 1433 } 1434 1435 std::vector<llvm::Constant*> Elts; 1436 Elts.reserve(NumElements); 1437 for (unsigned I = 0; I < NumElements; ++I) { 1438 llvm::Constant *C = Filler; 1439 if (I < NumInitElts) 1440 C = EmitConstantValueForMemory(Value.getArrayInitializedElt(I), 1441 CAT->getElementType(), CGF); 1442 else 1443 assert(Filler && "Missing filler for implicit elements of initializer"); 1444 if (I == 0) 1445 CommonElementType = C->getType(); 1446 else if (C->getType() != CommonElementType) 1447 CommonElementType = nullptr; 1448 Elts.push_back(C); 1449 } 1450 1451 if (!CommonElementType) { 1452 // FIXME: Try to avoid packing the array 1453 std::vector<llvm::Type*> Types; 1454 Types.reserve(NumElements); 1455 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 1456 Types.push_back(Elts[i]->getType()); 1457 llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true); 1458 return llvm::ConstantStruct::get(SType, Elts); 1459 } 1460 1461 llvm::ArrayType *AType = 1462 llvm::ArrayType::get(CommonElementType, NumElements); 1463 return llvm::ConstantArray::get(AType, Elts); 1464 } 1465 case APValue::MemberPointer: 1466 return getCXXABI().EmitMemberPointer(Value, DestType); 1467 } 1468 llvm_unreachable("Unknown APValue kind"); 1469 } 1470 1471 llvm::Constant * 1472 CodeGenModule::EmitConstantValueForMemory(const APValue &Value, 1473 QualType DestType, 1474 CodeGenFunction *CGF) { 1475 llvm::Constant *C = EmitConstantValue(Value, DestType, CGF); 1476 if (C->getType()->isIntegerTy(1)) { 1477 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType); 1478 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1479 } 1480 return C; 1481 } 1482 1483 ConstantAddress 1484 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 1485 assert(E->isFileScope() && "not a file-scope compound literal expr"); 1486 return ConstExprEmitter(*this, nullptr).EmitLValue(E); 1487 } 1488 1489 llvm::Constant * 1490 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 1491 // Member pointer constants always have a very particular form. 1492 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 1493 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 1494 1495 // A member function pointer. 1496 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 1497 return getCXXABI().EmitMemberFunctionPointer(method); 1498 1499 // Otherwise, a member data pointer. 1500 uint64_t fieldOffset = getContext().getFieldOffset(decl); 1501 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 1502 return getCXXABI().EmitMemberDataPointer(type, chars); 1503 } 1504 1505 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1506 llvm::Type *baseType, 1507 const CXXRecordDecl *base); 1508 1509 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 1510 const CXXRecordDecl *record, 1511 bool asCompleteObject) { 1512 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 1513 llvm::StructType *structure = 1514 (asCompleteObject ? layout.getLLVMType() 1515 : layout.getBaseSubobjectLLVMType()); 1516 1517 unsigned numElements = structure->getNumElements(); 1518 std::vector<llvm::Constant *> elements(numElements); 1519 1520 // Fill in all the bases. 1521 for (const auto &I : record->bases()) { 1522 if (I.isVirtual()) { 1523 // Ignore virtual bases; if we're laying out for a complete 1524 // object, we'll lay these out later. 1525 continue; 1526 } 1527 1528 const CXXRecordDecl *base = 1529 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1530 1531 // Ignore empty bases. 1532 if (base->isEmpty()) 1533 continue; 1534 1535 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 1536 llvm::Type *baseType = structure->getElementType(fieldIndex); 1537 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1538 } 1539 1540 // Fill in all the fields. 1541 for (const auto *Field : record->fields()) { 1542 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 1543 // will fill in later.) 1544 if (!Field->isBitField()) { 1545 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 1546 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 1547 } 1548 1549 // For unions, stop after the first named field. 1550 if (record->isUnion()) { 1551 if (Field->getIdentifier()) 1552 break; 1553 if (const auto *FieldRD = 1554 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl())) 1555 if (FieldRD->findFirstNamedDataMember()) 1556 break; 1557 } 1558 } 1559 1560 // Fill in the virtual bases, if we're working with the complete object. 1561 if (asCompleteObject) { 1562 for (const auto &I : record->vbases()) { 1563 const CXXRecordDecl *base = 1564 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1565 1566 // Ignore empty bases. 1567 if (base->isEmpty()) 1568 continue; 1569 1570 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 1571 1572 // We might have already laid this field out. 1573 if (elements[fieldIndex]) continue; 1574 1575 llvm::Type *baseType = structure->getElementType(fieldIndex); 1576 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1577 } 1578 } 1579 1580 // Now go through all other fields and zero them out. 1581 for (unsigned i = 0; i != numElements; ++i) { 1582 if (!elements[i]) 1583 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 1584 } 1585 1586 return llvm::ConstantStruct::get(structure, elements); 1587 } 1588 1589 /// Emit the null constant for a base subobject. 1590 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1591 llvm::Type *baseType, 1592 const CXXRecordDecl *base) { 1593 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 1594 1595 // Just zero out bases that don't have any pointer to data members. 1596 if (baseLayout.isZeroInitializableAsBase()) 1597 return llvm::Constant::getNullValue(baseType); 1598 1599 // Otherwise, we can just use its null constant. 1600 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 1601 } 1602 1603 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 1604 if (getTypes().isZeroInitializable(T)) 1605 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 1606 1607 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 1608 llvm::ArrayType *ATy = 1609 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 1610 1611 QualType ElementTy = CAT->getElementType(); 1612 1613 llvm::Constant *Element = EmitNullConstant(ElementTy); 1614 unsigned NumElements = CAT->getSize().getZExtValue(); 1615 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 1616 return llvm::ConstantArray::get(ATy, Array); 1617 } 1618 1619 if (const RecordType *RT = T->getAs<RecordType>()) { 1620 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1621 return ::EmitNullConstant(*this, RD, /*complete object*/ true); 1622 } 1623 1624 assert(T->isMemberDataPointerType() && 1625 "Should only see pointers to data members here!"); 1626 1627 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 1628 } 1629 1630 llvm::Constant * 1631 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 1632 return ::EmitNullConstant(*this, Record, false); 1633 } 1634