Home | History | Annotate | Download | only in src
      1 // Copyright (c) 1999, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 // ---
     31 // Revamped and reorganized by Craig Silverstein
     32 //
     33 // This file contains the implementation of all our command line flags
     34 // stuff.  Here's how everything fits together
     35 //
     36 // * FlagRegistry owns CommandLineFlags owns FlagValue.
     37 // * FlagSaver holds a FlagRegistry (saves it at construct time,
     38 //     restores it at destroy time).
     39 // * CommandLineFlagParser lives outside that hierarchy, but works on
     40 //     CommandLineFlags (modifying the FlagValues).
     41 // * Free functions like SetCommandLineOption() work via one of the
     42 //     above (such as CommandLineFlagParser).
     43 //
     44 // In more detail:
     45 //
     46 // -- The main classes that hold flag data:
     47 //
     48 // FlagValue holds the current value of a flag.  It's
     49 // pseudo-templatized: every operation on a FlagValue is typed.  It
     50 // also deals with storage-lifetime issues (so flag values don't go
     51 // away in a destructor), which is why we need a whole class to hold a
     52 // variable's value.
     53 //
     54 // CommandLineFlag is all the information about a single command-line
     55 // flag.  It has a FlagValue for the flag's current value, but also
     56 // the flag's name, type, etc.
     57 //
     58 // FlagRegistry is a collection of CommandLineFlags.  There's the
     59 // global registry, which is where flags defined via DEFINE_foo()
     60 // live.  But it's possible to define your own flag, manually, in a
     61 // different registry you create.  (In practice, multiple registries
     62 // are used only by FlagSaver).
     63 //
     64 // A given FlagValue is owned by exactly one CommandLineFlag.  A given
     65 // CommandLineFlag is owned by exactly one FlagRegistry.  FlagRegistry
     66 // has a lock; any operation that writes to a FlagValue or
     67 // CommandLineFlag owned by that registry must acquire the
     68 // FlagRegistry lock before doing so.
     69 //
     70 // --- Some other classes and free functions:
     71 //
     72 // CommandLineFlagInfo is a client-exposed version of CommandLineFlag.
     73 // Once it's instantiated, it has no dependencies or relationships
     74 // with any other part of this file.
     75 //
     76 // FlagRegisterer is the helper class used by the DEFINE_* macros to
     77 // allow work to be done at global initialization time.
     78 //
     79 // CommandLineFlagParser is the class that reads from the commandline
     80 // and instantiates flag values based on that.  It needs to poke into
     81 // the innards of the FlagValue->CommandLineFlag->FlagRegistry class
     82 // hierarchy to do that.  It's careful to acquire the FlagRegistry
     83 // lock before doing any writing or other non-const actions.
     84 //
     85 // GetCommandLineOption is just a hook into registry routines to
     86 // retrieve a flag based on its name.  SetCommandLineOption, on the
     87 // other hand, hooks into CommandLineFlagParser.  Other API functions
     88 // are, similarly, mostly hooks into the functionality described above.
     89 
     90 #include "config.h"
     91 #include "gflags/gflags.h"
     92 
     93 #include <assert.h>
     94 #include <ctype.h>
     95 #include <errno.h>
     96 #if defined(HAVE_FNMATCH_H)
     97 #  include <fnmatch.h>
     98 #elif defined(HAVE_SHLWAPI_H)
     99 #  define NO_SHLWAPI_ISOS
    100 #  include <shlwapi.h>
    101 #endif
    102 #include <stdarg.h> // For va_list and related operations
    103 #include <stdio.h>
    104 #include <string.h>
    105 
    106 #include <algorithm>
    107 #include <map>
    108 #include <string>
    109 #include <utility>     // for pair<>
    110 #include <vector>
    111 
    112 #include "mutex.h"
    113 #include "util.h"
    114 
    115 using namespace MUTEX_NAMESPACE;
    116 
    117 
    118 // Special flags, type 1: the 'recursive' flags.  They set another flag's val.
    119 DEFINE_string(flagfile,   "", "load flags from file");
    120 DEFINE_string(fromenv,    "", "set flags from the environment"
    121                               " [use 'export FLAGS_flag1=value']");
    122 DEFINE_string(tryfromenv, "", "set flags from the environment if present");
    123 
    124 // Special flags, type 2: the 'parsing' flags.  They modify how we parse.
    125 DEFINE_string(undefok, "", "comma-separated list of flag names that it is okay to specify "
    126                            "on the command line even if the program does not define a flag "
    127                            "with that name.  IMPORTANT: flags in this list that have "
    128                            "arguments MUST use the flag=value format");
    129 
    130 namespace GFLAGS_NAMESPACE {
    131 
    132 using std::map;
    133 using std::pair;
    134 using std::sort;
    135 using std::string;
    136 using std::vector;
    137 
    138 // This is used by the unittest to test error-exit code
    139 void GFLAGS_DLL_DECL (*gflags_exitfunc)(int) = &exit;  // from stdlib.h
    140 
    141 
    142 // The help message indicating that the commandline flag has been
    143 // 'stripped'. It will not show up when doing "-help" and its
    144 // variants. The flag is stripped if STRIP_FLAG_HELP is set to 1
    145 // before including base/gflags.h
    146 
    147 // This is used by this file, and also in gflags_reporting.cc
    148 const char kStrippedFlagHelp[] = "\001\002\003\004 (unknown) \004\003\002\001";
    149 
    150 namespace {
    151 
    152 // There are also 'reporting' flags, in gflags_reporting.cc.
    153 
    154 static const char kError[] = "ERROR: ";
    155 
    156 // Indicates that undefined options are to be ignored.
    157 // Enables deferred processing of flags in dynamically loaded libraries.
    158 static bool allow_command_line_reparsing = false;
    159 
    160 static bool logging_is_probably_set_up = false;
    161 
    162 // This is a 'prototype' validate-function.  'Real' validate
    163 // functions, take a flag-value as an argument: ValidateFn(bool) or
    164 // ValidateFn(uint64).  However, for easier storage, we strip off this
    165 // argument and then restore it when actually calling the function on
    166 // a flag value.
    167 typedef bool (*ValidateFnProto)();
    168 
    169 // Whether we should die when reporting an error.
    170 enum DieWhenReporting { DIE, DO_NOT_DIE };
    171 
    172 // Report Error and exit if requested.
    173 static void ReportError(DieWhenReporting should_die, const char* format, ...) {
    174   va_list ap;
    175   va_start(ap, format);
    176   vfprintf(stderr, format, ap);
    177   va_end(ap);
    178   fflush(stderr);   // should be unnecessary, but cygwin's rxvt buffers stderr
    179   if (should_die == DIE) gflags_exitfunc(1);
    180 }
    181 
    182 
    183 // --------------------------------------------------------------------
    184 // FlagValue
    185 //    This represent the value a single flag might have.  The major
    186 //    functionality is to convert from a string to an object of a
    187 //    given type, and back.  Thread-compatible.
    188 // --------------------------------------------------------------------
    189 
    190 class CommandLineFlag;
    191 class FlagValue {
    192  public:
    193   enum ValueType {
    194     FV_BOOL = 0,
    195     FV_INT32 = 1,
    196     FV_UINT32 = 2,
    197     FV_INT64 = 3,
    198     FV_UINT64 = 4,
    199     FV_DOUBLE = 5,
    200     FV_STRING = 6,
    201     FV_MAX_INDEX = 6,
    202   };
    203 
    204   template <typename FlagType>
    205   FlagValue(FlagType* valbuf, bool transfer_ownership_of_value);
    206   ~FlagValue();
    207 
    208   bool ParseFrom(const char* spec);
    209   string ToString() const;
    210 
    211   ValueType Type() const { return static_cast<ValueType>(type_); }
    212 
    213  private:
    214   friend class CommandLineFlag;  // for many things, including Validate()
    215   friend class GFLAGS_NAMESPACE::FlagSaverImpl;  // calls New()
    216   friend class FlagRegistry;     // checks value_buffer_ for flags_by_ptr_ map
    217   template <typename T> friend T GetFromEnv(const char*, T);
    218   friend bool TryParseLocked(const CommandLineFlag*, FlagValue*,
    219                              const char*, string*);  // for New(), CopyFrom()
    220 
    221   template <typename FlagType>
    222   struct FlagValueTraits;
    223 
    224   const char* TypeName() const;
    225   bool Equal(const FlagValue& x) const;
    226   FlagValue* New() const;   // creates a new one with default value
    227   void CopyFrom(const FlagValue& x);
    228 
    229   // Calls the given validate-fn on value_buffer_, and returns
    230   // whatever it returns.  But first casts validate_fn_proto to a
    231   // function that takes our value as an argument (eg void
    232   // (*validate_fn)(bool) for a bool flag).
    233   bool Validate(const char* flagname, ValidateFnProto validate_fn_proto) const;
    234 
    235   void* const value_buffer_;          // points to the buffer holding our data
    236   const int8 type_;                   // how to interpret value_
    237   const bool owns_value_;             // whether to free value on destruct
    238 
    239   FlagValue(const FlagValue&);   // no copying!
    240   void operator=(const FlagValue&);
    241 };
    242 
    243 // Map the given C++ type to a value of the ValueType enum at compile time.
    244 #define DEFINE_FLAG_TRAITS(type, value)        \
    245   template <>                                  \
    246   struct FlagValue::FlagValueTraits<type> {    \
    247     static const ValueType kValueType = value; \
    248   }
    249 
    250 // Define full template specializations of the FlagValueTraits template
    251 // for all supported flag types.
    252 DEFINE_FLAG_TRAITS(bool, FV_BOOL);
    253 DEFINE_FLAG_TRAITS(int32, FV_INT32);
    254 DEFINE_FLAG_TRAITS(uint32, FV_UINT32);
    255 DEFINE_FLAG_TRAITS(int64, FV_INT64);
    256 DEFINE_FLAG_TRAITS(uint64, FV_UINT64);
    257 DEFINE_FLAG_TRAITS(double, FV_DOUBLE);
    258 DEFINE_FLAG_TRAITS(std::string, FV_STRING);
    259 
    260 #undef DEFINE_FLAG_TRAITS
    261 
    262 
    263 // This could be a templated method of FlagValue, but doing so adds to the
    264 // size of the .o.  Since there's no type-safety here anyway, macro is ok.
    265 #define VALUE_AS(type)  *reinterpret_cast<type*>(value_buffer_)
    266 #define OTHER_VALUE_AS(fv, type)  *reinterpret_cast<type*>(fv.value_buffer_)
    267 #define SET_VALUE_AS(type, value)  VALUE_AS(type) = (value)
    268 
    269 template <typename FlagType>
    270 FlagValue::FlagValue(FlagType* valbuf,
    271                      bool transfer_ownership_of_value)
    272     : value_buffer_(valbuf),
    273       type_(FlagValueTraits<FlagType>::kValueType),
    274       owns_value_(transfer_ownership_of_value) {
    275 }
    276 
    277 FlagValue::~FlagValue() {
    278   if (!owns_value_) {
    279     return;
    280   }
    281   switch (type_) {
    282     case FV_BOOL: delete reinterpret_cast<bool*>(value_buffer_); break;
    283     case FV_INT32: delete reinterpret_cast<int32*>(value_buffer_); break;
    284     case FV_UINT32: delete reinterpret_cast<uint32*>(value_buffer_); break;
    285     case FV_INT64: delete reinterpret_cast<int64*>(value_buffer_); break;
    286     case FV_UINT64: delete reinterpret_cast<uint64*>(value_buffer_); break;
    287     case FV_DOUBLE: delete reinterpret_cast<double*>(value_buffer_); break;
    288     case FV_STRING: delete reinterpret_cast<string*>(value_buffer_); break;
    289   }
    290 }
    291 
    292 bool FlagValue::ParseFrom(const char* value) {
    293   if (type_ == FV_BOOL) {
    294     const char* kTrue[] = { "1", "t", "true", "y", "yes" };
    295     const char* kFalse[] = { "0", "f", "false", "n", "no" };
    296     COMPILE_ASSERT(sizeof(kTrue) == sizeof(kFalse), true_false_equal);
    297     for (size_t i = 0; i < sizeof(kTrue)/sizeof(*kTrue); ++i) {
    298       if (strcasecmp(value, kTrue[i]) == 0) {
    299         SET_VALUE_AS(bool, true);
    300         return true;
    301       } else if (strcasecmp(value, kFalse[i]) == 0) {
    302         SET_VALUE_AS(bool, false);
    303         return true;
    304       }
    305     }
    306     return false;   // didn't match a legal input
    307 
    308   } else if (type_ == FV_STRING) {
    309     SET_VALUE_AS(string, value);
    310     return true;
    311   }
    312 
    313   // OK, it's likely to be numeric, and we'll be using a strtoXXX method.
    314   if (value[0] == '\0')   // empty-string is only allowed for string type.
    315     return false;
    316   char* end;
    317   // Leading 0x puts us in base 16.  But leading 0 does not put us in base 8!
    318   // It caused too many bugs when we had that behavior.
    319   int base = 10;    // by default
    320   if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X'))
    321     base = 16;
    322   errno = 0;
    323 
    324   switch (type_) {
    325     case FV_INT32: {
    326       const int64 r = strto64(value, &end, base);
    327       if (errno || end != value + strlen(value))  return false;  // bad parse
    328       if (static_cast<int32>(r) != r)  // worked, but number out of range
    329         return false;
    330       SET_VALUE_AS(int32, static_cast<int32>(r));
    331       return true;
    332     }
    333     case FV_UINT32: {
    334       while (*value == ' ') value++;
    335       if (*value == '-') return false;  // negative number
    336       const uint64 r = strtou64(value, &end, base);
    337       if (errno || end != value + strlen(value))  return false;  // bad parse
    338         if (static_cast<uint32>(r) != r)  // worked, but number out of range
    339         return false;
    340       SET_VALUE_AS(uint32, static_cast<uint32>(r));
    341       return true;
    342     }
    343     case FV_INT64: {
    344       const int64 r = strto64(value, &end, base);
    345       if (errno || end != value + strlen(value))  return false;  // bad parse
    346       SET_VALUE_AS(int64, r);
    347       return true;
    348     }
    349     case FV_UINT64: {
    350       while (*value == ' ') value++;
    351       if (*value == '-') return false;  // negative number
    352       const uint64 r = strtou64(value, &end, base);
    353       if (errno || end != value + strlen(value))  return false;  // bad parse
    354       SET_VALUE_AS(uint64, r);
    355       return true;
    356     }
    357     case FV_DOUBLE: {
    358       const double r = strtod(value, &end);
    359       if (errno || end != value + strlen(value))  return false;  // bad parse
    360       SET_VALUE_AS(double, r);
    361       return true;
    362     }
    363     default: {
    364       assert(false);  // unknown type
    365       return false;
    366     }
    367   }
    368 }
    369 
    370 string FlagValue::ToString() const {
    371   char intbuf[64];    // enough to hold even the biggest number
    372   switch (type_) {
    373     case FV_BOOL:
    374       return VALUE_AS(bool) ? "true" : "false";
    375     case FV_INT32:
    376       snprintf(intbuf, sizeof(intbuf), "%" PRId32, VALUE_AS(int32));
    377       return intbuf;
    378     case FV_UINT32:
    379       snprintf(intbuf, sizeof(intbuf), "%" PRIu32, VALUE_AS(uint32));
    380       return intbuf;
    381     case FV_INT64:
    382       snprintf(intbuf, sizeof(intbuf), "%" PRId64, VALUE_AS(int64));
    383       return intbuf;
    384     case FV_UINT64:
    385       snprintf(intbuf, sizeof(intbuf), "%" PRIu64, VALUE_AS(uint64));
    386       return intbuf;
    387     case FV_DOUBLE:
    388       snprintf(intbuf, sizeof(intbuf), "%.17g", VALUE_AS(double));
    389       return intbuf;
    390     case FV_STRING:
    391       return VALUE_AS(string);
    392     default:
    393       assert(false);
    394       return "";  // unknown type
    395   }
    396 }
    397 
    398 bool FlagValue::Validate(const char* flagname,
    399                          ValidateFnProto validate_fn_proto) const {
    400   switch (type_) {
    401     case FV_BOOL:
    402       return reinterpret_cast<bool (*)(const char*, bool)>(
    403           validate_fn_proto)(flagname, VALUE_AS(bool));
    404     case FV_INT32:
    405       return reinterpret_cast<bool (*)(const char*, int32)>(
    406           validate_fn_proto)(flagname, VALUE_AS(int32));
    407     case FV_UINT32:
    408       return reinterpret_cast<bool (*)(const char*, uint32)>(
    409           validate_fn_proto)(flagname, VALUE_AS(uint32));
    410     case FV_INT64:
    411       return reinterpret_cast<bool (*)(const char*, int64)>(
    412           validate_fn_proto)(flagname, VALUE_AS(int64));
    413     case FV_UINT64:
    414       return reinterpret_cast<bool (*)(const char*, uint64)>(
    415           validate_fn_proto)(flagname, VALUE_AS(uint64));
    416     case FV_DOUBLE:
    417       return reinterpret_cast<bool (*)(const char*, double)>(
    418           validate_fn_proto)(flagname, VALUE_AS(double));
    419     case FV_STRING:
    420       return reinterpret_cast<bool (*)(const char*, const string&)>(
    421           validate_fn_proto)(flagname, VALUE_AS(string));
    422     default:
    423       assert(false);  // unknown type
    424       return false;
    425   }
    426 }
    427 
    428 const char* FlagValue::TypeName() const {
    429   static const char types[] =
    430       "bool\0xx"
    431       "int32\0x"
    432       "uint32\0"
    433       "int64\0x"
    434       "uint64\0"
    435       "double\0"
    436       "string";
    437   if (type_ > FV_MAX_INDEX) {
    438     assert(false);
    439     return "";
    440   }
    441   // Directly indexing the strings in the 'types' string, each of them is 7 bytes long.
    442   return &types[type_ * 7];
    443 }
    444 
    445 bool FlagValue::Equal(const FlagValue& x) const {
    446   if (type_ != x.type_)
    447     return false;
    448   switch (type_) {
    449     case FV_BOOL:   return VALUE_AS(bool) == OTHER_VALUE_AS(x, bool);
    450     case FV_INT32:  return VALUE_AS(int32) == OTHER_VALUE_AS(x, int32);
    451     case FV_UINT32: return VALUE_AS(uint32) == OTHER_VALUE_AS(x, uint32);
    452     case FV_INT64:  return VALUE_AS(int64) == OTHER_VALUE_AS(x, int64);
    453     case FV_UINT64: return VALUE_AS(uint64) == OTHER_VALUE_AS(x, uint64);
    454     case FV_DOUBLE: return VALUE_AS(double) == OTHER_VALUE_AS(x, double);
    455     case FV_STRING: return VALUE_AS(string) == OTHER_VALUE_AS(x, string);
    456     default: assert(false); return false;  // unknown type
    457   }
    458 }
    459 
    460 FlagValue* FlagValue::New() const {
    461   switch (type_) {
    462     case FV_BOOL:   return new FlagValue(new bool(false), true);
    463     case FV_INT32:  return new FlagValue(new int32(0), true);
    464     case FV_UINT32: return new FlagValue(new uint32(0), true);
    465     case FV_INT64:  return new FlagValue(new int64(0), true);
    466     case FV_UINT64: return new FlagValue(new uint64(0), true);
    467     case FV_DOUBLE: return new FlagValue(new double(0.0), true);
    468     case FV_STRING: return new FlagValue(new string, true);
    469     default: assert(false); return NULL;  // unknown type
    470   }
    471 }
    472 
    473 void FlagValue::CopyFrom(const FlagValue& x) {
    474   assert(type_ == x.type_);
    475   switch (type_) {
    476     case FV_BOOL:   SET_VALUE_AS(bool, OTHER_VALUE_AS(x, bool));      break;
    477     case FV_INT32:  SET_VALUE_AS(int32, OTHER_VALUE_AS(x, int32));    break;
    478     case FV_UINT32: SET_VALUE_AS(uint32, OTHER_VALUE_AS(x, uint32));  break;
    479     case FV_INT64:  SET_VALUE_AS(int64, OTHER_VALUE_AS(x, int64));    break;
    480     case FV_UINT64: SET_VALUE_AS(uint64, OTHER_VALUE_AS(x, uint64));  break;
    481     case FV_DOUBLE: SET_VALUE_AS(double, OTHER_VALUE_AS(x, double));  break;
    482     case FV_STRING: SET_VALUE_AS(string, OTHER_VALUE_AS(x, string));  break;
    483     default: assert(false);  // unknown type
    484   }
    485 }
    486 
    487 // --------------------------------------------------------------------
    488 // CommandLineFlag
    489 //    This represents a single flag, including its name, description,
    490 //    default value, and current value.  Mostly this serves as a
    491 //    struct, though it also knows how to register itself.
    492 //       All CommandLineFlags are owned by a (exactly one)
    493 //    FlagRegistry.  If you wish to modify fields in this class, you
    494 //    should acquire the FlagRegistry lock for the registry that owns
    495 //    this flag.
    496 // --------------------------------------------------------------------
    497 
    498 class CommandLineFlag {
    499  public:
    500   // Note: we take over memory-ownership of current_val and default_val.
    501   CommandLineFlag(const char* name, const char* help, const char* filename,
    502                   FlagValue* current_val, FlagValue* default_val);
    503   ~CommandLineFlag();
    504 
    505   const char* name() const { return name_; }
    506   const char* help() const { return help_; }
    507   const char* filename() const { return file_; }
    508   const char* CleanFileName() const;  // nixes irrelevant prefix such as homedir
    509   string current_value() const { return current_->ToString(); }
    510   string default_value() const { return defvalue_->ToString(); }
    511   const char* type_name() const { return defvalue_->TypeName(); }
    512   ValidateFnProto validate_function() const { return validate_fn_proto_; }
    513   const void* flag_ptr() const { return current_->value_buffer_; }
    514 
    515   FlagValue::ValueType Type() const { return defvalue_->Type(); }
    516 
    517   void FillCommandLineFlagInfo(struct CommandLineFlagInfo* result);
    518 
    519   // If validate_fn_proto_ is non-NULL, calls it on value, returns result.
    520   bool Validate(const FlagValue& value) const;
    521   bool ValidateCurrent() const { return Validate(*current_); }
    522   bool Modified() const { return modified_; }
    523 
    524  private:
    525   // for SetFlagLocked() and setting flags_by_ptr_
    526   friend class FlagRegistry;
    527   friend class GFLAGS_NAMESPACE::FlagSaverImpl;  // for cloning the values
    528   // set validate_fn
    529   friend bool AddFlagValidator(const void*, ValidateFnProto);
    530 
    531   // This copies all the non-const members: modified, processed, defvalue, etc.
    532   void CopyFrom(const CommandLineFlag& src);
    533 
    534   void UpdateModifiedBit();
    535 
    536   const char* const name_;     // Flag name
    537   const char* const help_;     // Help message
    538   const char* const file_;     // Which file did this come from?
    539   bool modified_;              // Set after default assignment?
    540   FlagValue* defvalue_;        // Default value for flag
    541   FlagValue* current_;         // Current value for flag
    542   // This is a casted, 'generic' version of validate_fn, which actually
    543   // takes a flag-value as an arg (void (*validate_fn)(bool), say).
    544   // When we pass this to current_->Validate(), it will cast it back to
    545   // the proper type.  This may be NULL to mean we have no validate_fn.
    546   ValidateFnProto validate_fn_proto_;
    547 
    548   CommandLineFlag(const CommandLineFlag&);   // no copying!
    549   void operator=(const CommandLineFlag&);
    550 };
    551 
    552 CommandLineFlag::CommandLineFlag(const char* name, const char* help,
    553                                  const char* filename,
    554                                  FlagValue* current_val, FlagValue* default_val)
    555     : name_(name), help_(help), file_(filename), modified_(false),
    556       defvalue_(default_val), current_(current_val), validate_fn_proto_(NULL) {
    557 }
    558 
    559 CommandLineFlag::~CommandLineFlag() {
    560   delete current_;
    561   delete defvalue_;
    562 }
    563 
    564 const char* CommandLineFlag::CleanFileName() const {
    565   // This function has been used to strip off a common prefix from
    566   // flag source file names. Because flags can be defined in different
    567   // shared libraries, there may not be a single common prefix.
    568   // Further, this functionality hasn't been active for many years.
    569   // Need a better way to produce more user friendly help output or
    570   // "anonymize" file paths in help output, respectively.
    571   // Follow issue at: https://github.com/gflags/gflags/issues/86
    572   return filename();
    573 }
    574 
    575 void CommandLineFlag::FillCommandLineFlagInfo(
    576     CommandLineFlagInfo* result) {
    577   result->name = name();
    578   result->type = type_name();
    579   result->description = help();
    580   result->current_value = current_value();
    581   result->default_value = default_value();
    582   result->filename = CleanFileName();
    583   UpdateModifiedBit();
    584   result->is_default = !modified_;
    585   result->has_validator_fn = validate_function() != NULL;
    586   result->flag_ptr = flag_ptr();
    587 }
    588 
    589 void CommandLineFlag::UpdateModifiedBit() {
    590   // Update the "modified" bit in case somebody bypassed the
    591   // Flags API and wrote directly through the FLAGS_name variable.
    592   if (!modified_ && !current_->Equal(*defvalue_)) {
    593     modified_ = true;
    594   }
    595 }
    596 
    597 void CommandLineFlag::CopyFrom(const CommandLineFlag& src) {
    598   // Note we only copy the non-const members; others are fixed at construct time
    599   if (modified_ != src.modified_) modified_ = src.modified_;
    600   if (!current_->Equal(*src.current_)) current_->CopyFrom(*src.current_);
    601   if (!defvalue_->Equal(*src.defvalue_)) defvalue_->CopyFrom(*src.defvalue_);
    602   if (validate_fn_proto_ != src.validate_fn_proto_)
    603     validate_fn_proto_ = src.validate_fn_proto_;
    604 }
    605 
    606 bool CommandLineFlag::Validate(const FlagValue& value) const {
    607 
    608   if (validate_function() == NULL)
    609     return true;
    610   else
    611     return value.Validate(name(), validate_function());
    612 }
    613 
    614 
    615 // --------------------------------------------------------------------
    616 // FlagRegistry
    617 //    A FlagRegistry singleton object holds all flag objects indexed
    618 //    by their names so that if you know a flag's name (as a C
    619 //    string), you can access or set it.  If the function is named
    620 //    FooLocked(), you must own the registry lock before calling
    621 //    the function; otherwise, you should *not* hold the lock, and
    622 //    the function will acquire it itself if needed.
    623 // --------------------------------------------------------------------
    624 
    625 struct StringCmp {  // Used by the FlagRegistry map class to compare char*'s
    626   bool operator() (const char* s1, const char* s2) const {
    627     return (strcmp(s1, s2) < 0);
    628   }
    629 };
    630 
    631 
    632 class FlagRegistry {
    633  public:
    634   FlagRegistry() {
    635   }
    636   ~FlagRegistry() {
    637     // Not using STLDeleteElements as that resides in util and this
    638     // class is base.
    639     for (FlagMap::iterator p = flags_.begin(), e = flags_.end(); p != e; ++p) {
    640       CommandLineFlag* flag = p->second;
    641       delete flag;
    642     }
    643   }
    644 
    645   static void DeleteGlobalRegistry() {
    646     delete global_registry_;
    647     global_registry_ = NULL;
    648   }
    649 
    650   // Store a flag in this registry.  Takes ownership of the given pointer.
    651   void RegisterFlag(CommandLineFlag* flag);
    652 
    653   void Lock() { lock_.Lock(); }
    654   void Unlock() { lock_.Unlock(); }
    655 
    656   // Returns the flag object for the specified name, or NULL if not found.
    657   CommandLineFlag* FindFlagLocked(const char* name);
    658 
    659   // Returns the flag object whose current-value is stored at flag_ptr.
    660   // That is, for whom current_->value_buffer_ == flag_ptr
    661   CommandLineFlag* FindFlagViaPtrLocked(const void* flag_ptr);
    662 
    663   // A fancier form of FindFlag that works correctly if name is of the
    664   // form flag=value.  In that case, we set key to point to flag, and
    665   // modify v to point to the value (if present), and return the flag
    666   // with the given name.  If the flag does not exist, returns NULL
    667   // and sets error_message.
    668   CommandLineFlag* SplitArgumentLocked(const char* argument,
    669                                        string* key, const char** v,
    670                                        string* error_message);
    671 
    672   // Set the value of a flag.  If the flag was successfully set to
    673   // value, set msg to indicate the new flag-value, and return true.
    674   // Otherwise, set msg to indicate the error, leave flag unchanged,
    675   // and return false.  msg can be NULL.
    676   bool SetFlagLocked(CommandLineFlag* flag, const char* value,
    677                      FlagSettingMode set_mode, string* msg);
    678 
    679   static FlagRegistry* GlobalRegistry();   // returns a singleton registry
    680 
    681  private:
    682   friend class GFLAGS_NAMESPACE::FlagSaverImpl;  // reads all the flags in order to copy them
    683   friend class CommandLineFlagParser;    // for ValidateUnmodifiedFlags
    684   friend void GFLAGS_NAMESPACE::GetAllFlags(vector<CommandLineFlagInfo>*);
    685 
    686   // The map from name to flag, for FindFlagLocked().
    687   typedef map<const char*, CommandLineFlag*, StringCmp> FlagMap;
    688   typedef FlagMap::iterator FlagIterator;
    689   typedef FlagMap::const_iterator FlagConstIterator;
    690   FlagMap flags_;
    691 
    692   // The map from current-value pointer to flag, fo FindFlagViaPtrLocked().
    693   typedef map<const void*, CommandLineFlag*> FlagPtrMap;
    694   FlagPtrMap flags_by_ptr_;
    695 
    696   static FlagRegistry* global_registry_;   // a singleton registry
    697 
    698   Mutex lock_;
    699 
    700   static void InitGlobalRegistry();
    701 
    702   // Disallow
    703   FlagRegistry(const FlagRegistry&);
    704   FlagRegistry& operator=(const FlagRegistry&);
    705 };
    706 
    707 class FlagRegistryLock {
    708  public:
    709   explicit FlagRegistryLock(FlagRegistry* fr) : fr_(fr) { fr_->Lock(); }
    710   ~FlagRegistryLock() { fr_->Unlock(); }
    711  private:
    712   FlagRegistry *const fr_;
    713 };
    714 
    715 
    716 void FlagRegistry::RegisterFlag(CommandLineFlag* flag) {
    717   Lock();
    718   pair<FlagIterator, bool> ins =
    719     flags_.insert(pair<const char*, CommandLineFlag*>(flag->name(), flag));
    720   if (ins.second == false) {   // means the name was already in the map
    721     if (strcmp(ins.first->second->filename(), flag->filename()) != 0) {
    722       ReportError(DIE, "ERROR: flag '%s' was defined more than once "
    723                   "(in files '%s' and '%s').\n",
    724                   flag->name(),
    725                   ins.first->second->filename(),
    726                   flag->filename());
    727     } else {
    728       ReportError(DIE, "ERROR: something wrong with flag '%s' in file '%s'.  "
    729                   "One possibility: file '%s' is being linked both statically "
    730                   "and dynamically into this executable.\n",
    731                   flag->name(),
    732                   flag->filename(), flag->filename());
    733     }
    734   }
    735   // Also add to the flags_by_ptr_ map.
    736   flags_by_ptr_[flag->current_->value_buffer_] = flag;
    737   Unlock();
    738 }
    739 
    740 CommandLineFlag* FlagRegistry::FindFlagLocked(const char* name) {
    741   FlagConstIterator i = flags_.find(name);
    742   if (i == flags_.end()) {
    743     // If the name has dashes in it, try again after replacing with
    744     // underscores.
    745     if (strchr(name, '-') == NULL) return NULL;
    746     string name_rep = name;
    747     std::replace(name_rep.begin(), name_rep.end(), '-', '_');
    748     return FindFlagLocked(name_rep.c_str());
    749   } else {
    750     return i->second;
    751   }
    752 }
    753 
    754 CommandLineFlag* FlagRegistry::FindFlagViaPtrLocked(const void* flag_ptr) {
    755   FlagPtrMap::const_iterator i = flags_by_ptr_.find(flag_ptr);
    756   if (i == flags_by_ptr_.end()) {
    757     return NULL;
    758   } else {
    759     return i->second;
    760   }
    761 }
    762 
    763 CommandLineFlag* FlagRegistry::SplitArgumentLocked(const char* arg,
    764                                                    string* key,
    765                                                    const char** v,
    766                                                    string* error_message) {
    767   // Find the flag object for this option
    768   const char* flag_name;
    769   const char* value = strchr(arg, '=');
    770   if (value == NULL) {
    771     key->assign(arg);
    772     *v = NULL;
    773   } else {
    774     // Strip out the "=value" portion from arg
    775     key->assign(arg, value-arg);
    776     *v = ++value;    // advance past the '='
    777   }
    778   flag_name = key->c_str();
    779 
    780   CommandLineFlag* flag = FindFlagLocked(flag_name);
    781 
    782   if (flag == NULL) {
    783     // If we can't find the flag-name, then we should return an error.
    784     // The one exception is if 1) the flag-name is 'nox', 2) there
    785     // exists a flag named 'x', and 3) 'x' is a boolean flag.
    786     // In that case, we want to return flag 'x'.
    787     if (!(flag_name[0] == 'n' && flag_name[1] == 'o')) {
    788       // flag-name is not 'nox', so we're not in the exception case.
    789       *error_message = StringPrintf("%sunknown command line flag '%s'\n",
    790                                     kError, key->c_str());
    791       return NULL;
    792     }
    793     flag = FindFlagLocked(flag_name+2);
    794     if (flag == NULL) {
    795       // No flag named 'x' exists, so we're not in the exception case.
    796       *error_message = StringPrintf("%sunknown command line flag '%s'\n",
    797                                     kError, key->c_str());
    798       return NULL;
    799     }
    800     if (flag->Type() != FlagValue::FV_BOOL) {
    801       // 'x' exists but is not boolean, so we're not in the exception case.
    802       *error_message = StringPrintf(
    803           "%sboolean value (%s) specified for %s command line flag\n",
    804           kError, key->c_str(), flag->type_name());
    805       return NULL;
    806     }
    807     // We're in the exception case!
    808     // Make up a fake value to replace the "no" we stripped out
    809     key->assign(flag_name+2);   // the name without the "no"
    810     *v = "0";
    811   }
    812 
    813   // Assign a value if this is a boolean flag
    814   if (*v == NULL && flag->Type() == FlagValue::FV_BOOL) {
    815     *v = "1";    // the --nox case was already handled, so this is the --x case
    816   }
    817 
    818   return flag;
    819 }
    820 
    821 bool TryParseLocked(const CommandLineFlag* flag, FlagValue* flag_value,
    822                     const char* value, string* msg) {
    823   // Use tenative_value, not flag_value, until we know value is valid.
    824   FlagValue* tentative_value = flag_value->New();
    825   if (!tentative_value->ParseFrom(value)) {
    826     if (msg) {
    827       StringAppendF(msg,
    828                     "%sillegal value '%s' specified for %s flag '%s'\n",
    829                     kError, value,
    830                     flag->type_name(), flag->name());
    831     }
    832     delete tentative_value;
    833     return false;
    834   } else if (!flag->Validate(*tentative_value)) {
    835     if (msg) {
    836       StringAppendF(msg,
    837           "%sfailed validation of new value '%s' for flag '%s'\n",
    838           kError, tentative_value->ToString().c_str(),
    839           flag->name());
    840     }
    841     delete tentative_value;
    842     return false;
    843   } else {
    844     flag_value->CopyFrom(*tentative_value);
    845     if (msg) {
    846       StringAppendF(msg, "%s set to %s\n",
    847                     flag->name(), flag_value->ToString().c_str());
    848     }
    849     delete tentative_value;
    850     return true;
    851   }
    852 }
    853 
    854 bool FlagRegistry::SetFlagLocked(CommandLineFlag* flag,
    855                                  const char* value,
    856                                  FlagSettingMode set_mode,
    857                                  string* msg) {
    858   flag->UpdateModifiedBit();
    859   switch (set_mode) {
    860     case SET_FLAGS_VALUE: {
    861       // set or modify the flag's value
    862       if (!TryParseLocked(flag, flag->current_, value, msg))
    863         return false;
    864       flag->modified_ = true;
    865       break;
    866     }
    867     case SET_FLAG_IF_DEFAULT: {
    868       // set the flag's value, but only if it hasn't been set by someone else
    869       if (!flag->modified_) {
    870         if (!TryParseLocked(flag, flag->current_, value, msg))
    871           return false;
    872         flag->modified_ = true;
    873       } else {
    874         *msg = StringPrintf("%s set to %s",
    875                             flag->name(), flag->current_value().c_str());
    876       }
    877       break;
    878     }
    879     case SET_FLAGS_DEFAULT: {
    880       // modify the flag's default-value
    881       if (!TryParseLocked(flag, flag->defvalue_, value, msg))
    882         return false;
    883       if (!flag->modified_) {
    884         // Need to set both defvalue *and* current, in this case
    885         TryParseLocked(flag, flag->current_, value, NULL);
    886       }
    887       break;
    888     }
    889     default: {
    890       // unknown set_mode
    891       assert(false);
    892       return false;
    893     }
    894   }
    895 
    896   return true;
    897 }
    898 
    899 // Get the singleton FlagRegistry object
    900 FlagRegistry* FlagRegistry::global_registry_ = NULL;
    901 
    902 FlagRegistry* FlagRegistry::GlobalRegistry() {
    903   static Mutex lock(Mutex::LINKER_INITIALIZED);
    904   MutexLock acquire_lock(&lock);
    905   if (!global_registry_) {
    906     global_registry_ = new FlagRegistry;
    907   }
    908   return global_registry_;
    909 }
    910 
    911 // --------------------------------------------------------------------
    912 // CommandLineFlagParser
    913 //    Parsing is done in two stages.  In the first, we go through
    914 //    argv.  For every flag-like arg we can make sense of, we parse
    915 //    it and set the appropriate FLAGS_* variable.  For every flag-
    916 //    like arg we can't make sense of, we store it in a vector,
    917 //    along with an explanation of the trouble.  In stage 2, we
    918 //    handle the 'reporting' flags like --help and --mpm_version.
    919 //    (This is via a call to HandleCommandLineHelpFlags(), in
    920 //    gflags_reporting.cc.)
    921 //    An optional stage 3 prints out the error messages.
    922 //       This is a bit of a simplification.  For instance, --flagfile
    923 //    is handled as soon as it's seen in stage 1, not in stage 2.
    924 // --------------------------------------------------------------------
    925 
    926 class CommandLineFlagParser {
    927  public:
    928   // The argument is the flag-registry to register the parsed flags in
    929   explicit CommandLineFlagParser(FlagRegistry* reg) : registry_(reg) {}
    930   ~CommandLineFlagParser() {}
    931 
    932   // Stage 1: Every time this is called, it reads all flags in argv.
    933   // However, it ignores all flags that have been successfully set
    934   // before.  Typically this is only called once, so this 'reparsing'
    935   // behavior isn't important.  It can be useful when trying to
    936   // reparse after loading a dll, though.
    937   uint32 ParseNewCommandLineFlags(int* argc, char*** argv, bool remove_flags);
    938 
    939   // Stage 2: print reporting info and exit, if requested.
    940   // In gflags_reporting.cc:HandleCommandLineHelpFlags().
    941 
    942   // Stage 3: validate all the commandline flags that have validators
    943   // registered and were not set/modified by ParseNewCommandLineFlags.
    944   void ValidateFlags(bool all);
    945   void ValidateUnmodifiedFlags();
    946 
    947   // Stage 4: report any errors and return true if any were found.
    948   bool ReportErrors();
    949 
    950   // Set a particular command line option.  "newval" is a string
    951   // describing the new value that the option has been set to.  If
    952   // option_name does not specify a valid option name, or value is not
    953   // a valid value for option_name, newval is empty.  Does recursive
    954   // processing for --flagfile and --fromenv.  Returns the new value
    955   // if everything went ok, or empty-string if not.  (Actually, the
    956   // return-string could hold many flag/value pairs due to --flagfile.)
    957   // NB: Must have called registry_->Lock() before calling this function.
    958   string ProcessSingleOptionLocked(CommandLineFlag* flag,
    959                                    const char* value,
    960                                    FlagSettingMode set_mode);
    961 
    962   // Set a whole batch of command line options as specified by contentdata,
    963   // which is in flagfile format (and probably has been read from a flagfile).
    964   // Returns the new value if everything went ok, or empty-string if
    965   // not.  (Actually, the return-string could hold many flag/value
    966   // pairs due to --flagfile.)
    967   // NB: Must have called registry_->Lock() before calling this function.
    968   string ProcessOptionsFromStringLocked(const string& contentdata,
    969                                         FlagSettingMode set_mode);
    970 
    971   // These are the 'recursive' flags, defined at the top of this file.
    972   // Whenever we see these flags on the commandline, we must take action.
    973   // These are called by ProcessSingleOptionLocked and, similarly, return
    974   // new values if everything went ok, or the empty-string if not.
    975   string ProcessFlagfileLocked(const string& flagval, FlagSettingMode set_mode);
    976   // diff fromenv/tryfromenv
    977   string ProcessFromenvLocked(const string& flagval, FlagSettingMode set_mode,
    978                               bool errors_are_fatal);
    979 
    980  private:
    981   FlagRegistry* const registry_;
    982   map<string, string> error_flags_;      // map from name to error message
    983   // This could be a set<string>, but we reuse the map to minimize the .o size
    984   map<string, string> undefined_names_;  // --[flag] name was not registered
    985 };
    986 
    987 
    988 // Parse a list of (comma-separated) flags.
    989 static void ParseFlagList(const char* value, vector<string>* flags) {
    990   for (const char *p = value; p && *p; value = p) {
    991     p = strchr(value, ',');
    992     size_t len;
    993     if (p) {
    994       len = p - value;
    995       p++;
    996     } else {
    997       len = strlen(value);
    998     }
    999 
   1000     if (len == 0)
   1001       ReportError(DIE, "ERROR: empty flaglist entry\n");
   1002     if (value[0] == '-')
   1003       ReportError(DIE, "ERROR: flag \"%*s\" begins with '-'\n", len, value);
   1004 
   1005     flags->push_back(string(value, len));
   1006   }
   1007 }
   1008 
   1009 // Snarf an entire file into a C++ string.  This is just so that we
   1010 // can do all the I/O in one place and not worry about it everywhere.
   1011 // Plus, it's convenient to have the whole file contents at hand.
   1012 // Adds a newline at the end of the file.
   1013 #define PFATAL(s)  do { perror(s); gflags_exitfunc(1); } while (0)
   1014 
   1015 static string ReadFileIntoString(const char* filename) {
   1016   const int kBufSize = 8092;
   1017   char buffer[kBufSize];
   1018   string s;
   1019   FILE* fp;
   1020   if ((errno = SafeFOpen(&fp, filename, "r")) != 0) PFATAL(filename);
   1021   size_t n;
   1022   while ( (n=fread(buffer, 1, kBufSize, fp)) > 0 ) {
   1023     if (ferror(fp))  PFATAL(filename);
   1024     s.append(buffer, n);
   1025   }
   1026   fclose(fp);
   1027   return s;
   1028 }
   1029 
   1030 uint32 CommandLineFlagParser::ParseNewCommandLineFlags(int* argc, char*** argv,
   1031                                                        bool remove_flags) {
   1032   int first_nonopt = *argc;        // for non-options moved to the end
   1033 
   1034   registry_->Lock();
   1035   for (int i = 1; i < first_nonopt; i++) {
   1036     char* arg = (*argv)[i];
   1037 
   1038     // Like getopt(), we permute non-option flags to be at the end.
   1039     if (arg[0] != '-' ||           // must be a program argument
   1040         (arg[0] == '-' && arg[1] == '\0')) {  // "-" is an argument, not a flag
   1041       memmove((*argv) + i, (*argv) + i+1, (*argc - (i+1)) * sizeof((*argv)[i]));
   1042       (*argv)[*argc-1] = arg;      // we go last
   1043       first_nonopt--;              // we've been pushed onto the stack
   1044       i--;                         // to undo the i++ in the loop
   1045       continue;
   1046     }
   1047 
   1048     if (arg[0] == '-') arg++;      // allow leading '-'
   1049     if (arg[0] == '-') arg++;      // or leading '--'
   1050 
   1051     // -- alone means what it does for GNU: stop options parsing
   1052     if (*arg == '\0') {
   1053       first_nonopt = i+1;
   1054       break;
   1055     }
   1056 
   1057     // Find the flag object for this option
   1058     string key;
   1059     const char* value;
   1060     string error_message;
   1061     CommandLineFlag* flag = registry_->SplitArgumentLocked(arg, &key, &value,
   1062                                                            &error_message);
   1063     if (flag == NULL) {
   1064       undefined_names_[key] = "";    // value isn't actually used
   1065       error_flags_[key] = error_message;
   1066       continue;
   1067     }
   1068 
   1069     if (value == NULL) {
   1070       // Boolean options are always assigned a value by SplitArgumentLocked()
   1071       assert(flag->Type() != FlagValue::FV_BOOL);
   1072       if (i+1 >= first_nonopt) {
   1073         // This flag needs a value, but there is nothing available
   1074         error_flags_[key] = (string(kError) + "flag '" + (*argv)[i] + "'"
   1075                              + " is missing its argument");
   1076         if (flag->help() && flag->help()[0] > '\001') {
   1077           // Be useful in case we have a non-stripped description.
   1078           error_flags_[key] += string("; flag description: ") + flag->help();
   1079         }
   1080         error_flags_[key] += "\n";
   1081         break;    // we treat this as an unrecoverable error
   1082       } else {
   1083         value = (*argv)[++i];                   // read next arg for value
   1084 
   1085         // Heuristic to detect the case where someone treats a string arg
   1086         // like a bool:
   1087         // --my_string_var --foo=bar
   1088         // We look for a flag of string type, whose value begins with a
   1089         // dash, and where the flag-name and value are separated by a
   1090         // space rather than an '='.
   1091         // To avoid false positives, we also require the word "true"
   1092         // or "false" in the help string.  Without this, a valid usage
   1093         // "-lat -30.5" would trigger the warning.  The common cases we
   1094         // want to solve talk about true and false as values.
   1095         if (value[0] == '-'
   1096             && flag->Type() == FlagValue::FV_STRING
   1097             && (strstr(flag->help(), "true")
   1098                 || strstr(flag->help(), "false"))) {
   1099           LOG(WARNING) << "Did you really mean to set flag '"
   1100                        << flag->name() << "' to the value '"
   1101                        << value << "'?";
   1102         }
   1103       }
   1104     }
   1105 
   1106     // TODO(csilvers): only set a flag if we hadn't set it before here
   1107     ProcessSingleOptionLocked(flag, value, SET_FLAGS_VALUE);
   1108   }
   1109   registry_->Unlock();
   1110 
   1111   if (remove_flags) {   // Fix up argc and argv by removing command line flags
   1112     (*argv)[first_nonopt-1] = (*argv)[0];
   1113     (*argv) += (first_nonopt-1);
   1114     (*argc) -= (first_nonopt-1);
   1115     first_nonopt = 1;   // because we still don't count argv[0]
   1116   }
   1117 
   1118   logging_is_probably_set_up = true;   // because we've parsed --logdir, etc.
   1119 
   1120   return first_nonopt;
   1121 }
   1122 
   1123 string CommandLineFlagParser::ProcessFlagfileLocked(const string& flagval,
   1124                                                     FlagSettingMode set_mode) {
   1125   if (flagval.empty())
   1126     return "";
   1127 
   1128   string msg;
   1129   vector<string> filename_list;
   1130   ParseFlagList(flagval.c_str(), &filename_list);  // take a list of filenames
   1131   for (size_t i = 0; i < filename_list.size(); ++i) {
   1132     const char* file = filename_list[i].c_str();
   1133     msg += ProcessOptionsFromStringLocked(ReadFileIntoString(file), set_mode);
   1134   }
   1135   return msg;
   1136 }
   1137 
   1138 string CommandLineFlagParser::ProcessFromenvLocked(const string& flagval,
   1139                                                    FlagSettingMode set_mode,
   1140                                                    bool errors_are_fatal) {
   1141   if (flagval.empty())
   1142     return "";
   1143 
   1144   string msg;
   1145   vector<string> flaglist;
   1146   ParseFlagList(flagval.c_str(), &flaglist);
   1147 
   1148   for (size_t i = 0; i < flaglist.size(); ++i) {
   1149     const char* flagname = flaglist[i].c_str();
   1150     CommandLineFlag* flag = registry_->FindFlagLocked(flagname);
   1151     if (flag == NULL) {
   1152       error_flags_[flagname] =
   1153           StringPrintf("%sunknown command line flag '%s' "
   1154                        "(via --fromenv or --tryfromenv)\n",
   1155                        kError, flagname);
   1156       undefined_names_[flagname] = "";
   1157       continue;
   1158     }
   1159 
   1160     const string envname = string("FLAGS_") + string(flagname);
   1161     string envval;
   1162     if (!SafeGetEnv(envname.c_str(), envval)) {
   1163       if (errors_are_fatal) {
   1164         error_flags_[flagname] = (string(kError) + envname +
   1165                                   " not found in environment\n");
   1166       }
   1167       continue;
   1168     }
   1169 
   1170     // Avoid infinite recursion.
   1171     if (envval == "fromenv" || envval == "tryfromenv") {
   1172       error_flags_[flagname] =
   1173           StringPrintf("%sinfinite recursion on environment flag '%s'\n",
   1174                        kError, envval.c_str());
   1175       continue;
   1176     }
   1177 
   1178     msg += ProcessSingleOptionLocked(flag, envval.c_str(), set_mode);
   1179   }
   1180   return msg;
   1181 }
   1182 
   1183 string CommandLineFlagParser::ProcessSingleOptionLocked(
   1184     CommandLineFlag* flag, const char* value, FlagSettingMode set_mode) {
   1185   string msg;
   1186   if (value && !registry_->SetFlagLocked(flag, value, set_mode, &msg)) {
   1187     error_flags_[flag->name()] = msg;
   1188     return "";
   1189   }
   1190 
   1191   // The recursive flags, --flagfile and --fromenv and --tryfromenv,
   1192   // must be dealt with as soon as they're seen.  They will emit
   1193   // messages of their own.
   1194   if (strcmp(flag->name(), "flagfile") == 0) {
   1195     msg += ProcessFlagfileLocked(FLAGS_flagfile, set_mode);
   1196 
   1197   } else if (strcmp(flag->name(), "fromenv") == 0) {
   1198     // last arg indicates envval-not-found is fatal (unlike in --tryfromenv)
   1199     msg += ProcessFromenvLocked(FLAGS_fromenv, set_mode, true);
   1200 
   1201   } else if (strcmp(flag->name(), "tryfromenv") == 0) {
   1202     msg += ProcessFromenvLocked(FLAGS_tryfromenv, set_mode, false);
   1203   }
   1204 
   1205   return msg;
   1206 }
   1207 
   1208 void CommandLineFlagParser::ValidateFlags(bool all) {
   1209   FlagRegistryLock frl(registry_);
   1210   for (FlagRegistry::FlagConstIterator i = registry_->flags_.begin();
   1211        i != registry_->flags_.end(); ++i) {
   1212     if ((all || !i->second->Modified()) && !i->second->ValidateCurrent()) {
   1213       // only set a message if one isn't already there.  (If there's
   1214       // an error message, our job is done, even if it's not exactly
   1215       // the same error.)
   1216       if (error_flags_[i->second->name()].empty()) {
   1217         error_flags_[i->second->name()] =
   1218             string(kError) + "--" + i->second->name() +
   1219             " must be set on the commandline";
   1220         if (!i->second->Modified()) {
   1221           error_flags_[i->second->name()] += " (default value fails validation)";
   1222         }
   1223         error_flags_[i->second->name()] += "\n";
   1224       }
   1225     }
   1226   }
   1227 }
   1228 
   1229 void CommandLineFlagParser::ValidateUnmodifiedFlags() {
   1230   ValidateFlags(false);
   1231 }
   1232 
   1233 bool CommandLineFlagParser::ReportErrors() {
   1234   // error_flags_ indicates errors we saw while parsing.
   1235   // But we ignore undefined-names if ok'ed by --undef_ok
   1236   if (!FLAGS_undefok.empty()) {
   1237     vector<string> flaglist;
   1238     ParseFlagList(FLAGS_undefok.c_str(), &flaglist);
   1239     for (size_t i = 0; i < flaglist.size(); ++i) {
   1240       // We also deal with --no<flag>, in case the flagname was boolean
   1241       const string no_version = string("no") + flaglist[i];
   1242       if (undefined_names_.find(flaglist[i]) != undefined_names_.end()) {
   1243         error_flags_[flaglist[i]] = "";    // clear the error message
   1244       } else if (undefined_names_.find(no_version) != undefined_names_.end()) {
   1245         error_flags_[no_version] = "";
   1246       }
   1247     }
   1248   }
   1249   // Likewise, if they decided to allow reparsing, all undefined-names
   1250   // are ok; we just silently ignore them now, and hope that a future
   1251   // parse will pick them up somehow.
   1252   if (allow_command_line_reparsing) {
   1253     for (map<string, string>::const_iterator it = undefined_names_.begin();
   1254          it != undefined_names_.end();  ++it)
   1255       error_flags_[it->first] = "";      // clear the error message
   1256   }
   1257 
   1258   bool found_error = false;
   1259   string error_message;
   1260   for (map<string, string>::const_iterator it = error_flags_.begin();
   1261        it != error_flags_.end(); ++it) {
   1262     if (!it->second.empty()) {
   1263       error_message.append(it->second.data(), it->second.size());
   1264       found_error = true;
   1265     }
   1266   }
   1267   if (found_error)
   1268     ReportError(DO_NOT_DIE, "%s", error_message.c_str());
   1269   return found_error;
   1270 }
   1271 
   1272 string CommandLineFlagParser::ProcessOptionsFromStringLocked(
   1273     const string& contentdata, FlagSettingMode set_mode) {
   1274   string retval;
   1275   const char* flagfile_contents = contentdata.c_str();
   1276   bool flags_are_relevant = true;   // set to false when filenames don't match
   1277   bool in_filename_section = false;
   1278 
   1279   const char* line_end = flagfile_contents;
   1280   // We read this file a line at a time.
   1281   for (; line_end; flagfile_contents = line_end + 1) {
   1282     while (*flagfile_contents && isspace(*flagfile_contents))
   1283       ++flagfile_contents;
   1284     // Windows uses "\r\n"
   1285     line_end = strchr(flagfile_contents, '\r');
   1286     if (line_end == NULL)
   1287         line_end = strchr(flagfile_contents, '\n');
   1288 
   1289     size_t len = line_end ? line_end - flagfile_contents
   1290                           : strlen(flagfile_contents);
   1291     string line(flagfile_contents, len);
   1292 
   1293     // Each line can be one of four things:
   1294     // 1) A comment line -- we skip it
   1295     // 2) An empty line -- we skip it
   1296     // 3) A list of filenames -- starts a new filenames+flags section
   1297     // 4) A --flag=value line -- apply if previous filenames match
   1298     if (line.empty() || line[0] == '#') {
   1299       // comment or empty line; just ignore
   1300 
   1301     } else if (line[0] == '-') {    // flag
   1302       in_filename_section = false;  // instead, it was a flag-line
   1303       if (!flags_are_relevant)      // skip this flag; applies to someone else
   1304         continue;
   1305 
   1306       const char* name_and_val = line.c_str() + 1;    // skip the leading -
   1307       if (*name_and_val == '-')
   1308         name_and_val++;                               // skip second - too
   1309       string key;
   1310       const char* value;
   1311       string error_message;
   1312       CommandLineFlag* flag = registry_->SplitArgumentLocked(name_and_val,
   1313                                                              &key, &value,
   1314                                                              &error_message);
   1315       // By API, errors parsing flagfile lines are silently ignored.
   1316       if (flag == NULL) {
   1317         // "WARNING: flagname '" + key + "' not found\n"
   1318       } else if (value == NULL) {
   1319         // "WARNING: flagname '" + key + "' missing a value\n"
   1320       } else {
   1321         retval += ProcessSingleOptionLocked(flag, value, set_mode);
   1322       }
   1323 
   1324     } else {                        // a filename!
   1325       if (!in_filename_section) {   // start over: assume filenames don't match
   1326         in_filename_section = true;
   1327         flags_are_relevant = false;
   1328       }
   1329 
   1330       // Split the line up at spaces into glob-patterns
   1331       const char* space = line.c_str();   // just has to be non-NULL
   1332       for (const char* word = line.c_str(); *space; word = space+1) {
   1333         if (flags_are_relevant)     // we can stop as soon as we match
   1334           break;
   1335         space = strchr(word, ' ');
   1336         if (space == NULL)
   1337           space = word + strlen(word);
   1338         const string glob(word, space - word);
   1339         // We try matching both against the full argv0 and basename(argv0)
   1340         if (glob == ProgramInvocationName()       // small optimization
   1341             || glob == ProgramInvocationShortName()
   1342 #if defined(HAVE_FNMATCH_H)
   1343             || fnmatch(glob.c_str(), ProgramInvocationName(),      FNM_PATHNAME) == 0
   1344             || fnmatch(glob.c_str(), ProgramInvocationShortName(), FNM_PATHNAME) == 0
   1345 #elif defined(HAVE_SHLWAPI_H)
   1346             || PathMatchSpec(glob.c_str(), ProgramInvocationName())
   1347             || PathMatchSpec(glob.c_str(), ProgramInvocationShortName())
   1348 #endif
   1349             ) {
   1350           flags_are_relevant = true;
   1351         }
   1352       }
   1353     }
   1354   }
   1355   return retval;
   1356 }
   1357 
   1358 // --------------------------------------------------------------------
   1359 // GetFromEnv()
   1360 // AddFlagValidator()
   1361 //    These are helper functions for routines like BoolFromEnv() and
   1362 //    RegisterFlagValidator, defined below.  They're defined here so
   1363 //    they can live in the unnamed namespace (which makes friendship
   1364 //    declarations for these classes possible).
   1365 // --------------------------------------------------------------------
   1366 
   1367 template<typename T>
   1368 T GetFromEnv(const char *varname, T dflt) {
   1369   std::string valstr;
   1370   if (SafeGetEnv(varname, valstr)) {
   1371     FlagValue ifv(new T, true);
   1372     if (!ifv.ParseFrom(valstr.c_str())) {
   1373       ReportError(DIE, "ERROR: error parsing env variable '%s' with value '%s'\n",
   1374                   varname, valstr.c_str());
   1375     }
   1376     return OTHER_VALUE_AS(ifv, T);
   1377   } else return dflt;
   1378 }
   1379 
   1380 bool AddFlagValidator(const void* flag_ptr, ValidateFnProto validate_fn_proto) {
   1381   // We want a lock around this routine, in case two threads try to
   1382   // add a validator (hopefully the same one!) at once.  We could use
   1383   // our own thread, but we need to loook at the registry anyway, so
   1384   // we just steal that one.
   1385   FlagRegistry* const registry = FlagRegistry::GlobalRegistry();
   1386   FlagRegistryLock frl(registry);
   1387   // First, find the flag whose current-flag storage is 'flag'.
   1388   // This is the CommandLineFlag whose current_->value_buffer_ == flag
   1389   CommandLineFlag* flag = registry->FindFlagViaPtrLocked(flag_ptr);
   1390   if (!flag) {
   1391     LOG(WARNING) << "Ignoring RegisterValidateFunction() for flag pointer "
   1392                  << flag_ptr << ": no flag found at that address";
   1393     return false;
   1394   } else if (validate_fn_proto == flag->validate_function()) {
   1395     return true;    // ok to register the same function over and over again
   1396   } else if (validate_fn_proto != NULL && flag->validate_function() != NULL) {
   1397     LOG(WARNING) << "Ignoring RegisterValidateFunction() for flag '"
   1398                  << flag->name() << "': validate-fn already registered";
   1399     return false;
   1400   } else {
   1401     flag->validate_fn_proto_ = validate_fn_proto;
   1402     return true;
   1403   }
   1404 }
   1405 
   1406 }  // end unnamed namespaces
   1407 
   1408 
   1409 // Now define the functions that are exported via the .h file
   1410 
   1411 // --------------------------------------------------------------------
   1412 // FlagRegisterer
   1413 //    This class exists merely to have a global constructor (the
   1414 //    kind that runs before main(), that goes an initializes each
   1415 //    flag that's been declared.  Note that it's very important we
   1416 //    don't have a destructor that deletes flag_, because that would
   1417 //    cause us to delete current_storage/defvalue_storage as well,
   1418 //    which can cause a crash if anything tries to access the flag
   1419 //    values in a global destructor.
   1420 // --------------------------------------------------------------------
   1421 
   1422 namespace {
   1423 void RegisterCommandLineFlag(const char* name,
   1424                              const char* help,
   1425                              const char* filename,
   1426                              FlagValue* current,
   1427                              FlagValue* defvalue) {
   1428   if (help == NULL)
   1429     help = "";
   1430   // Importantly, flag_ will never be deleted, so storage is always good.
   1431   CommandLineFlag* flag =
   1432       new CommandLineFlag(name, help, filename, current, defvalue);
   1433   FlagRegistry::GlobalRegistry()->RegisterFlag(flag);  // default registry
   1434 }
   1435 }
   1436 
   1437 template <typename FlagType>
   1438 FlagRegisterer::FlagRegisterer(const char* name,
   1439                                const char* help,
   1440                                const char* filename,
   1441                                FlagType* current_storage,
   1442                                FlagType* defvalue_storage) {
   1443   FlagValue* const current = new FlagValue(current_storage, false);
   1444   FlagValue* const defvalue = new FlagValue(defvalue_storage, false);
   1445   RegisterCommandLineFlag(name, help, filename, current, defvalue);
   1446 }
   1447 
   1448 // Force compiler to generate code for the given template specialization.
   1449 #define INSTANTIATE_FLAG_REGISTERER_CTOR(type)                  \
   1450   template GFLAGS_DLL_DECL FlagRegisterer::FlagRegisterer(      \
   1451       const char* name, const char* help, const char* filename, \
   1452       type* current_storage, type* defvalue_storage)
   1453 
   1454 // Do this for all supported flag types.
   1455 INSTANTIATE_FLAG_REGISTERER_CTOR(bool);
   1456 INSTANTIATE_FLAG_REGISTERER_CTOR(int32);
   1457 INSTANTIATE_FLAG_REGISTERER_CTOR(uint32);
   1458 INSTANTIATE_FLAG_REGISTERER_CTOR(int64);
   1459 INSTANTIATE_FLAG_REGISTERER_CTOR(uint64);
   1460 INSTANTIATE_FLAG_REGISTERER_CTOR(double);
   1461 INSTANTIATE_FLAG_REGISTERER_CTOR(std::string);
   1462 
   1463 #undef INSTANTIATE_FLAG_REGISTERER_CTOR
   1464 
   1465 // --------------------------------------------------------------------
   1466 // GetAllFlags()
   1467 //    The main way the FlagRegistry class exposes its data.  This
   1468 //    returns, as strings, all the info about all the flags in
   1469 //    the main registry, sorted first by filename they are defined
   1470 //    in, and then by flagname.
   1471 // --------------------------------------------------------------------
   1472 
   1473 struct FilenameFlagnameCmp {
   1474   bool operator()(const CommandLineFlagInfo& a,
   1475                   const CommandLineFlagInfo& b) const {
   1476     int cmp = strcmp(a.filename.c_str(), b.filename.c_str());
   1477     if (cmp == 0)
   1478       cmp = strcmp(a.name.c_str(), b.name.c_str());  // secondary sort key
   1479     return cmp < 0;
   1480   }
   1481 };
   1482 
   1483 void GetAllFlags(vector<CommandLineFlagInfo>* OUTPUT) {
   1484   FlagRegistry* const registry = FlagRegistry::GlobalRegistry();
   1485   registry->Lock();
   1486   for (FlagRegistry::FlagConstIterator i = registry->flags_.begin();
   1487        i != registry->flags_.end(); ++i) {
   1488     CommandLineFlagInfo fi;
   1489     i->second->FillCommandLineFlagInfo(&fi);
   1490     OUTPUT->push_back(fi);
   1491   }
   1492   registry->Unlock();
   1493   // Now sort the flags, first by filename they occur in, then alphabetically
   1494   sort(OUTPUT->begin(), OUTPUT->end(), FilenameFlagnameCmp());
   1495 }
   1496 
   1497 // --------------------------------------------------------------------
   1498 // SetArgv()
   1499 // GetArgvs()
   1500 // GetArgv()
   1501 // GetArgv0()
   1502 // ProgramInvocationName()
   1503 // ProgramInvocationShortName()
   1504 // SetUsageMessage()
   1505 // ProgramUsage()
   1506 //    Functions to set and get argv.  Typically the setter is called
   1507 //    by ParseCommandLineFlags.  Also can get the ProgramUsage string,
   1508 //    set by SetUsageMessage.
   1509 // --------------------------------------------------------------------
   1510 
   1511 // These values are not protected by a Mutex because they are normally
   1512 // set only once during program startup.
   1513 static string argv0("UNKNOWN");  // just the program name
   1514 static string cmdline;           // the entire command-line
   1515 static string program_usage;
   1516 static vector<string> argvs;
   1517 static uint32 argv_sum = 0;
   1518 
   1519 void SetArgv(int argc, const char** argv) {
   1520   static bool called_set_argv = false;
   1521   if (called_set_argv) return;
   1522   called_set_argv = true;
   1523 
   1524   assert(argc > 0); // every program has at least a name
   1525   argv0 = argv[0];
   1526 
   1527   cmdline.clear();
   1528   for (int i = 0; i < argc; i++) {
   1529     if (i != 0) cmdline += " ";
   1530     cmdline += argv[i];
   1531     argvs.push_back(argv[i]);
   1532   }
   1533 
   1534   // Compute a simple sum of all the chars in argv
   1535   argv_sum = 0;
   1536   for (string::const_iterator c = cmdline.begin(); c != cmdline.end(); ++c) {
   1537     argv_sum += *c;
   1538   }
   1539 }
   1540 
   1541 const vector<string>& GetArgvs() { return argvs; }
   1542 const char* GetArgv()            { return cmdline.c_str(); }
   1543 const char* GetArgv0()           { return argv0.c_str(); }
   1544 uint32 GetArgvSum()              { return argv_sum; }
   1545 const char* ProgramInvocationName() {             // like the GNU libc fn
   1546   return GetArgv0();
   1547 }
   1548 const char* ProgramInvocationShortName() {        // like the GNU libc fn
   1549   size_t pos = argv0.rfind('/');
   1550 #ifdef OS_WINDOWS
   1551   if (pos == string::npos) pos = argv0.rfind('\\');
   1552 #endif
   1553   return (pos == string::npos ? argv0.c_str() : (argv0.c_str() + pos + 1));
   1554 }
   1555 
   1556 void SetUsageMessage(const string& usage) {
   1557   program_usage = usage;
   1558 }
   1559 
   1560 const char* ProgramUsage() {
   1561   if (program_usage.empty()) {
   1562     return "Warning: SetUsageMessage() never called";
   1563   }
   1564   return program_usage.c_str();
   1565 }
   1566 
   1567 // --------------------------------------------------------------------
   1568 // SetVersionString()
   1569 // VersionString()
   1570 // --------------------------------------------------------------------
   1571 
   1572 static string version_string;
   1573 
   1574 void SetVersionString(const string& version) {
   1575   version_string = version;
   1576 }
   1577 
   1578 const char* VersionString() {
   1579   return version_string.c_str();
   1580 }
   1581 
   1582 
   1583 // --------------------------------------------------------------------
   1584 // GetCommandLineOption()
   1585 // GetCommandLineFlagInfo()
   1586 // GetCommandLineFlagInfoOrDie()
   1587 // SetCommandLineOption()
   1588 // SetCommandLineOptionWithMode()
   1589 //    The programmatic way to set a flag's value, using a string
   1590 //    for its name rather than the variable itself (that is,
   1591 //    SetCommandLineOption("foo", x) rather than FLAGS_foo = x).
   1592 //    There's also a bit more flexibility here due to the various
   1593 //    set-modes, but typically these are used when you only have
   1594 //    that flag's name as a string, perhaps at runtime.
   1595 //    All of these work on the default, global registry.
   1596 //       For GetCommandLineOption, return false if no such flag
   1597 //    is known, true otherwise.  We clear "value" if a suitable
   1598 //    flag is found.
   1599 // --------------------------------------------------------------------
   1600 
   1601 
   1602 bool GetCommandLineOption(const char* name, string* value) {
   1603   if (NULL == name)
   1604     return false;
   1605   assert(value);
   1606 
   1607   FlagRegistry* const registry = FlagRegistry::GlobalRegistry();
   1608   FlagRegistryLock frl(registry);
   1609   CommandLineFlag* flag = registry->FindFlagLocked(name);
   1610   if (flag == NULL) {
   1611     return false;
   1612   } else {
   1613     *value = flag->current_value();
   1614     return true;
   1615   }
   1616 }
   1617 
   1618 bool GetCommandLineFlagInfo(const char* name, CommandLineFlagInfo* OUTPUT) {
   1619   if (NULL == name) return false;
   1620   FlagRegistry* const registry = FlagRegistry::GlobalRegistry();
   1621   FlagRegistryLock frl(registry);
   1622   CommandLineFlag* flag = registry->FindFlagLocked(name);
   1623   if (flag == NULL) {
   1624     return false;
   1625   } else {
   1626     assert(OUTPUT);
   1627     flag->FillCommandLineFlagInfo(OUTPUT);
   1628     return true;
   1629   }
   1630 }
   1631 
   1632 CommandLineFlagInfo GetCommandLineFlagInfoOrDie(const char* name) {
   1633   CommandLineFlagInfo info;
   1634   if (!GetCommandLineFlagInfo(name, &info)) {
   1635     fprintf(stderr, "FATAL ERROR: flag name '%s' doesn't exist\n", name);
   1636     gflags_exitfunc(1);    // almost certainly gflags_exitfunc()
   1637   }
   1638   return info;
   1639 }
   1640 
   1641 string SetCommandLineOptionWithMode(const char* name, const char* value,
   1642                                     FlagSettingMode set_mode) {
   1643   string result;
   1644   FlagRegistry* const registry = FlagRegistry::GlobalRegistry();
   1645   FlagRegistryLock frl(registry);
   1646   CommandLineFlag* flag = registry->FindFlagLocked(name);
   1647   if (flag) {
   1648     CommandLineFlagParser parser(registry);
   1649     result = parser.ProcessSingleOptionLocked(flag, value, set_mode);
   1650     if (!result.empty()) {   // in the error case, we've already logged
   1651       // Could consider logging this change
   1652     }
   1653   }
   1654   // The API of this function is that we return empty string on error
   1655   return result;
   1656 }
   1657 
   1658 string SetCommandLineOption(const char* name, const char* value) {
   1659   return SetCommandLineOptionWithMode(name, value, SET_FLAGS_VALUE);
   1660 }
   1661 
   1662 // --------------------------------------------------------------------
   1663 // FlagSaver
   1664 // FlagSaverImpl
   1665 //    This class stores the states of all flags at construct time,
   1666 //    and restores all flags to that state at destruct time.
   1667 //    Its major implementation challenge is that it never modifies
   1668 //    pointers in the 'main' registry, so global FLAG_* vars always
   1669 //    point to the right place.
   1670 // --------------------------------------------------------------------
   1671 
   1672 class FlagSaverImpl {
   1673  public:
   1674   // Constructs an empty FlagSaverImpl object.
   1675   explicit FlagSaverImpl(FlagRegistry* main_registry)
   1676       : main_registry_(main_registry) { }
   1677   ~FlagSaverImpl() {
   1678     // reclaim memory from each of our CommandLineFlags
   1679     vector<CommandLineFlag*>::const_iterator it;
   1680     for (it = backup_registry_.begin(); it != backup_registry_.end(); ++it)
   1681       delete *it;
   1682   }
   1683 
   1684   // Saves the flag states from the flag registry into this object.
   1685   // It's an error to call this more than once.
   1686   // Must be called when the registry mutex is not held.
   1687   void SaveFromRegistry() {
   1688     FlagRegistryLock frl(main_registry_);
   1689     assert(backup_registry_.empty());   // call only once!
   1690     for (FlagRegistry::FlagConstIterator it = main_registry_->flags_.begin();
   1691          it != main_registry_->flags_.end();
   1692          ++it) {
   1693       const CommandLineFlag* main = it->second;
   1694       // Sets up all the const variables in backup correctly
   1695       CommandLineFlag* backup = new CommandLineFlag(
   1696           main->name(), main->help(), main->filename(),
   1697           main->current_->New(), main->defvalue_->New());
   1698       // Sets up all the non-const variables in backup correctly
   1699       backup->CopyFrom(*main);
   1700       backup_registry_.push_back(backup);   // add it to a convenient list
   1701     }
   1702   }
   1703 
   1704   // Restores the saved flag states into the flag registry.  We
   1705   // assume no flags were added or deleted from the registry since
   1706   // the SaveFromRegistry; if they were, that's trouble!  Must be
   1707   // called when the registry mutex is not held.
   1708   void RestoreToRegistry() {
   1709     FlagRegistryLock frl(main_registry_);
   1710     vector<CommandLineFlag*>::const_iterator it;
   1711     for (it = backup_registry_.begin(); it != backup_registry_.end(); ++it) {
   1712       CommandLineFlag* main = main_registry_->FindFlagLocked((*it)->name());
   1713       if (main != NULL) {       // if NULL, flag got deleted from registry(!)
   1714         main->CopyFrom(**it);
   1715       }
   1716     }
   1717   }
   1718 
   1719  private:
   1720   FlagRegistry* const main_registry_;
   1721   vector<CommandLineFlag*> backup_registry_;
   1722 
   1723   FlagSaverImpl(const FlagSaverImpl&);  // no copying!
   1724   void operator=(const FlagSaverImpl&);
   1725 };
   1726 
   1727 FlagSaver::FlagSaver()
   1728     : impl_(new FlagSaverImpl(FlagRegistry::GlobalRegistry())) {
   1729   impl_->SaveFromRegistry();
   1730 }
   1731 
   1732 FlagSaver::~FlagSaver() {
   1733   impl_->RestoreToRegistry();
   1734   delete impl_;
   1735 }
   1736 
   1737 
   1738 // --------------------------------------------------------------------
   1739 // CommandlineFlagsIntoString()
   1740 // ReadFlagsFromString()
   1741 // AppendFlagsIntoFile()
   1742 // ReadFromFlagsFile()
   1743 //    These are mostly-deprecated routines that stick the
   1744 //    commandline flags into a file/string and read them back
   1745 //    out again.  I can see a use for CommandlineFlagsIntoString,
   1746 //    for creating a flagfile, but the rest don't seem that useful
   1747 //    -- some, I think, are a poor-man's attempt at FlagSaver --
   1748 //    and are included only until we can delete them from callers.
   1749 //    Note they don't save --flagfile flags (though they do save
   1750 //    the result of having called the flagfile, of course).
   1751 // --------------------------------------------------------------------
   1752 
   1753 static string TheseCommandlineFlagsIntoString(
   1754     const vector<CommandLineFlagInfo>& flags) {
   1755   vector<CommandLineFlagInfo>::const_iterator i;
   1756 
   1757   size_t retval_space = 0;
   1758   for (i = flags.begin(); i != flags.end(); ++i) {
   1759     // An (over)estimate of how much space it will take to print this flag
   1760     retval_space += i->name.length() + i->current_value.length() + 5;
   1761   }
   1762 
   1763   string retval;
   1764   retval.reserve(retval_space);
   1765   for (i = flags.begin(); i != flags.end(); ++i) {
   1766     retval += "--";
   1767     retval += i->name;
   1768     retval += "=";
   1769     retval += i->current_value;
   1770     retval += "\n";
   1771   }
   1772   return retval;
   1773 }
   1774 
   1775 string CommandlineFlagsIntoString() {
   1776   vector<CommandLineFlagInfo> sorted_flags;
   1777   GetAllFlags(&sorted_flags);
   1778   return TheseCommandlineFlagsIntoString(sorted_flags);
   1779 }
   1780 
   1781 bool ReadFlagsFromString(const string& flagfilecontents,
   1782                          const char* /*prog_name*/,  // TODO(csilvers): nix this
   1783                          bool errors_are_fatal) {
   1784   FlagRegistry* const registry = FlagRegistry::GlobalRegistry();
   1785   FlagSaverImpl saved_states(registry);
   1786   saved_states.SaveFromRegistry();
   1787 
   1788   CommandLineFlagParser parser(registry);
   1789   registry->Lock();
   1790   parser.ProcessOptionsFromStringLocked(flagfilecontents, SET_FLAGS_VALUE);
   1791   registry->Unlock();
   1792   // Should we handle --help and such when reading flags from a string?  Sure.
   1793   HandleCommandLineHelpFlags();
   1794   if (parser.ReportErrors()) {
   1795     // Error.  Restore all global flags to their previous values.
   1796     if (errors_are_fatal)
   1797       gflags_exitfunc(1);
   1798     saved_states.RestoreToRegistry();
   1799     return false;
   1800   }
   1801   return true;
   1802 }
   1803 
   1804 // TODO(csilvers): nix prog_name in favor of ProgramInvocationShortName()
   1805 bool AppendFlagsIntoFile(const string& filename, const char *prog_name) {
   1806   FILE *fp;
   1807   if (SafeFOpen(&fp, filename.c_str(), "a") != 0) {
   1808     return false;
   1809   }
   1810 
   1811   if (prog_name)
   1812     fprintf(fp, "%s\n", prog_name);
   1813 
   1814   vector<CommandLineFlagInfo> flags;
   1815   GetAllFlags(&flags);
   1816   // But we don't want --flagfile, which leads to weird recursion issues
   1817   vector<CommandLineFlagInfo>::iterator i;
   1818   for (i = flags.begin(); i != flags.end(); ++i) {
   1819     if (strcmp(i->name.c_str(), "flagfile") == 0) {
   1820       flags.erase(i);
   1821       break;
   1822     }
   1823   }
   1824   fprintf(fp, "%s", TheseCommandlineFlagsIntoString(flags).c_str());
   1825 
   1826   fclose(fp);
   1827   return true;
   1828 }
   1829 
   1830 bool ReadFromFlagsFile(const string& filename, const char* prog_name,
   1831                        bool errors_are_fatal) {
   1832   return ReadFlagsFromString(ReadFileIntoString(filename.c_str()),
   1833                              prog_name, errors_are_fatal);
   1834 }
   1835 
   1836 
   1837 // --------------------------------------------------------------------
   1838 // BoolFromEnv()
   1839 // Int32FromEnv()
   1840 // Uint32FromEnv()
   1841 // Int64FromEnv()
   1842 // Uint64FromEnv()
   1843 // DoubleFromEnv()
   1844 // StringFromEnv()
   1845 //    Reads the value from the environment and returns it.
   1846 //    We use an FlagValue to make the parsing easy.
   1847 //    Example usage:
   1848 //       DEFINE_bool(myflag, BoolFromEnv("MYFLAG_DEFAULT", false), "whatever");
   1849 // --------------------------------------------------------------------
   1850 
   1851 bool BoolFromEnv(const char *v, bool dflt) {
   1852   return GetFromEnv(v, dflt);
   1853 }
   1854 int32 Int32FromEnv(const char *v, int32 dflt) {
   1855   return GetFromEnv(v, dflt);
   1856 }
   1857 uint32 Uint32FromEnv(const char *v, uint32 dflt) {
   1858   return GetFromEnv(v, dflt);
   1859 }
   1860 int64 Int64FromEnv(const char *v, int64 dflt)    {
   1861   return GetFromEnv(v, dflt);
   1862 }
   1863 uint64 Uint64FromEnv(const char *v, uint64 dflt) {
   1864   return GetFromEnv(v, dflt);
   1865 }
   1866 double DoubleFromEnv(const char *v, double dflt) {
   1867   return GetFromEnv(v, dflt);
   1868 }
   1869 
   1870 #ifdef _MSC_VER
   1871 #  pragma warning(push)
   1872 #  pragma warning(disable: 4996) // ignore getenv security warning
   1873 #endif
   1874 const char *StringFromEnv(const char *varname, const char *dflt) {
   1875   const char* const val = getenv(varname);
   1876   return val ? val : dflt;
   1877 }
   1878 #ifdef _MSC_VER
   1879 #  pragma warning(pop)
   1880 #endif
   1881 
   1882 
   1883 // --------------------------------------------------------------------
   1884 // RegisterFlagValidator()
   1885 //    RegisterFlagValidator() is the function that clients use to
   1886 //    'decorate' a flag with a validation function.  Once this is
   1887 //    done, every time the flag is set (including when the flag
   1888 //    is parsed from argv), the validator-function is called.
   1889 //       These functions return true if the validator was added
   1890 //    successfully, or false if not: the flag already has a validator,
   1891 //    (only one allowed per flag), the 1st arg isn't a flag, etc.
   1892 //       This function is not thread-safe.
   1893 // --------------------------------------------------------------------
   1894 
   1895 bool RegisterFlagValidator(const bool* flag,
   1896                            bool (*validate_fn)(const char*, bool)) {
   1897   return AddFlagValidator(flag, reinterpret_cast<ValidateFnProto>(validate_fn));
   1898 }
   1899 bool RegisterFlagValidator(const int32* flag,
   1900                            bool (*validate_fn)(const char*, int32)) {
   1901   return AddFlagValidator(flag, reinterpret_cast<ValidateFnProto>(validate_fn));
   1902 }
   1903 bool RegisterFlagValidator(const uint32* flag,
   1904                            bool (*validate_fn)(const char*, uint32)) {
   1905   return AddFlagValidator(flag, reinterpret_cast<ValidateFnProto>(validate_fn));
   1906 }
   1907 bool RegisterFlagValidator(const int64* flag,
   1908                            bool (*validate_fn)(const char*, int64)) {
   1909   return AddFlagValidator(flag, reinterpret_cast<ValidateFnProto>(validate_fn));
   1910 }
   1911 bool RegisterFlagValidator(const uint64* flag,
   1912                            bool (*validate_fn)(const char*, uint64)) {
   1913   return AddFlagValidator(flag, reinterpret_cast<ValidateFnProto>(validate_fn));
   1914 }
   1915 bool RegisterFlagValidator(const double* flag,
   1916                            bool (*validate_fn)(const char*, double)) {
   1917   return AddFlagValidator(flag, reinterpret_cast<ValidateFnProto>(validate_fn));
   1918 }
   1919 bool RegisterFlagValidator(const string* flag,
   1920                            bool (*validate_fn)(const char*, const string&)) {
   1921   return AddFlagValidator(flag, reinterpret_cast<ValidateFnProto>(validate_fn));
   1922 }
   1923 
   1924 
   1925 // --------------------------------------------------------------------
   1926 // ParseCommandLineFlags()
   1927 // ParseCommandLineNonHelpFlags()
   1928 // HandleCommandLineHelpFlags()
   1929 //    This is the main function called from main(), to actually
   1930 //    parse the commandline.  It modifies argc and argv as described
   1931 //    at the top of gflags.h.  You can also divide this
   1932 //    function into two parts, if you want to do work between
   1933 //    the parsing of the flags and the printing of any help output.
   1934 // --------------------------------------------------------------------
   1935 
   1936 static uint32 ParseCommandLineFlagsInternal(int* argc, char*** argv,
   1937                                             bool remove_flags, bool do_report) {
   1938   SetArgv(*argc, const_cast<const char**>(*argv));    // save it for later
   1939 
   1940   FlagRegistry* const registry = FlagRegistry::GlobalRegistry();
   1941   CommandLineFlagParser parser(registry);
   1942 
   1943   // When we parse the commandline flags, we'll handle --flagfile,
   1944   // --tryfromenv, etc. as we see them (since flag-evaluation order
   1945   // may be important).  But sometimes apps set FLAGS_tryfromenv/etc.
   1946   // manually before calling ParseCommandLineFlags.  We want to evaluate
   1947   // those too, as if they were the first flags on the commandline.
   1948   registry->Lock();
   1949   parser.ProcessFlagfileLocked(FLAGS_flagfile, SET_FLAGS_VALUE);
   1950   // Last arg here indicates whether flag-not-found is a fatal error or not
   1951   parser.ProcessFromenvLocked(FLAGS_fromenv, SET_FLAGS_VALUE, true);
   1952   parser.ProcessFromenvLocked(FLAGS_tryfromenv, SET_FLAGS_VALUE, false);
   1953   registry->Unlock();
   1954 
   1955   // Now get the flags specified on the commandline
   1956   const int r = parser.ParseNewCommandLineFlags(argc, argv, remove_flags);
   1957 
   1958   if (do_report)
   1959     HandleCommandLineHelpFlags();   // may cause us to exit on --help, etc.
   1960 
   1961   // See if any of the unset flags fail their validation checks
   1962   parser.ValidateUnmodifiedFlags();
   1963 
   1964   if (parser.ReportErrors())        // may cause us to exit on illegal flags
   1965     gflags_exitfunc(1);
   1966   return r;
   1967 }
   1968 
   1969 uint32 ParseCommandLineFlags(int* argc, char*** argv, bool remove_flags) {
   1970   return ParseCommandLineFlagsInternal(argc, argv, remove_flags, true);
   1971 }
   1972 
   1973 uint32 ParseCommandLineNonHelpFlags(int* argc, char*** argv,
   1974                                     bool remove_flags) {
   1975   return ParseCommandLineFlagsInternal(argc, argv, remove_flags, false);
   1976 }
   1977 
   1978 // --------------------------------------------------------------------
   1979 // AllowCommandLineReparsing()
   1980 // ReparseCommandLineNonHelpFlags()
   1981 //    This is most useful for shared libraries.  The idea is if
   1982 //    a flag is defined in a shared library that is dlopen'ed
   1983 //    sometime after main(), you can ParseCommandLineFlags before
   1984 //    the dlopen, then ReparseCommandLineNonHelpFlags() after the
   1985 //    dlopen, to get the new flags.  But you have to explicitly
   1986 //    Allow() it; otherwise, you get the normal default behavior
   1987 //    of unrecognized flags calling a fatal error.
   1988 // TODO(csilvers): this isn't used.  Just delete it?
   1989 // --------------------------------------------------------------------
   1990 
   1991 void AllowCommandLineReparsing() {
   1992   allow_command_line_reparsing = true;
   1993 }
   1994 
   1995 void ReparseCommandLineNonHelpFlags() {
   1996   // We make a copy of argc and argv to pass in
   1997   const vector<string>& argvs = GetArgvs();
   1998   int tmp_argc = static_cast<int>(argvs.size());
   1999   char** tmp_argv = new char* [tmp_argc + 1];
   2000   for (int i = 0; i < tmp_argc; ++i)
   2001     tmp_argv[i] = strdup(argvs[i].c_str());   // TODO(csilvers): don't dup
   2002 
   2003   ParseCommandLineNonHelpFlags(&tmp_argc, &tmp_argv, false);
   2004 
   2005   for (int i = 0; i < tmp_argc; ++i)
   2006     free(tmp_argv[i]);
   2007   delete[] tmp_argv;
   2008 }
   2009 
   2010 void ShutDownCommandLineFlags() {
   2011   FlagRegistry::DeleteGlobalRegistry();
   2012 }
   2013 
   2014 
   2015 } // namespace GFLAGS_NAMESPACE
   2016