1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwritting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 92 //===----------------------------------------------------------------------===// 93 94 #include "llvm/ADT/DepthFirstIterator.h" 95 #include "llvm/ADT/SmallString.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/ADT/StringExtras.h" 98 #include "llvm/ADT/Triple.h" 99 #include "llvm/IR/DataLayout.h" 100 #include "llvm/IR/Function.h" 101 #include "llvm/IR/IRBuilder.h" 102 #include "llvm/IR/InlineAsm.h" 103 #include "llvm/IR/InstVisitor.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/MDBuilder.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/ValueMap.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Debug.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Instrumentation.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/ModuleUtils.h" 117 118 using namespace llvm; 119 120 #define DEBUG_TYPE "msan" 121 122 static const unsigned kOriginSize = 4; 123 static const unsigned kMinOriginAlignment = 4; 124 static const unsigned kShadowTLSAlignment = 8; 125 126 // These constants must be kept in sync with the ones in msan.h. 127 static const unsigned kParamTLSSize = 800; 128 static const unsigned kRetvalTLSSize = 800; 129 130 // Accesses sizes are powers of two: 1, 2, 4, 8. 131 static const size_t kNumberOfAccessSizes = 4; 132 133 /// \brief Track origins of uninitialized values. 134 /// 135 /// Adds a section to MemorySanitizer report that points to the allocation 136 /// (stack or heap) the uninitialized bits came from originally. 137 static cl::opt<int> ClTrackOrigins("msan-track-origins", 138 cl::desc("Track origins (allocation sites) of poisoned memory"), 139 cl::Hidden, cl::init(0)); 140 static cl::opt<bool> ClKeepGoing("msan-keep-going", 141 cl::desc("keep going after reporting a UMR"), 142 cl::Hidden, cl::init(false)); 143 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 144 cl::desc("poison uninitialized stack variables"), 145 cl::Hidden, cl::init(true)); 146 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 147 cl::desc("poison uninitialized stack variables with a call"), 148 cl::Hidden, cl::init(false)); 149 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 150 cl::desc("poison uninitialized stack variables with the given pattern"), 151 cl::Hidden, cl::init(0xff)); 152 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 153 cl::desc("poison undef temps"), 154 cl::Hidden, cl::init(true)); 155 156 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 157 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 158 cl::Hidden, cl::init(true)); 159 160 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 161 cl::desc("exact handling of relational integer ICmp"), 162 cl::Hidden, cl::init(false)); 163 164 // This flag controls whether we check the shadow of the address 165 // operand of load or store. Such bugs are very rare, since load from 166 // a garbage address typically results in SEGV, but still happen 167 // (e.g. only lower bits of address are garbage, or the access happens 168 // early at program startup where malloc-ed memory is more likely to 169 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 170 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 171 cl::desc("report accesses through a pointer which has poisoned shadow"), 172 cl::Hidden, cl::init(true)); 173 174 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 175 cl::desc("print out instructions with default strict semantics"), 176 cl::Hidden, cl::init(false)); 177 178 static cl::opt<int> ClInstrumentationWithCallThreshold( 179 "msan-instrumentation-with-call-threshold", 180 cl::desc( 181 "If the function being instrumented requires more than " 182 "this number of checks and origin stores, use callbacks instead of " 183 "inline checks (-1 means never use callbacks)."), 184 cl::Hidden, cl::init(3500)); 185 186 // This is an experiment to enable handling of cases where shadow is a non-zero 187 // compile-time constant. For some unexplainable reason they were silently 188 // ignored in the instrumentation. 189 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 190 cl::desc("Insert checks for constant shadow values"), 191 cl::Hidden, cl::init(false)); 192 193 // This is off by default because of a bug in gold: 194 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 195 static cl::opt<bool> ClWithComdat("msan-with-comdat", 196 cl::desc("Place MSan constructors in comdat sections"), 197 cl::Hidden, cl::init(false)); 198 199 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 200 static const char *const kMsanInitName = "__msan_init"; 201 202 namespace { 203 204 // Memory map parameters used in application-to-shadow address calculation. 205 // Offset = (Addr & ~AndMask) ^ XorMask 206 // Shadow = ShadowBase + Offset 207 // Origin = OriginBase + Offset 208 struct MemoryMapParams { 209 uint64_t AndMask; 210 uint64_t XorMask; 211 uint64_t ShadowBase; 212 uint64_t OriginBase; 213 }; 214 215 struct PlatformMemoryMapParams { 216 const MemoryMapParams *bits32; 217 const MemoryMapParams *bits64; 218 }; 219 220 // i386 Linux 221 static const MemoryMapParams Linux_I386_MemoryMapParams = { 222 0x000080000000, // AndMask 223 0, // XorMask (not used) 224 0, // ShadowBase (not used) 225 0x000040000000, // OriginBase 226 }; 227 228 // x86_64 Linux 229 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 230 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 231 0x400000000000, // AndMask 232 0, // XorMask (not used) 233 0, // ShadowBase (not used) 234 0x200000000000, // OriginBase 235 #else 236 0, // AndMask (not used) 237 0x500000000000, // XorMask 238 0, // ShadowBase (not used) 239 0x100000000000, // OriginBase 240 #endif 241 }; 242 243 // mips64 Linux 244 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 245 0x004000000000, // AndMask 246 0, // XorMask (not used) 247 0, // ShadowBase (not used) 248 0x002000000000, // OriginBase 249 }; 250 251 // ppc64 Linux 252 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 253 0x200000000000, // AndMask 254 0x100000000000, // XorMask 255 0x080000000000, // ShadowBase 256 0x1C0000000000, // OriginBase 257 }; 258 259 // aarch64 Linux 260 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 261 0, // AndMask (not used) 262 0x06000000000, // XorMask 263 0, // ShadowBase (not used) 264 0x01000000000, // OriginBase 265 }; 266 267 // i386 FreeBSD 268 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 269 0x000180000000, // AndMask 270 0x000040000000, // XorMask 271 0x000020000000, // ShadowBase 272 0x000700000000, // OriginBase 273 }; 274 275 // x86_64 FreeBSD 276 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 277 0xc00000000000, // AndMask 278 0x200000000000, // XorMask 279 0x100000000000, // ShadowBase 280 0x380000000000, // OriginBase 281 }; 282 283 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 284 &Linux_I386_MemoryMapParams, 285 &Linux_X86_64_MemoryMapParams, 286 }; 287 288 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 289 nullptr, 290 &Linux_MIPS64_MemoryMapParams, 291 }; 292 293 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 294 nullptr, 295 &Linux_PowerPC64_MemoryMapParams, 296 }; 297 298 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 299 nullptr, 300 &Linux_AArch64_MemoryMapParams, 301 }; 302 303 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 304 &FreeBSD_I386_MemoryMapParams, 305 &FreeBSD_X86_64_MemoryMapParams, 306 }; 307 308 /// \brief An instrumentation pass implementing detection of uninitialized 309 /// reads. 310 /// 311 /// MemorySanitizer: instrument the code in module to find 312 /// uninitialized reads. 313 class MemorySanitizer : public FunctionPass { 314 public: 315 MemorySanitizer(int TrackOrigins = 0) 316 : FunctionPass(ID), 317 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)), 318 WarningFn(nullptr) {} 319 const char *getPassName() const override { return "MemorySanitizer"; } 320 void getAnalysisUsage(AnalysisUsage &AU) const override { 321 AU.addRequired<TargetLibraryInfoWrapperPass>(); 322 } 323 bool runOnFunction(Function &F) override; 324 bool doInitialization(Module &M) override; 325 static char ID; // Pass identification, replacement for typeid. 326 327 private: 328 void initializeCallbacks(Module &M); 329 330 /// \brief Track origins (allocation points) of uninitialized values. 331 int TrackOrigins; 332 333 LLVMContext *C; 334 Type *IntptrTy; 335 Type *OriginTy; 336 /// \brief Thread-local shadow storage for function parameters. 337 GlobalVariable *ParamTLS; 338 /// \brief Thread-local origin storage for function parameters. 339 GlobalVariable *ParamOriginTLS; 340 /// \brief Thread-local shadow storage for function return value. 341 GlobalVariable *RetvalTLS; 342 /// \brief Thread-local origin storage for function return value. 343 GlobalVariable *RetvalOriginTLS; 344 /// \brief Thread-local shadow storage for in-register va_arg function 345 /// parameters (x86_64-specific). 346 GlobalVariable *VAArgTLS; 347 /// \brief Thread-local shadow storage for va_arg overflow area 348 /// (x86_64-specific). 349 GlobalVariable *VAArgOverflowSizeTLS; 350 /// \brief Thread-local space used to pass origin value to the UMR reporting 351 /// function. 352 GlobalVariable *OriginTLS; 353 354 /// \brief The run-time callback to print a warning. 355 Value *WarningFn; 356 // These arrays are indexed by log2(AccessSize). 357 Value *MaybeWarningFn[kNumberOfAccessSizes]; 358 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 359 360 /// \brief Run-time helper that generates a new origin value for a stack 361 /// allocation. 362 Value *MsanSetAllocaOrigin4Fn; 363 /// \brief Run-time helper that poisons stack on function entry. 364 Value *MsanPoisonStackFn; 365 /// \brief Run-time helper that records a store (or any event) of an 366 /// uninitialized value and returns an updated origin id encoding this info. 367 Value *MsanChainOriginFn; 368 /// \brief MSan runtime replacements for memmove, memcpy and memset. 369 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 370 371 /// \brief Memory map parameters used in application-to-shadow calculation. 372 const MemoryMapParams *MapParams; 373 374 MDNode *ColdCallWeights; 375 /// \brief Branch weights for origin store. 376 MDNode *OriginStoreWeights; 377 /// \brief An empty volatile inline asm that prevents callback merge. 378 InlineAsm *EmptyAsm; 379 Function *MsanCtorFunction; 380 381 friend struct MemorySanitizerVisitor; 382 friend struct VarArgAMD64Helper; 383 friend struct VarArgMIPS64Helper; 384 friend struct VarArgAArch64Helper; 385 friend struct VarArgPowerPC64Helper; 386 }; 387 } // anonymous namespace 388 389 char MemorySanitizer::ID = 0; 390 INITIALIZE_PASS_BEGIN( 391 MemorySanitizer, "msan", 392 "MemorySanitizer: detects uninitialized reads.", false, false) 393 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 394 INITIALIZE_PASS_END( 395 MemorySanitizer, "msan", 396 "MemorySanitizer: detects uninitialized reads.", false, false) 397 398 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) { 399 return new MemorySanitizer(TrackOrigins); 400 } 401 402 /// \brief Create a non-const global initialized with the given string. 403 /// 404 /// Creates a writable global for Str so that we can pass it to the 405 /// run-time lib. Runtime uses first 4 bytes of the string to store the 406 /// frame ID, so the string needs to be mutable. 407 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 408 StringRef Str) { 409 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 410 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 411 GlobalValue::PrivateLinkage, StrConst, ""); 412 } 413 414 /// \brief Insert extern declaration of runtime-provided functions and globals. 415 void MemorySanitizer::initializeCallbacks(Module &M) { 416 // Only do this once. 417 if (WarningFn) 418 return; 419 420 IRBuilder<> IRB(*C); 421 // Create the callback. 422 // FIXME: this function should have "Cold" calling conv, 423 // which is not yet implemented. 424 StringRef WarningFnName = ClKeepGoing ? "__msan_warning" 425 : "__msan_warning_noreturn"; 426 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr); 427 428 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 429 AccessSizeIndex++) { 430 unsigned AccessSize = 1 << AccessSizeIndex; 431 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 432 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 433 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 434 IRB.getInt32Ty(), nullptr); 435 436 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 437 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 438 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 439 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr); 440 } 441 442 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 443 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 444 IRB.getInt8PtrTy(), IntptrTy, nullptr); 445 MsanPoisonStackFn = 446 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 447 IRB.getInt8PtrTy(), IntptrTy, nullptr); 448 MsanChainOriginFn = M.getOrInsertFunction( 449 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr); 450 MemmoveFn = M.getOrInsertFunction( 451 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 452 IRB.getInt8PtrTy(), IntptrTy, nullptr); 453 MemcpyFn = M.getOrInsertFunction( 454 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 455 IntptrTy, nullptr); 456 MemsetFn = M.getOrInsertFunction( 457 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 458 IntptrTy, nullptr); 459 460 // Create globals. 461 RetvalTLS = new GlobalVariable( 462 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 463 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 464 GlobalVariable::InitialExecTLSModel); 465 RetvalOriginTLS = new GlobalVariable( 466 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 467 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 468 469 ParamTLS = new GlobalVariable( 470 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 471 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 472 GlobalVariable::InitialExecTLSModel); 473 ParamOriginTLS = new GlobalVariable( 474 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 475 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 476 nullptr, GlobalVariable::InitialExecTLSModel); 477 478 VAArgTLS = new GlobalVariable( 479 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 480 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 481 GlobalVariable::InitialExecTLSModel); 482 VAArgOverflowSizeTLS = new GlobalVariable( 483 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 484 "__msan_va_arg_overflow_size_tls", nullptr, 485 GlobalVariable::InitialExecTLSModel); 486 OriginTLS = new GlobalVariable( 487 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 488 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 489 490 // We insert an empty inline asm after __msan_report* to avoid callback merge. 491 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 492 StringRef(""), StringRef(""), 493 /*hasSideEffects=*/true); 494 } 495 496 /// \brief Module-level initialization. 497 /// 498 /// inserts a call to __msan_init to the module's constructor list. 499 bool MemorySanitizer::doInitialization(Module &M) { 500 auto &DL = M.getDataLayout(); 501 502 Triple TargetTriple(M.getTargetTriple()); 503 switch (TargetTriple.getOS()) { 504 case Triple::FreeBSD: 505 switch (TargetTriple.getArch()) { 506 case Triple::x86_64: 507 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 508 break; 509 case Triple::x86: 510 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 511 break; 512 default: 513 report_fatal_error("unsupported architecture"); 514 } 515 break; 516 case Triple::Linux: 517 switch (TargetTriple.getArch()) { 518 case Triple::x86_64: 519 MapParams = Linux_X86_MemoryMapParams.bits64; 520 break; 521 case Triple::x86: 522 MapParams = Linux_X86_MemoryMapParams.bits32; 523 break; 524 case Triple::mips64: 525 case Triple::mips64el: 526 MapParams = Linux_MIPS_MemoryMapParams.bits64; 527 break; 528 case Triple::ppc64: 529 case Triple::ppc64le: 530 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 531 break; 532 case Triple::aarch64: 533 case Triple::aarch64_be: 534 MapParams = Linux_ARM_MemoryMapParams.bits64; 535 break; 536 default: 537 report_fatal_error("unsupported architecture"); 538 } 539 break; 540 default: 541 report_fatal_error("unsupported operating system"); 542 } 543 544 C = &(M.getContext()); 545 IRBuilder<> IRB(*C); 546 IntptrTy = IRB.getIntPtrTy(DL); 547 OriginTy = IRB.getInt32Ty(); 548 549 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 550 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 551 552 std::tie(MsanCtorFunction, std::ignore) = 553 createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName, 554 /*InitArgTypes=*/{}, 555 /*InitArgs=*/{}); 556 if (ClWithComdat) { 557 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 558 MsanCtorFunction->setComdat(MsanCtorComdat); 559 appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction); 560 } else { 561 appendToGlobalCtors(M, MsanCtorFunction, 0); 562 } 563 564 565 if (TrackOrigins) 566 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 567 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 568 569 if (ClKeepGoing) 570 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 571 IRB.getInt32(ClKeepGoing), "__msan_keep_going"); 572 573 return true; 574 } 575 576 namespace { 577 578 /// \brief A helper class that handles instrumentation of VarArg 579 /// functions on a particular platform. 580 /// 581 /// Implementations are expected to insert the instrumentation 582 /// necessary to propagate argument shadow through VarArg function 583 /// calls. Visit* methods are called during an InstVisitor pass over 584 /// the function, and should avoid creating new basic blocks. A new 585 /// instance of this class is created for each instrumented function. 586 struct VarArgHelper { 587 /// \brief Visit a CallSite. 588 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 589 590 /// \brief Visit a va_start call. 591 virtual void visitVAStartInst(VAStartInst &I) = 0; 592 593 /// \brief Visit a va_copy call. 594 virtual void visitVACopyInst(VACopyInst &I) = 0; 595 596 /// \brief Finalize function instrumentation. 597 /// 598 /// This method is called after visiting all interesting (see above) 599 /// instructions in a function. 600 virtual void finalizeInstrumentation() = 0; 601 602 virtual ~VarArgHelper() {} 603 }; 604 605 struct MemorySanitizerVisitor; 606 607 VarArgHelper* 608 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 609 MemorySanitizerVisitor &Visitor); 610 611 unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 612 if (TypeSize <= 8) return 0; 613 return Log2_32_Ceil((TypeSize + 7) / 8); 614 } 615 616 /// This class does all the work for a given function. Store and Load 617 /// instructions store and load corresponding shadow and origin 618 /// values. Most instructions propagate shadow from arguments to their 619 /// return values. Certain instructions (most importantly, BranchInst) 620 /// test their argument shadow and print reports (with a runtime call) if it's 621 /// non-zero. 622 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 623 Function &F; 624 MemorySanitizer &MS; 625 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 626 ValueMap<Value*, Value*> ShadowMap, OriginMap; 627 std::unique_ptr<VarArgHelper> VAHelper; 628 const TargetLibraryInfo *TLI; 629 630 // The following flags disable parts of MSan instrumentation based on 631 // blacklist contents and command-line options. 632 bool InsertChecks; 633 bool PropagateShadow; 634 bool PoisonStack; 635 bool PoisonUndef; 636 bool CheckReturnValue; 637 638 struct ShadowOriginAndInsertPoint { 639 Value *Shadow; 640 Value *Origin; 641 Instruction *OrigIns; 642 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 643 : Shadow(S), Origin(O), OrigIns(I) { } 644 }; 645 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 646 SmallVector<StoreInst *, 16> StoreList; 647 648 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 649 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 650 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 651 InsertChecks = SanitizeFunction; 652 PropagateShadow = SanitizeFunction; 653 PoisonStack = SanitizeFunction && ClPoisonStack; 654 PoisonUndef = SanitizeFunction && ClPoisonUndef; 655 // FIXME: Consider using SpecialCaseList to specify a list of functions that 656 // must always return fully initialized values. For now, we hardcode "main". 657 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 658 TLI = &MS.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 659 660 DEBUG(if (!InsertChecks) 661 dbgs() << "MemorySanitizer is not inserting checks into '" 662 << F.getName() << "'\n"); 663 } 664 665 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 666 if (MS.TrackOrigins <= 1) return V; 667 return IRB.CreateCall(MS.MsanChainOriginFn, V); 668 } 669 670 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 671 const DataLayout &DL = F.getParent()->getDataLayout(); 672 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 673 if (IntptrSize == kOriginSize) return Origin; 674 assert(IntptrSize == kOriginSize * 2); 675 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 676 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 677 } 678 679 /// \brief Fill memory range with the given origin value. 680 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 681 unsigned Size, unsigned Alignment) { 682 const DataLayout &DL = F.getParent()->getDataLayout(); 683 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 684 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 685 assert(IntptrAlignment >= kMinOriginAlignment); 686 assert(IntptrSize >= kOriginSize); 687 688 unsigned Ofs = 0; 689 unsigned CurrentAlignment = Alignment; 690 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 691 Value *IntptrOrigin = originToIntptr(IRB, Origin); 692 Value *IntptrOriginPtr = 693 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 694 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 695 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 696 : IntptrOriginPtr; 697 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 698 Ofs += IntptrSize / kOriginSize; 699 CurrentAlignment = IntptrAlignment; 700 } 701 } 702 703 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 704 Value *GEP = 705 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 706 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 707 CurrentAlignment = kMinOriginAlignment; 708 } 709 } 710 711 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 712 unsigned Alignment, bool AsCall) { 713 const DataLayout &DL = F.getParent()->getDataLayout(); 714 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 715 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 716 if (Shadow->getType()->isAggregateType()) { 717 paintOrigin(IRB, updateOrigin(Origin, IRB), 718 getOriginPtr(Addr, IRB, Alignment), StoreSize, 719 OriginAlignment); 720 } else { 721 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 722 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 723 if (ConstantShadow) { 724 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 725 paintOrigin(IRB, updateOrigin(Origin, IRB), 726 getOriginPtr(Addr, IRB, Alignment), StoreSize, 727 OriginAlignment); 728 return; 729 } 730 731 unsigned TypeSizeInBits = 732 DL.getTypeSizeInBits(ConvertedShadow->getType()); 733 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 734 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 735 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 736 Value *ConvertedShadow2 = IRB.CreateZExt( 737 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 738 IRB.CreateCall(Fn, {ConvertedShadow2, 739 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 740 Origin}); 741 } else { 742 Value *Cmp = IRB.CreateICmpNE( 743 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 744 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 745 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 746 IRBuilder<> IRBNew(CheckTerm); 747 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), 748 getOriginPtr(Addr, IRBNew, Alignment), StoreSize, 749 OriginAlignment); 750 } 751 } 752 } 753 754 void materializeStores(bool InstrumentWithCalls) { 755 for (StoreInst *SI : StoreList) { 756 IRBuilder<> IRB(SI); 757 Value *Val = SI->getValueOperand(); 758 Value *Addr = SI->getPointerOperand(); 759 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 760 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 761 762 StoreInst *NewSI = 763 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI->getAlignment()); 764 DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 765 (void)NewSI; 766 767 if (ClCheckAccessAddress) 768 insertShadowCheck(Addr, SI); 769 770 if (SI->isAtomic()) 771 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 772 773 if (MS.TrackOrigins && !SI->isAtomic()) 774 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI->getAlignment(), 775 InstrumentWithCalls); 776 } 777 } 778 779 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 780 bool AsCall) { 781 IRBuilder<> IRB(OrigIns); 782 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 783 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 784 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 785 786 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 787 if (ConstantShadow) { 788 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 789 if (MS.TrackOrigins) { 790 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 791 MS.OriginTLS); 792 } 793 IRB.CreateCall(MS.WarningFn, {}); 794 IRB.CreateCall(MS.EmptyAsm, {}); 795 // FIXME: Insert UnreachableInst if !ClKeepGoing? 796 // This may invalidate some of the following checks and needs to be done 797 // at the very end. 798 } 799 return; 800 } 801 802 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 803 804 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 805 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 806 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 807 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 808 Value *ConvertedShadow2 = 809 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 810 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 811 ? Origin 812 : (Value *)IRB.getInt32(0)}); 813 } else { 814 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 815 getCleanShadow(ConvertedShadow), "_mscmp"); 816 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 817 Cmp, OrigIns, 818 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights); 819 820 IRB.SetInsertPoint(CheckTerm); 821 if (MS.TrackOrigins) { 822 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 823 MS.OriginTLS); 824 } 825 IRB.CreateCall(MS.WarningFn, {}); 826 IRB.CreateCall(MS.EmptyAsm, {}); 827 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 828 } 829 } 830 831 void materializeChecks(bool InstrumentWithCalls) { 832 for (const auto &ShadowData : InstrumentationList) { 833 Instruction *OrigIns = ShadowData.OrigIns; 834 Value *Shadow = ShadowData.Shadow; 835 Value *Origin = ShadowData.Origin; 836 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 837 } 838 DEBUG(dbgs() << "DONE:\n" << F); 839 } 840 841 /// \brief Add MemorySanitizer instrumentation to a function. 842 bool runOnFunction() { 843 MS.initializeCallbacks(*F.getParent()); 844 845 // In the presence of unreachable blocks, we may see Phi nodes with 846 // incoming nodes from such blocks. Since InstVisitor skips unreachable 847 // blocks, such nodes will not have any shadow value associated with them. 848 // It's easier to remove unreachable blocks than deal with missing shadow. 849 removeUnreachableBlocks(F); 850 851 // Iterate all BBs in depth-first order and create shadow instructions 852 // for all instructions (where applicable). 853 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 854 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) 855 visit(*BB); 856 857 858 // Finalize PHI nodes. 859 for (PHINode *PN : ShadowPHINodes) { 860 PHINode *PNS = cast<PHINode>(getShadow(PN)); 861 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 862 size_t NumValues = PN->getNumIncomingValues(); 863 for (size_t v = 0; v < NumValues; v++) { 864 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 865 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 866 } 867 } 868 869 VAHelper->finalizeInstrumentation(); 870 871 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 872 InstrumentationList.size() + StoreList.size() > 873 (unsigned)ClInstrumentationWithCallThreshold; 874 875 // Delayed instrumentation of StoreInst. 876 // This may add new checks to be inserted later. 877 materializeStores(InstrumentWithCalls); 878 879 // Insert shadow value checks. 880 materializeChecks(InstrumentWithCalls); 881 882 return true; 883 } 884 885 /// \brief Compute the shadow type that corresponds to a given Value. 886 Type *getShadowTy(Value *V) { 887 return getShadowTy(V->getType()); 888 } 889 890 /// \brief Compute the shadow type that corresponds to a given Type. 891 Type *getShadowTy(Type *OrigTy) { 892 if (!OrigTy->isSized()) { 893 return nullptr; 894 } 895 // For integer type, shadow is the same as the original type. 896 // This may return weird-sized types like i1. 897 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 898 return IT; 899 const DataLayout &DL = F.getParent()->getDataLayout(); 900 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 901 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 902 return VectorType::get(IntegerType::get(*MS.C, EltSize), 903 VT->getNumElements()); 904 } 905 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 906 return ArrayType::get(getShadowTy(AT->getElementType()), 907 AT->getNumElements()); 908 } 909 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 910 SmallVector<Type*, 4> Elements; 911 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 912 Elements.push_back(getShadowTy(ST->getElementType(i))); 913 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 914 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 915 return Res; 916 } 917 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 918 return IntegerType::get(*MS.C, TypeSize); 919 } 920 921 /// \brief Flatten a vector type. 922 Type *getShadowTyNoVec(Type *ty) { 923 if (VectorType *vt = dyn_cast<VectorType>(ty)) 924 return IntegerType::get(*MS.C, vt->getBitWidth()); 925 return ty; 926 } 927 928 /// \brief Convert a shadow value to it's flattened variant. 929 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 930 Type *Ty = V->getType(); 931 Type *NoVecTy = getShadowTyNoVec(Ty); 932 if (Ty == NoVecTy) return V; 933 return IRB.CreateBitCast(V, NoVecTy); 934 } 935 936 /// \brief Compute the integer shadow offset that corresponds to a given 937 /// application address. 938 /// 939 /// Offset = (Addr & ~AndMask) ^ XorMask 940 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 941 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 942 943 uint64_t AndMask = MS.MapParams->AndMask; 944 if (AndMask) 945 OffsetLong = 946 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 947 948 uint64_t XorMask = MS.MapParams->XorMask; 949 if (XorMask) 950 OffsetLong = 951 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 952 return OffsetLong; 953 } 954 955 /// \brief Compute the shadow address that corresponds to a given application 956 /// address. 957 /// 958 /// Shadow = ShadowBase + Offset 959 Value *getShadowPtr(Value *Addr, Type *ShadowTy, 960 IRBuilder<> &IRB) { 961 Value *ShadowLong = getShadowPtrOffset(Addr, IRB); 962 uint64_t ShadowBase = MS.MapParams->ShadowBase; 963 if (ShadowBase != 0) 964 ShadowLong = 965 IRB.CreateAdd(ShadowLong, 966 ConstantInt::get(MS.IntptrTy, ShadowBase)); 967 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 968 } 969 970 /// \brief Compute the origin address that corresponds to a given application 971 /// address. 972 /// 973 /// OriginAddr = (OriginBase + Offset) & ~3ULL 974 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) { 975 Value *OriginLong = getShadowPtrOffset(Addr, IRB); 976 uint64_t OriginBase = MS.MapParams->OriginBase; 977 if (OriginBase != 0) 978 OriginLong = 979 IRB.CreateAdd(OriginLong, 980 ConstantInt::get(MS.IntptrTy, OriginBase)); 981 if (Alignment < kMinOriginAlignment) { 982 uint64_t Mask = kMinOriginAlignment - 1; 983 OriginLong = IRB.CreateAnd(OriginLong, 984 ConstantInt::get(MS.IntptrTy, ~Mask)); 985 } 986 return IRB.CreateIntToPtr(OriginLong, 987 PointerType::get(IRB.getInt32Ty(), 0)); 988 } 989 990 /// \brief Compute the shadow address for a given function argument. 991 /// 992 /// Shadow = ParamTLS+ArgOffset. 993 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 994 int ArgOffset) { 995 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 996 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 997 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 998 "_msarg"); 999 } 1000 1001 /// \brief Compute the origin address for a given function argument. 1002 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1003 int ArgOffset) { 1004 if (!MS.TrackOrigins) return nullptr; 1005 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1006 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1007 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1008 "_msarg_o"); 1009 } 1010 1011 /// \brief Compute the shadow address for a retval. 1012 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1013 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); 1014 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1015 "_msret"); 1016 } 1017 1018 /// \brief Compute the origin address for a retval. 1019 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1020 // We keep a single origin for the entire retval. Might be too optimistic. 1021 return MS.RetvalOriginTLS; 1022 } 1023 1024 /// \brief Set SV to be the shadow value for V. 1025 void setShadow(Value *V, Value *SV) { 1026 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1027 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1028 } 1029 1030 /// \brief Set Origin to be the origin value for V. 1031 void setOrigin(Value *V, Value *Origin) { 1032 if (!MS.TrackOrigins) return; 1033 assert(!OriginMap.count(V) && "Values may only have one origin"); 1034 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1035 OriginMap[V] = Origin; 1036 } 1037 1038 /// \brief Create a clean shadow value for a given value. 1039 /// 1040 /// Clean shadow (all zeroes) means all bits of the value are defined 1041 /// (initialized). 1042 Constant *getCleanShadow(Value *V) { 1043 Type *ShadowTy = getShadowTy(V); 1044 if (!ShadowTy) 1045 return nullptr; 1046 return Constant::getNullValue(ShadowTy); 1047 } 1048 1049 /// \brief Create a dirty shadow of a given shadow type. 1050 Constant *getPoisonedShadow(Type *ShadowTy) { 1051 assert(ShadowTy); 1052 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1053 return Constant::getAllOnesValue(ShadowTy); 1054 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1055 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1056 getPoisonedShadow(AT->getElementType())); 1057 return ConstantArray::get(AT, Vals); 1058 } 1059 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1060 SmallVector<Constant *, 4> Vals; 1061 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1062 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1063 return ConstantStruct::get(ST, Vals); 1064 } 1065 llvm_unreachable("Unexpected shadow type"); 1066 } 1067 1068 /// \brief Create a dirty shadow for a given value. 1069 Constant *getPoisonedShadow(Value *V) { 1070 Type *ShadowTy = getShadowTy(V); 1071 if (!ShadowTy) 1072 return nullptr; 1073 return getPoisonedShadow(ShadowTy); 1074 } 1075 1076 /// \brief Create a clean (zero) origin. 1077 Value *getCleanOrigin() { 1078 return Constant::getNullValue(MS.OriginTy); 1079 } 1080 1081 /// \brief Get the shadow value for a given Value. 1082 /// 1083 /// This function either returns the value set earlier with setShadow, 1084 /// or extracts if from ParamTLS (for function arguments). 1085 Value *getShadow(Value *V) { 1086 if (!PropagateShadow) return getCleanShadow(V); 1087 if (Instruction *I = dyn_cast<Instruction>(V)) { 1088 // For instructions the shadow is already stored in the map. 1089 Value *Shadow = ShadowMap[V]; 1090 if (!Shadow) { 1091 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1092 (void)I; 1093 assert(Shadow && "No shadow for a value"); 1094 } 1095 return Shadow; 1096 } 1097 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1098 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1099 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1100 (void)U; 1101 return AllOnes; 1102 } 1103 if (Argument *A = dyn_cast<Argument>(V)) { 1104 // For arguments we compute the shadow on demand and store it in the map. 1105 Value **ShadowPtr = &ShadowMap[V]; 1106 if (*ShadowPtr) 1107 return *ShadowPtr; 1108 Function *F = A->getParent(); 1109 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); 1110 unsigned ArgOffset = 0; 1111 const DataLayout &DL = F->getParent()->getDataLayout(); 1112 for (auto &FArg : F->args()) { 1113 if (!FArg.getType()->isSized()) { 1114 DEBUG(dbgs() << "Arg is not sized\n"); 1115 continue; 1116 } 1117 unsigned Size = 1118 FArg.hasByValAttr() 1119 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1120 : DL.getTypeAllocSize(FArg.getType()); 1121 if (A == &FArg) { 1122 bool Overflow = ArgOffset + Size > kParamTLSSize; 1123 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1124 if (FArg.hasByValAttr()) { 1125 // ByVal pointer itself has clean shadow. We copy the actual 1126 // argument shadow to the underlying memory. 1127 // Figure out maximal valid memcpy alignment. 1128 unsigned ArgAlign = FArg.getParamAlignment(); 1129 if (ArgAlign == 0) { 1130 Type *EltType = A->getType()->getPointerElementType(); 1131 ArgAlign = DL.getABITypeAlignment(EltType); 1132 } 1133 if (Overflow) { 1134 // ParamTLS overflow. 1135 EntryIRB.CreateMemSet( 1136 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), 1137 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign); 1138 } else { 1139 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1140 Value *Cpy = EntryIRB.CreateMemCpy( 1141 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size, 1142 CopyAlign); 1143 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1144 (void)Cpy; 1145 } 1146 *ShadowPtr = getCleanShadow(V); 1147 } else { 1148 if (Overflow) { 1149 // ParamTLS overflow. 1150 *ShadowPtr = getCleanShadow(V); 1151 } else { 1152 *ShadowPtr = 1153 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1154 } 1155 } 1156 DEBUG(dbgs() << " ARG: " << FArg << " ==> " << 1157 **ShadowPtr << "\n"); 1158 if (MS.TrackOrigins && !Overflow) { 1159 Value *OriginPtr = 1160 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1161 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1162 } else { 1163 setOrigin(A, getCleanOrigin()); 1164 } 1165 } 1166 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1167 } 1168 assert(*ShadowPtr && "Could not find shadow for an argument"); 1169 return *ShadowPtr; 1170 } 1171 // For everything else the shadow is zero. 1172 return getCleanShadow(V); 1173 } 1174 1175 /// \brief Get the shadow for i-th argument of the instruction I. 1176 Value *getShadow(Instruction *I, int i) { 1177 return getShadow(I->getOperand(i)); 1178 } 1179 1180 /// \brief Get the origin for a value. 1181 Value *getOrigin(Value *V) { 1182 if (!MS.TrackOrigins) return nullptr; 1183 if (!PropagateShadow) return getCleanOrigin(); 1184 if (isa<Constant>(V)) return getCleanOrigin(); 1185 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1186 "Unexpected value type in getOrigin()"); 1187 Value *Origin = OriginMap[V]; 1188 assert(Origin && "Missing origin"); 1189 return Origin; 1190 } 1191 1192 /// \brief Get the origin for i-th argument of the instruction I. 1193 Value *getOrigin(Instruction *I, int i) { 1194 return getOrigin(I->getOperand(i)); 1195 } 1196 1197 /// \brief Remember the place where a shadow check should be inserted. 1198 /// 1199 /// This location will be later instrumented with a check that will print a 1200 /// UMR warning in runtime if the shadow value is not 0. 1201 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1202 assert(Shadow); 1203 if (!InsertChecks) return; 1204 #ifndef NDEBUG 1205 Type *ShadowTy = Shadow->getType(); 1206 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1207 "Can only insert checks for integer and vector shadow types"); 1208 #endif 1209 InstrumentationList.push_back( 1210 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1211 } 1212 1213 /// \brief Remember the place where a shadow check should be inserted. 1214 /// 1215 /// This location will be later instrumented with a check that will print a 1216 /// UMR warning in runtime if the value is not fully defined. 1217 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1218 assert(Val); 1219 Value *Shadow, *Origin; 1220 if (ClCheckConstantShadow) { 1221 Shadow = getShadow(Val); 1222 if (!Shadow) return; 1223 Origin = getOrigin(Val); 1224 } else { 1225 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1226 if (!Shadow) return; 1227 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1228 } 1229 insertShadowCheck(Shadow, Origin, OrigIns); 1230 } 1231 1232 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1233 switch (a) { 1234 case AtomicOrdering::NotAtomic: 1235 return AtomicOrdering::NotAtomic; 1236 case AtomicOrdering::Unordered: 1237 case AtomicOrdering::Monotonic: 1238 case AtomicOrdering::Release: 1239 return AtomicOrdering::Release; 1240 case AtomicOrdering::Acquire: 1241 case AtomicOrdering::AcquireRelease: 1242 return AtomicOrdering::AcquireRelease; 1243 case AtomicOrdering::SequentiallyConsistent: 1244 return AtomicOrdering::SequentiallyConsistent; 1245 } 1246 llvm_unreachable("Unknown ordering"); 1247 } 1248 1249 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1250 switch (a) { 1251 case AtomicOrdering::NotAtomic: 1252 return AtomicOrdering::NotAtomic; 1253 case AtomicOrdering::Unordered: 1254 case AtomicOrdering::Monotonic: 1255 case AtomicOrdering::Acquire: 1256 return AtomicOrdering::Acquire; 1257 case AtomicOrdering::Release: 1258 case AtomicOrdering::AcquireRelease: 1259 return AtomicOrdering::AcquireRelease; 1260 case AtomicOrdering::SequentiallyConsistent: 1261 return AtomicOrdering::SequentiallyConsistent; 1262 } 1263 llvm_unreachable("Unknown ordering"); 1264 } 1265 1266 // ------------------- Visitors. 1267 1268 /// \brief Instrument LoadInst 1269 /// 1270 /// Loads the corresponding shadow and (optionally) origin. 1271 /// Optionally, checks that the load address is fully defined. 1272 void visitLoadInst(LoadInst &I) { 1273 assert(I.getType()->isSized() && "Load type must have size"); 1274 IRBuilder<> IRB(I.getNextNode()); 1275 Type *ShadowTy = getShadowTy(&I); 1276 Value *Addr = I.getPointerOperand(); 1277 if (PropagateShadow && !I.getMetadata("nosanitize")) { 1278 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1279 setShadow(&I, 1280 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld")); 1281 } else { 1282 setShadow(&I, getCleanShadow(&I)); 1283 } 1284 1285 if (ClCheckAccessAddress) 1286 insertShadowCheck(I.getPointerOperand(), &I); 1287 1288 if (I.isAtomic()) 1289 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1290 1291 if (MS.TrackOrigins) { 1292 if (PropagateShadow) { 1293 unsigned Alignment = I.getAlignment(); 1294 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1295 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment), 1296 OriginAlignment)); 1297 } else { 1298 setOrigin(&I, getCleanOrigin()); 1299 } 1300 } 1301 } 1302 1303 /// \brief Instrument StoreInst 1304 /// 1305 /// Stores the corresponding shadow and (optionally) origin. 1306 /// Optionally, checks that the store address is fully defined. 1307 void visitStoreInst(StoreInst &I) { 1308 StoreList.push_back(&I); 1309 } 1310 1311 void handleCASOrRMW(Instruction &I) { 1312 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1313 1314 IRBuilder<> IRB(&I); 1315 Value *Addr = I.getOperand(0); 1316 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB); 1317 1318 if (ClCheckAccessAddress) 1319 insertShadowCheck(Addr, &I); 1320 1321 // Only test the conditional argument of cmpxchg instruction. 1322 // The other argument can potentially be uninitialized, but we can not 1323 // detect this situation reliably without possible false positives. 1324 if (isa<AtomicCmpXchgInst>(I)) 1325 insertShadowCheck(I.getOperand(1), &I); 1326 1327 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1328 1329 setShadow(&I, getCleanShadow(&I)); 1330 setOrigin(&I, getCleanOrigin()); 1331 } 1332 1333 void visitAtomicRMWInst(AtomicRMWInst &I) { 1334 handleCASOrRMW(I); 1335 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1336 } 1337 1338 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1339 handleCASOrRMW(I); 1340 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1341 } 1342 1343 // Vector manipulation. 1344 void visitExtractElementInst(ExtractElementInst &I) { 1345 insertShadowCheck(I.getOperand(1), &I); 1346 IRBuilder<> IRB(&I); 1347 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1348 "_msprop")); 1349 setOrigin(&I, getOrigin(&I, 0)); 1350 } 1351 1352 void visitInsertElementInst(InsertElementInst &I) { 1353 insertShadowCheck(I.getOperand(2), &I); 1354 IRBuilder<> IRB(&I); 1355 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1356 I.getOperand(2), "_msprop")); 1357 setOriginForNaryOp(I); 1358 } 1359 1360 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1361 insertShadowCheck(I.getOperand(2), &I); 1362 IRBuilder<> IRB(&I); 1363 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1364 I.getOperand(2), "_msprop")); 1365 setOriginForNaryOp(I); 1366 } 1367 1368 // Casts. 1369 void visitSExtInst(SExtInst &I) { 1370 IRBuilder<> IRB(&I); 1371 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1372 setOrigin(&I, getOrigin(&I, 0)); 1373 } 1374 1375 void visitZExtInst(ZExtInst &I) { 1376 IRBuilder<> IRB(&I); 1377 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1378 setOrigin(&I, getOrigin(&I, 0)); 1379 } 1380 1381 void visitTruncInst(TruncInst &I) { 1382 IRBuilder<> IRB(&I); 1383 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1384 setOrigin(&I, getOrigin(&I, 0)); 1385 } 1386 1387 void visitBitCastInst(BitCastInst &I) { 1388 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1389 // a musttail call and a ret, don't instrument. New instructions are not 1390 // allowed after a musttail call. 1391 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1392 if (CI->isMustTailCall()) 1393 return; 1394 IRBuilder<> IRB(&I); 1395 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1396 setOrigin(&I, getOrigin(&I, 0)); 1397 } 1398 1399 void visitPtrToIntInst(PtrToIntInst &I) { 1400 IRBuilder<> IRB(&I); 1401 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1402 "_msprop_ptrtoint")); 1403 setOrigin(&I, getOrigin(&I, 0)); 1404 } 1405 1406 void visitIntToPtrInst(IntToPtrInst &I) { 1407 IRBuilder<> IRB(&I); 1408 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1409 "_msprop_inttoptr")); 1410 setOrigin(&I, getOrigin(&I, 0)); 1411 } 1412 1413 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1414 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1415 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1416 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1417 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1418 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1419 1420 /// \brief Propagate shadow for bitwise AND. 1421 /// 1422 /// This code is exact, i.e. if, for example, a bit in the left argument 1423 /// is defined and 0, then neither the value not definedness of the 1424 /// corresponding bit in B don't affect the resulting shadow. 1425 void visitAnd(BinaryOperator &I) { 1426 IRBuilder<> IRB(&I); 1427 // "And" of 0 and a poisoned value results in unpoisoned value. 1428 // 1&1 => 1; 0&1 => 0; p&1 => p; 1429 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1430 // 1&p => p; 0&p => 0; p&p => p; 1431 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1432 Value *S1 = getShadow(&I, 0); 1433 Value *S2 = getShadow(&I, 1); 1434 Value *V1 = I.getOperand(0); 1435 Value *V2 = I.getOperand(1); 1436 if (V1->getType() != S1->getType()) { 1437 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1438 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1439 } 1440 Value *S1S2 = IRB.CreateAnd(S1, S2); 1441 Value *V1S2 = IRB.CreateAnd(V1, S2); 1442 Value *S1V2 = IRB.CreateAnd(S1, V2); 1443 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1444 setOriginForNaryOp(I); 1445 } 1446 1447 void visitOr(BinaryOperator &I) { 1448 IRBuilder<> IRB(&I); 1449 // "Or" of 1 and a poisoned value results in unpoisoned value. 1450 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1451 // 1|0 => 1; 0|0 => 0; p|0 => p; 1452 // 1|p => 1; 0|p => p; p|p => p; 1453 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1454 Value *S1 = getShadow(&I, 0); 1455 Value *S2 = getShadow(&I, 1); 1456 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1457 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1458 if (V1->getType() != S1->getType()) { 1459 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1460 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1461 } 1462 Value *S1S2 = IRB.CreateAnd(S1, S2); 1463 Value *V1S2 = IRB.CreateAnd(V1, S2); 1464 Value *S1V2 = IRB.CreateAnd(S1, V2); 1465 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1466 setOriginForNaryOp(I); 1467 } 1468 1469 /// \brief Default propagation of shadow and/or origin. 1470 /// 1471 /// This class implements the general case of shadow propagation, used in all 1472 /// cases where we don't know and/or don't care about what the operation 1473 /// actually does. It converts all input shadow values to a common type 1474 /// (extending or truncating as necessary), and bitwise OR's them. 1475 /// 1476 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1477 /// fully initialized), and less prone to false positives. 1478 /// 1479 /// This class also implements the general case of origin propagation. For a 1480 /// Nary operation, result origin is set to the origin of an argument that is 1481 /// not entirely initialized. If there is more than one such arguments, the 1482 /// rightmost of them is picked. It does not matter which one is picked if all 1483 /// arguments are initialized. 1484 template <bool CombineShadow> 1485 class Combiner { 1486 Value *Shadow; 1487 Value *Origin; 1488 IRBuilder<> &IRB; 1489 MemorySanitizerVisitor *MSV; 1490 1491 public: 1492 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) : 1493 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {} 1494 1495 /// \brief Add a pair of shadow and origin values to the mix. 1496 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1497 if (CombineShadow) { 1498 assert(OpShadow); 1499 if (!Shadow) 1500 Shadow = OpShadow; 1501 else { 1502 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1503 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1504 } 1505 } 1506 1507 if (MSV->MS.TrackOrigins) { 1508 assert(OpOrigin); 1509 if (!Origin) { 1510 Origin = OpOrigin; 1511 } else { 1512 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1513 // No point in adding something that might result in 0 origin value. 1514 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1515 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1516 Value *Cond = 1517 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1518 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1519 } 1520 } 1521 } 1522 return *this; 1523 } 1524 1525 /// \brief Add an application value to the mix. 1526 Combiner &Add(Value *V) { 1527 Value *OpShadow = MSV->getShadow(V); 1528 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1529 return Add(OpShadow, OpOrigin); 1530 } 1531 1532 /// \brief Set the current combined values as the given instruction's shadow 1533 /// and origin. 1534 void Done(Instruction *I) { 1535 if (CombineShadow) { 1536 assert(Shadow); 1537 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1538 MSV->setShadow(I, Shadow); 1539 } 1540 if (MSV->MS.TrackOrigins) { 1541 assert(Origin); 1542 MSV->setOrigin(I, Origin); 1543 } 1544 } 1545 }; 1546 1547 typedef Combiner<true> ShadowAndOriginCombiner; 1548 typedef Combiner<false> OriginCombiner; 1549 1550 /// \brief Propagate origin for arbitrary operation. 1551 void setOriginForNaryOp(Instruction &I) { 1552 if (!MS.TrackOrigins) return; 1553 IRBuilder<> IRB(&I); 1554 OriginCombiner OC(this, IRB); 1555 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1556 OC.Add(OI->get()); 1557 OC.Done(&I); 1558 } 1559 1560 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1561 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1562 "Vector of pointers is not a valid shadow type"); 1563 return Ty->isVectorTy() ? 1564 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 1565 Ty->getPrimitiveSizeInBits(); 1566 } 1567 1568 /// \brief Cast between two shadow types, extending or truncating as 1569 /// necessary. 1570 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 1571 bool Signed = false) { 1572 Type *srcTy = V->getType(); 1573 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 1574 return IRB.CreateIntCast(V, dstTy, Signed); 1575 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 1576 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 1577 return IRB.CreateIntCast(V, dstTy, Signed); 1578 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 1579 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 1580 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 1581 Value *V2 = 1582 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 1583 return IRB.CreateBitCast(V2, dstTy); 1584 // TODO: handle struct types. 1585 } 1586 1587 /// \brief Cast an application value to the type of its own shadow. 1588 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 1589 Type *ShadowTy = getShadowTy(V); 1590 if (V->getType() == ShadowTy) 1591 return V; 1592 if (V->getType()->isPtrOrPtrVectorTy()) 1593 return IRB.CreatePtrToInt(V, ShadowTy); 1594 else 1595 return IRB.CreateBitCast(V, ShadowTy); 1596 } 1597 1598 /// \brief Propagate shadow for arbitrary operation. 1599 void handleShadowOr(Instruction &I) { 1600 IRBuilder<> IRB(&I); 1601 ShadowAndOriginCombiner SC(this, IRB); 1602 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1603 SC.Add(OI->get()); 1604 SC.Done(&I); 1605 } 1606 1607 // \brief Handle multiplication by constant. 1608 // 1609 // Handle a special case of multiplication by constant that may have one or 1610 // more zeros in the lower bits. This makes corresponding number of lower bits 1611 // of the result zero as well. We model it by shifting the other operand 1612 // shadow left by the required number of bits. Effectively, we transform 1613 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 1614 // We use multiplication by 2**N instead of shift to cover the case of 1615 // multiplication by 0, which may occur in some elements of a vector operand. 1616 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 1617 Value *OtherArg) { 1618 Constant *ShadowMul; 1619 Type *Ty = ConstArg->getType(); 1620 if (Ty->isVectorTy()) { 1621 unsigned NumElements = Ty->getVectorNumElements(); 1622 Type *EltTy = Ty->getSequentialElementType(); 1623 SmallVector<Constant *, 16> Elements; 1624 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 1625 if (ConstantInt *Elt = 1626 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 1627 const APInt &V = Elt->getValue(); 1628 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1629 Elements.push_back(ConstantInt::get(EltTy, V2)); 1630 } else { 1631 Elements.push_back(ConstantInt::get(EltTy, 1)); 1632 } 1633 } 1634 ShadowMul = ConstantVector::get(Elements); 1635 } else { 1636 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 1637 const APInt &V = Elt->getValue(); 1638 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1639 ShadowMul = ConstantInt::get(Ty, V2); 1640 } else { 1641 ShadowMul = ConstantInt::get(Ty, 1); 1642 } 1643 } 1644 1645 IRBuilder<> IRB(&I); 1646 setShadow(&I, 1647 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 1648 setOrigin(&I, getOrigin(OtherArg)); 1649 } 1650 1651 void visitMul(BinaryOperator &I) { 1652 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1653 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1654 if (constOp0 && !constOp1) 1655 handleMulByConstant(I, constOp0, I.getOperand(1)); 1656 else if (constOp1 && !constOp0) 1657 handleMulByConstant(I, constOp1, I.getOperand(0)); 1658 else 1659 handleShadowOr(I); 1660 } 1661 1662 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 1663 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 1664 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 1665 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 1666 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 1667 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 1668 1669 void handleDiv(Instruction &I) { 1670 IRBuilder<> IRB(&I); 1671 // Strict on the second argument. 1672 insertShadowCheck(I.getOperand(1), &I); 1673 setShadow(&I, getShadow(&I, 0)); 1674 setOrigin(&I, getOrigin(&I, 0)); 1675 } 1676 1677 void visitUDiv(BinaryOperator &I) { handleDiv(I); } 1678 void visitSDiv(BinaryOperator &I) { handleDiv(I); } 1679 void visitFDiv(BinaryOperator &I) { handleDiv(I); } 1680 void visitURem(BinaryOperator &I) { handleDiv(I); } 1681 void visitSRem(BinaryOperator &I) { handleDiv(I); } 1682 void visitFRem(BinaryOperator &I) { handleDiv(I); } 1683 1684 /// \brief Instrument == and != comparisons. 1685 /// 1686 /// Sometimes the comparison result is known even if some of the bits of the 1687 /// arguments are not. 1688 void handleEqualityComparison(ICmpInst &I) { 1689 IRBuilder<> IRB(&I); 1690 Value *A = I.getOperand(0); 1691 Value *B = I.getOperand(1); 1692 Value *Sa = getShadow(A); 1693 Value *Sb = getShadow(B); 1694 1695 // Get rid of pointers and vectors of pointers. 1696 // For ints (and vectors of ints), types of A and Sa match, 1697 // and this is a no-op. 1698 A = IRB.CreatePointerCast(A, Sa->getType()); 1699 B = IRB.CreatePointerCast(B, Sb->getType()); 1700 1701 // A == B <==> (C = A^B) == 0 1702 // A != B <==> (C = A^B) != 0 1703 // Sc = Sa | Sb 1704 Value *C = IRB.CreateXor(A, B); 1705 Value *Sc = IRB.CreateOr(Sa, Sb); 1706 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 1707 // Result is defined if one of the following is true 1708 // * there is a defined 1 bit in C 1709 // * C is fully defined 1710 // Si = !(C & ~Sc) && Sc 1711 Value *Zero = Constant::getNullValue(Sc->getType()); 1712 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 1713 Value *Si = 1714 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 1715 IRB.CreateICmpEQ( 1716 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 1717 Si->setName("_msprop_icmp"); 1718 setShadow(&I, Si); 1719 setOriginForNaryOp(I); 1720 } 1721 1722 /// \brief Build the lowest possible value of V, taking into account V's 1723 /// uninitialized bits. 1724 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1725 bool isSigned) { 1726 if (isSigned) { 1727 // Split shadow into sign bit and other bits. 1728 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1729 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1730 // Maximise the undefined shadow bit, minimize other undefined bits. 1731 return 1732 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 1733 } else { 1734 // Minimize undefined bits. 1735 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 1736 } 1737 } 1738 1739 /// \brief Build the highest possible value of V, taking into account V's 1740 /// uninitialized bits. 1741 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1742 bool isSigned) { 1743 if (isSigned) { 1744 // Split shadow into sign bit and other bits. 1745 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1746 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1747 // Minimise the undefined shadow bit, maximise other undefined bits. 1748 return 1749 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 1750 } else { 1751 // Maximize undefined bits. 1752 return IRB.CreateOr(A, Sa); 1753 } 1754 } 1755 1756 /// \brief Instrument relational comparisons. 1757 /// 1758 /// This function does exact shadow propagation for all relational 1759 /// comparisons of integers, pointers and vectors of those. 1760 /// FIXME: output seems suboptimal when one of the operands is a constant 1761 void handleRelationalComparisonExact(ICmpInst &I) { 1762 IRBuilder<> IRB(&I); 1763 Value *A = I.getOperand(0); 1764 Value *B = I.getOperand(1); 1765 Value *Sa = getShadow(A); 1766 Value *Sb = getShadow(B); 1767 1768 // Get rid of pointers and vectors of pointers. 1769 // For ints (and vectors of ints), types of A and Sa match, 1770 // and this is a no-op. 1771 A = IRB.CreatePointerCast(A, Sa->getType()); 1772 B = IRB.CreatePointerCast(B, Sb->getType()); 1773 1774 // Let [a0, a1] be the interval of possible values of A, taking into account 1775 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 1776 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 1777 bool IsSigned = I.isSigned(); 1778 Value *S1 = IRB.CreateICmp(I.getPredicate(), 1779 getLowestPossibleValue(IRB, A, Sa, IsSigned), 1780 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 1781 Value *S2 = IRB.CreateICmp(I.getPredicate(), 1782 getHighestPossibleValue(IRB, A, Sa, IsSigned), 1783 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 1784 Value *Si = IRB.CreateXor(S1, S2); 1785 setShadow(&I, Si); 1786 setOriginForNaryOp(I); 1787 } 1788 1789 /// \brief Instrument signed relational comparisons. 1790 /// 1791 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 1792 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 1793 void handleSignedRelationalComparison(ICmpInst &I) { 1794 Constant *constOp; 1795 Value *op = nullptr; 1796 CmpInst::Predicate pre; 1797 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 1798 op = I.getOperand(0); 1799 pre = I.getPredicate(); 1800 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 1801 op = I.getOperand(1); 1802 pre = I.getSwappedPredicate(); 1803 } else { 1804 handleShadowOr(I); 1805 return; 1806 } 1807 1808 if ((constOp->isNullValue() && 1809 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 1810 (constOp->isAllOnesValue() && 1811 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 1812 IRBuilder<> IRB(&I); 1813 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 1814 "_msprop_icmp_s"); 1815 setShadow(&I, Shadow); 1816 setOrigin(&I, getOrigin(op)); 1817 } else { 1818 handleShadowOr(I); 1819 } 1820 } 1821 1822 void visitICmpInst(ICmpInst &I) { 1823 if (!ClHandleICmp) { 1824 handleShadowOr(I); 1825 return; 1826 } 1827 if (I.isEquality()) { 1828 handleEqualityComparison(I); 1829 return; 1830 } 1831 1832 assert(I.isRelational()); 1833 if (ClHandleICmpExact) { 1834 handleRelationalComparisonExact(I); 1835 return; 1836 } 1837 if (I.isSigned()) { 1838 handleSignedRelationalComparison(I); 1839 return; 1840 } 1841 1842 assert(I.isUnsigned()); 1843 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 1844 handleRelationalComparisonExact(I); 1845 return; 1846 } 1847 1848 handleShadowOr(I); 1849 } 1850 1851 void visitFCmpInst(FCmpInst &I) { 1852 handleShadowOr(I); 1853 } 1854 1855 void handleShift(BinaryOperator &I) { 1856 IRBuilder<> IRB(&I); 1857 // If any of the S2 bits are poisoned, the whole thing is poisoned. 1858 // Otherwise perform the same shift on S1. 1859 Value *S1 = getShadow(&I, 0); 1860 Value *S2 = getShadow(&I, 1); 1861 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 1862 S2->getType()); 1863 Value *V2 = I.getOperand(1); 1864 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 1865 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 1866 setOriginForNaryOp(I); 1867 } 1868 1869 void visitShl(BinaryOperator &I) { handleShift(I); } 1870 void visitAShr(BinaryOperator &I) { handleShift(I); } 1871 void visitLShr(BinaryOperator &I) { handleShift(I); } 1872 1873 /// \brief Instrument llvm.memmove 1874 /// 1875 /// At this point we don't know if llvm.memmove will be inlined or not. 1876 /// If we don't instrument it and it gets inlined, 1877 /// our interceptor will not kick in and we will lose the memmove. 1878 /// If we instrument the call here, but it does not get inlined, 1879 /// we will memove the shadow twice: which is bad in case 1880 /// of overlapping regions. So, we simply lower the intrinsic to a call. 1881 /// 1882 /// Similar situation exists for memcpy and memset. 1883 void visitMemMoveInst(MemMoveInst &I) { 1884 IRBuilder<> IRB(&I); 1885 IRB.CreateCall( 1886 MS.MemmoveFn, 1887 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1888 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1889 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1890 I.eraseFromParent(); 1891 } 1892 1893 // Similar to memmove: avoid copying shadow twice. 1894 // This is somewhat unfortunate as it may slowdown small constant memcpys. 1895 // FIXME: consider doing manual inline for small constant sizes and proper 1896 // alignment. 1897 void visitMemCpyInst(MemCpyInst &I) { 1898 IRBuilder<> IRB(&I); 1899 IRB.CreateCall( 1900 MS.MemcpyFn, 1901 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1902 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1903 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1904 I.eraseFromParent(); 1905 } 1906 1907 // Same as memcpy. 1908 void visitMemSetInst(MemSetInst &I) { 1909 IRBuilder<> IRB(&I); 1910 IRB.CreateCall( 1911 MS.MemsetFn, 1912 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1913 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 1914 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1915 I.eraseFromParent(); 1916 } 1917 1918 void visitVAStartInst(VAStartInst &I) { 1919 VAHelper->visitVAStartInst(I); 1920 } 1921 1922 void visitVACopyInst(VACopyInst &I) { 1923 VAHelper->visitVACopyInst(I); 1924 } 1925 1926 /// \brief Handle vector store-like intrinsics. 1927 /// 1928 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 1929 /// has 1 pointer argument and 1 vector argument, returns void. 1930 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 1931 IRBuilder<> IRB(&I); 1932 Value* Addr = I.getArgOperand(0); 1933 Value *Shadow = getShadow(&I, 1); 1934 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 1935 1936 // We don't know the pointer alignment (could be unaligned SSE store!). 1937 // Have to assume to worst case. 1938 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 1939 1940 if (ClCheckAccessAddress) 1941 insertShadowCheck(Addr, &I); 1942 1943 // FIXME: use ClStoreCleanOrigin 1944 // FIXME: factor out common code from materializeStores 1945 if (MS.TrackOrigins) 1946 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1)); 1947 return true; 1948 } 1949 1950 /// \brief Handle vector load-like intrinsics. 1951 /// 1952 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 1953 /// has 1 pointer argument, returns a vector. 1954 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 1955 IRBuilder<> IRB(&I); 1956 Value *Addr = I.getArgOperand(0); 1957 1958 Type *ShadowTy = getShadowTy(&I); 1959 if (PropagateShadow) { 1960 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1961 // We don't know the pointer alignment (could be unaligned SSE load!). 1962 // Have to assume to worst case. 1963 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld")); 1964 } else { 1965 setShadow(&I, getCleanShadow(&I)); 1966 } 1967 1968 if (ClCheckAccessAddress) 1969 insertShadowCheck(Addr, &I); 1970 1971 if (MS.TrackOrigins) { 1972 if (PropagateShadow) 1973 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1))); 1974 else 1975 setOrigin(&I, getCleanOrigin()); 1976 } 1977 return true; 1978 } 1979 1980 /// \brief Handle (SIMD arithmetic)-like intrinsics. 1981 /// 1982 /// Instrument intrinsics with any number of arguments of the same type, 1983 /// equal to the return type. The type should be simple (no aggregates or 1984 /// pointers; vectors are fine). 1985 /// Caller guarantees that this intrinsic does not access memory. 1986 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 1987 Type *RetTy = I.getType(); 1988 if (!(RetTy->isIntOrIntVectorTy() || 1989 RetTy->isFPOrFPVectorTy() || 1990 RetTy->isX86_MMXTy())) 1991 return false; 1992 1993 unsigned NumArgOperands = I.getNumArgOperands(); 1994 1995 for (unsigned i = 0; i < NumArgOperands; ++i) { 1996 Type *Ty = I.getArgOperand(i)->getType(); 1997 if (Ty != RetTy) 1998 return false; 1999 } 2000 2001 IRBuilder<> IRB(&I); 2002 ShadowAndOriginCombiner SC(this, IRB); 2003 for (unsigned i = 0; i < NumArgOperands; ++i) 2004 SC.Add(I.getArgOperand(i)); 2005 SC.Done(&I); 2006 2007 return true; 2008 } 2009 2010 /// \brief Heuristically instrument unknown intrinsics. 2011 /// 2012 /// The main purpose of this code is to do something reasonable with all 2013 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2014 /// We recognize several classes of intrinsics by their argument types and 2015 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2016 /// sure that we know what the intrinsic does. 2017 /// 2018 /// We special-case intrinsics where this approach fails. See llvm.bswap 2019 /// handling as an example of that. 2020 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2021 unsigned NumArgOperands = I.getNumArgOperands(); 2022 if (NumArgOperands == 0) 2023 return false; 2024 2025 if (NumArgOperands == 2 && 2026 I.getArgOperand(0)->getType()->isPointerTy() && 2027 I.getArgOperand(1)->getType()->isVectorTy() && 2028 I.getType()->isVoidTy() && 2029 !I.onlyReadsMemory()) { 2030 // This looks like a vector store. 2031 return handleVectorStoreIntrinsic(I); 2032 } 2033 2034 if (NumArgOperands == 1 && 2035 I.getArgOperand(0)->getType()->isPointerTy() && 2036 I.getType()->isVectorTy() && 2037 I.onlyReadsMemory()) { 2038 // This looks like a vector load. 2039 return handleVectorLoadIntrinsic(I); 2040 } 2041 2042 if (I.doesNotAccessMemory()) 2043 if (maybeHandleSimpleNomemIntrinsic(I)) 2044 return true; 2045 2046 // FIXME: detect and handle SSE maskstore/maskload 2047 return false; 2048 } 2049 2050 void handleBswap(IntrinsicInst &I) { 2051 IRBuilder<> IRB(&I); 2052 Value *Op = I.getArgOperand(0); 2053 Type *OpType = Op->getType(); 2054 Function *BswapFunc = Intrinsic::getDeclaration( 2055 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2056 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2057 setOrigin(&I, getOrigin(Op)); 2058 } 2059 2060 // \brief Instrument vector convert instrinsic. 2061 // 2062 // This function instruments intrinsics like cvtsi2ss: 2063 // %Out = int_xxx_cvtyyy(%ConvertOp) 2064 // or 2065 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2066 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2067 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2068 // elements from \p CopyOp. 2069 // In most cases conversion involves floating-point value which may trigger a 2070 // hardware exception when not fully initialized. For this reason we require 2071 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2072 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2073 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2074 // return a fully initialized value. 2075 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2076 IRBuilder<> IRB(&I); 2077 Value *CopyOp, *ConvertOp; 2078 2079 switch (I.getNumArgOperands()) { 2080 case 3: 2081 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2082 case 2: 2083 CopyOp = I.getArgOperand(0); 2084 ConvertOp = I.getArgOperand(1); 2085 break; 2086 case 1: 2087 ConvertOp = I.getArgOperand(0); 2088 CopyOp = nullptr; 2089 break; 2090 default: 2091 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2092 } 2093 2094 // The first *NumUsedElements* elements of ConvertOp are converted to the 2095 // same number of output elements. The rest of the output is copied from 2096 // CopyOp, or (if not available) filled with zeroes. 2097 // Combine shadow for elements of ConvertOp that are used in this operation, 2098 // and insert a check. 2099 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2100 // int->any conversion. 2101 Value *ConvertShadow = getShadow(ConvertOp); 2102 Value *AggShadow = nullptr; 2103 if (ConvertOp->getType()->isVectorTy()) { 2104 AggShadow = IRB.CreateExtractElement( 2105 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2106 for (int i = 1; i < NumUsedElements; ++i) { 2107 Value *MoreShadow = IRB.CreateExtractElement( 2108 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2109 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2110 } 2111 } else { 2112 AggShadow = ConvertShadow; 2113 } 2114 assert(AggShadow->getType()->isIntegerTy()); 2115 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2116 2117 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2118 // ConvertOp. 2119 if (CopyOp) { 2120 assert(CopyOp->getType() == I.getType()); 2121 assert(CopyOp->getType()->isVectorTy()); 2122 Value *ResultShadow = getShadow(CopyOp); 2123 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2124 for (int i = 0; i < NumUsedElements; ++i) { 2125 ResultShadow = IRB.CreateInsertElement( 2126 ResultShadow, ConstantInt::getNullValue(EltTy), 2127 ConstantInt::get(IRB.getInt32Ty(), i)); 2128 } 2129 setShadow(&I, ResultShadow); 2130 setOrigin(&I, getOrigin(CopyOp)); 2131 } else { 2132 setShadow(&I, getCleanShadow(&I)); 2133 setOrigin(&I, getCleanOrigin()); 2134 } 2135 } 2136 2137 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2138 // zeroes if it is zero, and all ones otherwise. 2139 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2140 if (S->getType()->isVectorTy()) 2141 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2142 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2143 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2144 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2145 } 2146 2147 // Given a vector, extract its first element, and return all 2148 // zeroes if it is zero, and all ones otherwise. 2149 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2150 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2151 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2152 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2153 } 2154 2155 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2156 Type *T = S->getType(); 2157 assert(T->isVectorTy()); 2158 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2159 return IRB.CreateSExt(S2, T); 2160 } 2161 2162 // \brief Instrument vector shift instrinsic. 2163 // 2164 // This function instruments intrinsics like int_x86_avx2_psll_w. 2165 // Intrinsic shifts %In by %ShiftSize bits. 2166 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2167 // size, and the rest is ignored. Behavior is defined even if shift size is 2168 // greater than register (or field) width. 2169 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2170 assert(I.getNumArgOperands() == 2); 2171 IRBuilder<> IRB(&I); 2172 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2173 // Otherwise perform the same shift on S1. 2174 Value *S1 = getShadow(&I, 0); 2175 Value *S2 = getShadow(&I, 1); 2176 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2177 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2178 Value *V1 = I.getOperand(0); 2179 Value *V2 = I.getOperand(1); 2180 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2181 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2182 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2183 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2184 setOriginForNaryOp(I); 2185 } 2186 2187 // \brief Get an X86_MMX-sized vector type. 2188 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2189 const unsigned X86_MMXSizeInBits = 64; 2190 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2191 X86_MMXSizeInBits / EltSizeInBits); 2192 } 2193 2194 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack 2195 // intrinsic. 2196 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2197 switch (id) { 2198 case llvm::Intrinsic::x86_sse2_packsswb_128: 2199 case llvm::Intrinsic::x86_sse2_packuswb_128: 2200 return llvm::Intrinsic::x86_sse2_packsswb_128; 2201 2202 case llvm::Intrinsic::x86_sse2_packssdw_128: 2203 case llvm::Intrinsic::x86_sse41_packusdw: 2204 return llvm::Intrinsic::x86_sse2_packssdw_128; 2205 2206 case llvm::Intrinsic::x86_avx2_packsswb: 2207 case llvm::Intrinsic::x86_avx2_packuswb: 2208 return llvm::Intrinsic::x86_avx2_packsswb; 2209 2210 case llvm::Intrinsic::x86_avx2_packssdw: 2211 case llvm::Intrinsic::x86_avx2_packusdw: 2212 return llvm::Intrinsic::x86_avx2_packssdw; 2213 2214 case llvm::Intrinsic::x86_mmx_packsswb: 2215 case llvm::Intrinsic::x86_mmx_packuswb: 2216 return llvm::Intrinsic::x86_mmx_packsswb; 2217 2218 case llvm::Intrinsic::x86_mmx_packssdw: 2219 return llvm::Intrinsic::x86_mmx_packssdw; 2220 default: 2221 llvm_unreachable("unexpected intrinsic id"); 2222 } 2223 } 2224 2225 // \brief Instrument vector pack instrinsic. 2226 // 2227 // This function instruments intrinsics like x86_mmx_packsswb, that 2228 // packs elements of 2 input vectors into half as many bits with saturation. 2229 // Shadow is propagated with the signed variant of the same intrinsic applied 2230 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2231 // EltSizeInBits is used only for x86mmx arguments. 2232 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2233 assert(I.getNumArgOperands() == 2); 2234 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2235 IRBuilder<> IRB(&I); 2236 Value *S1 = getShadow(&I, 0); 2237 Value *S2 = getShadow(&I, 1); 2238 assert(isX86_MMX || S1->getType()->isVectorTy()); 2239 2240 // SExt and ICmpNE below must apply to individual elements of input vectors. 2241 // In case of x86mmx arguments, cast them to appropriate vector types and 2242 // back. 2243 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2244 if (isX86_MMX) { 2245 S1 = IRB.CreateBitCast(S1, T); 2246 S2 = IRB.CreateBitCast(S2, T); 2247 } 2248 Value *S1_ext = IRB.CreateSExt( 2249 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T); 2250 Value *S2_ext = IRB.CreateSExt( 2251 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T); 2252 if (isX86_MMX) { 2253 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2254 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2255 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2256 } 2257 2258 Function *ShadowFn = Intrinsic::getDeclaration( 2259 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2260 2261 Value *S = 2262 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2263 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2264 setShadow(&I, S); 2265 setOriginForNaryOp(I); 2266 } 2267 2268 // \brief Instrument sum-of-absolute-differencies intrinsic. 2269 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2270 const unsigned SignificantBitsPerResultElement = 16; 2271 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2272 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2273 unsigned ZeroBitsPerResultElement = 2274 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2275 2276 IRBuilder<> IRB(&I); 2277 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2278 S = IRB.CreateBitCast(S, ResTy); 2279 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2280 ResTy); 2281 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2282 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2283 setShadow(&I, S); 2284 setOriginForNaryOp(I); 2285 } 2286 2287 // \brief Instrument multiply-add intrinsic. 2288 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2289 unsigned EltSizeInBits = 0) { 2290 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2291 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2292 IRBuilder<> IRB(&I); 2293 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2294 S = IRB.CreateBitCast(S, ResTy); 2295 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2296 ResTy); 2297 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2298 setShadow(&I, S); 2299 setOriginForNaryOp(I); 2300 } 2301 2302 // \brief Instrument compare-packed intrinsic. 2303 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2304 // all-ones shadow. 2305 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2306 IRBuilder<> IRB(&I); 2307 Type *ResTy = getShadowTy(&I); 2308 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2309 Value *S = IRB.CreateSExt( 2310 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2311 setShadow(&I, S); 2312 setOriginForNaryOp(I); 2313 } 2314 2315 // \brief Instrument compare-scalar intrinsic. 2316 // This handles both cmp* intrinsics which return the result in the first 2317 // element of a vector, and comi* which return the result as i32. 2318 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2319 IRBuilder<> IRB(&I); 2320 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2321 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2322 setShadow(&I, S); 2323 setOriginForNaryOp(I); 2324 } 2325 2326 void visitIntrinsicInst(IntrinsicInst &I) { 2327 switch (I.getIntrinsicID()) { 2328 case llvm::Intrinsic::bswap: 2329 handleBswap(I); 2330 break; 2331 case llvm::Intrinsic::x86_avx512_vcvtsd2usi64: 2332 case llvm::Intrinsic::x86_avx512_vcvtsd2usi32: 2333 case llvm::Intrinsic::x86_avx512_vcvtss2usi64: 2334 case llvm::Intrinsic::x86_avx512_vcvtss2usi32: 2335 case llvm::Intrinsic::x86_avx512_cvttss2usi64: 2336 case llvm::Intrinsic::x86_avx512_cvttss2usi: 2337 case llvm::Intrinsic::x86_avx512_cvttsd2usi64: 2338 case llvm::Intrinsic::x86_avx512_cvttsd2usi: 2339 case llvm::Intrinsic::x86_avx512_cvtusi2sd: 2340 case llvm::Intrinsic::x86_avx512_cvtusi2ss: 2341 case llvm::Intrinsic::x86_avx512_cvtusi642sd: 2342 case llvm::Intrinsic::x86_avx512_cvtusi642ss: 2343 case llvm::Intrinsic::x86_sse2_cvtsd2si64: 2344 case llvm::Intrinsic::x86_sse2_cvtsd2si: 2345 case llvm::Intrinsic::x86_sse2_cvtsd2ss: 2346 case llvm::Intrinsic::x86_sse2_cvtsi2sd: 2347 case llvm::Intrinsic::x86_sse2_cvtsi642sd: 2348 case llvm::Intrinsic::x86_sse2_cvtss2sd: 2349 case llvm::Intrinsic::x86_sse2_cvttsd2si64: 2350 case llvm::Intrinsic::x86_sse2_cvttsd2si: 2351 case llvm::Intrinsic::x86_sse_cvtsi2ss: 2352 case llvm::Intrinsic::x86_sse_cvtsi642ss: 2353 case llvm::Intrinsic::x86_sse_cvtss2si64: 2354 case llvm::Intrinsic::x86_sse_cvtss2si: 2355 case llvm::Intrinsic::x86_sse_cvttss2si64: 2356 case llvm::Intrinsic::x86_sse_cvttss2si: 2357 handleVectorConvertIntrinsic(I, 1); 2358 break; 2359 case llvm::Intrinsic::x86_sse_cvtps2pi: 2360 case llvm::Intrinsic::x86_sse_cvttps2pi: 2361 handleVectorConvertIntrinsic(I, 2); 2362 break; 2363 case llvm::Intrinsic::x86_avx2_psll_w: 2364 case llvm::Intrinsic::x86_avx2_psll_d: 2365 case llvm::Intrinsic::x86_avx2_psll_q: 2366 case llvm::Intrinsic::x86_avx2_pslli_w: 2367 case llvm::Intrinsic::x86_avx2_pslli_d: 2368 case llvm::Intrinsic::x86_avx2_pslli_q: 2369 case llvm::Intrinsic::x86_avx2_psrl_w: 2370 case llvm::Intrinsic::x86_avx2_psrl_d: 2371 case llvm::Intrinsic::x86_avx2_psrl_q: 2372 case llvm::Intrinsic::x86_avx2_psra_w: 2373 case llvm::Intrinsic::x86_avx2_psra_d: 2374 case llvm::Intrinsic::x86_avx2_psrli_w: 2375 case llvm::Intrinsic::x86_avx2_psrli_d: 2376 case llvm::Intrinsic::x86_avx2_psrli_q: 2377 case llvm::Intrinsic::x86_avx2_psrai_w: 2378 case llvm::Intrinsic::x86_avx2_psrai_d: 2379 case llvm::Intrinsic::x86_sse2_psll_w: 2380 case llvm::Intrinsic::x86_sse2_psll_d: 2381 case llvm::Intrinsic::x86_sse2_psll_q: 2382 case llvm::Intrinsic::x86_sse2_pslli_w: 2383 case llvm::Intrinsic::x86_sse2_pslli_d: 2384 case llvm::Intrinsic::x86_sse2_pslli_q: 2385 case llvm::Intrinsic::x86_sse2_psrl_w: 2386 case llvm::Intrinsic::x86_sse2_psrl_d: 2387 case llvm::Intrinsic::x86_sse2_psrl_q: 2388 case llvm::Intrinsic::x86_sse2_psra_w: 2389 case llvm::Intrinsic::x86_sse2_psra_d: 2390 case llvm::Intrinsic::x86_sse2_psrli_w: 2391 case llvm::Intrinsic::x86_sse2_psrli_d: 2392 case llvm::Intrinsic::x86_sse2_psrli_q: 2393 case llvm::Intrinsic::x86_sse2_psrai_w: 2394 case llvm::Intrinsic::x86_sse2_psrai_d: 2395 case llvm::Intrinsic::x86_mmx_psll_w: 2396 case llvm::Intrinsic::x86_mmx_psll_d: 2397 case llvm::Intrinsic::x86_mmx_psll_q: 2398 case llvm::Intrinsic::x86_mmx_pslli_w: 2399 case llvm::Intrinsic::x86_mmx_pslli_d: 2400 case llvm::Intrinsic::x86_mmx_pslli_q: 2401 case llvm::Intrinsic::x86_mmx_psrl_w: 2402 case llvm::Intrinsic::x86_mmx_psrl_d: 2403 case llvm::Intrinsic::x86_mmx_psrl_q: 2404 case llvm::Intrinsic::x86_mmx_psra_w: 2405 case llvm::Intrinsic::x86_mmx_psra_d: 2406 case llvm::Intrinsic::x86_mmx_psrli_w: 2407 case llvm::Intrinsic::x86_mmx_psrli_d: 2408 case llvm::Intrinsic::x86_mmx_psrli_q: 2409 case llvm::Intrinsic::x86_mmx_psrai_w: 2410 case llvm::Intrinsic::x86_mmx_psrai_d: 2411 handleVectorShiftIntrinsic(I, /* Variable */ false); 2412 break; 2413 case llvm::Intrinsic::x86_avx2_psllv_d: 2414 case llvm::Intrinsic::x86_avx2_psllv_d_256: 2415 case llvm::Intrinsic::x86_avx2_psllv_q: 2416 case llvm::Intrinsic::x86_avx2_psllv_q_256: 2417 case llvm::Intrinsic::x86_avx2_psrlv_d: 2418 case llvm::Intrinsic::x86_avx2_psrlv_d_256: 2419 case llvm::Intrinsic::x86_avx2_psrlv_q: 2420 case llvm::Intrinsic::x86_avx2_psrlv_q_256: 2421 case llvm::Intrinsic::x86_avx2_psrav_d: 2422 case llvm::Intrinsic::x86_avx2_psrav_d_256: 2423 handleVectorShiftIntrinsic(I, /* Variable */ true); 2424 break; 2425 2426 case llvm::Intrinsic::x86_sse2_packsswb_128: 2427 case llvm::Intrinsic::x86_sse2_packssdw_128: 2428 case llvm::Intrinsic::x86_sse2_packuswb_128: 2429 case llvm::Intrinsic::x86_sse41_packusdw: 2430 case llvm::Intrinsic::x86_avx2_packsswb: 2431 case llvm::Intrinsic::x86_avx2_packssdw: 2432 case llvm::Intrinsic::x86_avx2_packuswb: 2433 case llvm::Intrinsic::x86_avx2_packusdw: 2434 handleVectorPackIntrinsic(I); 2435 break; 2436 2437 case llvm::Intrinsic::x86_mmx_packsswb: 2438 case llvm::Intrinsic::x86_mmx_packuswb: 2439 handleVectorPackIntrinsic(I, 16); 2440 break; 2441 2442 case llvm::Intrinsic::x86_mmx_packssdw: 2443 handleVectorPackIntrinsic(I, 32); 2444 break; 2445 2446 case llvm::Intrinsic::x86_mmx_psad_bw: 2447 case llvm::Intrinsic::x86_sse2_psad_bw: 2448 case llvm::Intrinsic::x86_avx2_psad_bw: 2449 handleVectorSadIntrinsic(I); 2450 break; 2451 2452 case llvm::Intrinsic::x86_sse2_pmadd_wd: 2453 case llvm::Intrinsic::x86_avx2_pmadd_wd: 2454 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128: 2455 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw: 2456 handleVectorPmaddIntrinsic(I); 2457 break; 2458 2459 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw: 2460 handleVectorPmaddIntrinsic(I, 8); 2461 break; 2462 2463 case llvm::Intrinsic::x86_mmx_pmadd_wd: 2464 handleVectorPmaddIntrinsic(I, 16); 2465 break; 2466 2467 case llvm::Intrinsic::x86_sse_cmp_ss: 2468 case llvm::Intrinsic::x86_sse2_cmp_sd: 2469 case llvm::Intrinsic::x86_sse_comieq_ss: 2470 case llvm::Intrinsic::x86_sse_comilt_ss: 2471 case llvm::Intrinsic::x86_sse_comile_ss: 2472 case llvm::Intrinsic::x86_sse_comigt_ss: 2473 case llvm::Intrinsic::x86_sse_comige_ss: 2474 case llvm::Intrinsic::x86_sse_comineq_ss: 2475 case llvm::Intrinsic::x86_sse_ucomieq_ss: 2476 case llvm::Intrinsic::x86_sse_ucomilt_ss: 2477 case llvm::Intrinsic::x86_sse_ucomile_ss: 2478 case llvm::Intrinsic::x86_sse_ucomigt_ss: 2479 case llvm::Intrinsic::x86_sse_ucomige_ss: 2480 case llvm::Intrinsic::x86_sse_ucomineq_ss: 2481 case llvm::Intrinsic::x86_sse2_comieq_sd: 2482 case llvm::Intrinsic::x86_sse2_comilt_sd: 2483 case llvm::Intrinsic::x86_sse2_comile_sd: 2484 case llvm::Intrinsic::x86_sse2_comigt_sd: 2485 case llvm::Intrinsic::x86_sse2_comige_sd: 2486 case llvm::Intrinsic::x86_sse2_comineq_sd: 2487 case llvm::Intrinsic::x86_sse2_ucomieq_sd: 2488 case llvm::Intrinsic::x86_sse2_ucomilt_sd: 2489 case llvm::Intrinsic::x86_sse2_ucomile_sd: 2490 case llvm::Intrinsic::x86_sse2_ucomigt_sd: 2491 case llvm::Intrinsic::x86_sse2_ucomige_sd: 2492 case llvm::Intrinsic::x86_sse2_ucomineq_sd: 2493 handleVectorCompareScalarIntrinsic(I); 2494 break; 2495 2496 case llvm::Intrinsic::x86_sse_cmp_ps: 2497 case llvm::Intrinsic::x86_sse2_cmp_pd: 2498 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 2499 // generates reasonably looking IR that fails in the backend with "Do not 2500 // know how to split the result of this operator!". 2501 handleVectorComparePackedIntrinsic(I); 2502 break; 2503 2504 default: 2505 if (!handleUnknownIntrinsic(I)) 2506 visitInstruction(I); 2507 break; 2508 } 2509 } 2510 2511 void visitCallSite(CallSite CS) { 2512 Instruction &I = *CS.getInstruction(); 2513 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 2514 if (CS.isCall()) { 2515 CallInst *Call = cast<CallInst>(&I); 2516 2517 // For inline asm, do the usual thing: check argument shadow and mark all 2518 // outputs as clean. Note that any side effects of the inline asm that are 2519 // not immediately visible in its constraints are not handled. 2520 if (Call->isInlineAsm()) { 2521 visitInstruction(I); 2522 return; 2523 } 2524 2525 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 2526 2527 // We are going to insert code that relies on the fact that the callee 2528 // will become a non-readonly function after it is instrumented by us. To 2529 // prevent this code from being optimized out, mark that function 2530 // non-readonly in advance. 2531 if (Function *Func = Call->getCalledFunction()) { 2532 // Clear out readonly/readnone attributes. 2533 AttrBuilder B; 2534 B.addAttribute(Attribute::ReadOnly) 2535 .addAttribute(Attribute::ReadNone); 2536 Func->removeAttributes(AttributeSet::FunctionIndex, 2537 AttributeSet::get(Func->getContext(), 2538 AttributeSet::FunctionIndex, 2539 B)); 2540 } 2541 2542 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 2543 } 2544 IRBuilder<> IRB(&I); 2545 2546 unsigned ArgOffset = 0; 2547 DEBUG(dbgs() << " CallSite: " << I << "\n"); 2548 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2549 ArgIt != End; ++ArgIt) { 2550 Value *A = *ArgIt; 2551 unsigned i = ArgIt - CS.arg_begin(); 2552 if (!A->getType()->isSized()) { 2553 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 2554 continue; 2555 } 2556 unsigned Size = 0; 2557 Value *Store = nullptr; 2558 // Compute the Shadow for arg even if it is ByVal, because 2559 // in that case getShadow() will copy the actual arg shadow to 2560 // __msan_param_tls. 2561 Value *ArgShadow = getShadow(A); 2562 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 2563 DEBUG(dbgs() << " Arg#" << i << ": " << *A << 2564 " Shadow: " << *ArgShadow << "\n"); 2565 bool ArgIsInitialized = false; 2566 const DataLayout &DL = F.getParent()->getDataLayout(); 2567 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) { 2568 assert(A->getType()->isPointerTy() && 2569 "ByVal argument is not a pointer!"); 2570 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 2571 if (ArgOffset + Size > kParamTLSSize) break; 2572 unsigned ParamAlignment = CS.getParamAlignment(i + 1); 2573 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 2574 Store = IRB.CreateMemCpy(ArgShadowBase, 2575 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), 2576 Size, Alignment); 2577 } else { 2578 Size = DL.getTypeAllocSize(A->getType()); 2579 if (ArgOffset + Size > kParamTLSSize) break; 2580 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 2581 kShadowTLSAlignment); 2582 Constant *Cst = dyn_cast<Constant>(ArgShadow); 2583 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 2584 } 2585 if (MS.TrackOrigins && !ArgIsInitialized) 2586 IRB.CreateStore(getOrigin(A), 2587 getOriginPtrForArgument(A, IRB, ArgOffset)); 2588 (void)Store; 2589 assert(Size != 0 && Store != nullptr); 2590 DEBUG(dbgs() << " Param:" << *Store << "\n"); 2591 ArgOffset += alignTo(Size, 8); 2592 } 2593 DEBUG(dbgs() << " done with call args\n"); 2594 2595 FunctionType *FT = 2596 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 2597 if (FT->isVarArg()) { 2598 VAHelper->visitCallSite(CS, IRB); 2599 } 2600 2601 // Now, get the shadow for the RetVal. 2602 if (!I.getType()->isSized()) return; 2603 // Don't emit the epilogue for musttail call returns. 2604 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 2605 IRBuilder<> IRBBefore(&I); 2606 // Until we have full dynamic coverage, make sure the retval shadow is 0. 2607 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 2608 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 2609 BasicBlock::iterator NextInsn; 2610 if (CS.isCall()) { 2611 NextInsn = ++I.getIterator(); 2612 assert(NextInsn != I.getParent()->end()); 2613 } else { 2614 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 2615 if (!NormalDest->getSinglePredecessor()) { 2616 // FIXME: this case is tricky, so we are just conservative here. 2617 // Perhaps we need to split the edge between this BB and NormalDest, 2618 // but a naive attempt to use SplitEdge leads to a crash. 2619 setShadow(&I, getCleanShadow(&I)); 2620 setOrigin(&I, getCleanOrigin()); 2621 return; 2622 } 2623 NextInsn = NormalDest->getFirstInsertionPt(); 2624 assert(NextInsn != NormalDest->end() && 2625 "Could not find insertion point for retval shadow load"); 2626 } 2627 IRBuilder<> IRBAfter(&*NextInsn); 2628 Value *RetvalShadow = 2629 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 2630 kShadowTLSAlignment, "_msret"); 2631 setShadow(&I, RetvalShadow); 2632 if (MS.TrackOrigins) 2633 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 2634 } 2635 2636 bool isAMustTailRetVal(Value *RetVal) { 2637 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2638 RetVal = I->getOperand(0); 2639 } 2640 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2641 return I->isMustTailCall(); 2642 } 2643 return false; 2644 } 2645 2646 void visitReturnInst(ReturnInst &I) { 2647 IRBuilder<> IRB(&I); 2648 Value *RetVal = I.getReturnValue(); 2649 if (!RetVal) return; 2650 // Don't emit the epilogue for musttail call returns. 2651 if (isAMustTailRetVal(RetVal)) return; 2652 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 2653 if (CheckReturnValue) { 2654 insertShadowCheck(RetVal, &I); 2655 Value *Shadow = getCleanShadow(RetVal); 2656 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2657 } else { 2658 Value *Shadow = getShadow(RetVal); 2659 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2660 // FIXME: make it conditional if ClStoreCleanOrigin==0 2661 if (MS.TrackOrigins) 2662 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 2663 } 2664 } 2665 2666 void visitPHINode(PHINode &I) { 2667 IRBuilder<> IRB(&I); 2668 if (!PropagateShadow) { 2669 setShadow(&I, getCleanShadow(&I)); 2670 setOrigin(&I, getCleanOrigin()); 2671 return; 2672 } 2673 2674 ShadowPHINodes.push_back(&I); 2675 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 2676 "_msphi_s")); 2677 if (MS.TrackOrigins) 2678 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 2679 "_msphi_o")); 2680 } 2681 2682 void visitAllocaInst(AllocaInst &I) { 2683 setShadow(&I, getCleanShadow(&I)); 2684 setOrigin(&I, getCleanOrigin()); 2685 IRBuilder<> IRB(I.getNextNode()); 2686 const DataLayout &DL = F.getParent()->getDataLayout(); 2687 uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType()); 2688 if (PoisonStack && ClPoisonStackWithCall) { 2689 IRB.CreateCall(MS.MsanPoisonStackFn, 2690 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2691 ConstantInt::get(MS.IntptrTy, Size)}); 2692 } else { 2693 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); 2694 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 2695 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment()); 2696 } 2697 2698 if (PoisonStack && MS.TrackOrigins) { 2699 SmallString<2048> StackDescriptionStorage; 2700 raw_svector_ostream StackDescription(StackDescriptionStorage); 2701 // We create a string with a description of the stack allocation and 2702 // pass it into __msan_set_alloca_origin. 2703 // It will be printed by the run-time if stack-originated UMR is found. 2704 // The first 4 bytes of the string are set to '----' and will be replaced 2705 // by __msan_va_arg_overflow_size_tls at the first call. 2706 StackDescription << "----" << I.getName() << "@" << F.getName(); 2707 Value *Descr = 2708 createPrivateNonConstGlobalForString(*F.getParent(), 2709 StackDescription.str()); 2710 2711 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 2712 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2713 ConstantInt::get(MS.IntptrTy, Size), 2714 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 2715 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 2716 } 2717 } 2718 2719 void visitSelectInst(SelectInst& I) { 2720 IRBuilder<> IRB(&I); 2721 // a = select b, c, d 2722 Value *B = I.getCondition(); 2723 Value *C = I.getTrueValue(); 2724 Value *D = I.getFalseValue(); 2725 Value *Sb = getShadow(B); 2726 Value *Sc = getShadow(C); 2727 Value *Sd = getShadow(D); 2728 2729 // Result shadow if condition shadow is 0. 2730 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 2731 Value *Sa1; 2732 if (I.getType()->isAggregateType()) { 2733 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 2734 // an extra "select". This results in much more compact IR. 2735 // Sa = select Sb, poisoned, (select b, Sc, Sd) 2736 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 2737 } else { 2738 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 2739 // If Sb (condition is poisoned), look for bits in c and d that are equal 2740 // and both unpoisoned. 2741 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 2742 2743 // Cast arguments to shadow-compatible type. 2744 C = CreateAppToShadowCast(IRB, C); 2745 D = CreateAppToShadowCast(IRB, D); 2746 2747 // Result shadow if condition shadow is 1. 2748 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 2749 } 2750 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 2751 setShadow(&I, Sa); 2752 if (MS.TrackOrigins) { 2753 // Origins are always i32, so any vector conditions must be flattened. 2754 // FIXME: consider tracking vector origins for app vectors? 2755 if (B->getType()->isVectorTy()) { 2756 Type *FlatTy = getShadowTyNoVec(B->getType()); 2757 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 2758 ConstantInt::getNullValue(FlatTy)); 2759 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 2760 ConstantInt::getNullValue(FlatTy)); 2761 } 2762 // a = select b, c, d 2763 // Oa = Sb ? Ob : (b ? Oc : Od) 2764 setOrigin( 2765 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 2766 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 2767 getOrigin(I.getFalseValue())))); 2768 } 2769 } 2770 2771 void visitLandingPadInst(LandingPadInst &I) { 2772 // Do nothing. 2773 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 2774 setShadow(&I, getCleanShadow(&I)); 2775 setOrigin(&I, getCleanOrigin()); 2776 } 2777 2778 void visitCatchSwitchInst(CatchSwitchInst &I) { 2779 setShadow(&I, getCleanShadow(&I)); 2780 setOrigin(&I, getCleanOrigin()); 2781 } 2782 2783 void visitFuncletPadInst(FuncletPadInst &I) { 2784 setShadow(&I, getCleanShadow(&I)); 2785 setOrigin(&I, getCleanOrigin()); 2786 } 2787 2788 void visitGetElementPtrInst(GetElementPtrInst &I) { 2789 handleShadowOr(I); 2790 } 2791 2792 void visitExtractValueInst(ExtractValueInst &I) { 2793 IRBuilder<> IRB(&I); 2794 Value *Agg = I.getAggregateOperand(); 2795 DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 2796 Value *AggShadow = getShadow(Agg); 2797 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2798 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2799 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 2800 setShadow(&I, ResShadow); 2801 setOriginForNaryOp(I); 2802 } 2803 2804 void visitInsertValueInst(InsertValueInst &I) { 2805 IRBuilder<> IRB(&I); 2806 DEBUG(dbgs() << "InsertValue: " << I << "\n"); 2807 Value *AggShadow = getShadow(I.getAggregateOperand()); 2808 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 2809 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2810 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 2811 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2812 DEBUG(dbgs() << " Res: " << *Res << "\n"); 2813 setShadow(&I, Res); 2814 setOriginForNaryOp(I); 2815 } 2816 2817 void dumpInst(Instruction &I) { 2818 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2819 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 2820 } else { 2821 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 2822 } 2823 errs() << "QQQ " << I << "\n"; 2824 } 2825 2826 void visitResumeInst(ResumeInst &I) { 2827 DEBUG(dbgs() << "Resume: " << I << "\n"); 2828 // Nothing to do here. 2829 } 2830 2831 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 2832 DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 2833 // Nothing to do here. 2834 } 2835 2836 void visitCatchReturnInst(CatchReturnInst &CRI) { 2837 DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 2838 // Nothing to do here. 2839 } 2840 2841 void visitInstruction(Instruction &I) { 2842 // Everything else: stop propagating and check for poisoned shadow. 2843 if (ClDumpStrictInstructions) 2844 dumpInst(I); 2845 DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 2846 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) 2847 insertShadowCheck(I.getOperand(i), &I); 2848 setShadow(&I, getCleanShadow(&I)); 2849 setOrigin(&I, getCleanOrigin()); 2850 } 2851 }; 2852 2853 /// \brief AMD64-specific implementation of VarArgHelper. 2854 struct VarArgAMD64Helper : public VarArgHelper { 2855 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 2856 // See a comment in visitCallSite for more details. 2857 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 2858 static const unsigned AMD64FpEndOffset = 176; 2859 2860 Function &F; 2861 MemorySanitizer &MS; 2862 MemorySanitizerVisitor &MSV; 2863 Value *VAArgTLSCopy; 2864 Value *VAArgOverflowSize; 2865 2866 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2867 2868 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 2869 MemorySanitizerVisitor &MSV) 2870 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2871 VAArgOverflowSize(nullptr) {} 2872 2873 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 2874 2875 ArgKind classifyArgument(Value* arg) { 2876 // A very rough approximation of X86_64 argument classification rules. 2877 Type *T = arg->getType(); 2878 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 2879 return AK_FloatingPoint; 2880 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 2881 return AK_GeneralPurpose; 2882 if (T->isPointerTy()) 2883 return AK_GeneralPurpose; 2884 return AK_Memory; 2885 } 2886 2887 // For VarArg functions, store the argument shadow in an ABI-specific format 2888 // that corresponds to va_list layout. 2889 // We do this because Clang lowers va_arg in the frontend, and this pass 2890 // only sees the low level code that deals with va_list internals. 2891 // A much easier alternative (provided that Clang emits va_arg instructions) 2892 // would have been to associate each live instance of va_list with a copy of 2893 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 2894 // order. 2895 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2896 unsigned GpOffset = 0; 2897 unsigned FpOffset = AMD64GpEndOffset; 2898 unsigned OverflowOffset = AMD64FpEndOffset; 2899 const DataLayout &DL = F.getParent()->getDataLayout(); 2900 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2901 ArgIt != End; ++ArgIt) { 2902 Value *A = *ArgIt; 2903 unsigned ArgNo = CS.getArgumentNo(ArgIt); 2904 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 2905 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 2906 if (IsByVal) { 2907 // ByVal arguments always go to the overflow area. 2908 // Fixed arguments passed through the overflow area will be stepped 2909 // over by va_start, so don't count them towards the offset. 2910 if (IsFixed) 2911 continue; 2912 assert(A->getType()->isPointerTy()); 2913 Type *RealTy = A->getType()->getPointerElementType(); 2914 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 2915 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 2916 OverflowOffset += alignTo(ArgSize, 8); 2917 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 2918 ArgSize, kShadowTLSAlignment); 2919 } else { 2920 ArgKind AK = classifyArgument(A); 2921 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 2922 AK = AK_Memory; 2923 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 2924 AK = AK_Memory; 2925 Value *Base; 2926 switch (AK) { 2927 case AK_GeneralPurpose: 2928 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 2929 GpOffset += 8; 2930 break; 2931 case AK_FloatingPoint: 2932 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 2933 FpOffset += 16; 2934 break; 2935 case AK_Memory: 2936 if (IsFixed) 2937 continue; 2938 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2939 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 2940 OverflowOffset += alignTo(ArgSize, 8); 2941 } 2942 // Take fixed arguments into account for GpOffset and FpOffset, 2943 // but don't actually store shadows for them. 2944 if (IsFixed) 2945 continue; 2946 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2947 } 2948 } 2949 Constant *OverflowSize = 2950 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 2951 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 2952 } 2953 2954 /// \brief Compute the shadow address for a given va_arg. 2955 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2956 int ArgOffset) { 2957 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2958 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2959 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2960 "_msarg"); 2961 } 2962 2963 void visitVAStartInst(VAStartInst &I) override { 2964 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2965 return; 2966 IRBuilder<> IRB(&I); 2967 VAStartInstrumentationList.push_back(&I); 2968 Value *VAListTag = I.getArgOperand(0); 2969 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2970 2971 // Unpoison the whole __va_list_tag. 2972 // FIXME: magic ABI constants. 2973 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2974 /* size */24, /* alignment */8, false); 2975 } 2976 2977 void visitVACopyInst(VACopyInst &I) override { 2978 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2979 return; 2980 IRBuilder<> IRB(&I); 2981 Value *VAListTag = I.getArgOperand(0); 2982 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2983 2984 // Unpoison the whole __va_list_tag. 2985 // FIXME: magic ABI constants. 2986 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2987 /* size */24, /* alignment */8, false); 2988 } 2989 2990 void finalizeInstrumentation() override { 2991 assert(!VAArgOverflowSize && !VAArgTLSCopy && 2992 "finalizeInstrumentation called twice"); 2993 if (!VAStartInstrumentationList.empty()) { 2994 // If there is a va_start in this function, make a backup copy of 2995 // va_arg_tls somewhere in the function entry block. 2996 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 2997 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 2998 Value *CopySize = 2999 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3000 VAArgOverflowSize); 3001 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3002 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3003 } 3004 3005 // Instrument va_start. 3006 // Copy va_list shadow from the backup copy of the TLS contents. 3007 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3008 CallInst *OrigInst = VAStartInstrumentationList[i]; 3009 IRBuilder<> IRB(OrigInst->getNextNode()); 3010 Value *VAListTag = OrigInst->getArgOperand(0); 3011 3012 Value *RegSaveAreaPtrPtr = 3013 IRB.CreateIntToPtr( 3014 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3015 ConstantInt::get(MS.IntptrTy, 16)), 3016 Type::getInt64PtrTy(*MS.C)); 3017 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3018 Value *RegSaveAreaShadowPtr = 3019 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3020 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, 3021 AMD64FpEndOffset, 16); 3022 3023 Value *OverflowArgAreaPtrPtr = 3024 IRB.CreateIntToPtr( 3025 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3026 ConstantInt::get(MS.IntptrTy, 8)), 3027 Type::getInt64PtrTy(*MS.C)); 3028 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 3029 Value *OverflowArgAreaShadowPtr = 3030 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); 3031 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 3032 AMD64FpEndOffset); 3033 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); 3034 } 3035 } 3036 }; 3037 3038 /// \brief MIPS64-specific implementation of VarArgHelper. 3039 struct VarArgMIPS64Helper : public VarArgHelper { 3040 Function &F; 3041 MemorySanitizer &MS; 3042 MemorySanitizerVisitor &MSV; 3043 Value *VAArgTLSCopy; 3044 Value *VAArgSize; 3045 3046 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3047 3048 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 3049 MemorySanitizerVisitor &MSV) 3050 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3051 VAArgSize(nullptr) {} 3052 3053 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3054 unsigned VAArgOffset = 0; 3055 const DataLayout &DL = F.getParent()->getDataLayout(); 3056 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 3057 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 3058 ArgIt != End; ++ArgIt) { 3059 llvm::Triple TargetTriple(F.getParent()->getTargetTriple()); 3060 Value *A = *ArgIt; 3061 Value *Base; 3062 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3063 if (TargetTriple.getArch() == llvm::Triple::mips64) { 3064 // Adjusting the shadow for argument with size < 8 to match the placement 3065 // of bits in big endian system 3066 if (ArgSize < 8) 3067 VAArgOffset += (8 - ArgSize); 3068 } 3069 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset); 3070 VAArgOffset += ArgSize; 3071 VAArgOffset = alignTo(VAArgOffset, 8); 3072 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3073 } 3074 3075 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 3076 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3077 // a new class member i.e. it is the total size of all VarArgs. 3078 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3079 } 3080 3081 /// \brief Compute the shadow address for a given va_arg. 3082 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3083 int ArgOffset) { 3084 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3085 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3086 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3087 "_msarg"); 3088 } 3089 3090 void visitVAStartInst(VAStartInst &I) override { 3091 IRBuilder<> IRB(&I); 3092 VAStartInstrumentationList.push_back(&I); 3093 Value *VAListTag = I.getArgOperand(0); 3094 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3095 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3096 /* size */8, /* alignment */8, false); 3097 } 3098 3099 void visitVACopyInst(VACopyInst &I) override { 3100 IRBuilder<> IRB(&I); 3101 Value *VAListTag = I.getArgOperand(0); 3102 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3103 // Unpoison the whole __va_list_tag. 3104 // FIXME: magic ABI constants. 3105 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3106 /* size */8, /* alignment */8, false); 3107 } 3108 3109 void finalizeInstrumentation() override { 3110 assert(!VAArgSize && !VAArgTLSCopy && 3111 "finalizeInstrumentation called twice"); 3112 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3113 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3114 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3115 VAArgSize); 3116 3117 if (!VAStartInstrumentationList.empty()) { 3118 // If there is a va_start in this function, make a backup copy of 3119 // va_arg_tls somewhere in the function entry block. 3120 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3121 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3122 } 3123 3124 // Instrument va_start. 3125 // Copy va_list shadow from the backup copy of the TLS contents. 3126 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3127 CallInst *OrigInst = VAStartInstrumentationList[i]; 3128 IRBuilder<> IRB(OrigInst->getNextNode()); 3129 Value *VAListTag = OrigInst->getArgOperand(0); 3130 Value *RegSaveAreaPtrPtr = 3131 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3132 Type::getInt64PtrTy(*MS.C)); 3133 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3134 Value *RegSaveAreaShadowPtr = 3135 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3136 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3137 } 3138 } 3139 }; 3140 3141 3142 /// \brief AArch64-specific implementation of VarArgHelper. 3143 struct VarArgAArch64Helper : public VarArgHelper { 3144 static const unsigned kAArch64GrArgSize = 64; 3145 static const unsigned kAArch64VrArgSize = 128; 3146 3147 static const unsigned AArch64GrBegOffset = 0; 3148 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 3149 // Make VR space aligned to 16 bytes. 3150 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 3151 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 3152 + kAArch64VrArgSize; 3153 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 3154 3155 Function &F; 3156 MemorySanitizer &MS; 3157 MemorySanitizerVisitor &MSV; 3158 Value *VAArgTLSCopy; 3159 Value *VAArgOverflowSize; 3160 3161 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3162 3163 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 3164 MemorySanitizerVisitor &MSV) 3165 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3166 VAArgOverflowSize(nullptr) {} 3167 3168 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3169 3170 ArgKind classifyArgument(Value* arg) { 3171 Type *T = arg->getType(); 3172 if (T->isFPOrFPVectorTy()) 3173 return AK_FloatingPoint; 3174 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3175 || (T->isPointerTy())) 3176 return AK_GeneralPurpose; 3177 return AK_Memory; 3178 } 3179 3180 // The instrumentation stores the argument shadow in a non ABI-specific 3181 // format because it does not know which argument is named (since Clang, 3182 // like x86_64 case, lowers the va_args in the frontend and this pass only 3183 // sees the low level code that deals with va_list internals). 3184 // The first seven GR registers are saved in the first 56 bytes of the 3185 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 3186 // the remaining arguments. 3187 // Using constant offset within the va_arg TLS array allows fast copy 3188 // in the finalize instrumentation. 3189 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3190 unsigned GrOffset = AArch64GrBegOffset; 3191 unsigned VrOffset = AArch64VrBegOffset; 3192 unsigned OverflowOffset = AArch64VAEndOffset; 3193 3194 const DataLayout &DL = F.getParent()->getDataLayout(); 3195 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3196 ArgIt != End; ++ArgIt) { 3197 Value *A = *ArgIt; 3198 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3199 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3200 ArgKind AK = classifyArgument(A); 3201 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 3202 AK = AK_Memory; 3203 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 3204 AK = AK_Memory; 3205 Value *Base; 3206 switch (AK) { 3207 case AK_GeneralPurpose: 3208 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset); 3209 GrOffset += 8; 3210 break; 3211 case AK_FloatingPoint: 3212 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset); 3213 VrOffset += 16; 3214 break; 3215 case AK_Memory: 3216 // Don't count fixed arguments in the overflow area - va_start will 3217 // skip right over them. 3218 if (IsFixed) 3219 continue; 3220 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3221 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3222 OverflowOffset += alignTo(ArgSize, 8); 3223 break; 3224 } 3225 // Count Gp/Vr fixed arguments to their respective offsets, but don't 3226 // bother to actually store a shadow. 3227 if (IsFixed) 3228 continue; 3229 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3230 } 3231 Constant *OverflowSize = 3232 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 3233 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3234 } 3235 3236 /// Compute the shadow address for a given va_arg. 3237 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3238 int ArgOffset) { 3239 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3240 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3241 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3242 "_msarg"); 3243 } 3244 3245 void visitVAStartInst(VAStartInst &I) override { 3246 IRBuilder<> IRB(&I); 3247 VAStartInstrumentationList.push_back(&I); 3248 Value *VAListTag = I.getArgOperand(0); 3249 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3250 // Unpoison the whole __va_list_tag. 3251 // FIXME: magic ABI constants (size of va_list). 3252 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3253 /* size */32, /* alignment */8, false); 3254 } 3255 3256 void visitVACopyInst(VACopyInst &I) override { 3257 IRBuilder<> IRB(&I); 3258 Value *VAListTag = I.getArgOperand(0); 3259 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3260 // Unpoison the whole __va_list_tag. 3261 // FIXME: magic ABI constants (size of va_list). 3262 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3263 /* size */32, /* alignment */8, false); 3264 } 3265 3266 // Retrieve a va_list field of 'void*' size. 3267 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3268 Value *SaveAreaPtrPtr = 3269 IRB.CreateIntToPtr( 3270 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3271 ConstantInt::get(MS.IntptrTy, offset)), 3272 Type::getInt64PtrTy(*MS.C)); 3273 return IRB.CreateLoad(SaveAreaPtrPtr); 3274 } 3275 3276 // Retrieve a va_list field of 'int' size. 3277 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3278 Value *SaveAreaPtr = 3279 IRB.CreateIntToPtr( 3280 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3281 ConstantInt::get(MS.IntptrTy, offset)), 3282 Type::getInt32PtrTy(*MS.C)); 3283 Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr); 3284 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 3285 } 3286 3287 void finalizeInstrumentation() override { 3288 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3289 "finalizeInstrumentation called twice"); 3290 if (!VAStartInstrumentationList.empty()) { 3291 // If there is a va_start in this function, make a backup copy of 3292 // va_arg_tls somewhere in the function entry block. 3293 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3294 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3295 Value *CopySize = 3296 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 3297 VAArgOverflowSize); 3298 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3299 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3300 } 3301 3302 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 3303 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 3304 3305 // Instrument va_start, copy va_list shadow from the backup copy of 3306 // the TLS contents. 3307 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3308 CallInst *OrigInst = VAStartInstrumentationList[i]; 3309 IRBuilder<> IRB(OrigInst->getNextNode()); 3310 3311 Value *VAListTag = OrigInst->getArgOperand(0); 3312 3313 // The variadic ABI for AArch64 creates two areas to save the incoming 3314 // argument registers (one for 64-bit general register xn-x7 and another 3315 // for 128-bit FP/SIMD vn-v7). 3316 // We need then to propagate the shadow arguments on both regions 3317 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 3318 // The remaning arguments are saved on shadow for 'va::stack'. 3319 // One caveat is it requires only to propagate the non-named arguments, 3320 // however on the call site instrumentation 'all' the arguments are 3321 // saved. So to copy the shadow values from the va_arg TLS array 3322 // we need to adjust the offset for both GR and VR fields based on 3323 // the __{gr,vr}_offs value (since they are stores based on incoming 3324 // named arguments). 3325 3326 // Read the stack pointer from the va_list. 3327 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 3328 3329 // Read both the __gr_top and __gr_off and add them up. 3330 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 3331 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 3332 3333 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 3334 3335 // Read both the __vr_top and __vr_off and add them up. 3336 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 3337 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 3338 3339 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 3340 3341 // It does not know how many named arguments is being used and, on the 3342 // callsite all the arguments were saved. Since __gr_off is defined as 3343 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 3344 // argument by ignoring the bytes of shadow from named arguments. 3345 Value *GrRegSaveAreaShadowPtrOff = 3346 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 3347 3348 Value *GrRegSaveAreaShadowPtr = 3349 MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3350 3351 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3352 GrRegSaveAreaShadowPtrOff); 3353 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 3354 3355 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8); 3356 3357 // Again, but for FP/SIMD values. 3358 Value *VrRegSaveAreaShadowPtrOff = 3359 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 3360 3361 Value *VrRegSaveAreaShadowPtr = 3362 MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3363 3364 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 3365 IRB.getInt8Ty(), 3366 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3367 IRB.getInt32(AArch64VrBegOffset)), 3368 VrRegSaveAreaShadowPtrOff); 3369 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 3370 3371 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8); 3372 3373 // And finally for remaining arguments. 3374 Value *StackSaveAreaShadowPtr = 3375 MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB); 3376 3377 Value *StackSrcPtr = 3378 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3379 IRB.getInt32(AArch64VAEndOffset)); 3380 3381 IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr, 3382 VAArgOverflowSize, 16); 3383 } 3384 } 3385 }; 3386 3387 /// \brief PowerPC64-specific implementation of VarArgHelper. 3388 struct VarArgPowerPC64Helper : public VarArgHelper { 3389 Function &F; 3390 MemorySanitizer &MS; 3391 MemorySanitizerVisitor &MSV; 3392 Value *VAArgTLSCopy; 3393 Value *VAArgSize; 3394 3395 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3396 3397 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 3398 MemorySanitizerVisitor &MSV) 3399 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3400 VAArgSize(nullptr) {} 3401 3402 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3403 // For PowerPC, we need to deal with alignment of stack arguments - 3404 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 3405 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 3406 // and QPX vectors are aligned to 32 bytes. For that reason, we 3407 // compute current offset from stack pointer (which is always properly 3408 // aligned), and offset for the first vararg, then subtract them. 3409 unsigned VAArgBase; 3410 llvm::Triple TargetTriple(F.getParent()->getTargetTriple()); 3411 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 3412 // and 32 bytes for ABIv2. This is usually determined by target 3413 // endianness, but in theory could be overriden by function attribute. 3414 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 3415 if (TargetTriple.getArch() == llvm::Triple::ppc64) 3416 VAArgBase = 48; 3417 else 3418 VAArgBase = 32; 3419 unsigned VAArgOffset = VAArgBase; 3420 const DataLayout &DL = F.getParent()->getDataLayout(); 3421 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3422 ArgIt != End; ++ArgIt) { 3423 Value *A = *ArgIt; 3424 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3425 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3426 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 3427 if (IsByVal) { 3428 assert(A->getType()->isPointerTy()); 3429 Type *RealTy = A->getType()->getPointerElementType(); 3430 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3431 uint64_t ArgAlign = CS.getParamAlignment(ArgNo + 1); 3432 if (ArgAlign < 8) 3433 ArgAlign = 8; 3434 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 3435 if (!IsFixed) { 3436 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, 3437 VAArgOffset - VAArgBase); 3438 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 3439 ArgSize, kShadowTLSAlignment); 3440 } 3441 VAArgOffset += alignTo(ArgSize, 8); 3442 } else { 3443 Value *Base; 3444 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3445 uint64_t ArgAlign = 8; 3446 if (A->getType()->isArrayTy()) { 3447 // Arrays are aligned to element size, except for long double 3448 // arrays, which are aligned to 8 bytes. 3449 Type *ElementTy = A->getType()->getArrayElementType(); 3450 if (!ElementTy->isPPC_FP128Ty()) 3451 ArgAlign = DL.getTypeAllocSize(ElementTy); 3452 } else if (A->getType()->isVectorTy()) { 3453 // Vectors are naturally aligned. 3454 ArgAlign = DL.getTypeAllocSize(A->getType()); 3455 } 3456 if (ArgAlign < 8) 3457 ArgAlign = 8; 3458 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 3459 if (DL.isBigEndian()) { 3460 // Adjusting the shadow for argument with size < 8 to match the placement 3461 // of bits in big endian system 3462 if (ArgSize < 8) 3463 VAArgOffset += (8 - ArgSize); 3464 } 3465 if (!IsFixed) { 3466 Base = getShadowPtrForVAArgument(A->getType(), IRB, 3467 VAArgOffset - VAArgBase); 3468 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3469 } 3470 VAArgOffset += ArgSize; 3471 VAArgOffset = alignTo(VAArgOffset, 8); 3472 } 3473 if (IsFixed) 3474 VAArgBase = VAArgOffset; 3475 } 3476 3477 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 3478 VAArgOffset - VAArgBase); 3479 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3480 // a new class member i.e. it is the total size of all VarArgs. 3481 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3482 } 3483 3484 /// \brief Compute the shadow address for a given va_arg. 3485 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3486 int ArgOffset) { 3487 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3488 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3489 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3490 "_msarg"); 3491 } 3492 3493 void visitVAStartInst(VAStartInst &I) override { 3494 IRBuilder<> IRB(&I); 3495 VAStartInstrumentationList.push_back(&I); 3496 Value *VAListTag = I.getArgOperand(0); 3497 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3498 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3499 /* size */8, /* alignment */8, false); 3500 } 3501 3502 void visitVACopyInst(VACopyInst &I) override { 3503 IRBuilder<> IRB(&I); 3504 Value *VAListTag = I.getArgOperand(0); 3505 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3506 // Unpoison the whole __va_list_tag. 3507 // FIXME: magic ABI constants. 3508 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3509 /* size */8, /* alignment */8, false); 3510 } 3511 3512 void finalizeInstrumentation() override { 3513 assert(!VAArgSize && !VAArgTLSCopy && 3514 "finalizeInstrumentation called twice"); 3515 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3516 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3517 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3518 VAArgSize); 3519 3520 if (!VAStartInstrumentationList.empty()) { 3521 // If there is a va_start in this function, make a backup copy of 3522 // va_arg_tls somewhere in the function entry block. 3523 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3524 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3525 } 3526 3527 // Instrument va_start. 3528 // Copy va_list shadow from the backup copy of the TLS contents. 3529 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3530 CallInst *OrigInst = VAStartInstrumentationList[i]; 3531 IRBuilder<> IRB(OrigInst->getNextNode()); 3532 Value *VAListTag = OrigInst->getArgOperand(0); 3533 Value *RegSaveAreaPtrPtr = 3534 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3535 Type::getInt64PtrTy(*MS.C)); 3536 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3537 Value *RegSaveAreaShadowPtr = 3538 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3539 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3540 } 3541 } 3542 }; 3543 3544 /// \brief A no-op implementation of VarArgHelper. 3545 struct VarArgNoOpHelper : public VarArgHelper { 3546 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 3547 MemorySanitizerVisitor &MSV) {} 3548 3549 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 3550 3551 void visitVAStartInst(VAStartInst &I) override {} 3552 3553 void visitVACopyInst(VACopyInst &I) override {} 3554 3555 void finalizeInstrumentation() override {} 3556 }; 3557 3558 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 3559 MemorySanitizerVisitor &Visitor) { 3560 // VarArg handling is only implemented on AMD64. False positives are possible 3561 // on other platforms. 3562 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple()); 3563 if (TargetTriple.getArch() == llvm::Triple::x86_64) 3564 return new VarArgAMD64Helper(Func, Msan, Visitor); 3565 else if (TargetTriple.getArch() == llvm::Triple::mips64 || 3566 TargetTriple.getArch() == llvm::Triple::mips64el) 3567 return new VarArgMIPS64Helper(Func, Msan, Visitor); 3568 else if (TargetTriple.getArch() == llvm::Triple::aarch64) 3569 return new VarArgAArch64Helper(Func, Msan, Visitor); 3570 else if (TargetTriple.getArch() == llvm::Triple::ppc64 || 3571 TargetTriple.getArch() == llvm::Triple::ppc64le) 3572 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 3573 else 3574 return new VarArgNoOpHelper(Func, Msan, Visitor); 3575 } 3576 3577 } // anonymous namespace 3578 3579 bool MemorySanitizer::runOnFunction(Function &F) { 3580 if (&F == MsanCtorFunction) 3581 return false; 3582 MemorySanitizerVisitor Visitor(F, *this); 3583 3584 // Clear out readonly/readnone attributes. 3585 AttrBuilder B; 3586 B.addAttribute(Attribute::ReadOnly) 3587 .addAttribute(Attribute::ReadNone); 3588 F.removeAttributes(AttributeSet::FunctionIndex, 3589 AttributeSet::get(F.getContext(), 3590 AttributeSet::FunctionIndex, B)); 3591 3592 return Visitor.runOnFunction(); 3593 } 3594