1 /** @file 2 Produces PI MP Services Protocol on top of Framework MP Services Protocol. 3 4 Intel's Framework MP Services Protocol is replaced by EFI_MP_SERVICES_PROTOCOL in PI 1.1. 5 This module produces PI MP Services Protocol on top of Framework MP Services Protocol. 6 7 Copyright (c) 2009 - 2010, Intel Corporation. All rights reserved.<BR> 8 This program and the accompanying materials 9 are licensed and made available under the terms and conditions of the BSD License 10 which accompanies this distribution. The full text of the license may be found at 11 http://opensource.org/licenses/bsd-license.php 12 13 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, 14 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. 15 Module Name: 16 17 **/ 18 19 #include "MpServicesOnFrameworkMpServicesThunk.h" 20 21 EFI_HANDLE mHandle = NULL; 22 MP_SYSTEM_DATA mMPSystemData; 23 EFI_PHYSICAL_ADDRESS mStartupVector; 24 MP_CPU_EXCHANGE_INFO *mExchangeInfo; 25 BOOLEAN mStopCheckAPsStatus = FALSE; 26 UINTN mNumberOfProcessors; 27 EFI_GENERIC_MEMORY_TEST_PROTOCOL *mGenMemoryTest; 28 29 FRAMEWORK_EFI_MP_SERVICES_PROTOCOL *mFrameworkMpService; 30 EFI_MP_SERVICES_PROTOCOL mMpService = { 31 GetNumberOfProcessors, 32 GetProcessorInfo, 33 StartupAllAPs, 34 StartupThisAP, 35 SwitchBSP, 36 EnableDisableAP, 37 WhoAmI 38 }; 39 40 41 /** 42 Implementation of GetNumberOfProcessors() service of MP Services Protocol. 43 44 This service retrieves the number of logical processor in the platform 45 and the number of those logical processors that are enabled on this boot. 46 This service may only be called from the BSP. 47 48 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. 49 @param NumberOfProcessors Pointer to the total number of logical processors in the system, 50 including the BSP and disabled APs. 51 @param NumberOfEnabledProcessors Pointer to the number of enabled logical processors that exist 52 in system, including the BSP. 53 54 @retval EFI_SUCCESS Number of logical processors and enabled logical processors retrieved.. 55 @retval EFI_DEVICE_ERROR Caller processor is AP. 56 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL 57 @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL 58 59 **/ 60 EFI_STATUS 61 EFIAPI 62 GetNumberOfProcessors ( 63 IN EFI_MP_SERVICES_PROTOCOL *This, 64 OUT UINTN *NumberOfProcessors, 65 OUT UINTN *NumberOfEnabledProcessors 66 ) 67 { 68 EFI_STATUS Status; 69 UINTN CallerNumber; 70 71 // 72 // Check whether caller processor is BSP 73 // 74 WhoAmI (This, &CallerNumber); 75 if (CallerNumber != GetBspNumber ()) { 76 return EFI_DEVICE_ERROR; 77 } 78 79 // 80 // Check parameter NumberOfProcessors 81 // 82 if (NumberOfProcessors == NULL) { 83 return EFI_INVALID_PARAMETER; 84 } 85 86 // 87 // Check parameter NumberOfEnabledProcessors 88 // 89 if (NumberOfEnabledProcessors == NULL) { 90 return EFI_INVALID_PARAMETER; 91 } 92 93 Status = mFrameworkMpService->GetGeneralMPInfo ( 94 mFrameworkMpService, 95 NumberOfProcessors, 96 NULL, 97 NumberOfEnabledProcessors, 98 NULL, 99 NULL 100 ); 101 ASSERT_EFI_ERROR (Status); 102 103 return EFI_SUCCESS; 104 } 105 106 /** 107 Implementation of GetNumberOfProcessors() service of MP Services Protocol. 108 109 Gets detailed MP-related information on the requested processor at the 110 instant this call is made. This service may only be called from the BSP. 111 112 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. 113 @param ProcessorNumber The handle number of processor. 114 @param ProcessorInfoBuffer A pointer to the buffer where information for the requested processor is deposited. 115 116 @retval EFI_SUCCESS Processor information successfully returned. 117 @retval EFI_DEVICE_ERROR Caller processor is AP. 118 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL 119 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist. 120 121 **/ 122 EFI_STATUS 123 EFIAPI 124 GetProcessorInfo ( 125 IN EFI_MP_SERVICES_PROTOCOL *This, 126 IN UINTN ProcessorNumber, 127 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer 128 ) 129 { 130 EFI_STATUS Status; 131 UINTN CallerNumber; 132 UINTN BufferSize; 133 EFI_MP_PROC_CONTEXT ProcessorContextBuffer; 134 135 // 136 // Check whether caller processor is BSP 137 // 138 WhoAmI (This, &CallerNumber); 139 if (CallerNumber != GetBspNumber ()) { 140 return EFI_DEVICE_ERROR; 141 } 142 143 // 144 // Check parameter ProcessorInfoBuffer 145 // 146 if (ProcessorInfoBuffer == NULL) { 147 return EFI_INVALID_PARAMETER; 148 } 149 150 // 151 // Check whether processor with the handle specified by ProcessorNumber exists 152 // 153 if (ProcessorNumber >= mNumberOfProcessors) { 154 return EFI_NOT_FOUND; 155 } 156 157 BufferSize = sizeof (EFI_MP_PROC_CONTEXT); 158 Status = mFrameworkMpService->GetProcessorContext ( 159 mFrameworkMpService, 160 ProcessorNumber, 161 &BufferSize, 162 &ProcessorContextBuffer 163 ); 164 ASSERT_EFI_ERROR (Status); 165 166 ProcessorInfoBuffer->ProcessorId = (UINT64) ProcessorContextBuffer.ApicID; 167 168 // 169 // Get Status Flag of specified processor 170 // 171 ProcessorInfoBuffer->StatusFlag = 0; 172 173 if (ProcessorContextBuffer.Enabled) { 174 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT; 175 } 176 177 if (ProcessorContextBuffer.Designation == EfiCpuBSP) { 178 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT; 179 } 180 181 if (ProcessorContextBuffer.Health.Flags.Uint32 == 0) { 182 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT; 183 } 184 185 ProcessorInfoBuffer->Location.Package = (UINT32) ProcessorContextBuffer.PackageNumber; 186 ProcessorInfoBuffer->Location.Core = (UINT32) ProcessorContextBuffer.NumberOfCores; 187 ProcessorInfoBuffer->Location.Thread = (UINT32) ProcessorContextBuffer.NumberOfThreads; 188 189 return EFI_SUCCESS; 190 } 191 192 /** 193 Implementation of StartupAllAPs() service of MP Services Protocol. 194 195 This service lets the caller get all enabled APs to execute a caller-provided function. 196 This service may only be called from the BSP. 197 198 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. 199 @param Procedure A pointer to the function to be run on enabled APs of the system. 200 @param SingleThread Indicates whether to execute the function simultaneously or one by one.. 201 @param WaitEvent The event created by the caller. 202 If it is NULL, then execute in blocking mode. 203 If it is not NULL, then execute in non-blocking mode. 204 @param TimeoutInMicroSeconds The time limit in microseconds for this AP to finish the function. 205 Zero means infinity. 206 @param ProcedureArgument Pointer to the optional parameter of the assigned function. 207 @param FailedCpuList The list of processor numbers that fail to finish the function before 208 TimeoutInMicrosecsond expires. 209 210 @retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired. 211 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled APs. 212 @retval EFI_DEVICE_ERROR Caller processor is AP. 213 @retval EFI_NOT_STARTED No enabled AP exists in the system. 214 @retval EFI_NOT_READY Any enabled AP is busy. 215 @retval EFI_TIMEOUT In blocking mode, The timeout expired before all enabled APs have finished. 216 @retval EFI_INVALID_PARAMETER Procedure is NULL. 217 218 **/ 219 EFI_STATUS 220 EFIAPI 221 StartupAllAPs ( 222 IN EFI_MP_SERVICES_PROTOCOL *This, 223 IN EFI_AP_PROCEDURE Procedure, 224 IN BOOLEAN SingleThread, 225 IN EFI_EVENT WaitEvent OPTIONAL, 226 IN UINTN TimeoutInMicroSeconds, 227 IN VOID *ProcedureArgument OPTIONAL, 228 OUT UINTN **FailedCpuList OPTIONAL 229 ) 230 { 231 EFI_STATUS Status; 232 UINTN ProcessorNumber; 233 CPU_DATA_BLOCK *CpuData; 234 BOOLEAN Blocking; 235 UINTN BspNumber; 236 237 if (FailedCpuList != NULL) { 238 *FailedCpuList = NULL; 239 } 240 241 // 242 // Check whether caller processor is BSP 243 // 244 BspNumber = GetBspNumber (); 245 WhoAmI (This, &ProcessorNumber); 246 if (ProcessorNumber != BspNumber) { 247 return EFI_DEVICE_ERROR; 248 } 249 250 // 251 // Check parameter Procedure 252 // 253 if (Procedure == NULL) { 254 return EFI_INVALID_PARAMETER; 255 } 256 257 // 258 // Temporarily suppress CheckAPsStatus() 259 // 260 mStopCheckAPsStatus = TRUE; 261 262 // 263 // Check whether all enabled APs are idle. 264 // If any enabled AP is not idle, return EFI_NOT_READY. 265 // 266 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) { 267 268 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 269 270 mMPSystemData.CpuList[ProcessorNumber] = FALSE; 271 if (ProcessorNumber != BspNumber) { 272 if (CpuData->State != CpuStateDisabled) { 273 if (CpuData->State != CpuStateIdle) { 274 mStopCheckAPsStatus = FALSE; 275 return EFI_NOT_READY; 276 } else { 277 // 278 // Mark this processor as responsible for current calling. 279 // 280 mMPSystemData.CpuList[ProcessorNumber] = TRUE; 281 } 282 } 283 } 284 } 285 286 mMPSystemData.FinishCount = 0; 287 mMPSystemData.StartCount = 0; 288 Blocking = FALSE; 289 // 290 // Go through all enabled APs to wakeup them for Procedure. 291 // If in Single Thread mode, then only one AP is woken up, and others are waiting. 292 // 293 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) { 294 295 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 296 // 297 // Check whether this processor is responsible for current calling. 298 // 299 if (mMPSystemData.CpuList[ProcessorNumber]) { 300 301 mMPSystemData.StartCount++; 302 303 AcquireSpinLock (&CpuData->CpuDataLock); 304 CpuData->State = CpuStateReady; 305 ReleaseSpinLock (&CpuData->CpuDataLock); 306 307 if (!Blocking) { 308 WakeUpAp ( 309 ProcessorNumber, 310 Procedure, 311 ProcedureArgument 312 ); 313 } 314 315 if (SingleThread) { 316 Blocking = TRUE; 317 } 318 } 319 } 320 321 // 322 // If no enabled AP exists, return EFI_NOT_STARTED. 323 // 324 if (mMPSystemData.StartCount == 0) { 325 mStopCheckAPsStatus = FALSE; 326 return EFI_NOT_STARTED; 327 } 328 329 // 330 // If WaitEvent is not NULL, execute in non-blocking mode. 331 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS. 332 // CheckAPsStatus() will check completion and timeout periodically. 333 // 334 mMPSystemData.Procedure = Procedure; 335 mMPSystemData.ProcArguments = ProcedureArgument; 336 mMPSystemData.SingleThread = SingleThread; 337 mMPSystemData.FailedCpuList = FailedCpuList; 338 mMPSystemData.ExpectedTime = CalculateTimeout (TimeoutInMicroSeconds, &mMPSystemData.CurrentTime); 339 mMPSystemData.WaitEvent = WaitEvent; 340 341 // 342 // Allow CheckAPsStatus() 343 // 344 mStopCheckAPsStatus = FALSE; 345 346 if (WaitEvent != NULL) { 347 return EFI_SUCCESS; 348 } 349 350 // 351 // If WaitEvent is NULL, execute in blocking mode. 352 // BSP checks APs'state until all APs finish or TimeoutInMicrosecsond expires. 353 // 354 do { 355 Status = CheckAllAPs (); 356 } while (Status == EFI_NOT_READY); 357 358 return Status; 359 } 360 361 /** 362 Implementation of StartupThisAP() service of MP Services Protocol. 363 364 This service lets the caller get one enabled AP to execute a caller-provided function. 365 This service may only be called from the BSP. 366 367 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. 368 @param Procedure A pointer to the function to be run on the designated AP. 369 @param ProcessorNumber The handle number of AP.. 370 @param WaitEvent The event created by the caller. 371 If it is NULL, then execute in blocking mode. 372 If it is not NULL, then execute in non-blocking mode. 373 @param TimeoutInMicroseconds The time limit in microseconds for this AP to finish the function. 374 Zero means infinity. 375 @param ProcedureArgument Pointer to the optional parameter of the assigned function. 376 @param Finished Indicates whether AP has finished assigned function. 377 In blocking mode, it is ignored. 378 379 @retval EFI_SUCCESS In blocking mode, specified AP has finished before the timeout expires. 380 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to specified AP. 381 @retval EFI_DEVICE_ERROR Caller processor is AP. 382 @retval EFI_TIMEOUT In blocking mode, the timeout expires before specified AP has finished. 383 @retval EFI_NOT_READY Specified AP is busy. 384 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist. 385 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP. 386 @retval EFI_INVALID_PARAMETER Procedure is NULL. 387 388 **/ 389 EFI_STATUS 390 EFIAPI 391 StartupThisAP ( 392 IN EFI_MP_SERVICES_PROTOCOL *This, 393 IN EFI_AP_PROCEDURE Procedure, 394 IN UINTN ProcessorNumber, 395 IN EFI_EVENT WaitEvent OPTIONAL, 396 IN UINTN TimeoutInMicroseconds, 397 IN VOID *ProcedureArgument OPTIONAL, 398 OUT BOOLEAN *Finished OPTIONAL 399 ) 400 { 401 CPU_DATA_BLOCK *CpuData; 402 UINTN CallerNumber; 403 EFI_STATUS Status; 404 UINTN BspNumber; 405 406 if (Finished != NULL) { 407 *Finished = TRUE; 408 } 409 410 // 411 // Check whether caller processor is BSP 412 // 413 BspNumber = GetBspNumber (); 414 WhoAmI (This, &CallerNumber); 415 if (CallerNumber != BspNumber) { 416 return EFI_DEVICE_ERROR; 417 } 418 419 // 420 // Check whether processor with the handle specified by ProcessorNumber exists 421 // 422 if (ProcessorNumber >= mNumberOfProcessors) { 423 return EFI_NOT_FOUND; 424 } 425 426 // 427 // Check whether specified processor is BSP 428 // 429 if (ProcessorNumber == BspNumber) { 430 return EFI_INVALID_PARAMETER; 431 } 432 433 // 434 // Check parameter Procedure 435 // 436 if (Procedure == NULL) { 437 return EFI_INVALID_PARAMETER; 438 } 439 440 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 441 442 // 443 // Temporarily suppress CheckAPsStatus() 444 // 445 mStopCheckAPsStatus = TRUE; 446 447 // 448 // Check whether specified AP is disabled 449 // 450 if (CpuData->State == CpuStateDisabled) { 451 mStopCheckAPsStatus = FALSE; 452 return EFI_INVALID_PARAMETER; 453 } 454 455 // 456 // Check whether specified AP is busy 457 // 458 if (CpuData->State != CpuStateIdle) { 459 mStopCheckAPsStatus = FALSE; 460 return EFI_NOT_READY; 461 } 462 463 // 464 // Wakeup specified AP for Procedure. 465 // 466 AcquireSpinLock (&CpuData->CpuDataLock); 467 CpuData->State = CpuStateReady; 468 ReleaseSpinLock (&CpuData->CpuDataLock); 469 470 WakeUpAp ( 471 ProcessorNumber, 472 Procedure, 473 ProcedureArgument 474 ); 475 476 // 477 // If WaitEvent is not NULL, execute in non-blocking mode. 478 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS. 479 // CheckAPsStatus() will check completion and timeout periodically. 480 // 481 CpuData->WaitEvent = WaitEvent; 482 CpuData->Finished = Finished; 483 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime); 484 485 // 486 // Allow CheckAPsStatus() 487 // 488 mStopCheckAPsStatus = FALSE; 489 490 if (WaitEvent != NULL) { 491 return EFI_SUCCESS; 492 } 493 494 // 495 // If WaitEvent is NULL, execute in blocking mode. 496 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires. 497 // 498 do { 499 Status = CheckThisAP (ProcessorNumber); 500 } while (Status == EFI_NOT_READY); 501 502 return Status; 503 } 504 505 /** 506 Implementation of SwitchBSP() service of MP Services Protocol. 507 508 This service switches the requested AP to be the BSP from that point onward. 509 This service may only be called from the current BSP. 510 511 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. 512 @param ProcessorNumber The handle number of processor. 513 @param EnableOldBSP Whether to enable or disable the original BSP. 514 515 @retval EFI_SUCCESS BSP successfully switched. 516 @retval EFI_DEVICE_ERROR Caller processor is AP. 517 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist. 518 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP. 519 @retval EFI_NOT_READY Specified AP is busy. 520 521 **/ 522 EFI_STATUS 523 EFIAPI 524 SwitchBSP ( 525 IN EFI_MP_SERVICES_PROTOCOL *This, 526 IN UINTN ProcessorNumber, 527 IN BOOLEAN EnableOldBSP 528 ) 529 { 530 EFI_STATUS Status; 531 CPU_DATA_BLOCK *CpuData; 532 UINTN CallerNumber; 533 UINTN BspNumber; 534 UINTN ApicBase; 535 UINT32 CurrentTimerValue; 536 UINT32 CurrentTimerRegister; 537 UINT32 CurrentTimerDivide; 538 UINT64 CurrentTscValue; 539 BOOLEAN OldInterruptState; 540 541 // 542 // Check whether caller processor is BSP 543 // 544 BspNumber = GetBspNumber (); 545 WhoAmI (This, &CallerNumber); 546 if (CallerNumber != BspNumber) { 547 return EFI_DEVICE_ERROR; 548 } 549 550 // 551 // Check whether processor with the handle specified by ProcessorNumber exists 552 // 553 if (ProcessorNumber >= mNumberOfProcessors) { 554 return EFI_NOT_FOUND; 555 } 556 557 // 558 // Check whether specified processor is BSP 559 // 560 if (ProcessorNumber == BspNumber) { 561 return EFI_INVALID_PARAMETER; 562 } 563 564 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 565 566 // 567 // Check whether specified AP is disabled 568 // 569 if (CpuData->State == CpuStateDisabled) { 570 return EFI_INVALID_PARAMETER; 571 } 572 573 // 574 // Check whether specified AP is busy 575 // 576 if (CpuData->State != CpuStateIdle) { 577 return EFI_NOT_READY; 578 } 579 580 // 581 // Save and disable interrupt. 582 // 583 OldInterruptState = SaveAndDisableInterrupts (); 584 585 // 586 // Record the current local APIC timer setting of BSP 587 // 588 ApicBase = (UINTN)AsmMsrBitFieldRead64 (MSR_IA32_APIC_BASE, 12, 35) << 12; 589 CurrentTimerValue = MmioRead32 (ApicBase + APIC_REGISTER_TIMER_COUNT); 590 CurrentTimerRegister = MmioRead32 (ApicBase + APIC_REGISTER_LVT_TIMER); 591 CurrentTimerDivide = MmioRead32 (ApicBase + APIC_REGISTER_TIMER_DIVIDE); 592 // 593 // Set mask bit (BIT 16) of LVT Timer Register to disable its interrupt 594 // 595 MmioBitFieldWrite32 (ApicBase + APIC_REGISTER_LVT_TIMER, 16, 16, 1); 596 597 // 598 // Record the current TSC value 599 // 600 CurrentTscValue = AsmReadTsc (); 601 602 Status = mFrameworkMpService->SwitchBSP ( 603 mFrameworkMpService, 604 ProcessorNumber, 605 EnableOldBSP 606 ); 607 ASSERT_EFI_ERROR (Status); 608 609 // 610 // Restore TSC value 611 // 612 AsmWriteMsr64 (MSR_IA32_TIME_STAMP_COUNTER, CurrentTscValue); 613 614 // 615 // Restore local APIC timer setting to new BSP 616 // 617 MmioWrite32 (ApicBase + APIC_REGISTER_TIMER_DIVIDE, CurrentTimerDivide); 618 MmioWrite32 (ApicBase + APIC_REGISTER_TIMER_INIT_COUNT, CurrentTimerValue); 619 MmioWrite32 (ApicBase + APIC_REGISTER_LVT_TIMER, CurrentTimerRegister); 620 621 // 622 // Restore interrupt state. 623 // 624 SetInterruptState (OldInterruptState); 625 626 ChangeCpuState (BspNumber, EnableOldBSP); 627 628 return EFI_SUCCESS; 629 } 630 631 /** 632 Implementation of EnableDisableAP() service of MP Services Protocol. 633 634 This service lets the caller enable or disable an AP. 635 This service may only be called from the BSP. 636 637 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. 638 @param ProcessorNumber The handle number of processor. 639 @param EnableAP Indicates whether the newstate of the AP is enabled or disabled. 640 @param HealthFlag Indicates new health state of the AP.. 641 642 @retval EFI_SUCCESS AP successfully enabled or disabled. 643 @retval EFI_DEVICE_ERROR Caller processor is AP. 644 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist. 645 @retval EFI_INVALID_PARAMETERS ProcessorNumber specifies the BSP. 646 647 **/ 648 EFI_STATUS 649 EFIAPI 650 EnableDisableAP ( 651 IN EFI_MP_SERVICES_PROTOCOL *This, 652 IN UINTN ProcessorNumber, 653 IN BOOLEAN EnableAP, 654 IN UINT32 *HealthFlag OPTIONAL 655 ) 656 { 657 EFI_STATUS Status; 658 UINTN CallerNumber; 659 EFI_MP_HEALTH HealthState; 660 EFI_MP_HEALTH *HealthStatePointer; 661 UINTN BspNumber; 662 663 // 664 // Check whether caller processor is BSP 665 // 666 BspNumber = GetBspNumber (); 667 WhoAmI (This, &CallerNumber); 668 if (CallerNumber != BspNumber) { 669 return EFI_DEVICE_ERROR; 670 } 671 672 // 673 // Check whether processor with the handle specified by ProcessorNumber exists 674 // 675 if (ProcessorNumber >= mNumberOfProcessors) { 676 return EFI_NOT_FOUND; 677 } 678 679 // 680 // Check whether specified processor is BSP 681 // 682 if (ProcessorNumber == BspNumber) { 683 return EFI_INVALID_PARAMETER; 684 } 685 686 if (HealthFlag == NULL) { 687 HealthStatePointer = NULL; 688 } else { 689 if ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) == 0) { 690 HealthState.Flags.Uint32 = 1; 691 } else { 692 HealthState.Flags.Uint32 = 0; 693 } 694 HealthState.TestStatus = 0; 695 696 HealthStatePointer = &HealthState; 697 } 698 699 Status = mFrameworkMpService->EnableDisableAP ( 700 mFrameworkMpService, 701 ProcessorNumber, 702 EnableAP, 703 HealthStatePointer 704 ); 705 ASSERT_EFI_ERROR (Status); 706 707 ChangeCpuState (ProcessorNumber, EnableAP); 708 709 return EFI_SUCCESS; 710 } 711 712 /** 713 Implementation of WhoAmI() service of MP Services Protocol. 714 715 This service lets the caller processor get its handle number. 716 This service may be called from the BSP and APs. 717 718 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. 719 @param ProcessorNumber Pointer to the handle number of AP. 720 721 @retval EFI_SUCCESS Processor number successfully returned. 722 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL 723 724 **/ 725 EFI_STATUS 726 EFIAPI 727 WhoAmI ( 728 IN EFI_MP_SERVICES_PROTOCOL *This, 729 OUT UINTN *ProcessorNumber 730 ) 731 { 732 EFI_STATUS Status; 733 734 if (ProcessorNumber == NULL) { 735 return EFI_INVALID_PARAMETER; 736 } 737 738 Status = mFrameworkMpService->WhoAmI ( 739 mFrameworkMpService, 740 ProcessorNumber 741 ); 742 ASSERT_EFI_ERROR (Status); 743 744 return EFI_SUCCESS; 745 } 746 747 /** 748 Checks APs' status periodically. 749 750 This function is triggered by timer periodically to check the 751 state of APs for StartupAllAPs() and StartupThisAP() executed 752 in non-blocking mode. 753 754 @param Event Event triggered. 755 @param Context Parameter passed with the event. 756 757 **/ 758 VOID 759 EFIAPI 760 CheckAPsStatus ( 761 IN EFI_EVENT Event, 762 IN VOID *Context 763 ) 764 { 765 UINTN ProcessorNumber; 766 CPU_DATA_BLOCK *CpuData; 767 EFI_STATUS Status; 768 769 // 770 // If CheckAPsStatus() is stopped, then return immediately. 771 // 772 if (mStopCheckAPsStatus) { 773 return; 774 } 775 776 // 777 // First, check whether pending StartupAllAPs() exists. 778 // 779 if (mMPSystemData.WaitEvent != NULL) { 780 781 Status = CheckAllAPs (); 782 // 783 // If all APs finish for StartupAllAPs(), signal the WaitEvent for it.. 784 // 785 if (Status != EFI_NOT_READY) { 786 Status = gBS->SignalEvent (mMPSystemData.WaitEvent); 787 mMPSystemData.WaitEvent = NULL; 788 } 789 } 790 791 // 792 // Second, check whether pending StartupThisAPs() callings exist. 793 // 794 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) { 795 796 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 797 798 if (CpuData->WaitEvent == NULL) { 799 continue; 800 } 801 802 Status = CheckThisAP (ProcessorNumber); 803 804 if (Status != EFI_NOT_READY) { 805 gBS->SignalEvent (CpuData->WaitEvent); 806 CpuData->WaitEvent = NULL; 807 } 808 } 809 return ; 810 } 811 812 /** 813 Checks status of all APs. 814 815 This function checks whether all APs have finished task assigned by StartupAllAPs(), 816 and whether timeout expires. 817 818 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs(). 819 @retval EFI_TIMEOUT The timeout expires. 820 @retval EFI_NOT_READY APs have not finished task and timeout has not expired. 821 822 **/ 823 EFI_STATUS 824 CheckAllAPs ( 825 VOID 826 ) 827 { 828 UINTN ProcessorNumber; 829 UINTN NextProcessorNumber; 830 UINTN ListIndex; 831 EFI_STATUS Status; 832 CPU_STATE CpuState; 833 CPU_DATA_BLOCK *CpuData; 834 835 NextProcessorNumber = 0; 836 837 // 838 // Go through all APs that are responsible for the StartupAllAPs(). 839 // 840 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) { 841 if (!mMPSystemData.CpuList[ProcessorNumber]) { 842 continue; 843 } 844 845 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 846 847 // 848 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task. 849 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the 850 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value. 851 // 852 AcquireSpinLock (&CpuData->CpuDataLock); 853 CpuState = CpuData->State; 854 ReleaseSpinLock (&CpuData->CpuDataLock); 855 856 if (CpuState == CpuStateFinished) { 857 mMPSystemData.FinishCount++; 858 mMPSystemData.CpuList[ProcessorNumber] = FALSE; 859 860 AcquireSpinLock (&CpuData->CpuDataLock); 861 CpuData->State = CpuStateIdle; 862 ReleaseSpinLock (&CpuData->CpuDataLock); 863 864 // 865 // If in Single Thread mode, then search for the next waiting AP for execution. 866 // 867 if (mMPSystemData.SingleThread) { 868 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber); 869 870 if (!EFI_ERROR (Status)) { 871 WakeUpAp ( 872 NextProcessorNumber, 873 mMPSystemData.Procedure, 874 mMPSystemData.ProcArguments 875 ); 876 } 877 } 878 } 879 } 880 881 // 882 // If all APs finish, return EFI_SUCCESS. 883 // 884 if (mMPSystemData.FinishCount == mMPSystemData.StartCount) { 885 return EFI_SUCCESS; 886 } 887 888 // 889 // If timeout expires, report timeout. 890 // 891 if (CheckTimeout (&mMPSystemData.CurrentTime, &mMPSystemData.TotalTime, mMPSystemData.ExpectedTime)) { 892 // 893 // If FailedCpuList is not NULL, record all failed APs in it. 894 // 895 if (mMPSystemData.FailedCpuList != NULL) { 896 *mMPSystemData.FailedCpuList = AllocatePool ((mMPSystemData.StartCount - mMPSystemData.FinishCount + 1) * sizeof(UINTN)); 897 ASSERT (*mMPSystemData.FailedCpuList != NULL); 898 } 899 ListIndex = 0; 900 901 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) { 902 // 903 // Check whether this processor is responsible for StartupAllAPs(). 904 // 905 if (mMPSystemData.CpuList[ProcessorNumber]) { 906 // 907 // Reset failed APs to idle state 908 // 909 ResetProcessorToIdleState (ProcessorNumber); 910 mMPSystemData.CpuList[ProcessorNumber] = FALSE; 911 if (mMPSystemData.FailedCpuList != NULL) { 912 (*mMPSystemData.FailedCpuList)[ListIndex++] = ProcessorNumber; 913 } 914 } 915 } 916 if (mMPSystemData.FailedCpuList != NULL) { 917 (*mMPSystemData.FailedCpuList)[ListIndex] = END_OF_CPU_LIST; 918 } 919 return EFI_TIMEOUT; 920 } 921 return EFI_NOT_READY; 922 } 923 924 /** 925 Checks status of specified AP. 926 927 This function checks whether specified AP has finished task assigned by StartupThisAP(), 928 and whether timeout expires. 929 930 @param ProcessorNumber The handle number of processor. 931 932 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs(). 933 @retval EFI_TIMEOUT The timeout expires. 934 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired. 935 936 **/ 937 EFI_STATUS 938 CheckThisAP ( 939 UINTN ProcessorNumber 940 ) 941 { 942 CPU_DATA_BLOCK *CpuData; 943 CPU_STATE CpuState; 944 945 ASSERT (ProcessorNumber < mNumberOfProcessors); 946 ASSERT (ProcessorNumber < MAX_CPU_NUMBER); 947 948 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 949 950 // 951 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task. 952 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the 953 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value. 954 // 955 AcquireSpinLock (&CpuData->CpuDataLock); 956 CpuState = CpuData->State; 957 ReleaseSpinLock (&CpuData->CpuDataLock); 958 959 // 960 // If the APs finishes for StartupThisAP(), return EFI_SUCCESS. 961 // 962 if (CpuState == CpuStateFinished) { 963 964 AcquireSpinLock (&CpuData->CpuDataLock); 965 CpuData->State = CpuStateIdle; 966 ReleaseSpinLock (&CpuData->CpuDataLock); 967 968 if (CpuData->Finished != NULL) { 969 *(CpuData->Finished) = TRUE; 970 } 971 return EFI_SUCCESS; 972 } else { 973 // 974 // If timeout expires for StartupThisAP(), report timeout. 975 // 976 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) { 977 978 if (CpuData->Finished != NULL) { 979 *(CpuData->Finished) = FALSE; 980 } 981 // 982 // Reset failed AP to idle state 983 // 984 ResetProcessorToIdleState (ProcessorNumber); 985 986 return EFI_TIMEOUT; 987 } 988 } 989 return EFI_NOT_READY; 990 } 991 992 /** 993 Calculate timeout value and return the current performance counter value. 994 995 Calculate the number of performance counter ticks required for a timeout. 996 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized 997 as infinity. 998 999 @param TimeoutInMicroseconds Timeout value in microseconds. 1000 @param CurrentTime Returns the current value of the performance counter. 1001 1002 @return Expected timestamp counter for timeout. 1003 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized 1004 as infinity. 1005 1006 **/ 1007 UINT64 1008 CalculateTimeout ( 1009 IN UINTN TimeoutInMicroseconds, 1010 OUT UINT64 *CurrentTime 1011 ) 1012 { 1013 // 1014 // Read the current value of the performance counter 1015 // 1016 *CurrentTime = GetPerformanceCounter (); 1017 1018 // 1019 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized 1020 // as infinity. 1021 // 1022 if (TimeoutInMicroseconds == 0) { 1023 return 0; 1024 } 1025 1026 // 1027 // GetPerformanceCounterProperties () returns the timestamp counter's frequency 1028 // in Hz. So multiply the return value with TimeoutInMicroseconds and then divide 1029 // it by 1,000,000, to get the number of ticks for the timeout value. 1030 // 1031 return DivU64x32 ( 1032 MultU64x64 ( 1033 GetPerformanceCounterProperties (NULL, NULL), 1034 TimeoutInMicroseconds 1035 ), 1036 1000000 1037 ); 1038 } 1039 1040 /** 1041 Checks whether timeout expires. 1042 1043 Check whether the number of ellapsed performance counter ticks required for a timeout condition 1044 has been reached. If Timeout is zero, which means infinity, return value is always FALSE. 1045 1046 @param PreviousTime On input, the value of the performance counter when it was last read. 1047 On output, the current value of the performance counter 1048 @param TotalTime The total amount of ellapsed time in performance counter ticks. 1049 @param Timeout The number of performance counter ticks required to reach a timeout condition. 1050 1051 @retval TRUE A timeout condition has been reached. 1052 @retval FALSE A timeout condition has not been reached. 1053 1054 **/ 1055 BOOLEAN 1056 CheckTimeout ( 1057 IN OUT UINT64 *PreviousTime, 1058 IN UINT64 *TotalTime, 1059 IN UINT64 Timeout 1060 ) 1061 { 1062 UINT64 Start; 1063 UINT64 End; 1064 UINT64 CurrentTime; 1065 INT64 Delta; 1066 INT64 Cycle; 1067 1068 if (Timeout == 0) { 1069 return FALSE; 1070 } 1071 GetPerformanceCounterProperties (&Start, &End); 1072 Cycle = End - Start; 1073 if (Cycle < 0) { 1074 Cycle = -Cycle; 1075 } 1076 Cycle++; 1077 CurrentTime = GetPerformanceCounter(); 1078 Delta = (INT64) (CurrentTime - *PreviousTime); 1079 if (Start > End) { 1080 Delta = -Delta; 1081 } 1082 if (Delta < 0) { 1083 Delta += Cycle; 1084 } 1085 *TotalTime += Delta; 1086 *PreviousTime = CurrentTime; 1087 if (*TotalTime > Timeout) { 1088 return TRUE; 1089 } 1090 return FALSE; 1091 } 1092 1093 /** 1094 Searches for the next waiting AP. 1095 1096 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs(). 1097 1098 @param NextProcessorNumber Pointer to the processor number of the next waiting AP. 1099 1100 @retval EFI_SUCCESS The next waiting AP has been found. 1101 @retval EFI_NOT_FOUND No waiting AP exists. 1102 1103 **/ 1104 EFI_STATUS 1105 GetNextWaitingProcessorNumber ( 1106 OUT UINTN *NextProcessorNumber 1107 ) 1108 { 1109 UINTN ProcessorNumber; 1110 1111 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) { 1112 1113 if (mMPSystemData.CpuList[ProcessorNumber]) { 1114 *NextProcessorNumber = ProcessorNumber; 1115 return EFI_SUCCESS; 1116 } 1117 } 1118 1119 return EFI_NOT_FOUND; 1120 } 1121 1122 1123 /** 1124 Wrapper function for all procedures assigned to AP. 1125 1126 Wrapper function for all procedures assigned to AP via MP service protocol. 1127 It controls states of AP and invokes assigned precedure. 1128 1129 **/ 1130 VOID 1131 ApProcWrapper ( 1132 VOID 1133 ) 1134 { 1135 EFI_AP_PROCEDURE Procedure; 1136 VOID *Parameter; 1137 UINTN ProcessorNumber; 1138 CPU_DATA_BLOCK *CpuData; 1139 1140 // 1141 // Program virtual wire mode for AP, since it will be lost after AP wake up 1142 // 1143 ProgramVirtualWireMode (); 1144 DisableLvtInterrupts (); 1145 1146 // 1147 // Initialize Debug Agent to support source level debug on AP code. 1148 // 1149 InitializeDebugAgent (DEBUG_AGENT_INIT_DXE_AP, NULL, NULL); 1150 1151 WhoAmI (&mMpService, &ProcessorNumber); 1152 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 1153 1154 AcquireSpinLock (&CpuData->CpuDataLock); 1155 CpuData->State = CpuStateBusy; 1156 ReleaseSpinLock (&CpuData->CpuDataLock); 1157 1158 // 1159 // Now let us check it out. 1160 // 1161 AcquireSpinLock (&CpuData->CpuDataLock); 1162 Procedure = CpuData->Procedure; 1163 Parameter = CpuData->Parameter; 1164 ReleaseSpinLock (&CpuData->CpuDataLock); 1165 1166 if (Procedure != NULL) { 1167 1168 Procedure (Parameter); 1169 1170 // 1171 // if BSP is switched to AP, it continue execute from here, but it carries register state 1172 // of the old AP, so need to reload CpuData (might be stored in a register after compiler 1173 // optimization) to make sure it points to the right data 1174 // 1175 WhoAmI (&mMpService, &ProcessorNumber); 1176 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 1177 1178 AcquireSpinLock (&CpuData->CpuDataLock); 1179 CpuData->Procedure = NULL; 1180 ReleaseSpinLock (&CpuData->CpuDataLock); 1181 } 1182 1183 AcquireSpinLock (&CpuData->CpuDataLock); 1184 CpuData->State = CpuStateFinished; 1185 ReleaseSpinLock (&CpuData->CpuDataLock); 1186 } 1187 1188 /** 1189 Function to wake up a specified AP and assign procedure to it. 1190 1191 @param ProcessorNumber Handle number of the specified processor. 1192 @param Procedure Procedure to assign. 1193 @param ProcArguments Argument for Procedure. 1194 1195 **/ 1196 VOID 1197 WakeUpAp ( 1198 IN UINTN ProcessorNumber, 1199 IN EFI_AP_PROCEDURE Procedure, 1200 IN VOID *ProcArguments 1201 ) 1202 { 1203 EFI_STATUS Status; 1204 CPU_DATA_BLOCK *CpuData; 1205 EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer; 1206 1207 ASSERT (ProcessorNumber < mNumberOfProcessors); 1208 ASSERT (ProcessorNumber < MAX_CPU_NUMBER); 1209 1210 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 1211 1212 AcquireSpinLock (&CpuData->CpuDataLock); 1213 CpuData->Parameter = ProcArguments; 1214 CpuData->Procedure = Procedure; 1215 ReleaseSpinLock (&CpuData->CpuDataLock); 1216 1217 Status = GetProcessorInfo ( 1218 &mMpService, 1219 ProcessorNumber, 1220 &ProcessorInfoBuffer 1221 ); 1222 ASSERT_EFI_ERROR (Status); 1223 1224 mExchangeInfo->ApFunction = (VOID *) (UINTN) ApProcWrapper; 1225 mExchangeInfo->ProcessorNumber[ProcessorInfoBuffer.ProcessorId] = (UINT32) ProcessorNumber; 1226 SendInitSipiSipi ( 1227 (UINT32) ProcessorInfoBuffer.ProcessorId, 1228 (UINT32) (UINTN) mStartupVector 1229 ); 1230 } 1231 1232 /** 1233 Terminate AP's task and set it to idle state. 1234 1235 This function terminates AP's task due to timeout by sending INIT-SIPI, 1236 and sends it to idle state. 1237 1238 @param ProcessorNumber Handle number of the specified processor. 1239 1240 **/ 1241 VOID 1242 ResetProcessorToIdleState ( 1243 UINTN ProcessorNumber 1244 ) 1245 { 1246 EFI_STATUS Status; 1247 CPU_DATA_BLOCK *CpuData; 1248 EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer; 1249 1250 Status = GetProcessorInfo ( 1251 &mMpService, 1252 ProcessorNumber, 1253 &ProcessorInfoBuffer 1254 ); 1255 ASSERT_EFI_ERROR (Status); 1256 1257 mExchangeInfo->ApFunction = NULL; 1258 mExchangeInfo->ProcessorNumber[ProcessorInfoBuffer.ProcessorId] = (UINT32) ProcessorNumber; 1259 SendInitSipiSipi ( 1260 (UINT32) ProcessorInfoBuffer.ProcessorId, 1261 (UINT32) (UINTN) mStartupVector 1262 ); 1263 1264 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 1265 1266 AcquireSpinLock (&CpuData->CpuDataLock); 1267 CpuData->State = CpuStateIdle; 1268 ReleaseSpinLock (&CpuData->CpuDataLock); 1269 } 1270 1271 /** 1272 Worker function of EnableDisableAP () 1273 1274 Worker function of EnableDisableAP (). Changes state of specified processor. 1275 1276 @param ProcessorNumber Processor number of specified AP. 1277 @param NewState Desired state of the specified AP. 1278 1279 @retval EFI_SUCCESS AP's state successfully changed. 1280 1281 **/ 1282 EFI_STATUS 1283 ChangeCpuState ( 1284 IN UINTN ProcessorNumber, 1285 IN BOOLEAN NewState 1286 ) 1287 { 1288 CPU_DATA_BLOCK *CpuData; 1289 1290 ASSERT (ProcessorNumber < mNumberOfProcessors); 1291 ASSERT (ProcessorNumber < MAX_CPU_NUMBER); 1292 1293 CpuData = &mMPSystemData.CpuData[ProcessorNumber]; 1294 1295 if (!NewState) { 1296 AcquireSpinLock (&CpuData->CpuDataLock); 1297 CpuData->State = CpuStateDisabled; 1298 ReleaseSpinLock (&CpuData->CpuDataLock); 1299 } else { 1300 AcquireSpinLock (&CpuData->CpuDataLock); 1301 CpuData->State = CpuStateIdle; 1302 ReleaseSpinLock (&CpuData->CpuDataLock); 1303 } 1304 1305 return EFI_SUCCESS; 1306 } 1307 1308 /** 1309 Test memory region of EfiGcdMemoryTypeReserved. 1310 1311 @param Length The length of memory region to test. 1312 1313 @retval EFI_SUCCESS The memory region passes test. 1314 @retval EFI_NOT_FOUND The memory region is not reserved memory. 1315 @retval EFI_DEVICE_ERROR The memory fails on test. 1316 1317 **/ 1318 EFI_STATUS 1319 TestReservedMemory ( 1320 UINTN Length 1321 ) 1322 { 1323 EFI_STATUS Status; 1324 EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor; 1325 EFI_PHYSICAL_ADDRESS Address; 1326 UINTN LengthCovered; 1327 UINTN RemainingLength; 1328 1329 // 1330 // Walk through the memory descriptors covering the memory range. 1331 // 1332 Address = mStartupVector; 1333 RemainingLength = Length; 1334 while (Address < mStartupVector + Length) { 1335 Status = gDS->GetMemorySpaceDescriptor( 1336 Address, 1337 &Descriptor 1338 ); 1339 if (EFI_ERROR (Status)) { 1340 return EFI_NOT_FOUND; 1341 } 1342 1343 if (Descriptor.GcdMemoryType != EfiGcdMemoryTypeReserved) { 1344 return EFI_NOT_FOUND; 1345 } 1346 // 1347 // Calculated the length of the intersected range. 1348 // 1349 LengthCovered = (UINTN) (Descriptor.BaseAddress + Descriptor.Length - Address); 1350 if (LengthCovered > RemainingLength) { 1351 LengthCovered = RemainingLength; 1352 } 1353 1354 Status = mGenMemoryTest->CompatibleRangeTest ( 1355 mGenMemoryTest, 1356 Address, 1357 LengthCovered 1358 ); 1359 if (EFI_ERROR (Status)) { 1360 return EFI_DEVICE_ERROR; 1361 } 1362 1363 Address += LengthCovered; 1364 RemainingLength -= LengthCovered; 1365 } 1366 1367 return EFI_SUCCESS; 1368 } 1369 1370 /** 1371 Allocates startup vector for APs. 1372 1373 This function allocates Startup vector for APs. 1374 1375 @param Size The size of startup vector. 1376 1377 **/ 1378 VOID 1379 AllocateStartupVector ( 1380 UINTN Size 1381 ) 1382 { 1383 EFI_STATUS Status; 1384 1385 Status = gBS->LocateProtocol ( 1386 &gEfiGenericMemTestProtocolGuid, 1387 NULL, 1388 (VOID **) &mGenMemoryTest 1389 ); 1390 if (EFI_ERROR (Status)) { 1391 mGenMemoryTest = NULL; 1392 } 1393 1394 for (mStartupVector = 0x7F000; mStartupVector >= 0x2000; mStartupVector -= EFI_PAGE_SIZE) { 1395 if (mGenMemoryTest != NULL) { 1396 // 1397 // Test memory if it is EfiGcdMemoryTypeReserved. 1398 // 1399 Status = TestReservedMemory (EFI_SIZE_TO_PAGES (Size) * EFI_PAGE_SIZE); 1400 if (Status == EFI_DEVICE_ERROR) { 1401 continue; 1402 } 1403 } 1404 1405 Status = gBS->AllocatePages ( 1406 AllocateAddress, 1407 EfiBootServicesCode, 1408 EFI_SIZE_TO_PAGES (Size), 1409 &mStartupVector 1410 ); 1411 1412 if (!EFI_ERROR (Status)) { 1413 break; 1414 } 1415 } 1416 1417 ASSERT_EFI_ERROR (Status); 1418 } 1419 1420 /** 1421 Prepares Startup Vector for APs. 1422 1423 This function prepares Startup Vector for APs. 1424 1425 **/ 1426 VOID 1427 PrepareAPStartupVector ( 1428 VOID 1429 ) 1430 { 1431 MP_ASSEMBLY_ADDRESS_MAP AddressMap; 1432 IA32_DESCRIPTOR GdtrForBSP; 1433 IA32_DESCRIPTOR IdtrForBSP; 1434 EFI_PHYSICAL_ADDRESS GdtForAP; 1435 EFI_PHYSICAL_ADDRESS IdtForAP; 1436 EFI_STATUS Status; 1437 1438 // 1439 // Get the address map of startup code for AP, 1440 // including code size, and offset of long jump instructions to redirect. 1441 // 1442 AsmGetAddressMap (&AddressMap); 1443 1444 // 1445 // Allocate a 4K-aligned region under 1M for startup vector for AP. 1446 // The region contains AP startup code and exchange data between BSP and AP. 1447 // 1448 AllocateStartupVector (AddressMap.Size + sizeof (MP_CPU_EXCHANGE_INFO)); 1449 1450 // 1451 // Copy AP startup code to startup vector, and then redirect the long jump 1452 // instructions for mode switching. 1453 // 1454 CopyMem ((VOID *) (UINTN) mStartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size); 1455 *(UINT32 *) (UINTN) (mStartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32) (mStartupVector + AddressMap.PModeEntryOffset); 1456 // 1457 // For IA32 mode, LongJumpOffset is filled with zero. If non-zero, then we are in X64 mode, so further redirect for long mode switch. 1458 // 1459 if (AddressMap.LongJumpOffset != 0) { 1460 *(UINT32 *) (UINTN) (mStartupVector + AddressMap.LongJumpOffset + 2) = (UINT32) (mStartupVector + AddressMap.LModeEntryOffset); 1461 } 1462 1463 // 1464 // Get the start address of exchange data between BSP and AP. 1465 // 1466 mExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (mStartupVector + AddressMap.Size); 1467 1468 ZeroMem ((VOID *) mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO)); 1469 1470 mExchangeInfo->StackStart = AllocatePages (EFI_SIZE_TO_PAGES (mNumberOfProcessors * AP_STACK_SIZE)); 1471 mExchangeInfo->StackSize = AP_STACK_SIZE; 1472 1473 AsmReadGdtr (&GdtrForBSP); 1474 AsmReadIdtr (&IdtrForBSP); 1475 1476 // 1477 // Allocate memory under 4G to hold GDT for APs 1478 // 1479 GdtForAP = 0xffffffff; 1480 Status = gBS->AllocatePages ( 1481 AllocateMaxAddress, 1482 EfiBootServicesData, 1483 EFI_SIZE_TO_PAGES ((GdtrForBSP.Limit + 1) + (IdtrForBSP.Limit + 1)), 1484 &GdtForAP 1485 ); 1486 ASSERT_EFI_ERROR (Status); 1487 1488 IdtForAP = (UINTN) GdtForAP + GdtrForBSP.Limit + 1; 1489 1490 CopyMem ((VOID *) (UINTN) GdtForAP, (VOID *) GdtrForBSP.Base, GdtrForBSP.Limit + 1); 1491 CopyMem ((VOID *) (UINTN) IdtForAP, (VOID *) IdtrForBSP.Base, IdtrForBSP.Limit + 1); 1492 1493 mExchangeInfo->GdtrProfile.Base = (UINTN) GdtForAP; 1494 mExchangeInfo->GdtrProfile.Limit = GdtrForBSP.Limit; 1495 mExchangeInfo->IdtrProfile.Base = (UINTN) IdtForAP; 1496 mExchangeInfo->IdtrProfile.Limit = IdtrForBSP.Limit; 1497 1498 mExchangeInfo->BufferStart = (UINT32) mStartupVector; 1499 mExchangeInfo->Cr3 = (UINT32) (AsmReadCr3 ()); 1500 } 1501 1502 /** 1503 Prepares memory region for processor configuration. 1504 1505 This function prepares memory region for processor configuration. 1506 1507 **/ 1508 VOID 1509 PrepareMemoryForConfiguration ( 1510 VOID 1511 ) 1512 { 1513 UINTN Index; 1514 1515 // 1516 // Initialize Spin Locks for system 1517 // 1518 InitializeSpinLock (&mMPSystemData.APSerializeLock); 1519 for (Index = 0; Index < MAX_CPU_NUMBER; Index++) { 1520 InitializeSpinLock (&mMPSystemData.CpuData[Index].CpuDataLock); 1521 } 1522 1523 PrepareAPStartupVector (); 1524 } 1525 1526 /** 1527 Gets the processor number of BSP. 1528 1529 @return The processor number of BSP. 1530 1531 **/ 1532 UINTN 1533 GetBspNumber ( 1534 VOID 1535 ) 1536 { 1537 UINTN ProcessorNumber; 1538 EFI_MP_PROC_CONTEXT ProcessorContextBuffer; 1539 EFI_STATUS Status; 1540 UINTN BufferSize; 1541 1542 BufferSize = sizeof (EFI_MP_PROC_CONTEXT); 1543 1544 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) { 1545 Status = mFrameworkMpService->GetProcessorContext ( 1546 mFrameworkMpService, 1547 ProcessorNumber, 1548 &BufferSize, 1549 &ProcessorContextBuffer 1550 ); 1551 ASSERT_EFI_ERROR (Status); 1552 1553 if (ProcessorContextBuffer.Designation == EfiCpuBSP) { 1554 break; 1555 } 1556 } 1557 ASSERT (ProcessorNumber < mNumberOfProcessors); 1558 1559 return ProcessorNumber; 1560 } 1561 1562 /** 1563 Entrypoint of MP Services Protocol thunk driver. 1564 1565 @param[in] ImageHandle The firmware allocated handle for the EFI image. 1566 @param[in] SystemTable A pointer to the EFI System Table. 1567 1568 @retval EFI_SUCCESS The entry point is executed successfully. 1569 1570 **/ 1571 EFI_STATUS 1572 EFIAPI 1573 InitializeMpServicesProtocol ( 1574 IN EFI_HANDLE ImageHandle, 1575 IN EFI_SYSTEM_TABLE *SystemTable 1576 ) 1577 { 1578 EFI_STATUS Status; 1579 1580 // 1581 // Locates Framework version MP Services Protocol 1582 // 1583 Status = gBS->LocateProtocol ( 1584 &gFrameworkEfiMpServiceProtocolGuid, 1585 NULL, 1586 (VOID **) &mFrameworkMpService 1587 ); 1588 ASSERT_EFI_ERROR (Status); 1589 1590 Status = mFrameworkMpService->GetGeneralMPInfo ( 1591 mFrameworkMpService, 1592 &mNumberOfProcessors, 1593 NULL, 1594 NULL, 1595 NULL, 1596 NULL 1597 ); 1598 ASSERT_EFI_ERROR (Status); 1599 ASSERT (mNumberOfProcessors < MAX_CPU_NUMBER); 1600 1601 PrepareMemoryForConfiguration (); 1602 1603 // 1604 // Create timer event to check AP state for non-blocking execution. 1605 // 1606 Status = gBS->CreateEvent ( 1607 EVT_TIMER | EVT_NOTIFY_SIGNAL, 1608 TPL_CALLBACK, 1609 CheckAPsStatus, 1610 NULL, 1611 &mMPSystemData.CheckAPsEvent 1612 ); 1613 ASSERT_EFI_ERROR (Status); 1614 1615 // 1616 // Now install the MP services protocol. 1617 // 1618 Status = gBS->InstallProtocolInterface ( 1619 &mHandle, 1620 &gEfiMpServiceProtocolGuid, 1621 EFI_NATIVE_INTERFACE, 1622 &mMpService 1623 ); 1624 ASSERT_EFI_ERROR (Status); 1625 1626 // 1627 // Launch the timer event to check AP state. 1628 // 1629 Status = gBS->SetTimer ( 1630 mMPSystemData.CheckAPsEvent, 1631 TimerPeriodic, 1632 100000 1633 ); 1634 ASSERT_EFI_ERROR (Status); 1635 1636 return EFI_SUCCESS; 1637 } 1638