1 #include <stdio.h> 2 #include <string.h> 3 #include <sys/time.h> 4 #include <sys/types.h> 5 #include <sys/stat.h> 6 #include <dirent.h> 7 #include <libgen.h> 8 #include <math.h> 9 10 #include "fio.h" 11 #include "diskutil.h" 12 #include "lib/ieee754.h" 13 #include "json.h" 14 #include "lib/getrusage.h" 15 #include "idletime.h" 16 #include "lib/pow2.h" 17 #include "lib/output_buffer.h" 18 #include "helper_thread.h" 19 #include "smalloc.h" 20 21 #define LOG_MSEC_SLACK 10 22 23 struct fio_mutex *stat_mutex; 24 25 void clear_rusage_stat(struct thread_data *td) 26 { 27 struct thread_stat *ts = &td->ts; 28 29 fio_getrusage(&td->ru_start); 30 ts->usr_time = ts->sys_time = 0; 31 ts->ctx = 0; 32 ts->minf = ts->majf = 0; 33 } 34 35 void update_rusage_stat(struct thread_data *td) 36 { 37 struct thread_stat *ts = &td->ts; 38 39 fio_getrusage(&td->ru_end); 40 ts->usr_time += mtime_since(&td->ru_start.ru_utime, 41 &td->ru_end.ru_utime); 42 ts->sys_time += mtime_since(&td->ru_start.ru_stime, 43 &td->ru_end.ru_stime); 44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw 45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw); 46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt; 47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt; 48 49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end)); 50 } 51 52 /* 53 * Given a latency, return the index of the corresponding bucket in 54 * the structure tracking percentiles. 55 * 56 * (1) find the group (and error bits) that the value (latency) 57 * belongs to by looking at its MSB. (2) find the bucket number in the 58 * group by looking at the index bits. 59 * 60 */ 61 static unsigned int plat_val_to_idx(unsigned int val) 62 { 63 unsigned int msb, error_bits, base, offset, idx; 64 65 /* Find MSB starting from bit 0 */ 66 if (val == 0) 67 msb = 0; 68 else 69 msb = (sizeof(val)*8) - __builtin_clz(val) - 1; 70 71 /* 72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use 73 * all bits of the sample as index 74 */ 75 if (msb <= FIO_IO_U_PLAT_BITS) 76 return val; 77 78 /* Compute the number of error bits to discard*/ 79 error_bits = msb - FIO_IO_U_PLAT_BITS; 80 81 /* Compute the number of buckets before the group */ 82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS; 83 84 /* 85 * Discard the error bits and apply the mask to find the 86 * index for the buckets in the group 87 */ 88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits); 89 90 /* Make sure the index does not exceed (array size - 1) */ 91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ? 92 (base + offset) : (FIO_IO_U_PLAT_NR - 1); 93 94 return idx; 95 } 96 97 /* 98 * Convert the given index of the bucket array to the value 99 * represented by the bucket 100 */ 101 static unsigned long long plat_idx_to_val(unsigned int idx) 102 { 103 unsigned int error_bits, k, base; 104 105 assert(idx < FIO_IO_U_PLAT_NR); 106 107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use 108 * all bits of the sample as index */ 109 if (idx < (FIO_IO_U_PLAT_VAL << 1)) 110 return idx; 111 112 /* Find the group and compute the minimum value of that group */ 113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1; 114 base = 1 << (error_bits + FIO_IO_U_PLAT_BITS); 115 116 /* Find its bucket number of the group */ 117 k = idx % FIO_IO_U_PLAT_VAL; 118 119 /* Return the mean of the range of the bucket */ 120 return base + ((k + 0.5) * (1 << error_bits)); 121 } 122 123 static int double_cmp(const void *a, const void *b) 124 { 125 const fio_fp64_t fa = *(const fio_fp64_t *) a; 126 const fio_fp64_t fb = *(const fio_fp64_t *) b; 127 int cmp = 0; 128 129 if (fa.u.f > fb.u.f) 130 cmp = 1; 131 else if (fa.u.f < fb.u.f) 132 cmp = -1; 133 134 return cmp; 135 } 136 137 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, 138 fio_fp64_t *plist, unsigned int **output, 139 unsigned int *maxv, unsigned int *minv) 140 { 141 unsigned long sum = 0; 142 unsigned int len, i, j = 0; 143 unsigned int oval_len = 0; 144 unsigned int *ovals = NULL; 145 int is_last; 146 147 *minv = -1U; 148 *maxv = 0; 149 150 len = 0; 151 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0) 152 len++; 153 154 if (!len) 155 return 0; 156 157 /* 158 * Sort the percentile list. Note that it may already be sorted if 159 * we are using the default values, but since it's a short list this 160 * isn't a worry. Also note that this does not work for NaN values. 161 */ 162 if (len > 1) 163 qsort((void *)plist, len, sizeof(plist[0]), double_cmp); 164 165 /* 166 * Calculate bucket values, note down max and min values 167 */ 168 is_last = 0; 169 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) { 170 sum += io_u_plat[i]; 171 while (sum >= (plist[j].u.f / 100.0 * nr)) { 172 assert(plist[j].u.f <= 100.0); 173 174 if (j == oval_len) { 175 oval_len += 100; 176 ovals = realloc(ovals, oval_len * sizeof(unsigned int)); 177 } 178 179 ovals[j] = plat_idx_to_val(i); 180 if (ovals[j] < *minv) 181 *minv = ovals[j]; 182 if (ovals[j] > *maxv) 183 *maxv = ovals[j]; 184 185 is_last = (j == len - 1); 186 if (is_last) 187 break; 188 189 j++; 190 } 191 } 192 193 *output = ovals; 194 return len; 195 } 196 197 /* 198 * Find and display the p-th percentile of clat 199 */ 200 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, 201 fio_fp64_t *plist, unsigned int precision, 202 struct buf_output *out) 203 { 204 unsigned int len, j = 0, minv, maxv; 205 unsigned int *ovals; 206 int is_last, per_line, scale_down; 207 char fmt[32]; 208 209 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv); 210 if (!len) 211 goto out; 212 213 /* 214 * We default to usecs, but if the value range is such that we 215 * should scale down to msecs, do that. 216 */ 217 if (minv > 2000 && maxv > 99999) { 218 scale_down = 1; 219 log_buf(out, " clat percentiles (msec):\n |"); 220 } else { 221 scale_down = 0; 222 log_buf(out, " clat percentiles (usec):\n |"); 223 } 224 225 snprintf(fmt, sizeof(fmt), "%%1.%uf", precision); 226 per_line = (80 - 7) / (precision + 14); 227 228 for (j = 0; j < len; j++) { 229 char fbuf[16], *ptr = fbuf; 230 231 /* for formatting */ 232 if (j != 0 && (j % per_line) == 0) 233 log_buf(out, " |"); 234 235 /* end of the list */ 236 is_last = (j == len - 1); 237 238 if (plist[j].u.f < 10.0) 239 ptr += sprintf(fbuf, " "); 240 241 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f); 242 243 if (scale_down) 244 ovals[j] = (ovals[j] + 999) / 1000; 245 246 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ','); 247 248 if (is_last) 249 break; 250 251 if ((j % per_line) == per_line - 1) /* for formatting */ 252 log_buf(out, "\n"); 253 } 254 255 out: 256 if (ovals) 257 free(ovals); 258 } 259 260 bool calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, 261 double *mean, double *dev) 262 { 263 double n = (double) is->samples; 264 265 if (n == 0) 266 return false; 267 268 *min = is->min_val; 269 *max = is->max_val; 270 *mean = is->mean.u.f; 271 272 if (n > 1.0) 273 *dev = sqrt(is->S.u.f / (n - 1.0)); 274 else 275 *dev = 0; 276 277 return true; 278 } 279 280 void show_group_stats(struct group_run_stats *rs, struct buf_output *out) 281 { 282 char *io, *agg, *min, *max; 283 char *ioalt, *aggalt, *minalt, *maxalt; 284 const char *str[] = { " READ", " WRITE" , " TRIM"}; 285 int i; 286 287 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid); 288 289 for (i = 0; i < DDIR_RWDIR_CNT; i++) { 290 const int i2p = is_power_of_2(rs->kb_base); 291 292 if (!rs->max_run[i]) 293 continue; 294 295 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE); 296 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE); 297 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base); 298 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base); 299 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base); 300 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base); 301 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base); 302 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base); 303 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n", 304 rs->unified_rw_rep ? " MIXED" : str[i], 305 agg, aggalt, min, max, minalt, maxalt, io, ioalt, 306 (unsigned long long) rs->min_run[i], 307 (unsigned long long) rs->max_run[i]); 308 309 free(io); 310 free(agg); 311 free(min); 312 free(max); 313 free(ioalt); 314 free(aggalt); 315 free(minalt); 316 free(maxalt); 317 } 318 } 319 320 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist) 321 { 322 int i; 323 324 /* 325 * Do depth distribution calculations 326 */ 327 for (i = 0; i < FIO_IO_U_MAP_NR; i++) { 328 if (total) { 329 io_u_dist[i] = (double) map[i] / (double) total; 330 io_u_dist[i] *= 100.0; 331 if (io_u_dist[i] < 0.1 && map[i]) 332 io_u_dist[i] = 0.1; 333 } else 334 io_u_dist[i] = 0.0; 335 } 336 } 337 338 static void stat_calc_lat(struct thread_stat *ts, double *dst, 339 unsigned int *src, int nr) 340 { 341 unsigned long total = ddir_rw_sum(ts->total_io_u); 342 int i; 343 344 /* 345 * Do latency distribution calculations 346 */ 347 for (i = 0; i < nr; i++) { 348 if (total) { 349 dst[i] = (double) src[i] / (double) total; 350 dst[i] *= 100.0; 351 if (dst[i] < 0.01 && src[i]) 352 dst[i] = 0.01; 353 } else 354 dst[i] = 0.0; 355 } 356 } 357 358 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat) 359 { 360 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR); 361 } 362 363 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat) 364 { 365 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR); 366 } 367 368 static void display_lat(const char *name, unsigned long min, unsigned long max, 369 double mean, double dev, struct buf_output *out) 370 { 371 const char *base = "(usec)"; 372 char *minp, *maxp; 373 374 if (usec_to_msec(&min, &max, &mean, &dev)) 375 base = "(msec)"; 376 377 minp = num2str(min, 6, 1, 0, N2S_NONE); 378 maxp = num2str(max, 6, 1, 0, N2S_NONE); 379 380 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f," 381 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev); 382 383 free(minp); 384 free(maxp); 385 } 386 387 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts, 388 int ddir, struct buf_output *out) 389 { 390 const char *str[] = { " read", "write", " trim" }; 391 unsigned long min, max, runt; 392 unsigned long long bw, iops; 393 double mean, dev; 394 char *io_p, *bw_p, *bw_p_alt, *iops_p; 395 int i2p; 396 397 assert(ddir_rw(ddir)); 398 399 if (!ts->runtime[ddir]) 400 return; 401 402 i2p = is_power_of_2(rs->kb_base); 403 runt = ts->runtime[ddir]; 404 405 bw = (1000 * ts->io_bytes[ddir]) / runt; 406 io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE); 407 bw_p = num2str(bw, 4, 1, i2p, ts->unit_base); 408 bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base); 409 410 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt; 411 iops_p = num2str(iops, 4, 1, 0, N2S_NONE); 412 413 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n", 414 rs->unified_rw_rep ? "mixed" : str[ddir], 415 iops_p, bw_p, bw_p_alt, io_p, 416 (unsigned long long) ts->runtime[ddir]); 417 418 free(io_p); 419 free(bw_p); 420 free(bw_p_alt); 421 free(iops_p); 422 423 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) 424 display_lat("slat", min, max, mean, dev, out); 425 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) 426 display_lat("clat", min, max, mean, dev, out); 427 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) 428 display_lat(" lat", min, max, mean, dev, out); 429 430 if (ts->clat_percentiles) { 431 show_clat_percentiles(ts->io_u_plat[ddir], 432 ts->clat_stat[ddir].samples, 433 ts->percentile_list, 434 ts->percentile_precision, out); 435 } 436 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) { 437 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base; 438 const char *bw_str; 439 440 if ((rs->unit_base == 1) && i2p) 441 bw_str = "Kibit"; 442 else if (rs->unit_base == 1) 443 bw_str = "kbit"; 444 else if (i2p) 445 bw_str = "KiB"; 446 else 447 bw_str = "kB"; 448 449 if (rs->unit_base == 1) { 450 min *= 8.0; 451 max *= 8.0; 452 mean *= 8.0; 453 dev *= 8.0; 454 } 455 456 if (rs->agg[ddir]) { 457 p_of_agg = mean * 100 / (double) rs->agg[ddir]; 458 if (p_of_agg > 100.0) 459 p_of_agg = 100.0; 460 } 461 462 if (mean > fkb_base * fkb_base) { 463 min /= fkb_base; 464 max /= fkb_base; 465 mean /= fkb_base; 466 dev /= fkb_base; 467 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB"); 468 } 469 470 log_buf(out, " bw (%5s/s): min=%5lu, max=%5lu, per=%3.2f%%, avg=%5.02f, stdev=%5.02f\n", 471 bw_str, min, max, p_of_agg, mean, dev); 472 } 473 } 474 475 static int show_lat(double *io_u_lat, int nr, const char **ranges, 476 const char *msg, struct buf_output *out) 477 { 478 int new_line = 1, i, line = 0, shown = 0; 479 480 for (i = 0; i < nr; i++) { 481 if (io_u_lat[i] <= 0.0) 482 continue; 483 shown = 1; 484 if (new_line) { 485 if (line) 486 log_buf(out, "\n"); 487 log_buf(out, " lat (%s) : ", msg); 488 new_line = 0; 489 line = 0; 490 } 491 if (line) 492 log_buf(out, ", "); 493 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]); 494 line++; 495 if (line == 5) 496 new_line = 1; 497 } 498 499 if (shown) 500 log_buf(out, "\n"); 501 502 return shown; 503 } 504 505 static void show_lat_u(double *io_u_lat_u, struct buf_output *out) 506 { 507 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=", 508 "250=", "500=", "750=", "1000=", }; 509 510 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out); 511 } 512 513 static void show_lat_m(double *io_u_lat_m, struct buf_output *out) 514 { 515 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=", 516 "250=", "500=", "750=", "1000=", "2000=", 517 ">=2000=", }; 518 519 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out); 520 } 521 522 static void show_latencies(struct thread_stat *ts, struct buf_output *out) 523 { 524 double io_u_lat_u[FIO_IO_U_LAT_U_NR]; 525 double io_u_lat_m[FIO_IO_U_LAT_M_NR]; 526 527 stat_calc_lat_u(ts, io_u_lat_u); 528 stat_calc_lat_m(ts, io_u_lat_m); 529 530 show_lat_u(io_u_lat_u, out); 531 show_lat_m(io_u_lat_m, out); 532 } 533 534 static int block_state_category(int block_state) 535 { 536 switch (block_state) { 537 case BLOCK_STATE_UNINIT: 538 return 0; 539 case BLOCK_STATE_TRIMMED: 540 case BLOCK_STATE_WRITTEN: 541 return 1; 542 case BLOCK_STATE_WRITE_FAILURE: 543 case BLOCK_STATE_TRIM_FAILURE: 544 return 2; 545 default: 546 /* Silence compile warning on some BSDs and have a return */ 547 assert(0); 548 return -1; 549 } 550 } 551 552 static int compare_block_infos(const void *bs1, const void *bs2) 553 { 554 uint32_t block1 = *(uint32_t *)bs1; 555 uint32_t block2 = *(uint32_t *)bs2; 556 int state1 = BLOCK_INFO_STATE(block1); 557 int state2 = BLOCK_INFO_STATE(block2); 558 int bscat1 = block_state_category(state1); 559 int bscat2 = block_state_category(state2); 560 int cycles1 = BLOCK_INFO_TRIMS(block1); 561 int cycles2 = BLOCK_INFO_TRIMS(block2); 562 563 if (bscat1 < bscat2) 564 return -1; 565 if (bscat1 > bscat2) 566 return 1; 567 568 if (cycles1 < cycles2) 569 return -1; 570 if (cycles1 > cycles2) 571 return 1; 572 573 if (state1 < state2) 574 return -1; 575 if (state1 > state2) 576 return 1; 577 578 assert(block1 == block2); 579 return 0; 580 } 581 582 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos, 583 fio_fp64_t *plist, unsigned int **percentiles, 584 unsigned int *types) 585 { 586 int len = 0; 587 int i, nr_uninit; 588 589 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos); 590 591 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0) 592 len++; 593 594 if (!len) 595 return 0; 596 597 /* 598 * Sort the percentile list. Note that it may already be sorted if 599 * we are using the default values, but since it's a short list this 600 * isn't a worry. Also note that this does not work for NaN values. 601 */ 602 if (len > 1) 603 qsort((void *)plist, len, sizeof(plist[0]), double_cmp); 604 605 nr_uninit = 0; 606 /* Start only after the uninit entries end */ 607 for (nr_uninit = 0; 608 nr_uninit < nr_block_infos 609 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT; 610 nr_uninit ++) 611 ; 612 613 if (nr_uninit == nr_block_infos) 614 return 0; 615 616 *percentiles = calloc(len, sizeof(**percentiles)); 617 618 for (i = 0; i < len; i++) { 619 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100) 620 + nr_uninit; 621 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]); 622 } 623 624 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT); 625 for (i = 0; i < nr_block_infos; i++) 626 types[BLOCK_INFO_STATE(block_infos[i])]++; 627 628 return len; 629 } 630 631 static const char *block_state_names[] = { 632 [BLOCK_STATE_UNINIT] = "unwritten", 633 [BLOCK_STATE_TRIMMED] = "trimmed", 634 [BLOCK_STATE_WRITTEN] = "written", 635 [BLOCK_STATE_TRIM_FAILURE] = "trim failure", 636 [BLOCK_STATE_WRITE_FAILURE] = "write failure", 637 }; 638 639 static void show_block_infos(int nr_block_infos, uint32_t *block_infos, 640 fio_fp64_t *plist, struct buf_output *out) 641 { 642 int len, pos, i; 643 unsigned int *percentiles = NULL; 644 unsigned int block_state_counts[BLOCK_STATE_COUNT]; 645 646 len = calc_block_percentiles(nr_block_infos, block_infos, plist, 647 &percentiles, block_state_counts); 648 649 log_buf(out, " block lifetime percentiles :\n |"); 650 pos = 0; 651 for (i = 0; i < len; i++) { 652 uint32_t block_info = percentiles[i]; 653 #define LINE_LENGTH 75 654 char str[LINE_LENGTH]; 655 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c", 656 plist[i].u.f, block_info, 657 i == len - 1 ? '\n' : ','); 658 assert(strln < LINE_LENGTH); 659 if (pos + strln > LINE_LENGTH) { 660 pos = 0; 661 log_buf(out, "\n |"); 662 } 663 log_buf(out, "%s", str); 664 pos += strln; 665 #undef LINE_LENGTH 666 } 667 if (percentiles) 668 free(percentiles); 669 670 log_buf(out, " states :"); 671 for (i = 0; i < BLOCK_STATE_COUNT; i++) 672 log_buf(out, " %s=%u%c", 673 block_state_names[i], block_state_counts[i], 674 i == BLOCK_STATE_COUNT - 1 ? '\n' : ','); 675 } 676 677 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out) 678 { 679 char *p1, *p1alt, *p2; 680 unsigned long long bw_mean, iops_mean; 681 const int i2p = is_power_of_2(ts->kb_base); 682 683 if (!ts->ss_dur) 684 return; 685 686 bw_mean = steadystate_bw_mean(ts); 687 iops_mean = steadystate_iops_mean(ts); 688 689 p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base); 690 p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base); 691 p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE); 692 693 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n", 694 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no", 695 p1, p1alt, p2, 696 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw", 697 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev", 698 ts->ss_criterion.u.f, 699 ts->ss_state & __FIO_SS_PCT ? "%" : ""); 700 701 free(p1); 702 free(p1alt); 703 free(p2); 704 } 705 706 static void show_thread_status_normal(struct thread_stat *ts, 707 struct group_run_stats *rs, 708 struct buf_output *out) 709 { 710 double usr_cpu, sys_cpu; 711 unsigned long runtime; 712 double io_u_dist[FIO_IO_U_MAP_NR]; 713 time_t time_p; 714 char time_buf[32]; 715 716 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u)) 717 return; 718 719 memset(time_buf, 0, sizeof(time_buf)); 720 721 time(&time_p); 722 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf)); 723 724 if (!ts->error) { 725 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s", 726 ts->name, ts->groupid, ts->members, 727 ts->error, (int) ts->pid, time_buf); 728 } else { 729 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s", 730 ts->name, ts->groupid, ts->members, 731 ts->error, ts->verror, (int) ts->pid, 732 time_buf); 733 } 734 735 if (strlen(ts->description)) 736 log_buf(out, " Description : [%s]\n", ts->description); 737 738 if (ts->io_bytes[DDIR_READ]) 739 show_ddir_status(rs, ts, DDIR_READ, out); 740 if (ts->io_bytes[DDIR_WRITE]) 741 show_ddir_status(rs, ts, DDIR_WRITE, out); 742 if (ts->io_bytes[DDIR_TRIM]) 743 show_ddir_status(rs, ts, DDIR_TRIM, out); 744 745 show_latencies(ts, out); 746 747 runtime = ts->total_run_time; 748 if (runtime) { 749 double runt = (double) runtime; 750 751 usr_cpu = (double) ts->usr_time * 100 / runt; 752 sys_cpu = (double) ts->sys_time * 100 / runt; 753 } else { 754 usr_cpu = 0; 755 sys_cpu = 0; 756 } 757 758 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu," 759 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu, 760 (unsigned long long) ts->ctx, 761 (unsigned long long) ts->majf, 762 (unsigned long long) ts->minf); 763 764 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); 765 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%," 766 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0], 767 io_u_dist[1], io_u_dist[2], 768 io_u_dist[3], io_u_dist[4], 769 io_u_dist[5], io_u_dist[6]); 770 771 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist); 772 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%," 773 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0], 774 io_u_dist[1], io_u_dist[2], 775 io_u_dist[3], io_u_dist[4], 776 io_u_dist[5], io_u_dist[6]); 777 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist); 778 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%," 779 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0], 780 io_u_dist[1], io_u_dist[2], 781 io_u_dist[3], io_u_dist[4], 782 io_u_dist[5], io_u_dist[6]); 783 log_buf(out, " issued rwt: total=%llu,%llu,%llu," 784 " short=%llu,%llu,%llu," 785 " dropped=%llu,%llu,%llu\n", 786 (unsigned long long) ts->total_io_u[0], 787 (unsigned long long) ts->total_io_u[1], 788 (unsigned long long) ts->total_io_u[2], 789 (unsigned long long) ts->short_io_u[0], 790 (unsigned long long) ts->short_io_u[1], 791 (unsigned long long) ts->short_io_u[2], 792 (unsigned long long) ts->drop_io_u[0], 793 (unsigned long long) ts->drop_io_u[1], 794 (unsigned long long) ts->drop_io_u[2]); 795 if (ts->continue_on_error) { 796 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n", 797 (unsigned long long)ts->total_err_count, 798 ts->first_error, 799 strerror(ts->first_error)); 800 } 801 if (ts->latency_depth) { 802 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n", 803 (unsigned long long)ts->latency_target, 804 (unsigned long long)ts->latency_window, 805 ts->latency_percentile.u.f, 806 ts->latency_depth); 807 } 808 809 if (ts->nr_block_infos) 810 show_block_infos(ts->nr_block_infos, ts->block_infos, 811 ts->percentile_list, out); 812 813 if (ts->ss_dur) 814 show_ss_normal(ts, out); 815 } 816 817 static void show_ddir_status_terse(struct thread_stat *ts, 818 struct group_run_stats *rs, int ddir, 819 struct buf_output *out) 820 { 821 unsigned long min, max; 822 unsigned long long bw, iops; 823 unsigned int *ovals = NULL; 824 double mean, dev; 825 unsigned int len, minv, maxv; 826 int i; 827 828 assert(ddir_rw(ddir)); 829 830 iops = bw = 0; 831 if (ts->runtime[ddir]) { 832 uint64_t runt = ts->runtime[ddir]; 833 834 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */ 835 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt; 836 } 837 838 log_buf(out, ";%llu;%llu;%llu;%llu", 839 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops, 840 (unsigned long long) ts->runtime[ddir]); 841 842 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) 843 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev); 844 else 845 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0); 846 847 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) 848 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev); 849 else 850 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0); 851 852 if (ts->clat_percentiles) { 853 len = calc_clat_percentiles(ts->io_u_plat[ddir], 854 ts->clat_stat[ddir].samples, 855 ts->percentile_list, &ovals, &maxv, 856 &minv); 857 } else 858 len = 0; 859 860 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) { 861 if (i >= len) { 862 log_buf(out, ";0%%=0"); 863 continue; 864 } 865 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]); 866 } 867 868 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) 869 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev); 870 else 871 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0); 872 873 if (ovals) 874 free(ovals); 875 876 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) { 877 double p_of_agg = 100.0; 878 879 if (rs->agg[ddir]) { 880 p_of_agg = mean * 100 / (double) rs->agg[ddir]; 881 if (p_of_agg > 100.0) 882 p_of_agg = 100.0; 883 } 884 885 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev); 886 } else 887 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0); 888 } 889 890 static void add_ddir_status_json(struct thread_stat *ts, 891 struct group_run_stats *rs, int ddir, struct json_object *parent) 892 { 893 unsigned long min, max; 894 unsigned long long bw; 895 unsigned int *ovals = NULL; 896 double mean, dev, iops; 897 unsigned int len, minv, maxv; 898 int i; 899 const char *ddirname[] = {"read", "write", "trim"}; 900 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object; 901 char buf[120]; 902 double p_of_agg = 100.0; 903 904 assert(ddir_rw(ddir)); 905 906 if (ts->unified_rw_rep && ddir != DDIR_READ) 907 return; 908 909 dir_object = json_create_object(); 910 json_object_add_value_object(parent, 911 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object); 912 913 bw = 0; 914 iops = 0.0; 915 if (ts->runtime[ddir]) { 916 uint64_t runt = ts->runtime[ddir]; 917 918 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */ 919 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt; 920 } 921 922 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10); 923 json_object_add_value_int(dir_object, "bw", bw); 924 json_object_add_value_float(dir_object, "iops", iops); 925 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]); 926 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]); 927 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]); 928 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]); 929 930 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) { 931 min = max = 0; 932 mean = dev = 0.0; 933 } 934 tmp_object = json_create_object(); 935 json_object_add_value_object(dir_object, "slat", tmp_object); 936 json_object_add_value_int(tmp_object, "min", min); 937 json_object_add_value_int(tmp_object, "max", max); 938 json_object_add_value_float(tmp_object, "mean", mean); 939 json_object_add_value_float(tmp_object, "stddev", dev); 940 941 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) { 942 min = max = 0; 943 mean = dev = 0.0; 944 } 945 tmp_object = json_create_object(); 946 json_object_add_value_object(dir_object, "clat", tmp_object); 947 json_object_add_value_int(tmp_object, "min", min); 948 json_object_add_value_int(tmp_object, "max", max); 949 json_object_add_value_float(tmp_object, "mean", mean); 950 json_object_add_value_float(tmp_object, "stddev", dev); 951 952 if (ts->clat_percentiles) { 953 len = calc_clat_percentiles(ts->io_u_plat[ddir], 954 ts->clat_stat[ddir].samples, 955 ts->percentile_list, &ovals, &maxv, 956 &minv); 957 } else 958 len = 0; 959 960 percentile_object = json_create_object(); 961 json_object_add_value_object(tmp_object, "percentile", percentile_object); 962 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) { 963 if (i >= len) { 964 json_object_add_value_int(percentile_object, "0.00", 0); 965 continue; 966 } 967 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f); 968 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]); 969 } 970 971 if (output_format & FIO_OUTPUT_JSON_PLUS) { 972 clat_bins_object = json_create_object(); 973 json_object_add_value_object(tmp_object, "bins", clat_bins_object); 974 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) { 975 if (ts->io_u_plat[ddir][i]) { 976 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i)); 977 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]); 978 } 979 } 980 } 981 982 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) { 983 min = max = 0; 984 mean = dev = 0.0; 985 } 986 tmp_object = json_create_object(); 987 json_object_add_value_object(dir_object, "lat", tmp_object); 988 json_object_add_value_int(tmp_object, "min", min); 989 json_object_add_value_int(tmp_object, "max", max); 990 json_object_add_value_float(tmp_object, "mean", mean); 991 json_object_add_value_float(tmp_object, "stddev", dev); 992 if (ovals) 993 free(ovals); 994 995 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) { 996 if (rs->agg[ddir]) { 997 p_of_agg = mean * 100 / (double) rs->agg[ddir]; 998 if (p_of_agg > 100.0) 999 p_of_agg = 100.0; 1000 } 1001 } else { 1002 min = max = 0; 1003 p_of_agg = mean = dev = 0.0; 1004 } 1005 json_object_add_value_int(dir_object, "bw_min", min); 1006 json_object_add_value_int(dir_object, "bw_max", max); 1007 json_object_add_value_float(dir_object, "bw_agg", p_of_agg); 1008 json_object_add_value_float(dir_object, "bw_mean", mean); 1009 json_object_add_value_float(dir_object, "bw_dev", dev); 1010 } 1011 1012 static void show_thread_status_terse_v2(struct thread_stat *ts, 1013 struct group_run_stats *rs, 1014 struct buf_output *out) 1015 { 1016 double io_u_dist[FIO_IO_U_MAP_NR]; 1017 double io_u_lat_u[FIO_IO_U_LAT_U_NR]; 1018 double io_u_lat_m[FIO_IO_U_LAT_M_NR]; 1019 double usr_cpu, sys_cpu; 1020 int i; 1021 1022 /* General Info */ 1023 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error); 1024 /* Log Read Status */ 1025 show_ddir_status_terse(ts, rs, DDIR_READ, out); 1026 /* Log Write Status */ 1027 show_ddir_status_terse(ts, rs, DDIR_WRITE, out); 1028 /* Log Trim Status */ 1029 show_ddir_status_terse(ts, rs, DDIR_TRIM, out); 1030 1031 /* CPU Usage */ 1032 if (ts->total_run_time) { 1033 double runt = (double) ts->total_run_time; 1034 1035 usr_cpu = (double) ts->usr_time * 100 / runt; 1036 sys_cpu = (double) ts->sys_time * 100 / runt; 1037 } else { 1038 usr_cpu = 0; 1039 sys_cpu = 0; 1040 } 1041 1042 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu, 1043 (unsigned long long) ts->ctx, 1044 (unsigned long long) ts->majf, 1045 (unsigned long long) ts->minf); 1046 1047 /* Calc % distribution of IO depths, usecond, msecond latency */ 1048 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); 1049 stat_calc_lat_u(ts, io_u_lat_u); 1050 stat_calc_lat_m(ts, io_u_lat_m); 1051 1052 /* Only show fixed 7 I/O depth levels*/ 1053 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%", 1054 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3], 1055 io_u_dist[4], io_u_dist[5], io_u_dist[6]); 1056 1057 /* Microsecond latency */ 1058 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) 1059 log_buf(out, ";%3.2f%%", io_u_lat_u[i]); 1060 /* Millisecond latency */ 1061 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) 1062 log_buf(out, ";%3.2f%%", io_u_lat_m[i]); 1063 /* Additional output if continue_on_error set - default off*/ 1064 if (ts->continue_on_error) 1065 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error); 1066 log_buf(out, "\n"); 1067 1068 /* Additional output if description is set */ 1069 if (strlen(ts->description)) 1070 log_buf(out, ";%s", ts->description); 1071 1072 log_buf(out, "\n"); 1073 } 1074 1075 static void show_thread_status_terse_v3_v4(struct thread_stat *ts, 1076 struct group_run_stats *rs, int ver, 1077 struct buf_output *out) 1078 { 1079 double io_u_dist[FIO_IO_U_MAP_NR]; 1080 double io_u_lat_u[FIO_IO_U_LAT_U_NR]; 1081 double io_u_lat_m[FIO_IO_U_LAT_M_NR]; 1082 double usr_cpu, sys_cpu; 1083 int i; 1084 1085 /* General Info */ 1086 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string, 1087 ts->name, ts->groupid, ts->error); 1088 /* Log Read Status */ 1089 show_ddir_status_terse(ts, rs, DDIR_READ, out); 1090 /* Log Write Status */ 1091 show_ddir_status_terse(ts, rs, DDIR_WRITE, out); 1092 /* Log Trim Status */ 1093 if (ver == 4) 1094 show_ddir_status_terse(ts, rs, DDIR_TRIM, out); 1095 1096 /* CPU Usage */ 1097 if (ts->total_run_time) { 1098 double runt = (double) ts->total_run_time; 1099 1100 usr_cpu = (double) ts->usr_time * 100 / runt; 1101 sys_cpu = (double) ts->sys_time * 100 / runt; 1102 } else { 1103 usr_cpu = 0; 1104 sys_cpu = 0; 1105 } 1106 1107 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu, 1108 (unsigned long long) ts->ctx, 1109 (unsigned long long) ts->majf, 1110 (unsigned long long) ts->minf); 1111 1112 /* Calc % distribution of IO depths, usecond, msecond latency */ 1113 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); 1114 stat_calc_lat_u(ts, io_u_lat_u); 1115 stat_calc_lat_m(ts, io_u_lat_m); 1116 1117 /* Only show fixed 7 I/O depth levels*/ 1118 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%", 1119 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3], 1120 io_u_dist[4], io_u_dist[5], io_u_dist[6]); 1121 1122 /* Microsecond latency */ 1123 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) 1124 log_buf(out, ";%3.2f%%", io_u_lat_u[i]); 1125 /* Millisecond latency */ 1126 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) 1127 log_buf(out, ";%3.2f%%", io_u_lat_m[i]); 1128 1129 /* disk util stats, if any */ 1130 show_disk_util(1, NULL, out); 1131 1132 /* Additional output if continue_on_error set - default off*/ 1133 if (ts->continue_on_error) 1134 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error); 1135 1136 /* Additional output if description is set */ 1137 if (strlen(ts->description)) 1138 log_buf(out, ";%s", ts->description); 1139 1140 log_buf(out, "\n"); 1141 } 1142 1143 static void json_add_job_opts(struct json_object *root, const char *name, 1144 struct flist_head *opt_list, bool num_jobs) 1145 { 1146 struct json_object *dir_object; 1147 struct flist_head *entry; 1148 struct print_option *p; 1149 1150 if (flist_empty(opt_list)) 1151 return; 1152 1153 dir_object = json_create_object(); 1154 json_object_add_value_object(root, name, dir_object); 1155 1156 flist_for_each(entry, opt_list) { 1157 const char *pos = ""; 1158 1159 p = flist_entry(entry, struct print_option, list); 1160 if (!num_jobs && !strcmp(p->name, "numjobs")) 1161 continue; 1162 if (p->value) 1163 pos = p->value; 1164 json_object_add_value_string(dir_object, p->name, pos); 1165 } 1166 } 1167 1168 static struct json_object *show_thread_status_json(struct thread_stat *ts, 1169 struct group_run_stats *rs, 1170 struct flist_head *opt_list) 1171 { 1172 struct json_object *root, *tmp; 1173 struct jobs_eta *je; 1174 double io_u_dist[FIO_IO_U_MAP_NR]; 1175 double io_u_lat_u[FIO_IO_U_LAT_U_NR]; 1176 double io_u_lat_m[FIO_IO_U_LAT_M_NR]; 1177 double usr_cpu, sys_cpu; 1178 int i; 1179 size_t size; 1180 1181 root = json_create_object(); 1182 json_object_add_value_string(root, "jobname", ts->name); 1183 json_object_add_value_int(root, "groupid", ts->groupid); 1184 json_object_add_value_int(root, "error", ts->error); 1185 1186 /* ETA Info */ 1187 je = get_jobs_eta(true, &size); 1188 if (je) { 1189 json_object_add_value_int(root, "eta", je->eta_sec); 1190 json_object_add_value_int(root, "elapsed", je->elapsed_sec); 1191 } 1192 1193 if (opt_list) 1194 json_add_job_opts(root, "job options", opt_list, true); 1195 1196 add_ddir_status_json(ts, rs, DDIR_READ, root); 1197 add_ddir_status_json(ts, rs, DDIR_WRITE, root); 1198 add_ddir_status_json(ts, rs, DDIR_TRIM, root); 1199 1200 /* CPU Usage */ 1201 if (ts->total_run_time) { 1202 double runt = (double) ts->total_run_time; 1203 1204 usr_cpu = (double) ts->usr_time * 100 / runt; 1205 sys_cpu = (double) ts->sys_time * 100 / runt; 1206 } else { 1207 usr_cpu = 0; 1208 sys_cpu = 0; 1209 } 1210 json_object_add_value_float(root, "usr_cpu", usr_cpu); 1211 json_object_add_value_float(root, "sys_cpu", sys_cpu); 1212 json_object_add_value_int(root, "ctx", ts->ctx); 1213 json_object_add_value_int(root, "majf", ts->majf); 1214 json_object_add_value_int(root, "minf", ts->minf); 1215 1216 1217 /* Calc % distribution of IO depths, usecond, msecond latency */ 1218 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); 1219 stat_calc_lat_u(ts, io_u_lat_u); 1220 stat_calc_lat_m(ts, io_u_lat_m); 1221 1222 tmp = json_create_object(); 1223 json_object_add_value_object(root, "iodepth_level", tmp); 1224 /* Only show fixed 7 I/O depth levels*/ 1225 for (i = 0; i < 7; i++) { 1226 char name[20]; 1227 if (i < 6) 1228 snprintf(name, 20, "%d", 1 << i); 1229 else 1230 snprintf(name, 20, ">=%d", 1 << i); 1231 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]); 1232 } 1233 1234 tmp = json_create_object(); 1235 json_object_add_value_object(root, "latency_us", tmp); 1236 /* Microsecond latency */ 1237 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) { 1238 const char *ranges[] = { "2", "4", "10", "20", "50", "100", 1239 "250", "500", "750", "1000", }; 1240 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]); 1241 } 1242 /* Millisecond latency */ 1243 tmp = json_create_object(); 1244 json_object_add_value_object(root, "latency_ms", tmp); 1245 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) { 1246 const char *ranges[] = { "2", "4", "10", "20", "50", "100", 1247 "250", "500", "750", "1000", "2000", 1248 ">=2000", }; 1249 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]); 1250 } 1251 1252 /* Additional output if continue_on_error set - default off*/ 1253 if (ts->continue_on_error) { 1254 json_object_add_value_int(root, "total_err", ts->total_err_count); 1255 json_object_add_value_int(root, "first_error", ts->first_error); 1256 } 1257 1258 if (ts->latency_depth) { 1259 json_object_add_value_int(root, "latency_depth", ts->latency_depth); 1260 json_object_add_value_int(root, "latency_target", ts->latency_target); 1261 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f); 1262 json_object_add_value_int(root, "latency_window", ts->latency_window); 1263 } 1264 1265 /* Additional output if description is set */ 1266 if (strlen(ts->description)) 1267 json_object_add_value_string(root, "desc", ts->description); 1268 1269 if (ts->nr_block_infos) { 1270 /* Block error histogram and types */ 1271 int len; 1272 unsigned int *percentiles = NULL; 1273 unsigned int block_state_counts[BLOCK_STATE_COUNT]; 1274 1275 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos, 1276 ts->percentile_list, 1277 &percentiles, block_state_counts); 1278 1279 if (len) { 1280 struct json_object *block, *percentile_object, *states; 1281 int state; 1282 block = json_create_object(); 1283 json_object_add_value_object(root, "block", block); 1284 1285 percentile_object = json_create_object(); 1286 json_object_add_value_object(block, "percentiles", 1287 percentile_object); 1288 for (i = 0; i < len; i++) { 1289 char buf[20]; 1290 snprintf(buf, sizeof(buf), "%f", 1291 ts->percentile_list[i].u.f); 1292 json_object_add_value_int(percentile_object, 1293 (const char *)buf, 1294 percentiles[i]); 1295 } 1296 1297 states = json_create_object(); 1298 json_object_add_value_object(block, "states", states); 1299 for (state = 0; state < BLOCK_STATE_COUNT; state++) { 1300 json_object_add_value_int(states, 1301 block_state_names[state], 1302 block_state_counts[state]); 1303 } 1304 free(percentiles); 1305 } 1306 } 1307 1308 if (ts->ss_dur) { 1309 struct json_object *data; 1310 struct json_array *iops, *bw; 1311 int i, j, k; 1312 char ss_buf[64]; 1313 1314 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s", 1315 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw", 1316 ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "", 1317 (float) ts->ss_limit.u.f, 1318 ts->ss_state & __FIO_SS_PCT ? "%" : ""); 1319 1320 tmp = json_create_object(); 1321 json_object_add_value_object(root, "steadystate", tmp); 1322 json_object_add_value_string(tmp, "ss", ss_buf); 1323 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur); 1324 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0); 1325 1326 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f, 1327 ts->ss_state & __FIO_SS_PCT ? "%" : ""); 1328 json_object_add_value_string(tmp, "criterion", ss_buf); 1329 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f); 1330 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f); 1331 1332 data = json_create_object(); 1333 json_object_add_value_object(tmp, "data", data); 1334 bw = json_create_array(); 1335 iops = json_create_array(); 1336 1337 /* 1338 ** if ss was attained or the buffer is not full, 1339 ** ss->head points to the first element in the list. 1340 ** otherwise it actually points to the second element 1341 ** in the list 1342 */ 1343 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL)) 1344 j = ts->ss_head; 1345 else 1346 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1; 1347 for (i = 0; i < ts->ss_dur; i++) { 1348 k = (j + i) % ts->ss_dur; 1349 json_array_add_value_int(bw, ts->ss_bw_data[k]); 1350 json_array_add_value_int(iops, ts->ss_iops_data[k]); 1351 } 1352 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts)); 1353 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts)); 1354 json_object_add_value_array(data, "iops", iops); 1355 json_object_add_value_array(data, "bw", bw); 1356 } 1357 1358 return root; 1359 } 1360 1361 static void show_thread_status_terse(struct thread_stat *ts, 1362 struct group_run_stats *rs, 1363 struct buf_output *out) 1364 { 1365 if (terse_version == 2) 1366 show_thread_status_terse_v2(ts, rs, out); 1367 else if (terse_version == 3 || terse_version == 4) 1368 show_thread_status_terse_v3_v4(ts, rs, terse_version, out); 1369 else 1370 log_err("fio: bad terse version!? %d\n", terse_version); 1371 } 1372 1373 struct json_object *show_thread_status(struct thread_stat *ts, 1374 struct group_run_stats *rs, 1375 struct flist_head *opt_list, 1376 struct buf_output *out) 1377 { 1378 struct json_object *ret = NULL; 1379 1380 if (output_format & FIO_OUTPUT_TERSE) 1381 show_thread_status_terse(ts, rs, out); 1382 if (output_format & FIO_OUTPUT_JSON) 1383 ret = show_thread_status_json(ts, rs, opt_list); 1384 if (output_format & FIO_OUTPUT_NORMAL) 1385 show_thread_status_normal(ts, rs, out); 1386 1387 return ret; 1388 } 1389 1390 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first) 1391 { 1392 double mean, S; 1393 1394 if (src->samples == 0) 1395 return; 1396 1397 dst->min_val = min(dst->min_val, src->min_val); 1398 dst->max_val = max(dst->max_val, src->max_val); 1399 1400 /* 1401 * Compute new mean and S after the merge 1402 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance 1403 * #Parallel_algorithm> 1404 */ 1405 if (first) { 1406 mean = src->mean.u.f; 1407 S = src->S.u.f; 1408 } else { 1409 double delta = src->mean.u.f - dst->mean.u.f; 1410 1411 mean = ((src->mean.u.f * src->samples) + 1412 (dst->mean.u.f * dst->samples)) / 1413 (dst->samples + src->samples); 1414 1415 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) * 1416 (dst->samples * src->samples) / 1417 (dst->samples + src->samples); 1418 } 1419 1420 dst->samples += src->samples; 1421 dst->mean.u.f = mean; 1422 dst->S.u.f = S; 1423 } 1424 1425 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src) 1426 { 1427 int i; 1428 1429 for (i = 0; i < DDIR_RWDIR_CNT; i++) { 1430 if (dst->max_run[i] < src->max_run[i]) 1431 dst->max_run[i] = src->max_run[i]; 1432 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i]) 1433 dst->min_run[i] = src->min_run[i]; 1434 if (dst->max_bw[i] < src->max_bw[i]) 1435 dst->max_bw[i] = src->max_bw[i]; 1436 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i]) 1437 dst->min_bw[i] = src->min_bw[i]; 1438 1439 dst->iobytes[i] += src->iobytes[i]; 1440 dst->agg[i] += src->agg[i]; 1441 } 1442 1443 if (!dst->kb_base) 1444 dst->kb_base = src->kb_base; 1445 if (!dst->unit_base) 1446 dst->unit_base = src->unit_base; 1447 } 1448 1449 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, 1450 bool first) 1451 { 1452 int l, k; 1453 1454 for (l = 0; l < DDIR_RWDIR_CNT; l++) { 1455 if (!dst->unified_rw_rep) { 1456 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first); 1457 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first); 1458 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first); 1459 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first); 1460 1461 dst->io_bytes[l] += src->io_bytes[l]; 1462 1463 if (dst->runtime[l] < src->runtime[l]) 1464 dst->runtime[l] = src->runtime[l]; 1465 } else { 1466 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first); 1467 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first); 1468 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first); 1469 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first); 1470 1471 dst->io_bytes[0] += src->io_bytes[l]; 1472 1473 if (dst->runtime[0] < src->runtime[l]) 1474 dst->runtime[0] = src->runtime[l]; 1475 1476 /* 1477 * We're summing to the same destination, so override 1478 * 'first' after the first iteration of the loop 1479 */ 1480 first = false; 1481 } 1482 } 1483 1484 dst->usr_time += src->usr_time; 1485 dst->sys_time += src->sys_time; 1486 dst->ctx += src->ctx; 1487 dst->majf += src->majf; 1488 dst->minf += src->minf; 1489 1490 for (k = 0; k < FIO_IO_U_MAP_NR; k++) 1491 dst->io_u_map[k] += src->io_u_map[k]; 1492 for (k = 0; k < FIO_IO_U_MAP_NR; k++) 1493 dst->io_u_submit[k] += src->io_u_submit[k]; 1494 for (k = 0; k < FIO_IO_U_MAP_NR; k++) 1495 dst->io_u_complete[k] += src->io_u_complete[k]; 1496 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++) 1497 dst->io_u_lat_u[k] += src->io_u_lat_u[k]; 1498 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++) 1499 dst->io_u_lat_m[k] += src->io_u_lat_m[k]; 1500 1501 for (k = 0; k < DDIR_RWDIR_CNT; k++) { 1502 if (!dst->unified_rw_rep) { 1503 dst->total_io_u[k] += src->total_io_u[k]; 1504 dst->short_io_u[k] += src->short_io_u[k]; 1505 dst->drop_io_u[k] += src->drop_io_u[k]; 1506 } else { 1507 dst->total_io_u[0] += src->total_io_u[k]; 1508 dst->short_io_u[0] += src->short_io_u[k]; 1509 dst->drop_io_u[0] += src->drop_io_u[k]; 1510 } 1511 } 1512 1513 for (k = 0; k < DDIR_RWDIR_CNT; k++) { 1514 int m; 1515 1516 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) { 1517 if (!dst->unified_rw_rep) 1518 dst->io_u_plat[k][m] += src->io_u_plat[k][m]; 1519 else 1520 dst->io_u_plat[0][m] += src->io_u_plat[k][m]; 1521 } 1522 } 1523 1524 dst->total_run_time += src->total_run_time; 1525 dst->total_submit += src->total_submit; 1526 dst->total_complete += src->total_complete; 1527 } 1528 1529 void init_group_run_stat(struct group_run_stats *gs) 1530 { 1531 int i; 1532 memset(gs, 0, sizeof(*gs)); 1533 1534 for (i = 0; i < DDIR_RWDIR_CNT; i++) 1535 gs->min_bw[i] = gs->min_run[i] = ~0UL; 1536 } 1537 1538 void init_thread_stat(struct thread_stat *ts) 1539 { 1540 int j; 1541 1542 memset(ts, 0, sizeof(*ts)); 1543 1544 for (j = 0; j < DDIR_RWDIR_CNT; j++) { 1545 ts->lat_stat[j].min_val = -1UL; 1546 ts->clat_stat[j].min_val = -1UL; 1547 ts->slat_stat[j].min_val = -1UL; 1548 ts->bw_stat[j].min_val = -1UL; 1549 } 1550 ts->groupid = -1; 1551 } 1552 1553 void __show_run_stats(void) 1554 { 1555 struct group_run_stats *runstats, *rs; 1556 struct thread_data *td; 1557 struct thread_stat *threadstats, *ts; 1558 int i, j, k, nr_ts, last_ts, idx; 1559 int kb_base_warned = 0; 1560 int unit_base_warned = 0; 1561 struct json_object *root = NULL; 1562 struct json_array *array = NULL; 1563 struct buf_output output[FIO_OUTPUT_NR]; 1564 struct flist_head **opt_lists; 1565 1566 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1)); 1567 1568 for (i = 0; i < groupid + 1; i++) 1569 init_group_run_stat(&runstats[i]); 1570 1571 /* 1572 * find out how many threads stats we need. if group reporting isn't 1573 * enabled, it's one-per-td. 1574 */ 1575 nr_ts = 0; 1576 last_ts = -1; 1577 for_each_td(td, i) { 1578 if (!td->o.group_reporting) { 1579 nr_ts++; 1580 continue; 1581 } 1582 if (last_ts == td->groupid) 1583 continue; 1584 if (!td->o.stats) 1585 continue; 1586 1587 last_ts = td->groupid; 1588 nr_ts++; 1589 } 1590 1591 threadstats = malloc(nr_ts * sizeof(struct thread_stat)); 1592 opt_lists = malloc(nr_ts * sizeof(struct flist_head *)); 1593 1594 for (i = 0; i < nr_ts; i++) { 1595 init_thread_stat(&threadstats[i]); 1596 opt_lists[i] = NULL; 1597 } 1598 1599 j = 0; 1600 last_ts = -1; 1601 idx = 0; 1602 for_each_td(td, i) { 1603 if (!td->o.stats) 1604 continue; 1605 if (idx && (!td->o.group_reporting || 1606 (td->o.group_reporting && last_ts != td->groupid))) { 1607 idx = 0; 1608 j++; 1609 } 1610 1611 last_ts = td->groupid; 1612 1613 ts = &threadstats[j]; 1614 1615 ts->clat_percentiles = td->o.clat_percentiles; 1616 ts->percentile_precision = td->o.percentile_precision; 1617 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list)); 1618 opt_lists[j] = &td->opt_list; 1619 1620 idx++; 1621 ts->members++; 1622 1623 if (ts->groupid == -1) { 1624 /* 1625 * These are per-group shared already 1626 */ 1627 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1); 1628 if (td->o.description) 1629 strncpy(ts->description, td->o.description, 1630 FIO_JOBDESC_SIZE - 1); 1631 else 1632 memset(ts->description, 0, FIO_JOBDESC_SIZE); 1633 1634 /* 1635 * If multiple entries in this group, this is 1636 * the first member. 1637 */ 1638 ts->thread_number = td->thread_number; 1639 ts->groupid = td->groupid; 1640 1641 /* 1642 * first pid in group, not very useful... 1643 */ 1644 ts->pid = td->pid; 1645 1646 ts->kb_base = td->o.kb_base; 1647 ts->unit_base = td->o.unit_base; 1648 ts->unified_rw_rep = td->o.unified_rw_rep; 1649 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) { 1650 log_info("fio: kb_base differs for jobs in group, using" 1651 " %u as the base\n", ts->kb_base); 1652 kb_base_warned = 1; 1653 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) { 1654 log_info("fio: unit_base differs for jobs in group, using" 1655 " %u as the base\n", ts->unit_base); 1656 unit_base_warned = 1; 1657 } 1658 1659 ts->continue_on_error = td->o.continue_on_error; 1660 ts->total_err_count += td->total_err_count; 1661 ts->first_error = td->first_error; 1662 if (!ts->error) { 1663 if (!td->error && td->o.continue_on_error && 1664 td->first_error) { 1665 ts->error = td->first_error; 1666 ts->verror[sizeof(ts->verror) - 1] = '\0'; 1667 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1); 1668 } else if (td->error) { 1669 ts->error = td->error; 1670 ts->verror[sizeof(ts->verror) - 1] = '\0'; 1671 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1); 1672 } 1673 } 1674 1675 ts->latency_depth = td->latency_qd; 1676 ts->latency_target = td->o.latency_target; 1677 ts->latency_percentile = td->o.latency_percentile; 1678 ts->latency_window = td->o.latency_window; 1679 1680 ts->nr_block_infos = td->ts.nr_block_infos; 1681 for (k = 0; k < ts->nr_block_infos; k++) 1682 ts->block_infos[k] = td->ts.block_infos[k]; 1683 1684 sum_thread_stats(ts, &td->ts, idx == 1); 1685 1686 if (td->o.ss_dur) { 1687 ts->ss_state = td->ss.state; 1688 ts->ss_dur = td->ss.dur; 1689 ts->ss_head = td->ss.head; 1690 ts->ss_bw_data = td->ss.bw_data; 1691 ts->ss_iops_data = td->ss.iops_data; 1692 ts->ss_limit.u.f = td->ss.limit; 1693 ts->ss_slope.u.f = td->ss.slope; 1694 ts->ss_deviation.u.f = td->ss.deviation; 1695 ts->ss_criterion.u.f = td->ss.criterion; 1696 } 1697 else 1698 ts->ss_dur = ts->ss_state = 0; 1699 } 1700 1701 for (i = 0; i < nr_ts; i++) { 1702 unsigned long long bw; 1703 1704 ts = &threadstats[i]; 1705 if (ts->groupid == -1) 1706 continue; 1707 rs = &runstats[ts->groupid]; 1708 rs->kb_base = ts->kb_base; 1709 rs->unit_base = ts->unit_base; 1710 rs->unified_rw_rep += ts->unified_rw_rep; 1711 1712 for (j = 0; j < DDIR_RWDIR_CNT; j++) { 1713 if (!ts->runtime[j]) 1714 continue; 1715 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j]) 1716 rs->min_run[j] = ts->runtime[j]; 1717 if (ts->runtime[j] > rs->max_run[j]) 1718 rs->max_run[j] = ts->runtime[j]; 1719 1720 bw = 0; 1721 if (ts->runtime[j]) 1722 bw = ts->io_bytes[j] * 1000 / ts->runtime[j]; 1723 if (bw < rs->min_bw[j]) 1724 rs->min_bw[j] = bw; 1725 if (bw > rs->max_bw[j]) 1726 rs->max_bw[j] = bw; 1727 1728 rs->iobytes[j] += ts->io_bytes[j]; 1729 } 1730 } 1731 1732 for (i = 0; i < groupid + 1; i++) { 1733 int ddir; 1734 1735 rs = &runstats[i]; 1736 1737 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) { 1738 if (rs->max_run[ddir]) 1739 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) / 1740 rs->max_run[ddir]; 1741 } 1742 } 1743 1744 for (i = 0; i < FIO_OUTPUT_NR; i++) 1745 buf_output_init(&output[i]); 1746 1747 /* 1748 * don't overwrite last signal output 1749 */ 1750 if (output_format & FIO_OUTPUT_NORMAL) 1751 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n"); 1752 if (output_format & FIO_OUTPUT_JSON) { 1753 struct thread_data *global; 1754 char time_buf[32]; 1755 struct timeval now; 1756 unsigned long long ms_since_epoch; 1757 1758 gettimeofday(&now, NULL); 1759 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 + 1760 (unsigned long long)(now.tv_usec) / 1000; 1761 1762 os_ctime_r((const time_t *) &now.tv_sec, time_buf, 1763 sizeof(time_buf)); 1764 if (time_buf[strlen(time_buf) - 1] == '\n') 1765 time_buf[strlen(time_buf) - 1] = '\0'; 1766 1767 root = json_create_object(); 1768 json_object_add_value_string(root, "fio version", fio_version_string); 1769 json_object_add_value_int(root, "timestamp", now.tv_sec); 1770 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch); 1771 json_object_add_value_string(root, "time", time_buf); 1772 global = get_global_options(); 1773 json_add_job_opts(root, "global options", &global->opt_list, false); 1774 array = json_create_array(); 1775 json_object_add_value_array(root, "jobs", array); 1776 } 1777 1778 if (is_backend) 1779 fio_server_send_job_options(&get_global_options()->opt_list, -1U); 1780 1781 for (i = 0; i < nr_ts; i++) { 1782 ts = &threadstats[i]; 1783 rs = &runstats[ts->groupid]; 1784 1785 if (is_backend) { 1786 fio_server_send_job_options(opt_lists[i], i); 1787 fio_server_send_ts(ts, rs); 1788 } else { 1789 if (output_format & FIO_OUTPUT_TERSE) 1790 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]); 1791 if (output_format & FIO_OUTPUT_JSON) { 1792 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]); 1793 json_array_add_value_object(array, tmp); 1794 } 1795 if (output_format & FIO_OUTPUT_NORMAL) 1796 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]); 1797 } 1798 } 1799 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) { 1800 /* disk util stats, if any */ 1801 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]); 1802 1803 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]); 1804 1805 json_print_object(root, &output[__FIO_OUTPUT_JSON]); 1806 log_buf(&output[__FIO_OUTPUT_JSON], "\n"); 1807 json_free_object(root); 1808 } 1809 1810 for (i = 0; i < groupid + 1; i++) { 1811 rs = &runstats[i]; 1812 1813 rs->groupid = i; 1814 if (is_backend) 1815 fio_server_send_gs(rs); 1816 else if (output_format & FIO_OUTPUT_NORMAL) 1817 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]); 1818 } 1819 1820 if (is_backend) 1821 fio_server_send_du(); 1822 else if (output_format & FIO_OUTPUT_NORMAL) { 1823 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]); 1824 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]); 1825 } 1826 1827 for (i = 0; i < FIO_OUTPUT_NR; i++) { 1828 buf_output_flush(&output[i]); 1829 buf_output_free(&output[i]); 1830 } 1831 1832 log_info_flush(); 1833 free(runstats); 1834 free(threadstats); 1835 free(opt_lists); 1836 } 1837 1838 void show_run_stats(void) 1839 { 1840 fio_mutex_down(stat_mutex); 1841 __show_run_stats(); 1842 fio_mutex_up(stat_mutex); 1843 } 1844 1845 void __show_running_run_stats(void) 1846 { 1847 struct thread_data *td; 1848 unsigned long long *rt; 1849 struct timeval tv; 1850 int i; 1851 1852 fio_mutex_down(stat_mutex); 1853 1854 rt = malloc(thread_number * sizeof(unsigned long long)); 1855 fio_gettime(&tv, NULL); 1856 1857 for_each_td(td, i) { 1858 td->update_rusage = 1; 1859 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ]; 1860 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE]; 1861 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM]; 1862 td->ts.total_run_time = mtime_since(&td->epoch, &tv); 1863 1864 rt[i] = mtime_since(&td->start, &tv); 1865 if (td_read(td) && td->ts.io_bytes[DDIR_READ]) 1866 td->ts.runtime[DDIR_READ] += rt[i]; 1867 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE]) 1868 td->ts.runtime[DDIR_WRITE] += rt[i]; 1869 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM]) 1870 td->ts.runtime[DDIR_TRIM] += rt[i]; 1871 } 1872 1873 for_each_td(td, i) { 1874 if (td->runstate >= TD_EXITED) 1875 continue; 1876 if (td->rusage_sem) { 1877 td->update_rusage = 1; 1878 fio_mutex_down(td->rusage_sem); 1879 } 1880 td->update_rusage = 0; 1881 } 1882 1883 __show_run_stats(); 1884 1885 for_each_td(td, i) { 1886 if (td_read(td) && td->ts.io_bytes[DDIR_READ]) 1887 td->ts.runtime[DDIR_READ] -= rt[i]; 1888 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE]) 1889 td->ts.runtime[DDIR_WRITE] -= rt[i]; 1890 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM]) 1891 td->ts.runtime[DDIR_TRIM] -= rt[i]; 1892 } 1893 1894 free(rt); 1895 fio_mutex_up(stat_mutex); 1896 } 1897 1898 static int status_interval_init; 1899 static struct timeval status_time; 1900 static int status_file_disabled; 1901 1902 #define FIO_STATUS_FILE "fio-dump-status" 1903 1904 static int check_status_file(void) 1905 { 1906 struct stat sb; 1907 const char *temp_dir; 1908 char fio_status_file_path[PATH_MAX]; 1909 1910 if (status_file_disabled) 1911 return 0; 1912 1913 temp_dir = getenv("TMPDIR"); 1914 if (temp_dir == NULL) { 1915 temp_dir = getenv("TEMP"); 1916 if (temp_dir && strlen(temp_dir) >= PATH_MAX) 1917 temp_dir = NULL; 1918 } 1919 if (temp_dir == NULL) 1920 temp_dir = "/tmp"; 1921 1922 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE); 1923 1924 if (stat(fio_status_file_path, &sb)) 1925 return 0; 1926 1927 if (unlink(fio_status_file_path) < 0) { 1928 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path, 1929 strerror(errno)); 1930 log_err("fio: disabling status file updates\n"); 1931 status_file_disabled = 1; 1932 } 1933 1934 return 1; 1935 } 1936 1937 void check_for_running_stats(void) 1938 { 1939 if (status_interval) { 1940 if (!status_interval_init) { 1941 fio_gettime(&status_time, NULL); 1942 status_interval_init = 1; 1943 } else if (mtime_since_now(&status_time) >= status_interval) { 1944 show_running_run_stats(); 1945 fio_gettime(&status_time, NULL); 1946 return; 1947 } 1948 } 1949 if (check_status_file()) { 1950 show_running_run_stats(); 1951 return; 1952 } 1953 } 1954 1955 static inline void add_stat_sample(struct io_stat *is, unsigned long data) 1956 { 1957 double val = data; 1958 double delta; 1959 1960 if (data > is->max_val) 1961 is->max_val = data; 1962 if (data < is->min_val) 1963 is->min_val = data; 1964 1965 delta = val - is->mean.u.f; 1966 if (delta) { 1967 is->mean.u.f += delta / (is->samples + 1.0); 1968 is->S.u.f += delta * (val - is->mean.u.f); 1969 } 1970 1971 is->samples++; 1972 } 1973 1974 /* 1975 * Return a struct io_logs, which is added to the tail of the log 1976 * list for 'iolog'. 1977 */ 1978 static struct io_logs *get_new_log(struct io_log *iolog) 1979 { 1980 size_t new_size, new_samples; 1981 struct io_logs *cur_log; 1982 1983 /* 1984 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling 1985 * forever 1986 */ 1987 if (!iolog->cur_log_max) 1988 new_samples = DEF_LOG_ENTRIES; 1989 else { 1990 new_samples = iolog->cur_log_max * 2; 1991 if (new_samples > MAX_LOG_ENTRIES) 1992 new_samples = MAX_LOG_ENTRIES; 1993 } 1994 1995 new_size = new_samples * log_entry_sz(iolog); 1996 1997 cur_log = smalloc(sizeof(*cur_log)); 1998 if (cur_log) { 1999 INIT_FLIST_HEAD(&cur_log->list); 2000 cur_log->log = malloc(new_size); 2001 if (cur_log->log) { 2002 cur_log->nr_samples = 0; 2003 cur_log->max_samples = new_samples; 2004 flist_add_tail(&cur_log->list, &iolog->io_logs); 2005 iolog->cur_log_max = new_samples; 2006 return cur_log; 2007 } 2008 sfree(cur_log); 2009 } 2010 2011 return NULL; 2012 } 2013 2014 /* 2015 * Add and return a new log chunk, or return current log if big enough 2016 */ 2017 static struct io_logs *regrow_log(struct io_log *iolog) 2018 { 2019 struct io_logs *cur_log; 2020 int i; 2021 2022 if (!iolog || iolog->disabled) 2023 goto disable; 2024 2025 cur_log = iolog_cur_log(iolog); 2026 if (!cur_log) { 2027 cur_log = get_new_log(iolog); 2028 if (!cur_log) 2029 return NULL; 2030 } 2031 2032 if (cur_log->nr_samples < cur_log->max_samples) 2033 return cur_log; 2034 2035 /* 2036 * No room for a new sample. If we're compressing on the fly, flush 2037 * out the current chunk 2038 */ 2039 if (iolog->log_gz) { 2040 if (iolog_cur_flush(iolog, cur_log)) { 2041 log_err("fio: failed flushing iolog! Will stop logging.\n"); 2042 return NULL; 2043 } 2044 } 2045 2046 /* 2047 * Get a new log array, and add to our list 2048 */ 2049 cur_log = get_new_log(iolog); 2050 if (!cur_log) { 2051 log_err("fio: failed extending iolog! Will stop logging.\n"); 2052 return NULL; 2053 } 2054 2055 if (!iolog->pending || !iolog->pending->nr_samples) 2056 return cur_log; 2057 2058 /* 2059 * Flush pending items to new log 2060 */ 2061 for (i = 0; i < iolog->pending->nr_samples; i++) { 2062 struct io_sample *src, *dst; 2063 2064 src = get_sample(iolog, iolog->pending, i); 2065 dst = get_sample(iolog, cur_log, i); 2066 memcpy(dst, src, log_entry_sz(iolog)); 2067 } 2068 cur_log->nr_samples = iolog->pending->nr_samples; 2069 2070 iolog->pending->nr_samples = 0; 2071 return cur_log; 2072 disable: 2073 if (iolog) 2074 iolog->disabled = true; 2075 return NULL; 2076 } 2077 2078 void regrow_logs(struct thread_data *td) 2079 { 2080 regrow_log(td->slat_log); 2081 regrow_log(td->clat_log); 2082 regrow_log(td->clat_hist_log); 2083 regrow_log(td->lat_log); 2084 regrow_log(td->bw_log); 2085 regrow_log(td->iops_log); 2086 td->flags &= ~TD_F_REGROW_LOGS; 2087 } 2088 2089 static struct io_logs *get_cur_log(struct io_log *iolog) 2090 { 2091 struct io_logs *cur_log; 2092 2093 cur_log = iolog_cur_log(iolog); 2094 if (!cur_log) { 2095 cur_log = get_new_log(iolog); 2096 if (!cur_log) 2097 return NULL; 2098 } 2099 2100 if (cur_log->nr_samples < cur_log->max_samples) 2101 return cur_log; 2102 2103 /* 2104 * Out of space. If we're in IO offload mode, or we're not doing 2105 * per unit logging (hence logging happens outside of the IO thread 2106 * as well), add a new log chunk inline. If we're doing inline 2107 * submissions, flag 'td' as needing a log regrow and we'll take 2108 * care of it on the submission side. 2109 */ 2110 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD || 2111 !per_unit_log(iolog)) 2112 return regrow_log(iolog); 2113 2114 iolog->td->flags |= TD_F_REGROW_LOGS; 2115 assert(iolog->pending->nr_samples < iolog->pending->max_samples); 2116 return iolog->pending; 2117 } 2118 2119 static void __add_log_sample(struct io_log *iolog, union io_sample_data data, 2120 enum fio_ddir ddir, unsigned int bs, 2121 unsigned long t, uint64_t offset) 2122 { 2123 struct io_logs *cur_log; 2124 2125 if (iolog->disabled) 2126 return; 2127 if (flist_empty(&iolog->io_logs)) 2128 iolog->avg_last = t; 2129 2130 cur_log = get_cur_log(iolog); 2131 if (cur_log) { 2132 struct io_sample *s; 2133 2134 s = get_sample(iolog, cur_log, cur_log->nr_samples); 2135 2136 s->data = data; 2137 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0); 2138 io_sample_set_ddir(iolog, s, ddir); 2139 s->bs = bs; 2140 2141 if (iolog->log_offset) { 2142 struct io_sample_offset *so = (void *) s; 2143 2144 so->offset = offset; 2145 } 2146 2147 cur_log->nr_samples++; 2148 return; 2149 } 2150 2151 iolog->disabled = true; 2152 } 2153 2154 static inline void reset_io_stat(struct io_stat *ios) 2155 { 2156 ios->max_val = ios->min_val = ios->samples = 0; 2157 ios->mean.u.f = ios->S.u.f = 0; 2158 } 2159 2160 void reset_io_stats(struct thread_data *td) 2161 { 2162 struct thread_stat *ts = &td->ts; 2163 int i, j; 2164 2165 for (i = 0; i < DDIR_RWDIR_CNT; i++) { 2166 reset_io_stat(&ts->clat_stat[i]); 2167 reset_io_stat(&ts->slat_stat[i]); 2168 reset_io_stat(&ts->lat_stat[i]); 2169 reset_io_stat(&ts->bw_stat[i]); 2170 reset_io_stat(&ts->iops_stat[i]); 2171 2172 ts->io_bytes[i] = 0; 2173 ts->runtime[i] = 0; 2174 ts->total_io_u[i] = 0; 2175 ts->short_io_u[i] = 0; 2176 ts->drop_io_u[i] = 0; 2177 2178 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) 2179 ts->io_u_plat[i][j] = 0; 2180 } 2181 2182 for (i = 0; i < FIO_IO_U_MAP_NR; i++) { 2183 ts->io_u_map[i] = 0; 2184 ts->io_u_submit[i] = 0; 2185 ts->io_u_complete[i] = 0; 2186 } 2187 2188 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) 2189 ts->io_u_lat_u[i] = 0; 2190 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) 2191 ts->io_u_lat_m[i] = 0; 2192 2193 ts->total_submit = 0; 2194 ts->total_complete = 0; 2195 } 2196 2197 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir, 2198 unsigned long elapsed, bool log_max) 2199 { 2200 /* 2201 * Note an entry in the log. Use the mean from the logged samples, 2202 * making sure to properly round up. Only write a log entry if we 2203 * had actual samples done. 2204 */ 2205 if (iolog->avg_window[ddir].samples) { 2206 union io_sample_data data; 2207 2208 if (log_max) 2209 data.val = iolog->avg_window[ddir].max_val; 2210 else 2211 data.val = iolog->avg_window[ddir].mean.u.f + 0.50; 2212 2213 __add_log_sample(iolog, data, ddir, 0, elapsed, 0); 2214 } 2215 2216 reset_io_stat(&iolog->avg_window[ddir]); 2217 } 2218 2219 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed, 2220 bool log_max) 2221 { 2222 int ddir; 2223 2224 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) 2225 __add_stat_to_log(iolog, ddir, elapsed, log_max); 2226 } 2227 2228 static long add_log_sample(struct thread_data *td, struct io_log *iolog, 2229 union io_sample_data data, enum fio_ddir ddir, 2230 unsigned int bs, uint64_t offset) 2231 { 2232 unsigned long elapsed, this_window; 2233 2234 if (!ddir_rw(ddir)) 2235 return 0; 2236 2237 elapsed = mtime_since_now(&td->epoch); 2238 2239 /* 2240 * If no time averaging, just add the log sample. 2241 */ 2242 if (!iolog->avg_msec) { 2243 __add_log_sample(iolog, data, ddir, bs, elapsed, offset); 2244 return 0; 2245 } 2246 2247 /* 2248 * Add the sample. If the time period has passed, then 2249 * add that entry to the log and clear. 2250 */ 2251 add_stat_sample(&iolog->avg_window[ddir], data.val); 2252 2253 /* 2254 * If period hasn't passed, adding the above sample is all we 2255 * need to do. 2256 */ 2257 this_window = elapsed - iolog->avg_last; 2258 if (elapsed < iolog->avg_last) 2259 return iolog->avg_last - elapsed; 2260 else if (this_window < iolog->avg_msec) { 2261 int diff = iolog->avg_msec - this_window; 2262 2263 if (inline_log(iolog) || diff > LOG_MSEC_SLACK) 2264 return diff; 2265 } 2266 2267 _add_stat_to_log(iolog, elapsed, td->o.log_max != 0); 2268 2269 iolog->avg_last = elapsed - (this_window - iolog->avg_msec); 2270 return iolog->avg_msec; 2271 } 2272 2273 void finalize_logs(struct thread_data *td, bool unit_logs) 2274 { 2275 unsigned long elapsed; 2276 2277 elapsed = mtime_since_now(&td->epoch); 2278 2279 if (td->clat_log && unit_logs) 2280 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0); 2281 if (td->slat_log && unit_logs) 2282 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0); 2283 if (td->lat_log && unit_logs) 2284 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0); 2285 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log))) 2286 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0); 2287 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log))) 2288 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0); 2289 } 2290 2291 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs) 2292 { 2293 struct io_log *iolog; 2294 2295 if (!ddir_rw(ddir)) 2296 return; 2297 2298 iolog = agg_io_log[ddir]; 2299 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0); 2300 } 2301 2302 static void add_clat_percentile_sample(struct thread_stat *ts, 2303 unsigned long usec, enum fio_ddir ddir) 2304 { 2305 unsigned int idx = plat_val_to_idx(usec); 2306 assert(idx < FIO_IO_U_PLAT_NR); 2307 2308 ts->io_u_plat[ddir][idx]++; 2309 } 2310 2311 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir, 2312 unsigned long usec, unsigned int bs, uint64_t offset) 2313 { 2314 unsigned long elapsed, this_window; 2315 struct thread_stat *ts = &td->ts; 2316 struct io_log *iolog = td->clat_hist_log; 2317 2318 td_io_u_lock(td); 2319 2320 add_stat_sample(&ts->clat_stat[ddir], usec); 2321 2322 if (td->clat_log) 2323 add_log_sample(td, td->clat_log, sample_val(usec), ddir, bs, 2324 offset); 2325 2326 if (ts->clat_percentiles) 2327 add_clat_percentile_sample(ts, usec, ddir); 2328 2329 if (iolog && iolog->hist_msec) { 2330 struct io_hist *hw = &iolog->hist_window[ddir]; 2331 2332 hw->samples++; 2333 elapsed = mtime_since_now(&td->epoch); 2334 if (!hw->hist_last) 2335 hw->hist_last = elapsed; 2336 this_window = elapsed - hw->hist_last; 2337 2338 if (this_window >= iolog->hist_msec) { 2339 unsigned int *io_u_plat; 2340 struct io_u_plat_entry *dst; 2341 2342 /* 2343 * Make a byte-for-byte copy of the latency histogram 2344 * stored in td->ts.io_u_plat[ddir], recording it in a 2345 * log sample. Note that the matching call to free() is 2346 * located in iolog.c after printing this sample to the 2347 * log file. 2348 */ 2349 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir]; 2350 dst = malloc(sizeof(struct io_u_plat_entry)); 2351 memcpy(&(dst->io_u_plat), io_u_plat, 2352 FIO_IO_U_PLAT_NR * sizeof(unsigned int)); 2353 flist_add(&dst->list, &hw->list); 2354 __add_log_sample(iolog, sample_plat(dst), ddir, bs, 2355 elapsed, offset); 2356 2357 /* 2358 * Update the last time we recorded as being now, minus 2359 * any drift in time we encountered before actually 2360 * making the record. 2361 */ 2362 hw->hist_last = elapsed - (this_window - iolog->hist_msec); 2363 hw->samples = 0; 2364 } 2365 } 2366 2367 td_io_u_unlock(td); 2368 } 2369 2370 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir, 2371 unsigned long usec, unsigned int bs, uint64_t offset) 2372 { 2373 struct thread_stat *ts = &td->ts; 2374 2375 if (!ddir_rw(ddir)) 2376 return; 2377 2378 td_io_u_lock(td); 2379 2380 add_stat_sample(&ts->slat_stat[ddir], usec); 2381 2382 if (td->slat_log) 2383 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset); 2384 2385 td_io_u_unlock(td); 2386 } 2387 2388 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir, 2389 unsigned long usec, unsigned int bs, uint64_t offset) 2390 { 2391 struct thread_stat *ts = &td->ts; 2392 2393 if (!ddir_rw(ddir)) 2394 return; 2395 2396 td_io_u_lock(td); 2397 2398 add_stat_sample(&ts->lat_stat[ddir], usec); 2399 2400 if (td->lat_log) 2401 add_log_sample(td, td->lat_log, sample_val(usec), ddir, bs, 2402 offset); 2403 2404 td_io_u_unlock(td); 2405 } 2406 2407 void add_bw_sample(struct thread_data *td, struct io_u *io_u, 2408 unsigned int bytes, unsigned long spent) 2409 { 2410 struct thread_stat *ts = &td->ts; 2411 unsigned long rate; 2412 2413 if (spent) 2414 rate = bytes * 1000 / spent; 2415 else 2416 rate = 0; 2417 2418 td_io_u_lock(td); 2419 2420 add_stat_sample(&ts->bw_stat[io_u->ddir], rate); 2421 2422 if (td->bw_log) 2423 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir, 2424 bytes, io_u->offset); 2425 2426 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir]; 2427 td_io_u_unlock(td); 2428 } 2429 2430 static int __add_samples(struct thread_data *td, struct timeval *parent_tv, 2431 struct timeval *t, unsigned int avg_time, 2432 uint64_t *this_io_bytes, uint64_t *stat_io_bytes, 2433 struct io_stat *stat, struct io_log *log, 2434 bool is_kb) 2435 { 2436 unsigned long spent, rate; 2437 enum fio_ddir ddir; 2438 unsigned int next, next_log; 2439 2440 next_log = avg_time; 2441 2442 spent = mtime_since(parent_tv, t); 2443 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK) 2444 return avg_time - spent; 2445 2446 td_io_u_lock(td); 2447 2448 /* 2449 * Compute both read and write rates for the interval. 2450 */ 2451 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) { 2452 uint64_t delta; 2453 2454 delta = this_io_bytes[ddir] - stat_io_bytes[ddir]; 2455 if (!delta) 2456 continue; /* No entries for interval */ 2457 2458 if (spent) { 2459 if (is_kb) 2460 rate = delta * 1000 / spent / 1024; /* KiB/s */ 2461 else 2462 rate = (delta * 1000) / spent; 2463 } else 2464 rate = 0; 2465 2466 add_stat_sample(&stat[ddir], rate); 2467 2468 if (log) { 2469 unsigned int bs = 0; 2470 2471 if (td->o.min_bs[ddir] == td->o.max_bs[ddir]) 2472 bs = td->o.min_bs[ddir]; 2473 2474 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0); 2475 next_log = min(next_log, next); 2476 } 2477 2478 stat_io_bytes[ddir] = this_io_bytes[ddir]; 2479 } 2480 2481 timeval_add_msec(parent_tv, avg_time); 2482 2483 td_io_u_unlock(td); 2484 2485 if (spent <= avg_time) 2486 next = avg_time; 2487 else 2488 next = avg_time - (1 + spent - avg_time); 2489 2490 return min(next, next_log); 2491 } 2492 2493 static int add_bw_samples(struct thread_data *td, struct timeval *t) 2494 { 2495 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time, 2496 td->this_io_bytes, td->stat_io_bytes, 2497 td->ts.bw_stat, td->bw_log, true); 2498 } 2499 2500 void add_iops_sample(struct thread_data *td, struct io_u *io_u, 2501 unsigned int bytes) 2502 { 2503 struct thread_stat *ts = &td->ts; 2504 2505 td_io_u_lock(td); 2506 2507 add_stat_sample(&ts->iops_stat[io_u->ddir], 1); 2508 2509 if (td->iops_log) 2510 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir, 2511 bytes, io_u->offset); 2512 2513 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir]; 2514 td_io_u_unlock(td); 2515 } 2516 2517 static int add_iops_samples(struct thread_data *td, struct timeval *t) 2518 { 2519 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time, 2520 td->this_io_blocks, td->stat_io_blocks, 2521 td->ts.iops_stat, td->iops_log, false); 2522 } 2523 2524 /* 2525 * Returns msecs to next event 2526 */ 2527 int calc_log_samples(void) 2528 { 2529 struct thread_data *td; 2530 unsigned int next = ~0U, tmp; 2531 struct timeval now; 2532 int i; 2533 2534 fio_gettime(&now, NULL); 2535 2536 for_each_td(td, i) { 2537 if (!td->o.stats) 2538 continue; 2539 if (in_ramp_time(td) || 2540 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) { 2541 next = min(td->o.iops_avg_time, td->o.bw_avg_time); 2542 continue; 2543 } 2544 if (!td->bw_log || 2545 (td->bw_log && !per_unit_log(td->bw_log))) { 2546 tmp = add_bw_samples(td, &now); 2547 if (tmp < next) 2548 next = tmp; 2549 } 2550 if (!td->iops_log || 2551 (td->iops_log && !per_unit_log(td->iops_log))) { 2552 tmp = add_iops_samples(td, &now); 2553 if (tmp < next) 2554 next = tmp; 2555 } 2556 } 2557 2558 return next == ~0U ? 0 : next; 2559 } 2560 2561 void stat_init(void) 2562 { 2563 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED); 2564 } 2565 2566 void stat_exit(void) 2567 { 2568 /* 2569 * When we have the mutex, we know out-of-band access to it 2570 * have ended. 2571 */ 2572 fio_mutex_down(stat_mutex); 2573 fio_mutex_remove(stat_mutex); 2574 } 2575 2576 /* 2577 * Called from signal handler. Wake up status thread. 2578 */ 2579 void show_running_run_stats(void) 2580 { 2581 helper_do_stat(); 2582 } 2583 2584 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u) 2585 { 2586 /* Ignore io_u's which span multiple blocks--they will just get 2587 * inaccurate counts. */ 2588 int idx = (io_u->offset - io_u->file->file_offset) 2589 / td->o.bs[DDIR_TRIM]; 2590 uint32_t *info = &td->ts.block_infos[idx]; 2591 assert(idx < td->ts.nr_block_infos); 2592 return info; 2593 } 2594