1 // Copyright 2012 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Image transforms and color space conversion methods for lossless decoder. 11 // 12 // Authors: Vikas Arora (vikaas.arora (at) gmail.com) 13 // Jyrki Alakuijala (jyrki (at) google.com) 14 // Urvang Joshi (urvang (at) google.com) 15 16 #include "src/dsp/dsp.h" 17 18 #include <assert.h> 19 #include <math.h> 20 #include <stdlib.h> 21 #include "src/dec/vp8li_dec.h" 22 #include "src/utils/endian_inl_utils.h" 23 #include "src/dsp/lossless.h" 24 #include "src/dsp/lossless_common.h" 25 26 #define MAX_DIFF_COST (1e30f) 27 28 //------------------------------------------------------------------------------ 29 // Image transforms. 30 31 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { 32 return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1); 33 } 34 35 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { 36 return Average2(Average2(a0, a2), a1); 37 } 38 39 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, 40 uint32_t a2, uint32_t a3) { 41 return Average2(Average2(a0, a1), Average2(a2, a3)); 42 } 43 44 static WEBP_INLINE uint32_t Clip255(uint32_t a) { 45 if (a < 256) { 46 return a; 47 } 48 // return 0, when a is a negative integer. 49 // return 255, when a is positive. 50 return ~a >> 24; 51 } 52 53 static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { 54 return Clip255(a + b - c); 55 } 56 57 static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, 58 uint32_t c2) { 59 const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); 60 const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, 61 (c1 >> 16) & 0xff, 62 (c2 >> 16) & 0xff); 63 const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, 64 (c1 >> 8) & 0xff, 65 (c2 >> 8) & 0xff); 66 const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); 67 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; 68 } 69 70 static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { 71 return Clip255(a + (a - b) / 2); 72 } 73 74 static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, 75 uint32_t c2) { 76 const uint32_t ave = Average2(c0, c1); 77 const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); 78 const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); 79 const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); 80 const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); 81 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; 82 } 83 84 // gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is 85 // inlined. 86 #if defined(__arm__) && LOCAL_GCC_VERSION <= 0x409 87 # define LOCAL_INLINE __attribute__ ((noinline)) 88 #else 89 # define LOCAL_INLINE WEBP_INLINE 90 #endif 91 92 static LOCAL_INLINE int Sub3(int a, int b, int c) { 93 const int pb = b - c; 94 const int pa = a - c; 95 return abs(pb) - abs(pa); 96 } 97 98 #undef LOCAL_INLINE 99 100 static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { 101 const int pa_minus_pb = 102 Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + 103 Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + 104 Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + 105 Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); 106 return (pa_minus_pb <= 0) ? a : b; 107 } 108 109 //------------------------------------------------------------------------------ 110 // Predictors 111 112 static uint32_t Predictor0_C(uint32_t left, const uint32_t* const top) { 113 (void)top; 114 (void)left; 115 return ARGB_BLACK; 116 } 117 static uint32_t Predictor1_C(uint32_t left, const uint32_t* const top) { 118 (void)top; 119 return left; 120 } 121 static uint32_t Predictor2_C(uint32_t left, const uint32_t* const top) { 122 (void)left; 123 return top[0]; 124 } 125 static uint32_t Predictor3_C(uint32_t left, const uint32_t* const top) { 126 (void)left; 127 return top[1]; 128 } 129 static uint32_t Predictor4_C(uint32_t left, const uint32_t* const top) { 130 (void)left; 131 return top[-1]; 132 } 133 static uint32_t Predictor5_C(uint32_t left, const uint32_t* const top) { 134 const uint32_t pred = Average3(left, top[0], top[1]); 135 return pred; 136 } 137 static uint32_t Predictor6_C(uint32_t left, const uint32_t* const top) { 138 const uint32_t pred = Average2(left, top[-1]); 139 return pred; 140 } 141 static uint32_t Predictor7_C(uint32_t left, const uint32_t* const top) { 142 const uint32_t pred = Average2(left, top[0]); 143 return pred; 144 } 145 static uint32_t Predictor8_C(uint32_t left, const uint32_t* const top) { 146 const uint32_t pred = Average2(top[-1], top[0]); 147 (void)left; 148 return pred; 149 } 150 static uint32_t Predictor9_C(uint32_t left, const uint32_t* const top) { 151 const uint32_t pred = Average2(top[0], top[1]); 152 (void)left; 153 return pred; 154 } 155 static uint32_t Predictor10_C(uint32_t left, const uint32_t* const top) { 156 const uint32_t pred = Average4(left, top[-1], top[0], top[1]); 157 return pred; 158 } 159 static uint32_t Predictor11_C(uint32_t left, const uint32_t* const top) { 160 const uint32_t pred = Select(top[0], left, top[-1]); 161 return pred; 162 } 163 static uint32_t Predictor12_C(uint32_t left, const uint32_t* const top) { 164 const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); 165 return pred; 166 } 167 static uint32_t Predictor13_C(uint32_t left, const uint32_t* const top) { 168 const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); 169 return pred; 170 } 171 172 GENERATE_PREDICTOR_ADD(Predictor0_C, PredictorAdd0_C) 173 static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper, 174 int num_pixels, uint32_t* out) { 175 int i; 176 uint32_t left = out[-1]; 177 for (i = 0; i < num_pixels; ++i) { 178 out[i] = left = VP8LAddPixels(in[i], left); 179 } 180 (void)upper; 181 } 182 GENERATE_PREDICTOR_ADD(Predictor2_C, PredictorAdd2_C) 183 GENERATE_PREDICTOR_ADD(Predictor3_C, PredictorAdd3_C) 184 GENERATE_PREDICTOR_ADD(Predictor4_C, PredictorAdd4_C) 185 GENERATE_PREDICTOR_ADD(Predictor5_C, PredictorAdd5_C) 186 GENERATE_PREDICTOR_ADD(Predictor6_C, PredictorAdd6_C) 187 GENERATE_PREDICTOR_ADD(Predictor7_C, PredictorAdd7_C) 188 GENERATE_PREDICTOR_ADD(Predictor8_C, PredictorAdd8_C) 189 GENERATE_PREDICTOR_ADD(Predictor9_C, PredictorAdd9_C) 190 GENERATE_PREDICTOR_ADD(Predictor10_C, PredictorAdd10_C) 191 GENERATE_PREDICTOR_ADD(Predictor11_C, PredictorAdd11_C) 192 GENERATE_PREDICTOR_ADD(Predictor12_C, PredictorAdd12_C) 193 GENERATE_PREDICTOR_ADD(Predictor13_C, PredictorAdd13_C) 194 195 //------------------------------------------------------------------------------ 196 197 // Inverse prediction. 198 static void PredictorInverseTransform_C(const VP8LTransform* const transform, 199 int y_start, int y_end, 200 const uint32_t* in, uint32_t* out) { 201 const int width = transform->xsize_; 202 if (y_start == 0) { // First Row follows the L (mode=1) mode. 203 PredictorAdd0_C(in, NULL, 1, out); 204 PredictorAdd1_C(in + 1, NULL, width - 1, out + 1); 205 in += width; 206 out += width; 207 ++y_start; 208 } 209 210 { 211 int y = y_start; 212 const int tile_width = 1 << transform->bits_; 213 const int mask = tile_width - 1; 214 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); 215 const uint32_t* pred_mode_base = 216 transform->data_ + (y >> transform->bits_) * tiles_per_row; 217 218 while (y < y_end) { 219 const uint32_t* pred_mode_src = pred_mode_base; 220 int x = 1; 221 // First pixel follows the T (mode=2) mode. 222 PredictorAdd2_C(in, out - width, 1, out); 223 // .. the rest: 224 while (x < width) { 225 const VP8LPredictorAddSubFunc pred_func = 226 VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf]; 227 int x_end = (x & ~mask) + tile_width; 228 if (x_end > width) x_end = width; 229 pred_func(in + x, out + x - width, x_end - x, out + x); 230 x = x_end; 231 } 232 in += width; 233 out += width; 234 ++y; 235 if ((y & mask) == 0) { // Use the same mask, since tiles are squares. 236 pred_mode_base += tiles_per_row; 237 } 238 } 239 } 240 } 241 242 // Add green to blue and red channels (i.e. perform the inverse transform of 243 // 'subtract green'). 244 void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels, 245 uint32_t* dst) { 246 int i; 247 for (i = 0; i < num_pixels; ++i) { 248 const uint32_t argb = src[i]; 249 const uint32_t green = ((argb >> 8) & 0xff); 250 uint32_t red_blue = (argb & 0x00ff00ffu); 251 red_blue += (green << 16) | green; 252 red_blue &= 0x00ff00ffu; 253 dst[i] = (argb & 0xff00ff00u) | red_blue; 254 } 255 } 256 257 static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, 258 int8_t color) { 259 return ((int)color_pred * color) >> 5; 260 } 261 262 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, 263 VP8LMultipliers* const m) { 264 m->green_to_red_ = (color_code >> 0) & 0xff; 265 m->green_to_blue_ = (color_code >> 8) & 0xff; 266 m->red_to_blue_ = (color_code >> 16) & 0xff; 267 } 268 269 void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, 270 const uint32_t* src, int num_pixels, 271 uint32_t* dst) { 272 int i; 273 for (i = 0; i < num_pixels; ++i) { 274 const uint32_t argb = src[i]; 275 const uint32_t green = argb >> 8; 276 const uint32_t red = argb >> 16; 277 int new_red = red & 0xff; 278 int new_blue = argb & 0xff; 279 new_red += ColorTransformDelta(m->green_to_red_, green); 280 new_red &= 0xff; 281 new_blue += ColorTransformDelta(m->green_to_blue_, green); 282 new_blue += ColorTransformDelta(m->red_to_blue_, new_red); 283 new_blue &= 0xff; 284 dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); 285 } 286 } 287 288 // Color space inverse transform. 289 static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform, 290 int y_start, int y_end, 291 const uint32_t* src, uint32_t* dst) { 292 const int width = transform->xsize_; 293 const int tile_width = 1 << transform->bits_; 294 const int mask = tile_width - 1; 295 const int safe_width = width & ~mask; 296 const int remaining_width = width - safe_width; 297 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); 298 int y = y_start; 299 const uint32_t* pred_row = 300 transform->data_ + (y >> transform->bits_) * tiles_per_row; 301 302 while (y < y_end) { 303 const uint32_t* pred = pred_row; 304 VP8LMultipliers m = { 0, 0, 0 }; 305 const uint32_t* const src_safe_end = src + safe_width; 306 const uint32_t* const src_end = src + width; 307 while (src < src_safe_end) { 308 ColorCodeToMultipliers(*pred++, &m); 309 VP8LTransformColorInverse(&m, src, tile_width, dst); 310 src += tile_width; 311 dst += tile_width; 312 } 313 if (src < src_end) { // Left-overs using C-version. 314 ColorCodeToMultipliers(*pred++, &m); 315 VP8LTransformColorInverse(&m, src, remaining_width, dst); 316 src += remaining_width; 317 dst += remaining_width; 318 } 319 ++y; 320 if ((y & mask) == 0) pred_row += tiles_per_row; 321 } 322 } 323 324 // Separate out pixels packed together using pixel-bundling. 325 // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). 326 #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \ 327 GET_INDEX, GET_VALUE) \ 328 static void F_NAME(const TYPE* src, const uint32_t* const color_map, \ 329 TYPE* dst, int y_start, int y_end, int width) { \ 330 int y; \ 331 for (y = y_start; y < y_end; ++y) { \ 332 int x; \ 333 for (x = 0; x < width; ++x) { \ 334 *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ 335 } \ 336 } \ 337 } \ 338 STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \ 339 int y_start, int y_end, const TYPE* src, \ 340 TYPE* dst) { \ 341 int y; \ 342 const int bits_per_pixel = 8 >> transform->bits_; \ 343 const int width = transform->xsize_; \ 344 const uint32_t* const color_map = transform->data_; \ 345 if (bits_per_pixel < 8) { \ 346 const int pixels_per_byte = 1 << transform->bits_; \ 347 const int count_mask = pixels_per_byte - 1; \ 348 const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ 349 for (y = y_start; y < y_end; ++y) { \ 350 uint32_t packed_pixels = 0; \ 351 int x; \ 352 for (x = 0; x < width; ++x) { \ 353 /* We need to load fresh 'packed_pixels' once every */ \ 354 /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ 355 /* is a power of 2, so can just use a mask for that, instead of */ \ 356 /* decrementing a counter. */ \ 357 if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ 358 *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ 359 packed_pixels >>= bits_per_pixel; \ 360 } \ 361 } \ 362 } else { \ 363 VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \ 364 } \ 365 } 366 367 COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static, 368 uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue) 369 COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, , 370 uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue) 371 372 #undef COLOR_INDEX_INVERSE 373 374 void VP8LInverseTransform(const VP8LTransform* const transform, 375 int row_start, int row_end, 376 const uint32_t* const in, uint32_t* const out) { 377 const int width = transform->xsize_; 378 assert(row_start < row_end); 379 assert(row_end <= transform->ysize_); 380 switch (transform->type_) { 381 case SUBTRACT_GREEN: 382 VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out); 383 break; 384 case PREDICTOR_TRANSFORM: 385 PredictorInverseTransform_C(transform, row_start, row_end, in, out); 386 if (row_end != transform->ysize_) { 387 // The last predicted row in this iteration will be the top-pred row 388 // for the first row in next iteration. 389 memcpy(out - width, out + (row_end - row_start - 1) * width, 390 width * sizeof(*out)); 391 } 392 break; 393 case CROSS_COLOR_TRANSFORM: 394 ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out); 395 break; 396 case COLOR_INDEXING_TRANSFORM: 397 if (in == out && transform->bits_ > 0) { 398 // Move packed pixels to the end of unpacked region, so that unpacking 399 // can occur seamlessly. 400 // Also, note that this is the only transform that applies on 401 // the effective width of VP8LSubSampleSize(xsize_, bits_). All other 402 // transforms work on effective width of xsize_. 403 const int out_stride = (row_end - row_start) * width; 404 const int in_stride = (row_end - row_start) * 405 VP8LSubSampleSize(transform->xsize_, transform->bits_); 406 uint32_t* const src = out + out_stride - in_stride; 407 memmove(src, out, in_stride * sizeof(*src)); 408 ColorIndexInverseTransform_C(transform, row_start, row_end, src, out); 409 } else { 410 ColorIndexInverseTransform_C(transform, row_start, row_end, in, out); 411 } 412 break; 413 } 414 } 415 416 //------------------------------------------------------------------------------ 417 // Color space conversion. 418 419 static int is_big_endian(void) { 420 static const union { 421 uint16_t w; 422 uint8_t b[2]; 423 } tmp = { 1 }; 424 return (tmp.b[0] != 1); 425 } 426 427 void VP8LConvertBGRAToRGB_C(const uint32_t* src, 428 int num_pixels, uint8_t* dst) { 429 const uint32_t* const src_end = src + num_pixels; 430 while (src < src_end) { 431 const uint32_t argb = *src++; 432 *dst++ = (argb >> 16) & 0xff; 433 *dst++ = (argb >> 8) & 0xff; 434 *dst++ = (argb >> 0) & 0xff; 435 } 436 } 437 438 void VP8LConvertBGRAToRGBA_C(const uint32_t* src, 439 int num_pixels, uint8_t* dst) { 440 const uint32_t* const src_end = src + num_pixels; 441 while (src < src_end) { 442 const uint32_t argb = *src++; 443 *dst++ = (argb >> 16) & 0xff; 444 *dst++ = (argb >> 8) & 0xff; 445 *dst++ = (argb >> 0) & 0xff; 446 *dst++ = (argb >> 24) & 0xff; 447 } 448 } 449 450 void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, 451 int num_pixels, uint8_t* dst) { 452 const uint32_t* const src_end = src + num_pixels; 453 while (src < src_end) { 454 const uint32_t argb = *src++; 455 const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); 456 const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); 457 #if (WEBP_SWAP_16BIT_CSP == 1) 458 *dst++ = ba; 459 *dst++ = rg; 460 #else 461 *dst++ = rg; 462 *dst++ = ba; 463 #endif 464 } 465 } 466 467 void VP8LConvertBGRAToRGB565_C(const uint32_t* src, 468 int num_pixels, uint8_t* dst) { 469 const uint32_t* const src_end = src + num_pixels; 470 while (src < src_end) { 471 const uint32_t argb = *src++; 472 const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); 473 const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); 474 #if (WEBP_SWAP_16BIT_CSP == 1) 475 *dst++ = gb; 476 *dst++ = rg; 477 #else 478 *dst++ = rg; 479 *dst++ = gb; 480 #endif 481 } 482 } 483 484 void VP8LConvertBGRAToBGR_C(const uint32_t* src, 485 int num_pixels, uint8_t* dst) { 486 const uint32_t* const src_end = src + num_pixels; 487 while (src < src_end) { 488 const uint32_t argb = *src++; 489 *dst++ = (argb >> 0) & 0xff; 490 *dst++ = (argb >> 8) & 0xff; 491 *dst++ = (argb >> 16) & 0xff; 492 } 493 } 494 495 static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, 496 int swap_on_big_endian) { 497 if (is_big_endian() == swap_on_big_endian) { 498 const uint32_t* const src_end = src + num_pixels; 499 while (src < src_end) { 500 const uint32_t argb = *src++; 501 WebPUint32ToMem(dst, BSwap32(argb)); 502 dst += sizeof(argb); 503 } 504 } else { 505 memcpy(dst, src, num_pixels * sizeof(*src)); 506 } 507 } 508 509 void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, 510 WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { 511 switch (out_colorspace) { 512 case MODE_RGB: 513 VP8LConvertBGRAToRGB(in_data, num_pixels, rgba); 514 break; 515 case MODE_RGBA: 516 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); 517 break; 518 case MODE_rgbA: 519 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); 520 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); 521 break; 522 case MODE_BGR: 523 VP8LConvertBGRAToBGR(in_data, num_pixels, rgba); 524 break; 525 case MODE_BGRA: 526 CopyOrSwap(in_data, num_pixels, rgba, 1); 527 break; 528 case MODE_bgrA: 529 CopyOrSwap(in_data, num_pixels, rgba, 1); 530 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); 531 break; 532 case MODE_ARGB: 533 CopyOrSwap(in_data, num_pixels, rgba, 0); 534 break; 535 case MODE_Argb: 536 CopyOrSwap(in_data, num_pixels, rgba, 0); 537 WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); 538 break; 539 case MODE_RGBA_4444: 540 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); 541 break; 542 case MODE_rgbA_4444: 543 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); 544 WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); 545 break; 546 case MODE_RGB_565: 547 VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); 548 break; 549 default: 550 assert(0); // Code flow should not reach here. 551 } 552 } 553 554 //------------------------------------------------------------------------------ 555 556 VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed; 557 VP8LPredictorAddSubFunc VP8LPredictorsAdd[16]; 558 VP8LPredictorFunc VP8LPredictors[16]; 559 560 // exposed plain-C implementations 561 VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16]; 562 VP8LPredictorFunc VP8LPredictors_C[16]; 563 564 VP8LTransformColorInverseFunc VP8LTransformColorInverse; 565 566 VP8LConvertFunc VP8LConvertBGRAToRGB; 567 VP8LConvertFunc VP8LConvertBGRAToRGBA; 568 VP8LConvertFunc VP8LConvertBGRAToRGBA4444; 569 VP8LConvertFunc VP8LConvertBGRAToRGB565; 570 VP8LConvertFunc VP8LConvertBGRAToBGR; 571 572 VP8LMapARGBFunc VP8LMapColor32b; 573 VP8LMapAlphaFunc VP8LMapColor8b; 574 575 extern void VP8LDspInitSSE2(void); 576 extern void VP8LDspInitNEON(void); 577 extern void VP8LDspInitMIPSdspR2(void); 578 extern void VP8LDspInitMSA(void); 579 580 static volatile VP8CPUInfo lossless_last_cpuinfo_used = 581 (VP8CPUInfo)&lossless_last_cpuinfo_used; 582 583 #define COPY_PREDICTOR_ARRAY(IN, OUT) do { \ 584 (OUT)[0] = IN##0_C; \ 585 (OUT)[1] = IN##1_C; \ 586 (OUT)[2] = IN##2_C; \ 587 (OUT)[3] = IN##3_C; \ 588 (OUT)[4] = IN##4_C; \ 589 (OUT)[5] = IN##5_C; \ 590 (OUT)[6] = IN##6_C; \ 591 (OUT)[7] = IN##7_C; \ 592 (OUT)[8] = IN##8_C; \ 593 (OUT)[9] = IN##9_C; \ 594 (OUT)[10] = IN##10_C; \ 595 (OUT)[11] = IN##11_C; \ 596 (OUT)[12] = IN##12_C; \ 597 (OUT)[13] = IN##13_C; \ 598 (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \ 599 (OUT)[15] = IN##0_C; \ 600 } while (0); 601 602 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) { 603 if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return; 604 605 COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors) 606 COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C) 607 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd) 608 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C) 609 610 #if !WEBP_NEON_OMIT_C_CODE 611 VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; 612 613 VP8LTransformColorInverse = VP8LTransformColorInverse_C; 614 615 VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; 616 VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; 617 VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; 618 #endif 619 620 VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; 621 VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; 622 623 VP8LMapColor32b = MapARGB_C; 624 VP8LMapColor8b = MapAlpha_C; 625 626 // If defined, use CPUInfo() to overwrite some pointers with faster versions. 627 if (VP8GetCPUInfo != NULL) { 628 #if defined(WEBP_USE_SSE2) 629 if (VP8GetCPUInfo(kSSE2)) { 630 VP8LDspInitSSE2(); 631 } 632 #endif 633 #if defined(WEBP_USE_MIPS_DSP_R2) 634 if (VP8GetCPUInfo(kMIPSdspR2)) { 635 VP8LDspInitMIPSdspR2(); 636 } 637 #endif 638 #if defined(WEBP_USE_MSA) 639 if (VP8GetCPUInfo(kMSA)) { 640 VP8LDspInitMSA(); 641 } 642 #endif 643 } 644 645 #if defined(WEBP_USE_NEON) 646 if (WEBP_NEON_OMIT_C_CODE || 647 (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { 648 VP8LDspInitNEON(); 649 } 650 #endif 651 652 assert(VP8LAddGreenToBlueAndRed != NULL); 653 assert(VP8LTransformColorInverse != NULL); 654 assert(VP8LConvertBGRAToRGBA != NULL); 655 assert(VP8LConvertBGRAToRGB != NULL); 656 assert(VP8LConvertBGRAToBGR != NULL); 657 assert(VP8LConvertBGRAToRGBA4444 != NULL); 658 assert(VP8LConvertBGRAToRGB565 != NULL); 659 assert(VP8LMapColor32b != NULL); 660 assert(VP8LMapColor8b != NULL); 661 662 lossless_last_cpuinfo_used = VP8GetCPUInfo; 663 } 664 #undef COPY_PREDICTOR_ARRAY 665 666 //------------------------------------------------------------------------------ 667