1 //===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a basic-block vectorization pass. The algorithm was 11 // inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral, 12 // et al. It works by looking for chains of pairable operations and then 13 // pairing them. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define BBV_NAME "bb-vectorize" 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include <algorithm> 54 using namespace llvm; 55 56 #define DEBUG_TYPE BBV_NAME 57 58 static cl::opt<bool> 59 IgnoreTargetInfo("bb-vectorize-ignore-target-info", cl::init(false), 60 cl::Hidden, cl::desc("Ignore target information")); 61 62 static cl::opt<unsigned> 63 ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden, 64 cl::desc("The required chain depth for vectorization")); 65 66 static cl::opt<bool> 67 UseChainDepthWithTI("bb-vectorize-use-chain-depth", cl::init(false), 68 cl::Hidden, cl::desc("Use the chain depth requirement with" 69 " target information")); 70 71 static cl::opt<unsigned> 72 SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden, 73 cl::desc("The maximum search distance for instruction pairs")); 74 75 static cl::opt<bool> 76 SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden, 77 cl::desc("Replicating one element to a pair breaks the chain")); 78 79 static cl::opt<unsigned> 80 VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden, 81 cl::desc("The size of the native vector registers")); 82 83 static cl::opt<unsigned> 84 MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden, 85 cl::desc("The maximum number of pairing iterations")); 86 87 static cl::opt<bool> 88 Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden, 89 cl::desc("Don't try to form non-2^n-length vectors")); 90 91 static cl::opt<unsigned> 92 MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden, 93 cl::desc("The maximum number of pairable instructions per group")); 94 95 static cl::opt<unsigned> 96 MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden, 97 cl::desc("The maximum number of candidate instruction pairs per group")); 98 99 static cl::opt<unsigned> 100 MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200), 101 cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use" 102 " a full cycle check")); 103 104 static cl::opt<bool> 105 NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden, 106 cl::desc("Don't try to vectorize boolean (i1) values")); 107 108 static cl::opt<bool> 109 NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden, 110 cl::desc("Don't try to vectorize integer values")); 111 112 static cl::opt<bool> 113 NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden, 114 cl::desc("Don't try to vectorize floating-point values")); 115 116 // FIXME: This should default to false once pointer vector support works. 117 static cl::opt<bool> 118 NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden, 119 cl::desc("Don't try to vectorize pointer values")); 120 121 static cl::opt<bool> 122 NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden, 123 cl::desc("Don't try to vectorize casting (conversion) operations")); 124 125 static cl::opt<bool> 126 NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden, 127 cl::desc("Don't try to vectorize floating-point math intrinsics")); 128 129 static cl::opt<bool> 130 NoBitManipulation("bb-vectorize-no-bitmanip", cl::init(false), cl::Hidden, 131 cl::desc("Don't try to vectorize BitManipulation intrinsics")); 132 133 static cl::opt<bool> 134 NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden, 135 cl::desc("Don't try to vectorize the fused-multiply-add intrinsic")); 136 137 static cl::opt<bool> 138 NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden, 139 cl::desc("Don't try to vectorize select instructions")); 140 141 static cl::opt<bool> 142 NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden, 143 cl::desc("Don't try to vectorize comparison instructions")); 144 145 static cl::opt<bool> 146 NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden, 147 cl::desc("Don't try to vectorize getelementptr instructions")); 148 149 static cl::opt<bool> 150 NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden, 151 cl::desc("Don't try to vectorize loads and stores")); 152 153 static cl::opt<bool> 154 AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden, 155 cl::desc("Only generate aligned loads and stores")); 156 157 static cl::opt<bool> 158 NoMemOpBoost("bb-vectorize-no-mem-op-boost", 159 cl::init(false), cl::Hidden, 160 cl::desc("Don't boost the chain-depth contribution of loads and stores")); 161 162 static cl::opt<bool> 163 FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden, 164 cl::desc("Use a fast instruction dependency analysis")); 165 166 #ifndef NDEBUG 167 static cl::opt<bool> 168 DebugInstructionExamination("bb-vectorize-debug-instruction-examination", 169 cl::init(false), cl::Hidden, 170 cl::desc("When debugging is enabled, output information on the" 171 " instruction-examination process")); 172 static cl::opt<bool> 173 DebugCandidateSelection("bb-vectorize-debug-candidate-selection", 174 cl::init(false), cl::Hidden, 175 cl::desc("When debugging is enabled, output information on the" 176 " candidate-selection process")); 177 static cl::opt<bool> 178 DebugPairSelection("bb-vectorize-debug-pair-selection", 179 cl::init(false), cl::Hidden, 180 cl::desc("When debugging is enabled, output information on the" 181 " pair-selection process")); 182 static cl::opt<bool> 183 DebugCycleCheck("bb-vectorize-debug-cycle-check", 184 cl::init(false), cl::Hidden, 185 cl::desc("When debugging is enabled, output information on the" 186 " cycle-checking process")); 187 188 static cl::opt<bool> 189 PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair", 190 cl::init(false), cl::Hidden, 191 cl::desc("When debugging is enabled, dump the basic block after" 192 " every pair is fused")); 193 #endif 194 195 STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize"); 196 197 namespace { 198 struct BBVectorize : public BasicBlockPass { 199 static char ID; // Pass identification, replacement for typeid 200 201 const VectorizeConfig Config; 202 203 BBVectorize(const VectorizeConfig &C = VectorizeConfig()) 204 : BasicBlockPass(ID), Config(C) { 205 initializeBBVectorizePass(*PassRegistry::getPassRegistry()); 206 } 207 208 BBVectorize(Pass *P, Function &F, const VectorizeConfig &C) 209 : BasicBlockPass(ID), Config(C) { 210 AA = &P->getAnalysis<AAResultsWrapperPass>().getAAResults(); 211 DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 212 SE = &P->getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 213 TLI = &P->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 214 TTI = IgnoreTargetInfo 215 ? nullptr 216 : &P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 217 } 218 219 typedef std::pair<Value *, Value *> ValuePair; 220 typedef std::pair<ValuePair, int> ValuePairWithCost; 221 typedef std::pair<ValuePair, size_t> ValuePairWithDepth; 222 typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair 223 typedef std::pair<VPPair, unsigned> VPPairWithType; 224 225 AliasAnalysis *AA; 226 DominatorTree *DT; 227 ScalarEvolution *SE; 228 const TargetLibraryInfo *TLI; 229 const TargetTransformInfo *TTI; 230 231 // FIXME: const correct? 232 233 bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false); 234 235 bool getCandidatePairs(BasicBlock &BB, 236 BasicBlock::iterator &Start, 237 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 238 DenseSet<ValuePair> &FixedOrderPairs, 239 DenseMap<ValuePair, int> &CandidatePairCostSavings, 240 std::vector<Value *> &PairableInsts, bool NonPow2Len); 241 242 // FIXME: The current implementation does not account for pairs that 243 // are connected in multiple ways. For example: 244 // C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap) 245 enum PairConnectionType { 246 PairConnectionDirect, 247 PairConnectionSwap, 248 PairConnectionSplat 249 }; 250 251 void computeConnectedPairs( 252 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 253 DenseSet<ValuePair> &CandidatePairsSet, 254 std::vector<Value *> &PairableInsts, 255 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 256 DenseMap<VPPair, unsigned> &PairConnectionTypes); 257 258 void buildDepMap(BasicBlock &BB, 259 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 260 std::vector<Value *> &PairableInsts, 261 DenseSet<ValuePair> &PairableInstUsers); 262 263 void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 264 DenseSet<ValuePair> &CandidatePairsSet, 265 DenseMap<ValuePair, int> &CandidatePairCostSavings, 266 std::vector<Value *> &PairableInsts, 267 DenseSet<ValuePair> &FixedOrderPairs, 268 DenseMap<VPPair, unsigned> &PairConnectionTypes, 269 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 270 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps, 271 DenseSet<ValuePair> &PairableInstUsers, 272 DenseMap<Value *, Value *>& ChosenPairs); 273 274 void fuseChosenPairs(BasicBlock &BB, 275 std::vector<Value *> &PairableInsts, 276 DenseMap<Value *, Value *>& ChosenPairs, 277 DenseSet<ValuePair> &FixedOrderPairs, 278 DenseMap<VPPair, unsigned> &PairConnectionTypes, 279 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 280 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps); 281 282 283 bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore); 284 285 bool areInstsCompatible(Instruction *I, Instruction *J, 286 bool IsSimpleLoadStore, bool NonPow2Len, 287 int &CostSavings, int &FixedOrder); 288 289 bool trackUsesOfI(DenseSet<Value *> &Users, 290 AliasSetTracker &WriteSet, Instruction *I, 291 Instruction *J, bool UpdateUsers = true, 292 DenseSet<ValuePair> *LoadMoveSetPairs = nullptr); 293 294 void computePairsConnectedTo( 295 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 296 DenseSet<ValuePair> &CandidatePairsSet, 297 std::vector<Value *> &PairableInsts, 298 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 299 DenseMap<VPPair, unsigned> &PairConnectionTypes, 300 ValuePair P); 301 302 bool pairsConflict(ValuePair P, ValuePair Q, 303 DenseSet<ValuePair> &PairableInstUsers, 304 DenseMap<ValuePair, std::vector<ValuePair> > 305 *PairableInstUserMap = nullptr, 306 DenseSet<VPPair> *PairableInstUserPairSet = nullptr); 307 308 bool pairWillFormCycle(ValuePair P, 309 DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers, 310 DenseSet<ValuePair> &CurrentPairs); 311 312 void pruneDAGFor( 313 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 314 std::vector<Value *> &PairableInsts, 315 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 316 DenseSet<ValuePair> &PairableInstUsers, 317 DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, 318 DenseSet<VPPair> &PairableInstUserPairSet, 319 DenseMap<Value *, Value *> &ChosenPairs, 320 DenseMap<ValuePair, size_t> &DAG, 321 DenseSet<ValuePair> &PrunedDAG, ValuePair J, 322 bool UseCycleCheck); 323 324 void buildInitialDAGFor( 325 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 326 DenseSet<ValuePair> &CandidatePairsSet, 327 std::vector<Value *> &PairableInsts, 328 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 329 DenseSet<ValuePair> &PairableInstUsers, 330 DenseMap<Value *, Value *> &ChosenPairs, 331 DenseMap<ValuePair, size_t> &DAG, ValuePair J); 332 333 void findBestDAGFor( 334 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 335 DenseSet<ValuePair> &CandidatePairsSet, 336 DenseMap<ValuePair, int> &CandidatePairCostSavings, 337 std::vector<Value *> &PairableInsts, 338 DenseSet<ValuePair> &FixedOrderPairs, 339 DenseMap<VPPair, unsigned> &PairConnectionTypes, 340 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 341 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps, 342 DenseSet<ValuePair> &PairableInstUsers, 343 DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, 344 DenseSet<VPPair> &PairableInstUserPairSet, 345 DenseMap<Value *, Value *> &ChosenPairs, 346 DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth, 347 int &BestEffSize, Value *II, std::vector<Value *>&JJ, 348 bool UseCycleCheck); 349 350 Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I, 351 Instruction *J, unsigned o); 352 353 void fillNewShuffleMask(LLVMContext& Context, Instruction *J, 354 unsigned MaskOffset, unsigned NumInElem, 355 unsigned NumInElem1, unsigned IdxOffset, 356 std::vector<Constant*> &Mask); 357 358 Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I, 359 Instruction *J); 360 361 bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J, 362 unsigned o, Value *&LOp, unsigned numElemL, 363 Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ, 364 unsigned IdxOff = 0); 365 366 Value *getReplacementInput(LLVMContext& Context, Instruction *I, 367 Instruction *J, unsigned o, bool IBeforeJ); 368 369 void getReplacementInputsForPair(LLVMContext& Context, Instruction *I, 370 Instruction *J, SmallVectorImpl<Value *> &ReplacedOperands, 371 bool IBeforeJ); 372 373 void replaceOutputsOfPair(LLVMContext& Context, Instruction *I, 374 Instruction *J, Instruction *K, 375 Instruction *&InsertionPt, Instruction *&K1, 376 Instruction *&K2); 377 378 void collectPairLoadMoveSet(BasicBlock &BB, 379 DenseMap<Value *, Value *> &ChosenPairs, 380 DenseMap<Value *, std::vector<Value *> > &LoadMoveSet, 381 DenseSet<ValuePair> &LoadMoveSetPairs, 382 Instruction *I); 383 384 void collectLoadMoveSet(BasicBlock &BB, 385 std::vector<Value *> &PairableInsts, 386 DenseMap<Value *, Value *> &ChosenPairs, 387 DenseMap<Value *, std::vector<Value *> > &LoadMoveSet, 388 DenseSet<ValuePair> &LoadMoveSetPairs); 389 390 bool canMoveUsesOfIAfterJ(BasicBlock &BB, 391 DenseSet<ValuePair> &LoadMoveSetPairs, 392 Instruction *I, Instruction *J); 393 394 void moveUsesOfIAfterJ(BasicBlock &BB, 395 DenseSet<ValuePair> &LoadMoveSetPairs, 396 Instruction *&InsertionPt, 397 Instruction *I, Instruction *J); 398 399 bool vectorizeBB(BasicBlock &BB) { 400 if (skipBasicBlock(BB)) 401 return false; 402 if (!DT->isReachableFromEntry(&BB)) { 403 DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() << 404 " in " << BB.getParent()->getName() << "\n"); 405 return false; 406 } 407 408 DEBUG(if (TTI) dbgs() << "BBV: using target information\n"); 409 410 bool changed = false; 411 // Iterate a sufficient number of times to merge types of size 1 bit, 412 // then 2 bits, then 4, etc. up to half of the target vector width of the 413 // target vector register. 414 unsigned n = 1; 415 for (unsigned v = 2; 416 (TTI || v <= Config.VectorBits) && 417 (!Config.MaxIter || n <= Config.MaxIter); 418 v *= 2, ++n) { 419 DEBUG(dbgs() << "BBV: fusing loop #" << n << 420 " for " << BB.getName() << " in " << 421 BB.getParent()->getName() << "...\n"); 422 if (vectorizePairs(BB)) 423 changed = true; 424 else 425 break; 426 } 427 428 if (changed && !Pow2LenOnly) { 429 ++n; 430 for (; !Config.MaxIter || n <= Config.MaxIter; ++n) { 431 DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " << 432 n << " for " << BB.getName() << " in " << 433 BB.getParent()->getName() << "...\n"); 434 if (!vectorizePairs(BB, true)) break; 435 } 436 } 437 438 DEBUG(dbgs() << "BBV: done!\n"); 439 return changed; 440 } 441 442 bool runOnBasicBlock(BasicBlock &BB) override { 443 // OptimizeNone check deferred to vectorizeBB(). 444 445 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 446 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 447 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 448 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 449 TTI = IgnoreTargetInfo 450 ? nullptr 451 : &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 452 *BB.getParent()); 453 454 return vectorizeBB(BB); 455 } 456 457 void getAnalysisUsage(AnalysisUsage &AU) const override { 458 BasicBlockPass::getAnalysisUsage(AU); 459 AU.addRequired<AAResultsWrapperPass>(); 460 AU.addRequired<DominatorTreeWrapperPass>(); 461 AU.addRequired<ScalarEvolutionWrapperPass>(); 462 AU.addRequired<TargetLibraryInfoWrapperPass>(); 463 AU.addRequired<TargetTransformInfoWrapperPass>(); 464 AU.addPreserved<DominatorTreeWrapperPass>(); 465 AU.addPreserved<GlobalsAAWrapperPass>(); 466 AU.addPreserved<ScalarEvolutionWrapperPass>(); 467 AU.addPreserved<SCEVAAWrapperPass>(); 468 AU.setPreservesCFG(); 469 } 470 471 static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) { 472 assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() && 473 "Cannot form vector from incompatible scalar types"); 474 Type *STy = ElemTy->getScalarType(); 475 476 unsigned numElem; 477 if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) { 478 numElem = VTy->getNumElements(); 479 } else { 480 numElem = 1; 481 } 482 483 if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) { 484 numElem += VTy->getNumElements(); 485 } else { 486 numElem += 1; 487 } 488 489 return VectorType::get(STy, numElem); 490 } 491 492 static inline void getInstructionTypes(Instruction *I, 493 Type *&T1, Type *&T2) { 494 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 495 // For stores, it is the value type, not the pointer type that matters 496 // because the value is what will come from a vector register. 497 498 Value *IVal = SI->getValueOperand(); 499 T1 = IVal->getType(); 500 } else { 501 T1 = I->getType(); 502 } 503 504 if (CastInst *CI = dyn_cast<CastInst>(I)) 505 T2 = CI->getSrcTy(); 506 else 507 T2 = T1; 508 509 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 510 T2 = SI->getCondition()->getType(); 511 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 512 T2 = SI->getOperand(0)->getType(); 513 } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) { 514 T2 = CI->getOperand(0)->getType(); 515 } 516 } 517 518 // Returns the weight associated with the provided value. A chain of 519 // candidate pairs has a length given by the sum of the weights of its 520 // members (one weight per pair; the weight of each member of the pair 521 // is assumed to be the same). This length is then compared to the 522 // chain-length threshold to determine if a given chain is significant 523 // enough to be vectorized. The length is also used in comparing 524 // candidate chains where longer chains are considered to be better. 525 // Note: when this function returns 0, the resulting instructions are 526 // not actually fused. 527 inline size_t getDepthFactor(Value *V) { 528 // InsertElement and ExtractElement have a depth factor of zero. This is 529 // for two reasons: First, they cannot be usefully fused. Second, because 530 // the pass generates a lot of these, they can confuse the simple metric 531 // used to compare the dags in the next iteration. Thus, giving them a 532 // weight of zero allows the pass to essentially ignore them in 533 // subsequent iterations when looking for vectorization opportunities 534 // while still tracking dependency chains that flow through those 535 // instructions. 536 if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V)) 537 return 0; 538 539 // Give a load or store half of the required depth so that load/store 540 // pairs will vectorize. 541 if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V))) 542 return Config.ReqChainDepth/2; 543 544 return 1; 545 } 546 547 // Returns the cost of the provided instruction using TTI. 548 // This does not handle loads and stores. 549 unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2, 550 TargetTransformInfo::OperandValueKind Op1VK = 551 TargetTransformInfo::OK_AnyValue, 552 TargetTransformInfo::OperandValueKind Op2VK = 553 TargetTransformInfo::OK_AnyValue) { 554 switch (Opcode) { 555 default: break; 556 case Instruction::GetElementPtr: 557 // We mark this instruction as zero-cost because scalar GEPs are usually 558 // lowered to the instruction addressing mode. At the moment we don't 559 // generate vector GEPs. 560 return 0; 561 case Instruction::Br: 562 return TTI->getCFInstrCost(Opcode); 563 case Instruction::PHI: 564 return 0; 565 case Instruction::Add: 566 case Instruction::FAdd: 567 case Instruction::Sub: 568 case Instruction::FSub: 569 case Instruction::Mul: 570 case Instruction::FMul: 571 case Instruction::UDiv: 572 case Instruction::SDiv: 573 case Instruction::FDiv: 574 case Instruction::URem: 575 case Instruction::SRem: 576 case Instruction::FRem: 577 case Instruction::Shl: 578 case Instruction::LShr: 579 case Instruction::AShr: 580 case Instruction::And: 581 case Instruction::Or: 582 case Instruction::Xor: 583 return TTI->getArithmeticInstrCost(Opcode, T1, Op1VK, Op2VK); 584 case Instruction::Select: 585 case Instruction::ICmp: 586 case Instruction::FCmp: 587 return TTI->getCmpSelInstrCost(Opcode, T1, T2); 588 case Instruction::ZExt: 589 case Instruction::SExt: 590 case Instruction::FPToUI: 591 case Instruction::FPToSI: 592 case Instruction::FPExt: 593 case Instruction::PtrToInt: 594 case Instruction::IntToPtr: 595 case Instruction::SIToFP: 596 case Instruction::UIToFP: 597 case Instruction::Trunc: 598 case Instruction::FPTrunc: 599 case Instruction::BitCast: 600 case Instruction::ShuffleVector: 601 return TTI->getCastInstrCost(Opcode, T1, T2); 602 } 603 604 return 1; 605 } 606 607 // This determines the relative offset of two loads or stores, returning 608 // true if the offset could be determined to be some constant value. 609 // For example, if OffsetInElmts == 1, then J accesses the memory directly 610 // after I; if OffsetInElmts == -1 then I accesses the memory 611 // directly after J. 612 bool getPairPtrInfo(Instruction *I, Instruction *J, 613 Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment, 614 unsigned &IAddressSpace, unsigned &JAddressSpace, 615 int64_t &OffsetInElmts, bool ComputeOffset = true) { 616 OffsetInElmts = 0; 617 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 618 LoadInst *LJ = cast<LoadInst>(J); 619 IPtr = LI->getPointerOperand(); 620 JPtr = LJ->getPointerOperand(); 621 IAlignment = LI->getAlignment(); 622 JAlignment = LJ->getAlignment(); 623 IAddressSpace = LI->getPointerAddressSpace(); 624 JAddressSpace = LJ->getPointerAddressSpace(); 625 } else { 626 StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J); 627 IPtr = SI->getPointerOperand(); 628 JPtr = SJ->getPointerOperand(); 629 IAlignment = SI->getAlignment(); 630 JAlignment = SJ->getAlignment(); 631 IAddressSpace = SI->getPointerAddressSpace(); 632 JAddressSpace = SJ->getPointerAddressSpace(); 633 } 634 635 if (!ComputeOffset) 636 return true; 637 638 const SCEV *IPtrSCEV = SE->getSCEV(IPtr); 639 const SCEV *JPtrSCEV = SE->getSCEV(JPtr); 640 641 // If this is a trivial offset, then we'll get something like 642 // 1*sizeof(type). With target data, which we need anyway, this will get 643 // constant folded into a number. 644 const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV); 645 if (const SCEVConstant *ConstOffSCEV = 646 dyn_cast<SCEVConstant>(OffsetSCEV)) { 647 ConstantInt *IntOff = ConstOffSCEV->getValue(); 648 int64_t Offset = IntOff->getSExtValue(); 649 const DataLayout &DL = I->getModule()->getDataLayout(); 650 Type *VTy = IPtr->getType()->getPointerElementType(); 651 int64_t VTyTSS = (int64_t)DL.getTypeStoreSize(VTy); 652 653 Type *VTy2 = JPtr->getType()->getPointerElementType(); 654 if (VTy != VTy2 && Offset < 0) { 655 int64_t VTy2TSS = (int64_t)DL.getTypeStoreSize(VTy2); 656 OffsetInElmts = Offset/VTy2TSS; 657 return (std::abs(Offset) % VTy2TSS) == 0; 658 } 659 660 OffsetInElmts = Offset/VTyTSS; 661 return (std::abs(Offset) % VTyTSS) == 0; 662 } 663 664 return false; 665 } 666 667 // Returns true if the provided CallInst represents an intrinsic that can 668 // be vectorized. 669 bool isVectorizableIntrinsic(CallInst* I) { 670 Function *F = I->getCalledFunction(); 671 if (!F) return false; 672 673 Intrinsic::ID IID = F->getIntrinsicID(); 674 if (!IID) return false; 675 676 switch(IID) { 677 default: 678 return false; 679 case Intrinsic::sqrt: 680 case Intrinsic::powi: 681 case Intrinsic::sin: 682 case Intrinsic::cos: 683 case Intrinsic::log: 684 case Intrinsic::log2: 685 case Intrinsic::log10: 686 case Intrinsic::exp: 687 case Intrinsic::exp2: 688 case Intrinsic::pow: 689 case Intrinsic::round: 690 case Intrinsic::copysign: 691 case Intrinsic::ceil: 692 case Intrinsic::nearbyint: 693 case Intrinsic::rint: 694 case Intrinsic::trunc: 695 case Intrinsic::floor: 696 case Intrinsic::fabs: 697 case Intrinsic::minnum: 698 case Intrinsic::maxnum: 699 return Config.VectorizeMath; 700 case Intrinsic::bswap: 701 case Intrinsic::ctpop: 702 case Intrinsic::ctlz: 703 case Intrinsic::cttz: 704 return Config.VectorizeBitManipulations; 705 case Intrinsic::fma: 706 case Intrinsic::fmuladd: 707 return Config.VectorizeFMA; 708 } 709 } 710 711 bool isPureIEChain(InsertElementInst *IE) { 712 InsertElementInst *IENext = IE; 713 do { 714 if (!isa<UndefValue>(IENext->getOperand(0)) && 715 !isa<InsertElementInst>(IENext->getOperand(0))) { 716 return false; 717 } 718 } while ((IENext = 719 dyn_cast<InsertElementInst>(IENext->getOperand(0)))); 720 721 return true; 722 } 723 }; 724 725 // This function implements one vectorization iteration on the provided 726 // basic block. It returns true if the block is changed. 727 bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) { 728 bool ShouldContinue; 729 BasicBlock::iterator Start = BB.getFirstInsertionPt(); 730 731 std::vector<Value *> AllPairableInsts; 732 DenseMap<Value *, Value *> AllChosenPairs; 733 DenseSet<ValuePair> AllFixedOrderPairs; 734 DenseMap<VPPair, unsigned> AllPairConnectionTypes; 735 DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs, 736 AllConnectedPairDeps; 737 738 do { 739 std::vector<Value *> PairableInsts; 740 DenseMap<Value *, std::vector<Value *> > CandidatePairs; 741 DenseSet<ValuePair> FixedOrderPairs; 742 DenseMap<ValuePair, int> CandidatePairCostSavings; 743 ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs, 744 FixedOrderPairs, 745 CandidatePairCostSavings, 746 PairableInsts, NonPow2Len); 747 if (PairableInsts.empty()) continue; 748 749 // Build the candidate pair set for faster lookups. 750 DenseSet<ValuePair> CandidatePairsSet; 751 for (DenseMap<Value *, std::vector<Value *> >::iterator I = 752 CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I) 753 for (std::vector<Value *>::iterator J = I->second.begin(), 754 JE = I->second.end(); J != JE; ++J) 755 CandidatePairsSet.insert(ValuePair(I->first, *J)); 756 757 // Now we have a map of all of the pairable instructions and we need to 758 // select the best possible pairing. A good pairing is one such that the 759 // users of the pair are also paired. This defines a (directed) forest 760 // over the pairs such that two pairs are connected iff the second pair 761 // uses the first. 762 763 // Note that it only matters that both members of the second pair use some 764 // element of the first pair (to allow for splatting). 765 766 DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs, 767 ConnectedPairDeps; 768 DenseMap<VPPair, unsigned> PairConnectionTypes; 769 computeConnectedPairs(CandidatePairs, CandidatePairsSet, 770 PairableInsts, ConnectedPairs, PairConnectionTypes); 771 if (ConnectedPairs.empty()) continue; 772 773 for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator 774 I = ConnectedPairs.begin(), IE = ConnectedPairs.end(); 775 I != IE; ++I) 776 for (std::vector<ValuePair>::iterator J = I->second.begin(), 777 JE = I->second.end(); J != JE; ++J) 778 ConnectedPairDeps[*J].push_back(I->first); 779 780 // Build the pairable-instruction dependency map 781 DenseSet<ValuePair> PairableInstUsers; 782 buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers); 783 784 // There is now a graph of the connected pairs. For each variable, pick 785 // the pairing with the largest dag meeting the depth requirement on at 786 // least one branch. Then select all pairings that are part of that dag 787 // and remove them from the list of available pairings and pairable 788 // variables. 789 790 DenseMap<Value *, Value *> ChosenPairs; 791 choosePairs(CandidatePairs, CandidatePairsSet, 792 CandidatePairCostSavings, 793 PairableInsts, FixedOrderPairs, PairConnectionTypes, 794 ConnectedPairs, ConnectedPairDeps, 795 PairableInstUsers, ChosenPairs); 796 797 if (ChosenPairs.empty()) continue; 798 AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(), 799 PairableInsts.end()); 800 AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end()); 801 802 // Only for the chosen pairs, propagate information on fixed-order pairs, 803 // pair connections, and their types to the data structures used by the 804 // pair fusion procedures. 805 for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(), 806 IE = ChosenPairs.end(); I != IE; ++I) { 807 if (FixedOrderPairs.count(*I)) 808 AllFixedOrderPairs.insert(*I); 809 else if (FixedOrderPairs.count(ValuePair(I->second, I->first))) 810 AllFixedOrderPairs.insert(ValuePair(I->second, I->first)); 811 812 for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin(); 813 J != IE; ++J) { 814 DenseMap<VPPair, unsigned>::iterator K = 815 PairConnectionTypes.find(VPPair(*I, *J)); 816 if (K != PairConnectionTypes.end()) { 817 AllPairConnectionTypes.insert(*K); 818 } else { 819 K = PairConnectionTypes.find(VPPair(*J, *I)); 820 if (K != PairConnectionTypes.end()) 821 AllPairConnectionTypes.insert(*K); 822 } 823 } 824 } 825 826 for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator 827 I = ConnectedPairs.begin(), IE = ConnectedPairs.end(); 828 I != IE; ++I) 829 for (std::vector<ValuePair>::iterator J = I->second.begin(), 830 JE = I->second.end(); J != JE; ++J) 831 if (AllPairConnectionTypes.count(VPPair(I->first, *J))) { 832 AllConnectedPairs[I->first].push_back(*J); 833 AllConnectedPairDeps[*J].push_back(I->first); 834 } 835 } while (ShouldContinue); 836 837 if (AllChosenPairs.empty()) return false; 838 NumFusedOps += AllChosenPairs.size(); 839 840 // A set of pairs has now been selected. It is now necessary to replace the 841 // paired instructions with vector instructions. For this procedure each 842 // operand must be replaced with a vector operand. This vector is formed 843 // by using build_vector on the old operands. The replaced values are then 844 // replaced with a vector_extract on the result. Subsequent optimization 845 // passes should coalesce the build/extract combinations. 846 847 fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs, 848 AllPairConnectionTypes, 849 AllConnectedPairs, AllConnectedPairDeps); 850 851 // It is important to cleanup here so that future iterations of this 852 // function have less work to do. 853 (void)SimplifyInstructionsInBlock(&BB, TLI); 854 return true; 855 } 856 857 // This function returns true if the provided instruction is capable of being 858 // fused into a vector instruction. This determination is based only on the 859 // type and other attributes of the instruction. 860 bool BBVectorize::isInstVectorizable(Instruction *I, 861 bool &IsSimpleLoadStore) { 862 IsSimpleLoadStore = false; 863 864 if (CallInst *C = dyn_cast<CallInst>(I)) { 865 if (!isVectorizableIntrinsic(C)) 866 return false; 867 } else if (LoadInst *L = dyn_cast<LoadInst>(I)) { 868 // Vectorize simple loads if possbile: 869 IsSimpleLoadStore = L->isSimple(); 870 if (!IsSimpleLoadStore || !Config.VectorizeMemOps) 871 return false; 872 } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { 873 // Vectorize simple stores if possbile: 874 IsSimpleLoadStore = S->isSimple(); 875 if (!IsSimpleLoadStore || !Config.VectorizeMemOps) 876 return false; 877 } else if (CastInst *C = dyn_cast<CastInst>(I)) { 878 // We can vectorize casts, but not casts of pointer types, etc. 879 if (!Config.VectorizeCasts) 880 return false; 881 882 Type *SrcTy = C->getSrcTy(); 883 if (!SrcTy->isSingleValueType()) 884 return false; 885 886 Type *DestTy = C->getDestTy(); 887 if (!DestTy->isSingleValueType()) 888 return false; 889 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 890 if (!Config.VectorizeSelect) 891 return false; 892 // We can vectorize a select if either all operands are scalars, 893 // or all operands are vectors. Trying to "widen" a select between 894 // vectors that has a scalar condition results in a malformed select. 895 // FIXME: We could probably be smarter about this by rewriting the select 896 // with different types instead. 897 return (SI->getCondition()->getType()->isVectorTy() == 898 SI->getTrueValue()->getType()->isVectorTy()); 899 } else if (isa<CmpInst>(I)) { 900 if (!Config.VectorizeCmp) 901 return false; 902 } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) { 903 if (!Config.VectorizeGEP) 904 return false; 905 906 // Currently, vector GEPs exist only with one index. 907 if (G->getNumIndices() != 1) 908 return false; 909 } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) || 910 isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) { 911 return false; 912 } 913 914 Type *T1, *T2; 915 getInstructionTypes(I, T1, T2); 916 917 // Not every type can be vectorized... 918 if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) || 919 !(VectorType::isValidElementType(T2) || T2->isVectorTy())) 920 return false; 921 922 if (T1->getScalarSizeInBits() == 1) { 923 if (!Config.VectorizeBools) 924 return false; 925 } else { 926 if (!Config.VectorizeInts && T1->isIntOrIntVectorTy()) 927 return false; 928 } 929 930 if (T2->getScalarSizeInBits() == 1) { 931 if (!Config.VectorizeBools) 932 return false; 933 } else { 934 if (!Config.VectorizeInts && T2->isIntOrIntVectorTy()) 935 return false; 936 } 937 938 if (!Config.VectorizeFloats 939 && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy())) 940 return false; 941 942 // Don't vectorize target-specific types. 943 if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy()) 944 return false; 945 if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy()) 946 return false; 947 948 if (!Config.VectorizePointers && (T1->getScalarType()->isPointerTy() || 949 T2->getScalarType()->isPointerTy())) 950 return false; 951 952 if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits || 953 T2->getPrimitiveSizeInBits() >= Config.VectorBits)) 954 return false; 955 956 return true; 957 } 958 959 // This function returns true if the two provided instructions are compatible 960 // (meaning that they can be fused into a vector instruction). This assumes 961 // that I has already been determined to be vectorizable and that J is not 962 // in the use dag of I. 963 bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J, 964 bool IsSimpleLoadStore, bool NonPow2Len, 965 int &CostSavings, int &FixedOrder) { 966 DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I << 967 " <-> " << *J << "\n"); 968 969 CostSavings = 0; 970 FixedOrder = 0; 971 972 // Loads and stores can be merged if they have different alignments, 973 // but are otherwise the same. 974 if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment | 975 (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0))) 976 return false; 977 978 Type *IT1, *IT2, *JT1, *JT2; 979 getInstructionTypes(I, IT1, IT2); 980 getInstructionTypes(J, JT1, JT2); 981 unsigned MaxTypeBits = std::max( 982 IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(), 983 IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits()); 984 if (!TTI && MaxTypeBits > Config.VectorBits) 985 return false; 986 987 // FIXME: handle addsub-type operations! 988 989 if (IsSimpleLoadStore) { 990 Value *IPtr, *JPtr; 991 unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace; 992 int64_t OffsetInElmts = 0; 993 if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, 994 IAddressSpace, JAddressSpace, OffsetInElmts) && 995 std::abs(OffsetInElmts) == 1) { 996 FixedOrder = (int) OffsetInElmts; 997 unsigned BottomAlignment = IAlignment; 998 if (OffsetInElmts < 0) BottomAlignment = JAlignment; 999 1000 Type *aTypeI = isa<StoreInst>(I) ? 1001 cast<StoreInst>(I)->getValueOperand()->getType() : I->getType(); 1002 Type *aTypeJ = isa<StoreInst>(J) ? 1003 cast<StoreInst>(J)->getValueOperand()->getType() : J->getType(); 1004 Type *VType = getVecTypeForPair(aTypeI, aTypeJ); 1005 1006 if (Config.AlignedOnly) { 1007 // An aligned load or store is possible only if the instruction 1008 // with the lower offset has an alignment suitable for the 1009 // vector type. 1010 const DataLayout &DL = I->getModule()->getDataLayout(); 1011 unsigned VecAlignment = DL.getPrefTypeAlignment(VType); 1012 if (BottomAlignment < VecAlignment) 1013 return false; 1014 } 1015 1016 if (TTI) { 1017 unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI, 1018 IAlignment, IAddressSpace); 1019 unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ, 1020 JAlignment, JAddressSpace); 1021 unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType, 1022 BottomAlignment, 1023 IAddressSpace); 1024 1025 ICost += TTI->getAddressComputationCost(aTypeI); 1026 JCost += TTI->getAddressComputationCost(aTypeJ); 1027 VCost += TTI->getAddressComputationCost(VType); 1028 1029 if (VCost > ICost + JCost) 1030 return false; 1031 1032 // We don't want to fuse to a type that will be split, even 1033 // if the two input types will also be split and there is no other 1034 // associated cost. 1035 unsigned VParts = TTI->getNumberOfParts(VType); 1036 if (VParts > 1) 1037 return false; 1038 else if (!VParts && VCost == ICost + JCost) 1039 return false; 1040 1041 CostSavings = ICost + JCost - VCost; 1042 } 1043 } else { 1044 return false; 1045 } 1046 } else if (TTI) { 1047 unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2); 1048 unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2); 1049 Type *VT1 = getVecTypeForPair(IT1, JT1), 1050 *VT2 = getVecTypeForPair(IT2, JT2); 1051 TargetTransformInfo::OperandValueKind Op1VK = 1052 TargetTransformInfo::OK_AnyValue; 1053 TargetTransformInfo::OperandValueKind Op2VK = 1054 TargetTransformInfo::OK_AnyValue; 1055 1056 // On some targets (example X86) the cost of a vector shift may vary 1057 // depending on whether the second operand is a Uniform or 1058 // NonUniform Constant. 1059 switch (I->getOpcode()) { 1060 default : break; 1061 case Instruction::Shl: 1062 case Instruction::LShr: 1063 case Instruction::AShr: 1064 1065 // If both I and J are scalar shifts by constant, then the 1066 // merged vector shift count would be either a constant splat value 1067 // or a non-uniform vector of constants. 1068 if (ConstantInt *CII = dyn_cast<ConstantInt>(I->getOperand(1))) { 1069 if (ConstantInt *CIJ = dyn_cast<ConstantInt>(J->getOperand(1))) 1070 Op2VK = CII == CIJ ? TargetTransformInfo::OK_UniformConstantValue : 1071 TargetTransformInfo::OK_NonUniformConstantValue; 1072 } else { 1073 // Check for a splat of a constant or for a non uniform vector 1074 // of constants. 1075 Value *IOp = I->getOperand(1); 1076 Value *JOp = J->getOperand(1); 1077 if ((isa<ConstantVector>(IOp) || isa<ConstantDataVector>(IOp)) && 1078 (isa<ConstantVector>(JOp) || isa<ConstantDataVector>(JOp))) { 1079 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1080 Constant *SplatValue = cast<Constant>(IOp)->getSplatValue(); 1081 if (SplatValue != nullptr && 1082 SplatValue == cast<Constant>(JOp)->getSplatValue()) 1083 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 1084 } 1085 } 1086 } 1087 1088 // Note that this procedure is incorrect for insert and extract element 1089 // instructions (because combining these often results in a shuffle), 1090 // but this cost is ignored (because insert and extract element 1091 // instructions are assigned a zero depth factor and are not really 1092 // fused in general). 1093 unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2, Op1VK, Op2VK); 1094 1095 if (VCost > ICost + JCost) 1096 return false; 1097 1098 // We don't want to fuse to a type that will be split, even 1099 // if the two input types will also be split and there is no other 1100 // associated cost. 1101 unsigned VParts1 = TTI->getNumberOfParts(VT1), 1102 VParts2 = TTI->getNumberOfParts(VT2); 1103 if (VParts1 > 1 || VParts2 > 1) 1104 return false; 1105 else if ((!VParts1 || !VParts2) && VCost == ICost + JCost) 1106 return false; 1107 1108 CostSavings = ICost + JCost - VCost; 1109 } 1110 1111 // The powi,ctlz,cttz intrinsics are special because only the first 1112 // argument is vectorized, the second arguments must be equal. 1113 CallInst *CI = dyn_cast<CallInst>(I); 1114 Function *FI; 1115 if (CI && (FI = CI->getCalledFunction())) { 1116 Intrinsic::ID IID = FI->getIntrinsicID(); 1117 if (IID == Intrinsic::powi || IID == Intrinsic::ctlz || 1118 IID == Intrinsic::cttz) { 1119 Value *A1I = CI->getArgOperand(1), 1120 *A1J = cast<CallInst>(J)->getArgOperand(1); 1121 const SCEV *A1ISCEV = SE->getSCEV(A1I), 1122 *A1JSCEV = SE->getSCEV(A1J); 1123 return (A1ISCEV == A1JSCEV); 1124 } 1125 1126 if (IID && TTI) { 1127 FastMathFlags FMFCI; 1128 if (auto *FPMOCI = dyn_cast<FPMathOperator>(CI)) 1129 FMFCI = FPMOCI->getFastMathFlags(); 1130 1131 SmallVector<Type*, 4> Tys; 1132 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 1133 Tys.push_back(CI->getArgOperand(i)->getType()); 1134 unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys, FMFCI); 1135 1136 Tys.clear(); 1137 CallInst *CJ = cast<CallInst>(J); 1138 1139 FastMathFlags FMFCJ; 1140 if (auto *FPMOCJ = dyn_cast<FPMathOperator>(CJ)) 1141 FMFCJ = FPMOCJ->getFastMathFlags(); 1142 1143 for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i) 1144 Tys.push_back(CJ->getArgOperand(i)->getType()); 1145 unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys, FMFCJ); 1146 1147 Tys.clear(); 1148 assert(CI->getNumArgOperands() == CJ->getNumArgOperands() && 1149 "Intrinsic argument counts differ"); 1150 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 1151 if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz || 1152 IID == Intrinsic::cttz) && i == 1) 1153 Tys.push_back(CI->getArgOperand(i)->getType()); 1154 else 1155 Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(), 1156 CJ->getArgOperand(i)->getType())); 1157 } 1158 1159 FastMathFlags FMFV = FMFCI; 1160 FMFV &= FMFCJ; 1161 Type *RetTy = getVecTypeForPair(IT1, JT1); 1162 unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys, FMFV); 1163 1164 if (VCost > ICost + JCost) 1165 return false; 1166 1167 // We don't want to fuse to a type that will be split, even 1168 // if the two input types will also be split and there is no other 1169 // associated cost. 1170 unsigned RetParts = TTI->getNumberOfParts(RetTy); 1171 if (RetParts > 1) 1172 return false; 1173 else if (!RetParts && VCost == ICost + JCost) 1174 return false; 1175 1176 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 1177 if (!Tys[i]->isVectorTy()) 1178 continue; 1179 1180 unsigned NumParts = TTI->getNumberOfParts(Tys[i]); 1181 if (NumParts > 1) 1182 return false; 1183 else if (!NumParts && VCost == ICost + JCost) 1184 return false; 1185 } 1186 1187 CostSavings = ICost + JCost - VCost; 1188 } 1189 } 1190 1191 return true; 1192 } 1193 1194 // Figure out whether or not J uses I and update the users and write-set 1195 // structures associated with I. Specifically, Users represents the set of 1196 // instructions that depend on I. WriteSet represents the set 1197 // of memory locations that are dependent on I. If UpdateUsers is true, 1198 // and J uses I, then Users is updated to contain J and WriteSet is updated 1199 // to contain any memory locations to which J writes. The function returns 1200 // true if J uses I. By default, alias analysis is used to determine 1201 // whether J reads from memory that overlaps with a location in WriteSet. 1202 // If LoadMoveSet is not null, then it is a previously-computed map 1203 // where the key is the memory-based user instruction and the value is 1204 // the instruction to be compared with I. So, if LoadMoveSet is provided, 1205 // then the alias analysis is not used. This is necessary because this 1206 // function is called during the process of moving instructions during 1207 // vectorization and the results of the alias analysis are not stable during 1208 // that process. 1209 bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users, 1210 AliasSetTracker &WriteSet, Instruction *I, 1211 Instruction *J, bool UpdateUsers, 1212 DenseSet<ValuePair> *LoadMoveSetPairs) { 1213 bool UsesI = false; 1214 1215 // This instruction may already be marked as a user due, for example, to 1216 // being a member of a selected pair. 1217 if (Users.count(J)) 1218 UsesI = true; 1219 1220 if (!UsesI) 1221 for (User::op_iterator JU = J->op_begin(), JE = J->op_end(); 1222 JU != JE; ++JU) { 1223 Value *V = *JU; 1224 if (I == V || Users.count(V)) { 1225 UsesI = true; 1226 break; 1227 } 1228 } 1229 if (!UsesI && J->mayReadFromMemory()) { 1230 if (LoadMoveSetPairs) { 1231 UsesI = LoadMoveSetPairs->count(ValuePair(J, I)); 1232 } else { 1233 for (AliasSetTracker::iterator W = WriteSet.begin(), 1234 WE = WriteSet.end(); W != WE; ++W) { 1235 if (W->aliasesUnknownInst(J, *AA)) { 1236 UsesI = true; 1237 break; 1238 } 1239 } 1240 } 1241 } 1242 1243 if (UsesI && UpdateUsers) { 1244 if (J->mayWriteToMemory()) WriteSet.add(J); 1245 Users.insert(J); 1246 } 1247 1248 return UsesI; 1249 } 1250 1251 // This function iterates over all instruction pairs in the provided 1252 // basic block and collects all candidate pairs for vectorization. 1253 bool BBVectorize::getCandidatePairs(BasicBlock &BB, 1254 BasicBlock::iterator &Start, 1255 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 1256 DenseSet<ValuePair> &FixedOrderPairs, 1257 DenseMap<ValuePair, int> &CandidatePairCostSavings, 1258 std::vector<Value *> &PairableInsts, bool NonPow2Len) { 1259 size_t TotalPairs = 0; 1260 BasicBlock::iterator E = BB.end(); 1261 if (Start == E) return false; 1262 1263 bool ShouldContinue = false, IAfterStart = false; 1264 for (BasicBlock::iterator I = Start++; I != E; ++I) { 1265 if (I == Start) IAfterStart = true; 1266 1267 bool IsSimpleLoadStore; 1268 if (!isInstVectorizable(&*I, IsSimpleLoadStore)) 1269 continue; 1270 1271 // Look for an instruction with which to pair instruction *I... 1272 DenseSet<Value *> Users; 1273 AliasSetTracker WriteSet(*AA); 1274 if (I->mayWriteToMemory()) 1275 WriteSet.add(&*I); 1276 1277 bool JAfterStart = IAfterStart; 1278 BasicBlock::iterator J = std::next(I); 1279 for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) { 1280 if (J == Start) 1281 JAfterStart = true; 1282 1283 // Determine if J uses I, if so, exit the loop. 1284 bool UsesI = trackUsesOfI(Users, WriteSet, &*I, &*J, !Config.FastDep); 1285 if (Config.FastDep) { 1286 // Note: For this heuristic to be effective, independent operations 1287 // must tend to be intermixed. This is likely to be true from some 1288 // kinds of grouped loop unrolling (but not the generic LLVM pass), 1289 // but otherwise may require some kind of reordering pass. 1290 1291 // When using fast dependency analysis, 1292 // stop searching after first use: 1293 if (UsesI) break; 1294 } else { 1295 if (UsesI) continue; 1296 } 1297 1298 // J does not use I, and comes before the first use of I, so it can be 1299 // merged with I if the instructions are compatible. 1300 int CostSavings, FixedOrder; 1301 if (!areInstsCompatible(&*I, &*J, IsSimpleLoadStore, NonPow2Len, 1302 CostSavings, FixedOrder)) 1303 continue; 1304 1305 // J is a candidate for merging with I. 1306 if (PairableInsts.empty() || 1307 PairableInsts[PairableInsts.size() - 1] != &*I) { 1308 PairableInsts.push_back(&*I); 1309 } 1310 1311 CandidatePairs[&*I].push_back(&*J); 1312 ++TotalPairs; 1313 if (TTI) 1314 CandidatePairCostSavings.insert( 1315 ValuePairWithCost(ValuePair(&*I, &*J), CostSavings)); 1316 1317 if (FixedOrder == 1) 1318 FixedOrderPairs.insert(ValuePair(&*I, &*J)); 1319 else if (FixedOrder == -1) 1320 FixedOrderPairs.insert(ValuePair(&*J, &*I)); 1321 1322 // The next call to this function must start after the last instruction 1323 // selected during this invocation. 1324 if (JAfterStart) { 1325 Start = std::next(J); 1326 IAfterStart = JAfterStart = false; 1327 } 1328 1329 DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair " 1330 << *I << " <-> " << *J << " (cost savings: " << 1331 CostSavings << ")\n"); 1332 1333 // If we have already found too many pairs, break here and this function 1334 // will be called again starting after the last instruction selected 1335 // during this invocation. 1336 if (PairableInsts.size() >= Config.MaxInsts || 1337 TotalPairs >= Config.MaxPairs) { 1338 ShouldContinue = true; 1339 break; 1340 } 1341 } 1342 1343 if (ShouldContinue) 1344 break; 1345 } 1346 1347 DEBUG(dbgs() << "BBV: found " << PairableInsts.size() 1348 << " instructions with candidate pairs\n"); 1349 1350 return ShouldContinue; 1351 } 1352 1353 // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that 1354 // it looks for pairs such that both members have an input which is an 1355 // output of PI or PJ. 1356 void BBVectorize::computePairsConnectedTo( 1357 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 1358 DenseSet<ValuePair> &CandidatePairsSet, 1359 std::vector<Value *> &PairableInsts, 1360 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 1361 DenseMap<VPPair, unsigned> &PairConnectionTypes, 1362 ValuePair P) { 1363 StoreInst *SI, *SJ; 1364 1365 // For each possible pairing for this variable, look at the uses of 1366 // the first value... 1367 for (Value::user_iterator I = P.first->user_begin(), 1368 E = P.first->user_end(); 1369 I != E; ++I) { 1370 User *UI = *I; 1371 if (isa<LoadInst>(UI)) { 1372 // A pair cannot be connected to a load because the load only takes one 1373 // operand (the address) and it is a scalar even after vectorization. 1374 continue; 1375 } else if ((SI = dyn_cast<StoreInst>(UI)) && 1376 P.first == SI->getPointerOperand()) { 1377 // Similarly, a pair cannot be connected to a store through its 1378 // pointer operand. 1379 continue; 1380 } 1381 1382 // For each use of the first variable, look for uses of the second 1383 // variable... 1384 for (User *UJ : P.second->users()) { 1385 if ((SJ = dyn_cast<StoreInst>(UJ)) && 1386 P.second == SJ->getPointerOperand()) 1387 continue; 1388 1389 // Look for <I, J>: 1390 if (CandidatePairsSet.count(ValuePair(UI, UJ))) { 1391 VPPair VP(P, ValuePair(UI, UJ)); 1392 ConnectedPairs[VP.first].push_back(VP.second); 1393 PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect)); 1394 } 1395 1396 // Look for <J, I>: 1397 if (CandidatePairsSet.count(ValuePair(UJ, UI))) { 1398 VPPair VP(P, ValuePair(UJ, UI)); 1399 ConnectedPairs[VP.first].push_back(VP.second); 1400 PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap)); 1401 } 1402 } 1403 1404 if (Config.SplatBreaksChain) continue; 1405 // Look for cases where just the first value in the pair is used by 1406 // both members of another pair (splatting). 1407 for (Value::user_iterator J = P.first->user_begin(); J != E; ++J) { 1408 User *UJ = *J; 1409 if ((SJ = dyn_cast<StoreInst>(UJ)) && 1410 P.first == SJ->getPointerOperand()) 1411 continue; 1412 1413 if (CandidatePairsSet.count(ValuePair(UI, UJ))) { 1414 VPPair VP(P, ValuePair(UI, UJ)); 1415 ConnectedPairs[VP.first].push_back(VP.second); 1416 PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat)); 1417 } 1418 } 1419 } 1420 1421 if (Config.SplatBreaksChain) return; 1422 // Look for cases where just the second value in the pair is used by 1423 // both members of another pair (splatting). 1424 for (Value::user_iterator I = P.second->user_begin(), 1425 E = P.second->user_end(); 1426 I != E; ++I) { 1427 User *UI = *I; 1428 if (isa<LoadInst>(UI)) 1429 continue; 1430 else if ((SI = dyn_cast<StoreInst>(UI)) && 1431 P.second == SI->getPointerOperand()) 1432 continue; 1433 1434 for (Value::user_iterator J = P.second->user_begin(); J != E; ++J) { 1435 User *UJ = *J; 1436 if ((SJ = dyn_cast<StoreInst>(UJ)) && 1437 P.second == SJ->getPointerOperand()) 1438 continue; 1439 1440 if (CandidatePairsSet.count(ValuePair(UI, UJ))) { 1441 VPPair VP(P, ValuePair(UI, UJ)); 1442 ConnectedPairs[VP.first].push_back(VP.second); 1443 PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat)); 1444 } 1445 } 1446 } 1447 } 1448 1449 // This function figures out which pairs are connected. Two pairs are 1450 // connected if some output of the first pair forms an input to both members 1451 // of the second pair. 1452 void BBVectorize::computeConnectedPairs( 1453 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 1454 DenseSet<ValuePair> &CandidatePairsSet, 1455 std::vector<Value *> &PairableInsts, 1456 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 1457 DenseMap<VPPair, unsigned> &PairConnectionTypes) { 1458 for (std::vector<Value *>::iterator PI = PairableInsts.begin(), 1459 PE = PairableInsts.end(); PI != PE; ++PI) { 1460 DenseMap<Value *, std::vector<Value *> >::iterator PP = 1461 CandidatePairs.find(*PI); 1462 if (PP == CandidatePairs.end()) 1463 continue; 1464 1465 for (std::vector<Value *>::iterator P = PP->second.begin(), 1466 E = PP->second.end(); P != E; ++P) 1467 computePairsConnectedTo(CandidatePairs, CandidatePairsSet, 1468 PairableInsts, ConnectedPairs, 1469 PairConnectionTypes, ValuePair(*PI, *P)); 1470 } 1471 1472 DEBUG(size_t TotalPairs = 0; 1473 for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I = 1474 ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I) 1475 TotalPairs += I->second.size(); 1476 dbgs() << "BBV: found " << TotalPairs 1477 << " pair connections.\n"); 1478 } 1479 1480 // This function builds a set of use tuples such that <A, B> is in the set 1481 // if B is in the use dag of A. If B is in the use dag of A, then B 1482 // depends on the output of A. 1483 void BBVectorize::buildDepMap( 1484 BasicBlock &BB, 1485 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 1486 std::vector<Value *> &PairableInsts, 1487 DenseSet<ValuePair> &PairableInstUsers) { 1488 DenseSet<Value *> IsInPair; 1489 for (DenseMap<Value *, std::vector<Value *> >::iterator C = 1490 CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) { 1491 IsInPair.insert(C->first); 1492 IsInPair.insert(C->second.begin(), C->second.end()); 1493 } 1494 1495 // Iterate through the basic block, recording all users of each 1496 // pairable instruction. 1497 1498 BasicBlock::iterator E = BB.end(), EL = 1499 BasicBlock::iterator(cast<Instruction>(PairableInsts.back())); 1500 for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) { 1501 if (IsInPair.find(&*I) == IsInPair.end()) 1502 continue; 1503 1504 DenseSet<Value *> Users; 1505 AliasSetTracker WriteSet(*AA); 1506 if (I->mayWriteToMemory()) 1507 WriteSet.add(&*I); 1508 1509 for (BasicBlock::iterator J = std::next(I); J != E; ++J) { 1510 (void)trackUsesOfI(Users, WriteSet, &*I, &*J); 1511 1512 if (J == EL) 1513 break; 1514 } 1515 1516 for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end(); 1517 U != E; ++U) { 1518 if (IsInPair.find(*U) == IsInPair.end()) continue; 1519 PairableInstUsers.insert(ValuePair(&*I, *U)); 1520 } 1521 1522 if (I == EL) 1523 break; 1524 } 1525 } 1526 1527 // Returns true if an input to pair P is an output of pair Q and also an 1528 // input of pair Q is an output of pair P. If this is the case, then these 1529 // two pairs cannot be simultaneously fused. 1530 bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q, 1531 DenseSet<ValuePair> &PairableInstUsers, 1532 DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap, 1533 DenseSet<VPPair> *PairableInstUserPairSet) { 1534 // Two pairs are in conflict if they are mutual Users of eachother. 1535 bool QUsesP = PairableInstUsers.count(ValuePair(P.first, Q.first)) || 1536 PairableInstUsers.count(ValuePair(P.first, Q.second)) || 1537 PairableInstUsers.count(ValuePair(P.second, Q.first)) || 1538 PairableInstUsers.count(ValuePair(P.second, Q.second)); 1539 bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first, P.first)) || 1540 PairableInstUsers.count(ValuePair(Q.first, P.second)) || 1541 PairableInstUsers.count(ValuePair(Q.second, P.first)) || 1542 PairableInstUsers.count(ValuePair(Q.second, P.second)); 1543 if (PairableInstUserMap) { 1544 // FIXME: The expensive part of the cycle check is not so much the cycle 1545 // check itself but this edge insertion procedure. This needs some 1546 // profiling and probably a different data structure. 1547 if (PUsesQ) { 1548 if (PairableInstUserPairSet->insert(VPPair(Q, P)).second) 1549 (*PairableInstUserMap)[Q].push_back(P); 1550 } 1551 if (QUsesP) { 1552 if (PairableInstUserPairSet->insert(VPPair(P, Q)).second) 1553 (*PairableInstUserMap)[P].push_back(Q); 1554 } 1555 } 1556 1557 return (QUsesP && PUsesQ); 1558 } 1559 1560 // This function walks the use graph of current pairs to see if, starting 1561 // from P, the walk returns to P. 1562 bool BBVectorize::pairWillFormCycle(ValuePair P, 1563 DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, 1564 DenseSet<ValuePair> &CurrentPairs) { 1565 DEBUG(if (DebugCycleCheck) 1566 dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> " 1567 << *P.second << "\n"); 1568 // A lookup table of visisted pairs is kept because the PairableInstUserMap 1569 // contains non-direct associations. 1570 DenseSet<ValuePair> Visited; 1571 SmallVector<ValuePair, 32> Q; 1572 // General depth-first post-order traversal: 1573 Q.push_back(P); 1574 do { 1575 ValuePair QTop = Q.pop_back_val(); 1576 Visited.insert(QTop); 1577 1578 DEBUG(if (DebugCycleCheck) 1579 dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> " 1580 << *QTop.second << "\n"); 1581 DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ = 1582 PairableInstUserMap.find(QTop); 1583 if (QQ == PairableInstUserMap.end()) 1584 continue; 1585 1586 for (std::vector<ValuePair>::iterator C = QQ->second.begin(), 1587 CE = QQ->second.end(); C != CE; ++C) { 1588 if (*C == P) { 1589 DEBUG(dbgs() 1590 << "BBV: rejected to prevent non-trivial cycle formation: " 1591 << QTop.first << " <-> " << C->second << "\n"); 1592 return true; 1593 } 1594 1595 if (CurrentPairs.count(*C) && !Visited.count(*C)) 1596 Q.push_back(*C); 1597 } 1598 } while (!Q.empty()); 1599 1600 return false; 1601 } 1602 1603 // This function builds the initial dag of connected pairs with the 1604 // pair J at the root. 1605 void BBVectorize::buildInitialDAGFor( 1606 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 1607 DenseSet<ValuePair> &CandidatePairsSet, 1608 std::vector<Value *> &PairableInsts, 1609 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 1610 DenseSet<ValuePair> &PairableInstUsers, 1611 DenseMap<Value *, Value *> &ChosenPairs, 1612 DenseMap<ValuePair, size_t> &DAG, ValuePair J) { 1613 // Each of these pairs is viewed as the root node of a DAG. The DAG 1614 // is then walked (depth-first). As this happens, we keep track of 1615 // the pairs that compose the DAG and the maximum depth of the DAG. 1616 SmallVector<ValuePairWithDepth, 32> Q; 1617 // General depth-first post-order traversal: 1618 Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); 1619 do { 1620 ValuePairWithDepth QTop = Q.back(); 1621 1622 // Push each child onto the queue: 1623 bool MoreChildren = false; 1624 size_t MaxChildDepth = QTop.second; 1625 DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ = 1626 ConnectedPairs.find(QTop.first); 1627 if (QQ != ConnectedPairs.end()) 1628 for (std::vector<ValuePair>::iterator k = QQ->second.begin(), 1629 ke = QQ->second.end(); k != ke; ++k) { 1630 // Make sure that this child pair is still a candidate: 1631 if (CandidatePairsSet.count(*k)) { 1632 DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k); 1633 if (C == DAG.end()) { 1634 size_t d = getDepthFactor(k->first); 1635 Q.push_back(ValuePairWithDepth(*k, QTop.second+d)); 1636 MoreChildren = true; 1637 } else { 1638 MaxChildDepth = std::max(MaxChildDepth, C->second); 1639 } 1640 } 1641 } 1642 1643 if (!MoreChildren) { 1644 // Record the current pair as part of the DAG: 1645 DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth)); 1646 Q.pop_back(); 1647 } 1648 } while (!Q.empty()); 1649 } 1650 1651 // Given some initial dag, prune it by removing conflicting pairs (pairs 1652 // that cannot be simultaneously chosen for vectorization). 1653 void BBVectorize::pruneDAGFor( 1654 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 1655 std::vector<Value *> &PairableInsts, 1656 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 1657 DenseSet<ValuePair> &PairableInstUsers, 1658 DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, 1659 DenseSet<VPPair> &PairableInstUserPairSet, 1660 DenseMap<Value *, Value *> &ChosenPairs, 1661 DenseMap<ValuePair, size_t> &DAG, 1662 DenseSet<ValuePair> &PrunedDAG, ValuePair J, 1663 bool UseCycleCheck) { 1664 SmallVector<ValuePairWithDepth, 32> Q; 1665 // General depth-first post-order traversal: 1666 Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); 1667 do { 1668 ValuePairWithDepth QTop = Q.pop_back_val(); 1669 PrunedDAG.insert(QTop.first); 1670 1671 // Visit each child, pruning as necessary... 1672 SmallVector<ValuePairWithDepth, 8> BestChildren; 1673 DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ = 1674 ConnectedPairs.find(QTop.first); 1675 if (QQ == ConnectedPairs.end()) 1676 continue; 1677 1678 for (std::vector<ValuePair>::iterator K = QQ->second.begin(), 1679 KE = QQ->second.end(); K != KE; ++K) { 1680 DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K); 1681 if (C == DAG.end()) continue; 1682 1683 // This child is in the DAG, now we need to make sure it is the 1684 // best of any conflicting children. There could be multiple 1685 // conflicting children, so first, determine if we're keeping 1686 // this child, then delete conflicting children as necessary. 1687 1688 // It is also necessary to guard against pairing-induced 1689 // dependencies. Consider instructions a .. x .. y .. b 1690 // such that (a,b) are to be fused and (x,y) are to be fused 1691 // but a is an input to x and b is an output from y. This 1692 // means that y cannot be moved after b but x must be moved 1693 // after b for (a,b) to be fused. In other words, after 1694 // fusing (a,b) we have y .. a/b .. x where y is an input 1695 // to a/b and x is an output to a/b: x and y can no longer 1696 // be legally fused. To prevent this condition, we must 1697 // make sure that a child pair added to the DAG is not 1698 // both an input and output of an already-selected pair. 1699 1700 // Pairing-induced dependencies can also form from more complicated 1701 // cycles. The pair vs. pair conflicts are easy to check, and so 1702 // that is done explicitly for "fast rejection", and because for 1703 // child vs. child conflicts, we may prefer to keep the current 1704 // pair in preference to the already-selected child. 1705 DenseSet<ValuePair> CurrentPairs; 1706 1707 bool CanAdd = true; 1708 for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 1709 = BestChildren.begin(), E2 = BestChildren.end(); 1710 C2 != E2; ++C2) { 1711 if (C2->first.first == C->first.first || 1712 C2->first.first == C->first.second || 1713 C2->first.second == C->first.first || 1714 C2->first.second == C->first.second || 1715 pairsConflict(C2->first, C->first, PairableInstUsers, 1716 UseCycleCheck ? &PairableInstUserMap : nullptr, 1717 UseCycleCheck ? &PairableInstUserPairSet 1718 : nullptr)) { 1719 if (C2->second >= C->second) { 1720 CanAdd = false; 1721 break; 1722 } 1723 1724 CurrentPairs.insert(C2->first); 1725 } 1726 } 1727 if (!CanAdd) continue; 1728 1729 // Even worse, this child could conflict with another node already 1730 // selected for the DAG. If that is the case, ignore this child. 1731 for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(), 1732 E2 = PrunedDAG.end(); T != E2; ++T) { 1733 if (T->first == C->first.first || 1734 T->first == C->first.second || 1735 T->second == C->first.first || 1736 T->second == C->first.second || 1737 pairsConflict(*T, C->first, PairableInstUsers, 1738 UseCycleCheck ? &PairableInstUserMap : nullptr, 1739 UseCycleCheck ? &PairableInstUserPairSet 1740 : nullptr)) { 1741 CanAdd = false; 1742 break; 1743 } 1744 1745 CurrentPairs.insert(*T); 1746 } 1747 if (!CanAdd) continue; 1748 1749 // And check the queue too... 1750 for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 = Q.begin(), 1751 E2 = Q.end(); C2 != E2; ++C2) { 1752 if (C2->first.first == C->first.first || 1753 C2->first.first == C->first.second || 1754 C2->first.second == C->first.first || 1755 C2->first.second == C->first.second || 1756 pairsConflict(C2->first, C->first, PairableInstUsers, 1757 UseCycleCheck ? &PairableInstUserMap : nullptr, 1758 UseCycleCheck ? &PairableInstUserPairSet 1759 : nullptr)) { 1760 CanAdd = false; 1761 break; 1762 } 1763 1764 CurrentPairs.insert(C2->first); 1765 } 1766 if (!CanAdd) continue; 1767 1768 // Last but not least, check for a conflict with any of the 1769 // already-chosen pairs. 1770 for (DenseMap<Value *, Value *>::iterator C2 = 1771 ChosenPairs.begin(), E2 = ChosenPairs.end(); 1772 C2 != E2; ++C2) { 1773 if (pairsConflict(*C2, C->first, PairableInstUsers, 1774 UseCycleCheck ? &PairableInstUserMap : nullptr, 1775 UseCycleCheck ? &PairableInstUserPairSet 1776 : nullptr)) { 1777 CanAdd = false; 1778 break; 1779 } 1780 1781 CurrentPairs.insert(*C2); 1782 } 1783 if (!CanAdd) continue; 1784 1785 // To check for non-trivial cycles formed by the addition of the 1786 // current pair we've formed a list of all relevant pairs, now use a 1787 // graph walk to check for a cycle. We start from the current pair and 1788 // walk the use dag to see if we again reach the current pair. If we 1789 // do, then the current pair is rejected. 1790 1791 // FIXME: It may be more efficient to use a topological-ordering 1792 // algorithm to improve the cycle check. This should be investigated. 1793 if (UseCycleCheck && 1794 pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs)) 1795 continue; 1796 1797 // This child can be added, but we may have chosen it in preference 1798 // to an already-selected child. Check for this here, and if a 1799 // conflict is found, then remove the previously-selected child 1800 // before adding this one in its place. 1801 for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 1802 = BestChildren.begin(); C2 != BestChildren.end();) { 1803 if (C2->first.first == C->first.first || 1804 C2->first.first == C->first.second || 1805 C2->first.second == C->first.first || 1806 C2->first.second == C->first.second || 1807 pairsConflict(C2->first, C->first, PairableInstUsers)) 1808 C2 = BestChildren.erase(C2); 1809 else 1810 ++C2; 1811 } 1812 1813 BestChildren.push_back(ValuePairWithDepth(C->first, C->second)); 1814 } 1815 1816 for (SmallVectorImpl<ValuePairWithDepth>::iterator C 1817 = BestChildren.begin(), E2 = BestChildren.end(); 1818 C != E2; ++C) { 1819 size_t DepthF = getDepthFactor(C->first.first); 1820 Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF)); 1821 } 1822 } while (!Q.empty()); 1823 } 1824 1825 // This function finds the best dag of mututally-compatible connected 1826 // pairs, given the choice of root pairs as an iterator range. 1827 void BBVectorize::findBestDAGFor( 1828 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 1829 DenseSet<ValuePair> &CandidatePairsSet, 1830 DenseMap<ValuePair, int> &CandidatePairCostSavings, 1831 std::vector<Value *> &PairableInsts, 1832 DenseSet<ValuePair> &FixedOrderPairs, 1833 DenseMap<VPPair, unsigned> &PairConnectionTypes, 1834 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 1835 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps, 1836 DenseSet<ValuePair> &PairableInstUsers, 1837 DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, 1838 DenseSet<VPPair> &PairableInstUserPairSet, 1839 DenseMap<Value *, Value *> &ChosenPairs, 1840 DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth, 1841 int &BestEffSize, Value *II, std::vector<Value *>&JJ, 1842 bool UseCycleCheck) { 1843 for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end(); 1844 J != JE; ++J) { 1845 ValuePair IJ(II, *J); 1846 if (!CandidatePairsSet.count(IJ)) 1847 continue; 1848 1849 // Before going any further, make sure that this pair does not 1850 // conflict with any already-selected pairs (see comment below 1851 // near the DAG pruning for more details). 1852 DenseSet<ValuePair> ChosenPairSet; 1853 bool DoesConflict = false; 1854 for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(), 1855 E = ChosenPairs.end(); C != E; ++C) { 1856 if (pairsConflict(*C, IJ, PairableInstUsers, 1857 UseCycleCheck ? &PairableInstUserMap : nullptr, 1858 UseCycleCheck ? &PairableInstUserPairSet : nullptr)) { 1859 DoesConflict = true; 1860 break; 1861 } 1862 1863 ChosenPairSet.insert(*C); 1864 } 1865 if (DoesConflict) continue; 1866 1867 if (UseCycleCheck && 1868 pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet)) 1869 continue; 1870 1871 DenseMap<ValuePair, size_t> DAG; 1872 buildInitialDAGFor(CandidatePairs, CandidatePairsSet, 1873 PairableInsts, ConnectedPairs, 1874 PairableInstUsers, ChosenPairs, DAG, IJ); 1875 1876 // Because we'll keep the child with the largest depth, the largest 1877 // depth is still the same in the unpruned DAG. 1878 size_t MaxDepth = DAG.lookup(IJ); 1879 1880 DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {" 1881 << *IJ.first << " <-> " << *IJ.second << "} of depth " << 1882 MaxDepth << " and size " << DAG.size() << "\n"); 1883 1884 // At this point the DAG has been constructed, but, may contain 1885 // contradictory children (meaning that different children of 1886 // some dag node may be attempting to fuse the same instruction). 1887 // So now we walk the dag again, in the case of a conflict, 1888 // keep only the child with the largest depth. To break a tie, 1889 // favor the first child. 1890 1891 DenseSet<ValuePair> PrunedDAG; 1892 pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs, 1893 PairableInstUsers, PairableInstUserMap, 1894 PairableInstUserPairSet, 1895 ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck); 1896 1897 int EffSize = 0; 1898 if (TTI) { 1899 DenseSet<Value *> PrunedDAGInstrs; 1900 for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(), 1901 E = PrunedDAG.end(); S != E; ++S) { 1902 PrunedDAGInstrs.insert(S->first); 1903 PrunedDAGInstrs.insert(S->second); 1904 } 1905 1906 // The set of pairs that have already contributed to the total cost. 1907 DenseSet<ValuePair> IncomingPairs; 1908 1909 // If the cost model were perfect, this might not be necessary; but we 1910 // need to make sure that we don't get stuck vectorizing our own 1911 // shuffle chains. 1912 bool HasNontrivialInsts = false; 1913 1914 // The node weights represent the cost savings associated with 1915 // fusing the pair of instructions. 1916 for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(), 1917 E = PrunedDAG.end(); S != E; ++S) { 1918 if (!isa<ShuffleVectorInst>(S->first) && 1919 !isa<InsertElementInst>(S->first) && 1920 !isa<ExtractElementInst>(S->first)) 1921 HasNontrivialInsts = true; 1922 1923 bool FlipOrder = false; 1924 1925 if (getDepthFactor(S->first)) { 1926 int ESContrib = CandidatePairCostSavings.find(*S)->second; 1927 DEBUG(if (DebugPairSelection) dbgs() << "\tweight {" 1928 << *S->first << " <-> " << *S->second << "} = " << 1929 ESContrib << "\n"); 1930 EffSize += ESContrib; 1931 } 1932 1933 // The edge weights contribute in a negative sense: they represent 1934 // the cost of shuffles. 1935 DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS = 1936 ConnectedPairDeps.find(*S); 1937 if (SS != ConnectedPairDeps.end()) { 1938 unsigned NumDepsDirect = 0, NumDepsSwap = 0; 1939 for (std::vector<ValuePair>::iterator T = SS->second.begin(), 1940 TE = SS->second.end(); T != TE; ++T) { 1941 VPPair Q(*S, *T); 1942 if (!PrunedDAG.count(Q.second)) 1943 continue; 1944 DenseMap<VPPair, unsigned>::iterator R = 1945 PairConnectionTypes.find(VPPair(Q.second, Q.first)); 1946 assert(R != PairConnectionTypes.end() && 1947 "Cannot find pair connection type"); 1948 if (R->second == PairConnectionDirect) 1949 ++NumDepsDirect; 1950 else if (R->second == PairConnectionSwap) 1951 ++NumDepsSwap; 1952 } 1953 1954 // If there are more swaps than direct connections, then 1955 // the pair order will be flipped during fusion. So the real 1956 // number of swaps is the minimum number. 1957 FlipOrder = !FixedOrderPairs.count(*S) && 1958 ((NumDepsSwap > NumDepsDirect) || 1959 FixedOrderPairs.count(ValuePair(S->second, S->first))); 1960 1961 for (std::vector<ValuePair>::iterator T = SS->second.begin(), 1962 TE = SS->second.end(); T != TE; ++T) { 1963 VPPair Q(*S, *T); 1964 if (!PrunedDAG.count(Q.second)) 1965 continue; 1966 DenseMap<VPPair, unsigned>::iterator R = 1967 PairConnectionTypes.find(VPPair(Q.second, Q.first)); 1968 assert(R != PairConnectionTypes.end() && 1969 "Cannot find pair connection type"); 1970 Type *Ty1 = Q.second.first->getType(), 1971 *Ty2 = Q.second.second->getType(); 1972 Type *VTy = getVecTypeForPair(Ty1, Ty2); 1973 if ((R->second == PairConnectionDirect && FlipOrder) || 1974 (R->second == PairConnectionSwap && !FlipOrder) || 1975 R->second == PairConnectionSplat) { 1976 int ESContrib = (int) getInstrCost(Instruction::ShuffleVector, 1977 VTy, VTy); 1978 1979 if (VTy->getVectorNumElements() == 2) { 1980 if (R->second == PairConnectionSplat) 1981 ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( 1982 TargetTransformInfo::SK_Broadcast, VTy)); 1983 else 1984 ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( 1985 TargetTransformInfo::SK_Reverse, VTy)); 1986 } 1987 1988 DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << 1989 *Q.second.first << " <-> " << *Q.second.second << 1990 "} -> {" << 1991 *S->first << " <-> " << *S->second << "} = " << 1992 ESContrib << "\n"); 1993 EffSize -= ESContrib; 1994 } 1995 } 1996 } 1997 1998 // Compute the cost of outgoing edges. We assume that edges outgoing 1999 // to shuffles, inserts or extracts can be merged, and so contribute 2000 // no additional cost. 2001 if (!S->first->getType()->isVoidTy()) { 2002 Type *Ty1 = S->first->getType(), 2003 *Ty2 = S->second->getType(); 2004 Type *VTy = getVecTypeForPair(Ty1, Ty2); 2005 2006 bool NeedsExtraction = false; 2007 for (User *U : S->first->users()) { 2008 if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) { 2009 // Shuffle can be folded if it has no other input 2010 if (isa<UndefValue>(SI->getOperand(1))) 2011 continue; 2012 } 2013 if (isa<ExtractElementInst>(U)) 2014 continue; 2015 if (PrunedDAGInstrs.count(U)) 2016 continue; 2017 NeedsExtraction = true; 2018 break; 2019 } 2020 2021 if (NeedsExtraction) { 2022 int ESContrib; 2023 if (Ty1->isVectorTy()) { 2024 ESContrib = (int) getInstrCost(Instruction::ShuffleVector, 2025 Ty1, VTy); 2026 ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( 2027 TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1)); 2028 } else 2029 ESContrib = (int) TTI->getVectorInstrCost( 2030 Instruction::ExtractElement, VTy, 0); 2031 2032 DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << 2033 *S->first << "} = " << ESContrib << "\n"); 2034 EffSize -= ESContrib; 2035 } 2036 2037 NeedsExtraction = false; 2038 for (User *U : S->second->users()) { 2039 if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) { 2040 // Shuffle can be folded if it has no other input 2041 if (isa<UndefValue>(SI->getOperand(1))) 2042 continue; 2043 } 2044 if (isa<ExtractElementInst>(U)) 2045 continue; 2046 if (PrunedDAGInstrs.count(U)) 2047 continue; 2048 NeedsExtraction = true; 2049 break; 2050 } 2051 2052 if (NeedsExtraction) { 2053 int ESContrib; 2054 if (Ty2->isVectorTy()) { 2055 ESContrib = (int) getInstrCost(Instruction::ShuffleVector, 2056 Ty2, VTy); 2057 ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( 2058 TargetTransformInfo::SK_ExtractSubvector, VTy, 2059 Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2)); 2060 } else 2061 ESContrib = (int) TTI->getVectorInstrCost( 2062 Instruction::ExtractElement, VTy, 1); 2063 DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << 2064 *S->second << "} = " << ESContrib << "\n"); 2065 EffSize -= ESContrib; 2066 } 2067 } 2068 2069 // Compute the cost of incoming edges. 2070 if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) { 2071 Instruction *S1 = cast<Instruction>(S->first), 2072 *S2 = cast<Instruction>(S->second); 2073 for (unsigned o = 0; o < S1->getNumOperands(); ++o) { 2074 Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o); 2075 2076 // Combining constants into vector constants (or small vector 2077 // constants into larger ones are assumed free). 2078 if (isa<Constant>(O1) && isa<Constant>(O2)) 2079 continue; 2080 2081 if (FlipOrder) 2082 std::swap(O1, O2); 2083 2084 ValuePair VP = ValuePair(O1, O2); 2085 ValuePair VPR = ValuePair(O2, O1); 2086 2087 // Internal edges are not handled here. 2088 if (PrunedDAG.count(VP) || PrunedDAG.count(VPR)) 2089 continue; 2090 2091 Type *Ty1 = O1->getType(), 2092 *Ty2 = O2->getType(); 2093 Type *VTy = getVecTypeForPair(Ty1, Ty2); 2094 2095 // Combining vector operations of the same type is also assumed 2096 // folded with other operations. 2097 if (Ty1 == Ty2) { 2098 // If both are insert elements, then both can be widened. 2099 InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1), 2100 *IEO2 = dyn_cast<InsertElementInst>(O2); 2101 if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2)) 2102 continue; 2103 // If both are extract elements, and both have the same input 2104 // type, then they can be replaced with a shuffle 2105 ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1), 2106 *EIO2 = dyn_cast<ExtractElementInst>(O2); 2107 if (EIO1 && EIO2 && 2108 EIO1->getOperand(0)->getType() == 2109 EIO2->getOperand(0)->getType()) 2110 continue; 2111 // If both are a shuffle with equal operand types and only two 2112 // unqiue operands, then they can be replaced with a single 2113 // shuffle 2114 ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1), 2115 *SIO2 = dyn_cast<ShuffleVectorInst>(O2); 2116 if (SIO1 && SIO2 && 2117 SIO1->getOperand(0)->getType() == 2118 SIO2->getOperand(0)->getType()) { 2119 SmallSet<Value *, 4> SIOps; 2120 SIOps.insert(SIO1->getOperand(0)); 2121 SIOps.insert(SIO1->getOperand(1)); 2122 SIOps.insert(SIO2->getOperand(0)); 2123 SIOps.insert(SIO2->getOperand(1)); 2124 if (SIOps.size() <= 2) 2125 continue; 2126 } 2127 } 2128 2129 int ESContrib; 2130 // This pair has already been formed. 2131 if (IncomingPairs.count(VP)) { 2132 continue; 2133 } else if (IncomingPairs.count(VPR)) { 2134 ESContrib = (int) getInstrCost(Instruction::ShuffleVector, 2135 VTy, VTy); 2136 2137 if (VTy->getVectorNumElements() == 2) 2138 ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( 2139 TargetTransformInfo::SK_Reverse, VTy)); 2140 } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) { 2141 ESContrib = (int) TTI->getVectorInstrCost( 2142 Instruction::InsertElement, VTy, 0); 2143 ESContrib += (int) TTI->getVectorInstrCost( 2144 Instruction::InsertElement, VTy, 1); 2145 } else if (!Ty1->isVectorTy()) { 2146 // O1 needs to be inserted into a vector of size O2, and then 2147 // both need to be shuffled together. 2148 ESContrib = (int) TTI->getVectorInstrCost( 2149 Instruction::InsertElement, Ty2, 0); 2150 ESContrib += (int) getInstrCost(Instruction::ShuffleVector, 2151 VTy, Ty2); 2152 } else if (!Ty2->isVectorTy()) { 2153 // O2 needs to be inserted into a vector of size O1, and then 2154 // both need to be shuffled together. 2155 ESContrib = (int) TTI->getVectorInstrCost( 2156 Instruction::InsertElement, Ty1, 0); 2157 ESContrib += (int) getInstrCost(Instruction::ShuffleVector, 2158 VTy, Ty1); 2159 } else { 2160 Type *TyBig = Ty1, *TySmall = Ty2; 2161 if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements()) 2162 std::swap(TyBig, TySmall); 2163 2164 ESContrib = (int) getInstrCost(Instruction::ShuffleVector, 2165 VTy, TyBig); 2166 if (TyBig != TySmall) 2167 ESContrib += (int) getInstrCost(Instruction::ShuffleVector, 2168 TyBig, TySmall); 2169 } 2170 2171 DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" 2172 << *O1 << " <-> " << *O2 << "} = " << 2173 ESContrib << "\n"); 2174 EffSize -= ESContrib; 2175 IncomingPairs.insert(VP); 2176 } 2177 } 2178 } 2179 2180 if (!HasNontrivialInsts) { 2181 DEBUG(if (DebugPairSelection) dbgs() << 2182 "\tNo non-trivial instructions in DAG;" 2183 " override to zero effective size\n"); 2184 EffSize = 0; 2185 } 2186 } else { 2187 for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(), 2188 E = PrunedDAG.end(); S != E; ++S) 2189 EffSize += (int) getDepthFactor(S->first); 2190 } 2191 2192 DEBUG(if (DebugPairSelection) 2193 dbgs() << "BBV: found pruned DAG for pair {" 2194 << *IJ.first << " <-> " << *IJ.second << "} of depth " << 2195 MaxDepth << " and size " << PrunedDAG.size() << 2196 " (effective size: " << EffSize << ")\n"); 2197 if (((TTI && !UseChainDepthWithTI) || 2198 MaxDepth >= Config.ReqChainDepth) && 2199 EffSize > 0 && EffSize > BestEffSize) { 2200 BestMaxDepth = MaxDepth; 2201 BestEffSize = EffSize; 2202 BestDAG = PrunedDAG; 2203 } 2204 } 2205 } 2206 2207 // Given the list of candidate pairs, this function selects those 2208 // that will be fused into vector instructions. 2209 void BBVectorize::choosePairs( 2210 DenseMap<Value *, std::vector<Value *> > &CandidatePairs, 2211 DenseSet<ValuePair> &CandidatePairsSet, 2212 DenseMap<ValuePair, int> &CandidatePairCostSavings, 2213 std::vector<Value *> &PairableInsts, 2214 DenseSet<ValuePair> &FixedOrderPairs, 2215 DenseMap<VPPair, unsigned> &PairConnectionTypes, 2216 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 2217 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps, 2218 DenseSet<ValuePair> &PairableInstUsers, 2219 DenseMap<Value *, Value *>& ChosenPairs) { 2220 bool UseCycleCheck = 2221 CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck; 2222 2223 DenseMap<Value *, std::vector<Value *> > CandidatePairs2; 2224 for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(), 2225 E = CandidatePairsSet.end(); I != E; ++I) { 2226 std::vector<Value *> &JJ = CandidatePairs2[I->second]; 2227 if (JJ.empty()) JJ.reserve(32); 2228 JJ.push_back(I->first); 2229 } 2230 2231 DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap; 2232 DenseSet<VPPair> PairableInstUserPairSet; 2233 for (std::vector<Value *>::iterator I = PairableInsts.begin(), 2234 E = PairableInsts.end(); I != E; ++I) { 2235 // The number of possible pairings for this variable: 2236 size_t NumChoices = CandidatePairs.lookup(*I).size(); 2237 if (!NumChoices) continue; 2238 2239 std::vector<Value *> &JJ = CandidatePairs[*I]; 2240 2241 // The best pair to choose and its dag: 2242 size_t BestMaxDepth = 0; 2243 int BestEffSize = 0; 2244 DenseSet<ValuePair> BestDAG; 2245 findBestDAGFor(CandidatePairs, CandidatePairsSet, 2246 CandidatePairCostSavings, 2247 PairableInsts, FixedOrderPairs, PairConnectionTypes, 2248 ConnectedPairs, ConnectedPairDeps, 2249 PairableInstUsers, PairableInstUserMap, 2250 PairableInstUserPairSet, ChosenPairs, 2251 BestDAG, BestMaxDepth, BestEffSize, *I, JJ, 2252 UseCycleCheck); 2253 2254 if (BestDAG.empty()) 2255 continue; 2256 2257 // A dag has been chosen (or not) at this point. If no dag was 2258 // chosen, then this instruction, I, cannot be paired (and is no longer 2259 // considered). 2260 2261 DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: " 2262 << *cast<Instruction>(*I) << "\n"); 2263 2264 for (DenseSet<ValuePair>::iterator S = BestDAG.begin(), 2265 SE2 = BestDAG.end(); S != SE2; ++S) { 2266 // Insert the members of this dag into the list of chosen pairs. 2267 ChosenPairs.insert(ValuePair(S->first, S->second)); 2268 DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " << 2269 *S->second << "\n"); 2270 2271 // Remove all candidate pairs that have values in the chosen dag. 2272 std::vector<Value *> &KK = CandidatePairs[S->first]; 2273 for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end(); 2274 K != KE; ++K) { 2275 if (*K == S->second) 2276 continue; 2277 2278 CandidatePairsSet.erase(ValuePair(S->first, *K)); 2279 } 2280 2281 std::vector<Value *> &LL = CandidatePairs2[S->second]; 2282 for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end(); 2283 L != LE; ++L) { 2284 if (*L == S->first) 2285 continue; 2286 2287 CandidatePairsSet.erase(ValuePair(*L, S->second)); 2288 } 2289 2290 std::vector<Value *> &MM = CandidatePairs[S->second]; 2291 for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end(); 2292 M != ME; ++M) { 2293 assert(*M != S->first && "Flipped pair in candidate list?"); 2294 CandidatePairsSet.erase(ValuePair(S->second, *M)); 2295 } 2296 2297 std::vector<Value *> &NN = CandidatePairs2[S->first]; 2298 for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end(); 2299 N != NE; ++N) { 2300 assert(*N != S->second && "Flipped pair in candidate list?"); 2301 CandidatePairsSet.erase(ValuePair(*N, S->first)); 2302 } 2303 } 2304 } 2305 2306 DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n"); 2307 } 2308 2309 std::string getReplacementName(Instruction *I, bool IsInput, unsigned o, 2310 unsigned n = 0) { 2311 if (!I->hasName()) 2312 return ""; 2313 2314 return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) + 2315 (n > 0 ? "." + utostr(n) : "")).str(); 2316 } 2317 2318 // Returns the value that is to be used as the pointer input to the vector 2319 // instruction that fuses I with J. 2320 Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context, 2321 Instruction *I, Instruction *J, unsigned o) { 2322 Value *IPtr, *JPtr; 2323 unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace; 2324 int64_t OffsetInElmts; 2325 2326 // Note: the analysis might fail here, that is why the pair order has 2327 // been precomputed (OffsetInElmts must be unused here). 2328 (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, 2329 IAddressSpace, JAddressSpace, 2330 OffsetInElmts, false); 2331 2332 // The pointer value is taken to be the one with the lowest offset. 2333 Value *VPtr = IPtr; 2334 2335 Type *ArgTypeI = IPtr->getType()->getPointerElementType(); 2336 Type *ArgTypeJ = JPtr->getType()->getPointerElementType(); 2337 Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); 2338 Type *VArgPtrType 2339 = PointerType::get(VArgType, 2340 IPtr->getType()->getPointerAddressSpace()); 2341 return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o), 2342 /* insert before */ I); 2343 } 2344 2345 void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J, 2346 unsigned MaskOffset, unsigned NumInElem, 2347 unsigned NumInElem1, unsigned IdxOffset, 2348 std::vector<Constant*> &Mask) { 2349 unsigned NumElem1 = J->getType()->getVectorNumElements(); 2350 for (unsigned v = 0; v < NumElem1; ++v) { 2351 int m = cast<ShuffleVectorInst>(J)->getMaskValue(v); 2352 if (m < 0) { 2353 Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context)); 2354 } else { 2355 unsigned mm = m + (int) IdxOffset; 2356 if (m >= (int) NumInElem1) 2357 mm += (int) NumInElem; 2358 2359 Mask[v+MaskOffset] = 2360 ConstantInt::get(Type::getInt32Ty(Context), mm); 2361 } 2362 } 2363 } 2364 2365 // Returns the value that is to be used as the vector-shuffle mask to the 2366 // vector instruction that fuses I with J. 2367 Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context, 2368 Instruction *I, Instruction *J) { 2369 // This is the shuffle mask. We need to append the second 2370 // mask to the first, and the numbers need to be adjusted. 2371 2372 Type *ArgTypeI = I->getType(); 2373 Type *ArgTypeJ = J->getType(); 2374 Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); 2375 2376 unsigned NumElemI = ArgTypeI->getVectorNumElements(); 2377 2378 // Get the total number of elements in the fused vector type. 2379 // By definition, this must equal the number of elements in 2380 // the final mask. 2381 unsigned NumElem = VArgType->getVectorNumElements(); 2382 std::vector<Constant*> Mask(NumElem); 2383 2384 Type *OpTypeI = I->getOperand(0)->getType(); 2385 unsigned NumInElemI = OpTypeI->getVectorNumElements(); 2386 Type *OpTypeJ = J->getOperand(0)->getType(); 2387 unsigned NumInElemJ = OpTypeJ->getVectorNumElements(); 2388 2389 // The fused vector will be: 2390 // ----------------------------------------------------- 2391 // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ | 2392 // ----------------------------------------------------- 2393 // from which we'll extract NumElem total elements (where the first NumElemI 2394 // of them come from the mask in I and the remainder come from the mask 2395 // in J. 2396 2397 // For the mask from the first pair... 2398 fillNewShuffleMask(Context, I, 0, NumInElemJ, NumInElemI, 2399 0, Mask); 2400 2401 // For the mask from the second pair... 2402 fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ, 2403 NumInElemI, Mask); 2404 2405 return ConstantVector::get(Mask); 2406 } 2407 2408 bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I, 2409 Instruction *J, unsigned o, Value *&LOp, 2410 unsigned numElemL, 2411 Type *ArgTypeL, Type *ArgTypeH, 2412 bool IBeforeJ, unsigned IdxOff) { 2413 bool ExpandedIEChain = false; 2414 if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) { 2415 // If we have a pure insertelement chain, then this can be rewritten 2416 // into a chain that directly builds the larger type. 2417 if (isPureIEChain(LIE)) { 2418 SmallVector<Value *, 8> VectElemts(numElemL, 2419 UndefValue::get(ArgTypeL->getScalarType())); 2420 InsertElementInst *LIENext = LIE; 2421 do { 2422 unsigned Idx = 2423 cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue(); 2424 VectElemts[Idx] = LIENext->getOperand(1); 2425 } while ((LIENext = 2426 dyn_cast<InsertElementInst>(LIENext->getOperand(0)))); 2427 2428 LIENext = nullptr; 2429 Value *LIEPrev = UndefValue::get(ArgTypeH); 2430 for (unsigned i = 0; i < numElemL; ++i) { 2431 if (isa<UndefValue>(VectElemts[i])) continue; 2432 LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i], 2433 ConstantInt::get(Type::getInt32Ty(Context), 2434 i + IdxOff), 2435 getReplacementName(IBeforeJ ? I : J, 2436 true, o, i+1)); 2437 LIENext->insertBefore(IBeforeJ ? J : I); 2438 LIEPrev = LIENext; 2439 } 2440 2441 LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH); 2442 ExpandedIEChain = true; 2443 } 2444 } 2445 2446 return ExpandedIEChain; 2447 } 2448 2449 static unsigned getNumScalarElements(Type *Ty) { 2450 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) 2451 return VecTy->getNumElements(); 2452 return 1; 2453 } 2454 2455 // Returns the value to be used as the specified operand of the vector 2456 // instruction that fuses I with J. 2457 Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I, 2458 Instruction *J, unsigned o, bool IBeforeJ) { 2459 Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); 2460 Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1); 2461 2462 // Compute the fused vector type for this operand 2463 Type *ArgTypeI = I->getOperand(o)->getType(); 2464 Type *ArgTypeJ = J->getOperand(o)->getType(); 2465 VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); 2466 2467 Instruction *L = I, *H = J; 2468 Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ; 2469 2470 unsigned numElemL = getNumScalarElements(ArgTypeL); 2471 unsigned numElemH = getNumScalarElements(ArgTypeH); 2472 2473 Value *LOp = L->getOperand(o); 2474 Value *HOp = H->getOperand(o); 2475 unsigned numElem = VArgType->getNumElements(); 2476 2477 // First, we check if we can reuse the "original" vector outputs (if these 2478 // exist). We might need a shuffle. 2479 ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp); 2480 ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp); 2481 ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp); 2482 ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp); 2483 2484 // FIXME: If we're fusing shuffle instructions, then we can't apply this 2485 // optimization. The input vectors to the shuffle might be a different 2486 // length from the shuffle outputs. Unfortunately, the replacement 2487 // shuffle mask has already been formed, and the mask entries are sensitive 2488 // to the sizes of the inputs. 2489 bool IsSizeChangeShuffle = 2490 isa<ShuffleVectorInst>(L) && 2491 (LOp->getType() != L->getType() || HOp->getType() != H->getType()); 2492 2493 if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) { 2494 // We can have at most two unique vector inputs. 2495 bool CanUseInputs = true; 2496 Value *I1, *I2 = nullptr; 2497 if (LEE) { 2498 I1 = LEE->getOperand(0); 2499 } else { 2500 I1 = LSV->getOperand(0); 2501 I2 = LSV->getOperand(1); 2502 if (I2 == I1 || isa<UndefValue>(I2)) 2503 I2 = nullptr; 2504 } 2505 2506 if (HEE) { 2507 Value *I3 = HEE->getOperand(0); 2508 if (!I2 && I3 != I1) 2509 I2 = I3; 2510 else if (I3 != I1 && I3 != I2) 2511 CanUseInputs = false; 2512 } else { 2513 Value *I3 = HSV->getOperand(0); 2514 if (!I2 && I3 != I1) 2515 I2 = I3; 2516 else if (I3 != I1 && I3 != I2) 2517 CanUseInputs = false; 2518 2519 if (CanUseInputs) { 2520 Value *I4 = HSV->getOperand(1); 2521 if (!isa<UndefValue>(I4)) { 2522 if (!I2 && I4 != I1) 2523 I2 = I4; 2524 else if (I4 != I1 && I4 != I2) 2525 CanUseInputs = false; 2526 } 2527 } 2528 } 2529 2530 if (CanUseInputs) { 2531 unsigned LOpElem = 2532 cast<Instruction>(LOp)->getOperand(0)->getType() 2533 ->getVectorNumElements(); 2534 2535 unsigned HOpElem = 2536 cast<Instruction>(HOp)->getOperand(0)->getType() 2537 ->getVectorNumElements(); 2538 2539 // We have one or two input vectors. We need to map each index of the 2540 // operands to the index of the original vector. 2541 SmallVector<std::pair<int, int>, 8> II(numElem); 2542 for (unsigned i = 0; i < numElemL; ++i) { 2543 int Idx, INum; 2544 if (LEE) { 2545 Idx = 2546 cast<ConstantInt>(LEE->getOperand(1))->getSExtValue(); 2547 INum = LEE->getOperand(0) == I1 ? 0 : 1; 2548 } else { 2549 Idx = LSV->getMaskValue(i); 2550 if (Idx < (int) LOpElem) { 2551 INum = LSV->getOperand(0) == I1 ? 0 : 1; 2552 } else { 2553 Idx -= LOpElem; 2554 INum = LSV->getOperand(1) == I1 ? 0 : 1; 2555 } 2556 } 2557 2558 II[i] = std::pair<int, int>(Idx, INum); 2559 } 2560 for (unsigned i = 0; i < numElemH; ++i) { 2561 int Idx, INum; 2562 if (HEE) { 2563 Idx = 2564 cast<ConstantInt>(HEE->getOperand(1))->getSExtValue(); 2565 INum = HEE->getOperand(0) == I1 ? 0 : 1; 2566 } else { 2567 Idx = HSV->getMaskValue(i); 2568 if (Idx < (int) HOpElem) { 2569 INum = HSV->getOperand(0) == I1 ? 0 : 1; 2570 } else { 2571 Idx -= HOpElem; 2572 INum = HSV->getOperand(1) == I1 ? 0 : 1; 2573 } 2574 } 2575 2576 II[i + numElemL] = std::pair<int, int>(Idx, INum); 2577 } 2578 2579 // We now have an array which tells us from which index of which 2580 // input vector each element of the operand comes. 2581 VectorType *I1T = cast<VectorType>(I1->getType()); 2582 unsigned I1Elem = I1T->getNumElements(); 2583 2584 if (!I2) { 2585 // In this case there is only one underlying vector input. Check for 2586 // the trivial case where we can use the input directly. 2587 if (I1Elem == numElem) { 2588 bool ElemInOrder = true; 2589 for (unsigned i = 0; i < numElem; ++i) { 2590 if (II[i].first != (int) i && II[i].first != -1) { 2591 ElemInOrder = false; 2592 break; 2593 } 2594 } 2595 2596 if (ElemInOrder) 2597 return I1; 2598 } 2599 2600 // A shuffle is needed. 2601 std::vector<Constant *> Mask(numElem); 2602 for (unsigned i = 0; i < numElem; ++i) { 2603 int Idx = II[i].first; 2604 if (Idx == -1) 2605 Mask[i] = UndefValue::get(Type::getInt32Ty(Context)); 2606 else 2607 Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx); 2608 } 2609 2610 Instruction *S = 2611 new ShuffleVectorInst(I1, UndefValue::get(I1T), 2612 ConstantVector::get(Mask), 2613 getReplacementName(IBeforeJ ? I : J, 2614 true, o)); 2615 S->insertBefore(IBeforeJ ? J : I); 2616 return S; 2617 } 2618 2619 VectorType *I2T = cast<VectorType>(I2->getType()); 2620 unsigned I2Elem = I2T->getNumElements(); 2621 2622 // This input comes from two distinct vectors. The first step is to 2623 // make sure that both vectors are the same length. If not, the 2624 // smaller one will need to grow before they can be shuffled together. 2625 if (I1Elem < I2Elem) { 2626 std::vector<Constant *> Mask(I2Elem); 2627 unsigned v = 0; 2628 for (; v < I1Elem; ++v) 2629 Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); 2630 for (; v < I2Elem; ++v) 2631 Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); 2632 2633 Instruction *NewI1 = 2634 new ShuffleVectorInst(I1, UndefValue::get(I1T), 2635 ConstantVector::get(Mask), 2636 getReplacementName(IBeforeJ ? I : J, 2637 true, o, 1)); 2638 NewI1->insertBefore(IBeforeJ ? J : I); 2639 I1 = NewI1; 2640 I1Elem = I2Elem; 2641 } else if (I1Elem > I2Elem) { 2642 std::vector<Constant *> Mask(I1Elem); 2643 unsigned v = 0; 2644 for (; v < I2Elem; ++v) 2645 Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); 2646 for (; v < I1Elem; ++v) 2647 Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); 2648 2649 Instruction *NewI2 = 2650 new ShuffleVectorInst(I2, UndefValue::get(I2T), 2651 ConstantVector::get(Mask), 2652 getReplacementName(IBeforeJ ? I : J, 2653 true, o, 1)); 2654 NewI2->insertBefore(IBeforeJ ? J : I); 2655 I2 = NewI2; 2656 } 2657 2658 // Now that both I1 and I2 are the same length we can shuffle them 2659 // together (and use the result). 2660 std::vector<Constant *> Mask(numElem); 2661 for (unsigned v = 0; v < numElem; ++v) { 2662 if (II[v].first == -1) { 2663 Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); 2664 } else { 2665 int Idx = II[v].first + II[v].second * I1Elem; 2666 Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx); 2667 } 2668 } 2669 2670 Instruction *NewOp = 2671 new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask), 2672 getReplacementName(IBeforeJ ? I : J, true, o)); 2673 NewOp->insertBefore(IBeforeJ ? J : I); 2674 return NewOp; 2675 } 2676 } 2677 2678 Type *ArgType = ArgTypeL; 2679 if (numElemL < numElemH) { 2680 if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH, 2681 ArgTypeL, VArgType, IBeforeJ, 1)) { 2682 // This is another short-circuit case: we're combining a scalar into 2683 // a vector that is formed by an IE chain. We've just expanded the IE 2684 // chain, now insert the scalar and we're done. 2685 2686 Instruction *S = InsertElementInst::Create(HOp, LOp, CV0, 2687 getReplacementName(IBeforeJ ? I : J, true, o)); 2688 S->insertBefore(IBeforeJ ? J : I); 2689 return S; 2690 } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL, 2691 ArgTypeH, IBeforeJ)) { 2692 // The two vector inputs to the shuffle must be the same length, 2693 // so extend the smaller vector to be the same length as the larger one. 2694 Instruction *NLOp; 2695 if (numElemL > 1) { 2696 2697 std::vector<Constant *> Mask(numElemH); 2698 unsigned v = 0; 2699 for (; v < numElemL; ++v) 2700 Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); 2701 for (; v < numElemH; ++v) 2702 Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); 2703 2704 NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL), 2705 ConstantVector::get(Mask), 2706 getReplacementName(IBeforeJ ? I : J, 2707 true, o, 1)); 2708 } else { 2709 NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0, 2710 getReplacementName(IBeforeJ ? I : J, 2711 true, o, 1)); 2712 } 2713 2714 NLOp->insertBefore(IBeforeJ ? J : I); 2715 LOp = NLOp; 2716 } 2717 2718 ArgType = ArgTypeH; 2719 } else if (numElemL > numElemH) { 2720 if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL, 2721 ArgTypeH, VArgType, IBeforeJ)) { 2722 Instruction *S = 2723 InsertElementInst::Create(LOp, HOp, 2724 ConstantInt::get(Type::getInt32Ty(Context), 2725 numElemL), 2726 getReplacementName(IBeforeJ ? I : J, 2727 true, o)); 2728 S->insertBefore(IBeforeJ ? J : I); 2729 return S; 2730 } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH, 2731 ArgTypeL, IBeforeJ)) { 2732 Instruction *NHOp; 2733 if (numElemH > 1) { 2734 std::vector<Constant *> Mask(numElemL); 2735 unsigned v = 0; 2736 for (; v < numElemH; ++v) 2737 Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); 2738 for (; v < numElemL; ++v) 2739 Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); 2740 2741 NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH), 2742 ConstantVector::get(Mask), 2743 getReplacementName(IBeforeJ ? I : J, 2744 true, o, 1)); 2745 } else { 2746 NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0, 2747 getReplacementName(IBeforeJ ? I : J, 2748 true, o, 1)); 2749 } 2750 2751 NHOp->insertBefore(IBeforeJ ? J : I); 2752 HOp = NHOp; 2753 } 2754 } 2755 2756 if (ArgType->isVectorTy()) { 2757 unsigned numElem = VArgType->getVectorNumElements(); 2758 std::vector<Constant*> Mask(numElem); 2759 for (unsigned v = 0; v < numElem; ++v) { 2760 unsigned Idx = v; 2761 // If the low vector was expanded, we need to skip the extra 2762 // undefined entries. 2763 if (v >= numElemL && numElemH > numElemL) 2764 Idx += (numElemH - numElemL); 2765 Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx); 2766 } 2767 2768 Instruction *BV = new ShuffleVectorInst(LOp, HOp, 2769 ConstantVector::get(Mask), 2770 getReplacementName(IBeforeJ ? I : J, true, o)); 2771 BV->insertBefore(IBeforeJ ? J : I); 2772 return BV; 2773 } 2774 2775 Instruction *BV1 = InsertElementInst::Create( 2776 UndefValue::get(VArgType), LOp, CV0, 2777 getReplacementName(IBeforeJ ? I : J, 2778 true, o, 1)); 2779 BV1->insertBefore(IBeforeJ ? J : I); 2780 Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1, 2781 getReplacementName(IBeforeJ ? I : J, 2782 true, o, 2)); 2783 BV2->insertBefore(IBeforeJ ? J : I); 2784 return BV2; 2785 } 2786 2787 // This function creates an array of values that will be used as the inputs 2788 // to the vector instruction that fuses I with J. 2789 void BBVectorize::getReplacementInputsForPair(LLVMContext& Context, 2790 Instruction *I, Instruction *J, 2791 SmallVectorImpl<Value *> &ReplacedOperands, 2792 bool IBeforeJ) { 2793 unsigned NumOperands = I->getNumOperands(); 2794 2795 for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) { 2796 // Iterate backward so that we look at the store pointer 2797 // first and know whether or not we need to flip the inputs. 2798 2799 if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) { 2800 // This is the pointer for a load/store instruction. 2801 ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o); 2802 continue; 2803 } else if (isa<CallInst>(I)) { 2804 Function *F = cast<CallInst>(I)->getCalledFunction(); 2805 Intrinsic::ID IID = F->getIntrinsicID(); 2806 if (o == NumOperands-1) { 2807 BasicBlock &BB = *I->getParent(); 2808 2809 Module *M = BB.getParent()->getParent(); 2810 Type *ArgTypeI = I->getType(); 2811 Type *ArgTypeJ = J->getType(); 2812 Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); 2813 2814 ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType); 2815 continue; 2816 } else if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz || 2817 IID == Intrinsic::cttz) && o == 1) { 2818 // The second argument of powi/ctlz/cttz is a single integer/constant 2819 // and we've already checked that both arguments are equal. 2820 // As a result, we just keep I's second argument. 2821 ReplacedOperands[o] = I->getOperand(o); 2822 continue; 2823 } 2824 } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) { 2825 ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J); 2826 continue; 2827 } 2828 2829 ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ); 2830 } 2831 } 2832 2833 // This function creates two values that represent the outputs of the 2834 // original I and J instructions. These are generally vector shuffles 2835 // or extracts. In many cases, these will end up being unused and, thus, 2836 // eliminated by later passes. 2837 void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I, 2838 Instruction *J, Instruction *K, 2839 Instruction *&InsertionPt, 2840 Instruction *&K1, Instruction *&K2) { 2841 if (isa<StoreInst>(I)) 2842 return; 2843 2844 Type *IType = I->getType(); 2845 Type *JType = J->getType(); 2846 2847 VectorType *VType = getVecTypeForPair(IType, JType); 2848 unsigned numElem = VType->getNumElements(); 2849 2850 unsigned numElemI = getNumScalarElements(IType); 2851 unsigned numElemJ = getNumScalarElements(JType); 2852 2853 if (IType->isVectorTy()) { 2854 std::vector<Constant *> Mask1(numElemI), Mask2(numElemI); 2855 for (unsigned v = 0; v < numElemI; ++v) { 2856 Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v); 2857 Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ + v); 2858 } 2859 2860 K1 = new ShuffleVectorInst(K, UndefValue::get(VType), 2861 ConstantVector::get(Mask1), 2862 getReplacementName(K, false, 1)); 2863 } else { 2864 Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); 2865 K1 = ExtractElementInst::Create(K, CV0, getReplacementName(K, false, 1)); 2866 } 2867 2868 if (JType->isVectorTy()) { 2869 std::vector<Constant *> Mask1(numElemJ), Mask2(numElemJ); 2870 for (unsigned v = 0; v < numElemJ; ++v) { 2871 Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v); 2872 Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI + v); 2873 } 2874 2875 K2 = new ShuffleVectorInst(K, UndefValue::get(VType), 2876 ConstantVector::get(Mask2), 2877 getReplacementName(K, false, 2)); 2878 } else { 2879 Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem - 1); 2880 K2 = ExtractElementInst::Create(K, CV1, getReplacementName(K, false, 2)); 2881 } 2882 2883 K1->insertAfter(K); 2884 K2->insertAfter(K1); 2885 InsertionPt = K2; 2886 } 2887 2888 // Move all uses of the function I (including pairing-induced uses) after J. 2889 bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB, 2890 DenseSet<ValuePair> &LoadMoveSetPairs, 2891 Instruction *I, Instruction *J) { 2892 // Skip to the first instruction past I. 2893 BasicBlock::iterator L = std::next(BasicBlock::iterator(I)); 2894 2895 DenseSet<Value *> Users; 2896 AliasSetTracker WriteSet(*AA); 2897 if (I->mayWriteToMemory()) WriteSet.add(I); 2898 2899 for (; cast<Instruction>(L) != J; ++L) 2900 (void)trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs); 2901 2902 assert(cast<Instruction>(L) == J && 2903 "Tracking has not proceeded far enough to check for dependencies"); 2904 // If J is now in the use set of I, then trackUsesOfI will return true 2905 // and we have a dependency cycle (and the fusing operation must abort). 2906 return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs); 2907 } 2908 2909 // Move all uses of the function I (including pairing-induced uses) after J. 2910 void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB, 2911 DenseSet<ValuePair> &LoadMoveSetPairs, 2912 Instruction *&InsertionPt, 2913 Instruction *I, Instruction *J) { 2914 // Skip to the first instruction past I. 2915 BasicBlock::iterator L = std::next(BasicBlock::iterator(I)); 2916 2917 DenseSet<Value *> Users; 2918 AliasSetTracker WriteSet(*AA); 2919 if (I->mayWriteToMemory()) WriteSet.add(I); 2920 2921 for (; cast<Instruction>(L) != J;) { 2922 if (trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs)) { 2923 // Move this instruction 2924 Instruction *InstToMove = &*L++; 2925 2926 DEBUG(dbgs() << "BBV: moving: " << *InstToMove << 2927 " to after " << *InsertionPt << "\n"); 2928 InstToMove->removeFromParent(); 2929 InstToMove->insertAfter(InsertionPt); 2930 InsertionPt = InstToMove; 2931 } else { 2932 ++L; 2933 } 2934 } 2935 } 2936 2937 // Collect all load instruction that are in the move set of a given first 2938 // pair member. These loads depend on the first instruction, I, and so need 2939 // to be moved after J (the second instruction) when the pair is fused. 2940 void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB, 2941 DenseMap<Value *, Value *> &ChosenPairs, 2942 DenseMap<Value *, std::vector<Value *> > &LoadMoveSet, 2943 DenseSet<ValuePair> &LoadMoveSetPairs, 2944 Instruction *I) { 2945 // Skip to the first instruction past I. 2946 BasicBlock::iterator L = std::next(BasicBlock::iterator(I)); 2947 2948 DenseSet<Value *> Users; 2949 AliasSetTracker WriteSet(*AA); 2950 if (I->mayWriteToMemory()) WriteSet.add(I); 2951 2952 // Note: We cannot end the loop when we reach J because J could be moved 2953 // farther down the use chain by another instruction pairing. Also, J 2954 // could be before I if this is an inverted input. 2955 for (BasicBlock::iterator E = BB.end(); L != E; ++L) { 2956 if (trackUsesOfI(Users, WriteSet, I, &*L)) { 2957 if (L->mayReadFromMemory()) { 2958 LoadMoveSet[&*L].push_back(I); 2959 LoadMoveSetPairs.insert(ValuePair(&*L, I)); 2960 } 2961 } 2962 } 2963 } 2964 2965 // In cases where both load/stores and the computation of their pointers 2966 // are chosen for vectorization, we can end up in a situation where the 2967 // aliasing analysis starts returning different query results as the 2968 // process of fusing instruction pairs continues. Because the algorithm 2969 // relies on finding the same use dags here as were found earlier, we'll 2970 // need to precompute the necessary aliasing information here and then 2971 // manually update it during the fusion process. 2972 void BBVectorize::collectLoadMoveSet(BasicBlock &BB, 2973 std::vector<Value *> &PairableInsts, 2974 DenseMap<Value *, Value *> &ChosenPairs, 2975 DenseMap<Value *, std::vector<Value *> > &LoadMoveSet, 2976 DenseSet<ValuePair> &LoadMoveSetPairs) { 2977 for (std::vector<Value *>::iterator PI = PairableInsts.begin(), 2978 PIE = PairableInsts.end(); PI != PIE; ++PI) { 2979 DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI); 2980 if (P == ChosenPairs.end()) continue; 2981 2982 Instruction *I = cast<Instruction>(P->first); 2983 collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, 2984 LoadMoveSetPairs, I); 2985 } 2986 } 2987 2988 // This function fuses the chosen instruction pairs into vector instructions, 2989 // taking care preserve any needed scalar outputs and, then, it reorders the 2990 // remaining instructions as needed (users of the first member of the pair 2991 // need to be moved to after the location of the second member of the pair 2992 // because the vector instruction is inserted in the location of the pair's 2993 // second member). 2994 void BBVectorize::fuseChosenPairs(BasicBlock &BB, 2995 std::vector<Value *> &PairableInsts, 2996 DenseMap<Value *, Value *> &ChosenPairs, 2997 DenseSet<ValuePair> &FixedOrderPairs, 2998 DenseMap<VPPair, unsigned> &PairConnectionTypes, 2999 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, 3000 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) { 3001 LLVMContext& Context = BB.getContext(); 3002 3003 // During the vectorization process, the order of the pairs to be fused 3004 // could be flipped. So we'll add each pair, flipped, into the ChosenPairs 3005 // list. After a pair is fused, the flipped pair is removed from the list. 3006 DenseSet<ValuePair> FlippedPairs; 3007 for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(), 3008 E = ChosenPairs.end(); P != E; ++P) 3009 FlippedPairs.insert(ValuePair(P->second, P->first)); 3010 for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(), 3011 E = FlippedPairs.end(); P != E; ++P) 3012 ChosenPairs.insert(*P); 3013 3014 DenseMap<Value *, std::vector<Value *> > LoadMoveSet; 3015 DenseSet<ValuePair> LoadMoveSetPairs; 3016 collectLoadMoveSet(BB, PairableInsts, ChosenPairs, 3017 LoadMoveSet, LoadMoveSetPairs); 3018 3019 DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n"); 3020 3021 for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) { 3022 DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(&*PI); 3023 if (P == ChosenPairs.end()) { 3024 ++PI; 3025 continue; 3026 } 3027 3028 if (getDepthFactor(P->first) == 0) { 3029 // These instructions are not really fused, but are tracked as though 3030 // they are. Any case in which it would be interesting to fuse them 3031 // will be taken care of by InstCombine. 3032 --NumFusedOps; 3033 ++PI; 3034 continue; 3035 } 3036 3037 Instruction *I = cast<Instruction>(P->first), 3038 *J = cast<Instruction>(P->second); 3039 3040 DEBUG(dbgs() << "BBV: fusing: " << *I << 3041 " <-> " << *J << "\n"); 3042 3043 // Remove the pair and flipped pair from the list. 3044 DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second); 3045 assert(FP != ChosenPairs.end() && "Flipped pair not found in list"); 3046 ChosenPairs.erase(FP); 3047 ChosenPairs.erase(P); 3048 3049 if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) { 3050 DEBUG(dbgs() << "BBV: fusion of: " << *I << 3051 " <-> " << *J << 3052 " aborted because of non-trivial dependency cycle\n"); 3053 --NumFusedOps; 3054 ++PI; 3055 continue; 3056 } 3057 3058 // If the pair must have the other order, then flip it. 3059 bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I)); 3060 if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) { 3061 // This pair does not have a fixed order, and so we might want to 3062 // flip it if that will yield fewer shuffles. We count the number 3063 // of dependencies connected via swaps, and those directly connected, 3064 // and flip the order if the number of swaps is greater. 3065 bool OrigOrder = true; 3066 DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ = 3067 ConnectedPairDeps.find(ValuePair(I, J)); 3068 if (IJ == ConnectedPairDeps.end()) { 3069 IJ = ConnectedPairDeps.find(ValuePair(J, I)); 3070 OrigOrder = false; 3071 } 3072 3073 if (IJ != ConnectedPairDeps.end()) { 3074 unsigned NumDepsDirect = 0, NumDepsSwap = 0; 3075 for (std::vector<ValuePair>::iterator T = IJ->second.begin(), 3076 TE = IJ->second.end(); T != TE; ++T) { 3077 VPPair Q(IJ->first, *T); 3078 DenseMap<VPPair, unsigned>::iterator R = 3079 PairConnectionTypes.find(VPPair(Q.second, Q.first)); 3080 assert(R != PairConnectionTypes.end() && 3081 "Cannot find pair connection type"); 3082 if (R->second == PairConnectionDirect) 3083 ++NumDepsDirect; 3084 else if (R->second == PairConnectionSwap) 3085 ++NumDepsSwap; 3086 } 3087 3088 if (!OrigOrder) 3089 std::swap(NumDepsDirect, NumDepsSwap); 3090 3091 if (NumDepsSwap > NumDepsDirect) { 3092 FlipPairOrder = true; 3093 DEBUG(dbgs() << "BBV: reordering pair: " << *I << 3094 " <-> " << *J << "\n"); 3095 } 3096 } 3097 } 3098 3099 Instruction *L = I, *H = J; 3100 if (FlipPairOrder) 3101 std::swap(H, L); 3102 3103 // If the pair being fused uses the opposite order from that in the pair 3104 // connection map, then we need to flip the types. 3105 DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL = 3106 ConnectedPairs.find(ValuePair(H, L)); 3107 if (HL != ConnectedPairs.end()) 3108 for (std::vector<ValuePair>::iterator T = HL->second.begin(), 3109 TE = HL->second.end(); T != TE; ++T) { 3110 VPPair Q(HL->first, *T); 3111 DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q); 3112 assert(R != PairConnectionTypes.end() && 3113 "Cannot find pair connection type"); 3114 if (R->second == PairConnectionDirect) 3115 R->second = PairConnectionSwap; 3116 else if (R->second == PairConnectionSwap) 3117 R->second = PairConnectionDirect; 3118 } 3119 3120 bool LBeforeH = !FlipPairOrder; 3121 unsigned NumOperands = I->getNumOperands(); 3122 SmallVector<Value *, 3> ReplacedOperands(NumOperands); 3123 getReplacementInputsForPair(Context, L, H, ReplacedOperands, 3124 LBeforeH); 3125 3126 // Make a copy of the original operation, change its type to the vector 3127 // type and replace its operands with the vector operands. 3128 Instruction *K = L->clone(); 3129 if (L->hasName()) 3130 K->takeName(L); 3131 else if (H->hasName()) 3132 K->takeName(H); 3133 3134 if (auto CS = CallSite(K)) { 3135 SmallVector<Type *, 3> Tys; 3136 FunctionType *Old = CS.getFunctionType(); 3137 unsigned NumOld = Old->getNumParams(); 3138 assert(NumOld <= ReplacedOperands.size()); 3139 for (unsigned i = 0; i != NumOld; ++i) 3140 Tys.push_back(ReplacedOperands[i]->getType()); 3141 CS.mutateFunctionType( 3142 FunctionType::get(getVecTypeForPair(L->getType(), H->getType()), 3143 Tys, Old->isVarArg())); 3144 } else if (!isa<StoreInst>(K)) 3145 K->mutateType(getVecTypeForPair(L->getType(), H->getType())); 3146 3147 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 3148 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 3149 LLVMContext::MD_invariant_group}; 3150 combineMetadata(K, H, KnownIDs); 3151 K->intersectOptionalDataWith(H); 3152 3153 for (unsigned o = 0; o < NumOperands; ++o) 3154 K->setOperand(o, ReplacedOperands[o]); 3155 3156 K->insertAfter(J); 3157 3158 // Instruction insertion point: 3159 Instruction *InsertionPt = K; 3160 Instruction *K1 = nullptr, *K2 = nullptr; 3161 replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2); 3162 3163 // The use dag of the first original instruction must be moved to after 3164 // the location of the second instruction. The entire use dag of the 3165 // first instruction is disjoint from the input dag of the second 3166 // (by definition), and so commutes with it. 3167 3168 moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J); 3169 3170 if (!isa<StoreInst>(I)) { 3171 L->replaceAllUsesWith(K1); 3172 H->replaceAllUsesWith(K2); 3173 } 3174 3175 // Instructions that may read from memory may be in the load move set. 3176 // Once an instruction is fused, we no longer need its move set, and so 3177 // the values of the map never need to be updated. However, when a load 3178 // is fused, we need to merge the entries from both instructions in the 3179 // pair in case those instructions were in the move set of some other 3180 // yet-to-be-fused pair. The loads in question are the keys of the map. 3181 if (I->mayReadFromMemory()) { 3182 std::vector<ValuePair> NewSetMembers; 3183 DenseMap<Value *, std::vector<Value *> >::iterator II = 3184 LoadMoveSet.find(I); 3185 if (II != LoadMoveSet.end()) 3186 for (std::vector<Value *>::iterator N = II->second.begin(), 3187 NE = II->second.end(); N != NE; ++N) 3188 NewSetMembers.push_back(ValuePair(K, *N)); 3189 DenseMap<Value *, std::vector<Value *> >::iterator JJ = 3190 LoadMoveSet.find(J); 3191 if (JJ != LoadMoveSet.end()) 3192 for (std::vector<Value *>::iterator N = JJ->second.begin(), 3193 NE = JJ->second.end(); N != NE; ++N) 3194 NewSetMembers.push_back(ValuePair(K, *N)); 3195 for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(), 3196 AE = NewSetMembers.end(); A != AE; ++A) { 3197 LoadMoveSet[A->first].push_back(A->second); 3198 LoadMoveSetPairs.insert(*A); 3199 } 3200 } 3201 3202 // Before removing I, set the iterator to the next instruction. 3203 PI = std::next(BasicBlock::iterator(I)); 3204 if (cast<Instruction>(PI) == J) 3205 ++PI; 3206 3207 SE->forgetValue(I); 3208 SE->forgetValue(J); 3209 I->eraseFromParent(); 3210 J->eraseFromParent(); 3211 3212 DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" << 3213 BB << "\n"); 3214 } 3215 3216 DEBUG(dbgs() << "BBV: final: \n" << BB << "\n"); 3217 } 3218 } 3219 3220 char BBVectorize::ID = 0; 3221 static const char bb_vectorize_name[] = "Basic-Block Vectorization"; 3222 INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) 3223 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3224 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3225 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3227 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3228 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 3229 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3230 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 3231 INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) 3232 3233 BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) { 3234 return new BBVectorize(C); 3235 } 3236 3237 bool 3238 llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) { 3239 BBVectorize BBVectorizer(P, *BB.getParent(), C); 3240 return BBVectorizer.vectorizeBB(BB); 3241 } 3242 3243 //===----------------------------------------------------------------------===// 3244 VectorizeConfig::VectorizeConfig() { 3245 VectorBits = ::VectorBits; 3246 VectorizeBools = !::NoBools; 3247 VectorizeInts = !::NoInts; 3248 VectorizeFloats = !::NoFloats; 3249 VectorizePointers = !::NoPointers; 3250 VectorizeCasts = !::NoCasts; 3251 VectorizeMath = !::NoMath; 3252 VectorizeBitManipulations = !::NoBitManipulation; 3253 VectorizeFMA = !::NoFMA; 3254 VectorizeSelect = !::NoSelect; 3255 VectorizeCmp = !::NoCmp; 3256 VectorizeGEP = !::NoGEP; 3257 VectorizeMemOps = !::NoMemOps; 3258 AlignedOnly = ::AlignedOnly; 3259 ReqChainDepth= ::ReqChainDepth; 3260 SearchLimit = ::SearchLimit; 3261 MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck; 3262 SplatBreaksChain = ::SplatBreaksChain; 3263 MaxInsts = ::MaxInsts; 3264 MaxPairs = ::MaxPairs; 3265 MaxIter = ::MaxIter; 3266 Pow2LenOnly = ::Pow2LenOnly; 3267 NoMemOpBoost = ::NoMemOpBoost; 3268 FastDep = ::FastDep; 3269 } 3270