1 // Copyright 2010 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Frame-reconstruction function. Memory allocation. 11 // 12 // Author: Skal (pascal.massimino (at) gmail.com) 13 14 #include <stdlib.h> 15 #include "src/dec/vp8i_dec.h" 16 #include "src/utils/utils.h" 17 18 //------------------------------------------------------------------------------ 19 // Main reconstruction function. 20 21 static const uint16_t kScan[16] = { 22 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, 23 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, 24 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, 25 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS 26 }; 27 28 static int CheckMode(int mb_x, int mb_y, int mode) { 29 if (mode == B_DC_PRED) { 30 if (mb_x == 0) { 31 return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; 32 } else { 33 return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; 34 } 35 } 36 return mode; 37 } 38 39 static void Copy32b(uint8_t* const dst, const uint8_t* const src) { 40 memcpy(dst, src, 4); 41 } 42 43 static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, 44 uint8_t* const dst) { 45 switch (bits >> 30) { 46 case 3: 47 VP8Transform(src, dst, 0); 48 break; 49 case 2: 50 VP8TransformAC3(src, dst); 51 break; 52 case 1: 53 VP8TransformDC(src, dst); 54 break; 55 default: 56 break; 57 } 58 } 59 60 static void DoUVTransform(uint32_t bits, const int16_t* const src, 61 uint8_t* const dst) { 62 if (bits & 0xff) { // any non-zero coeff at all? 63 if (bits & 0xaa) { // any non-zero AC coefficient? 64 VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V 65 } else { 66 VP8TransformDCUV(src, dst); 67 } 68 } 69 } 70 71 static void ReconstructRow(const VP8Decoder* const dec, 72 const VP8ThreadContext* ctx) { 73 int j; 74 int mb_x; 75 const int mb_y = ctx->mb_y_; 76 const int cache_id = ctx->id_; 77 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; 78 uint8_t* const u_dst = dec->yuv_b_ + U_OFF; 79 uint8_t* const v_dst = dec->yuv_b_ + V_OFF; 80 81 // Initialize left-most block. 82 for (j = 0; j < 16; ++j) { 83 y_dst[j * BPS - 1] = 129; 84 } 85 for (j = 0; j < 8; ++j) { 86 u_dst[j * BPS - 1] = 129; 87 v_dst[j * BPS - 1] = 129; 88 } 89 90 // Init top-left sample on left column too. 91 if (mb_y > 0) { 92 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; 93 } else { 94 // we only need to do this init once at block (0,0). 95 // Afterward, it remains valid for the whole topmost row. 96 memset(y_dst - BPS - 1, 127, 16 + 4 + 1); 97 memset(u_dst - BPS - 1, 127, 8 + 1); 98 memset(v_dst - BPS - 1, 127, 8 + 1); 99 } 100 101 // Reconstruct one row. 102 for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { 103 const VP8MBData* const block = ctx->mb_data_ + mb_x; 104 105 // Rotate in the left samples from previously decoded block. We move four 106 // pixels at a time for alignment reason, and because of in-loop filter. 107 if (mb_x > 0) { 108 for (j = -1; j < 16; ++j) { 109 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); 110 } 111 for (j = -1; j < 8; ++j) { 112 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); 113 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); 114 } 115 } 116 { 117 // bring top samples into the cache 118 VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; 119 const int16_t* const coeffs = block->coeffs_; 120 uint32_t bits = block->non_zero_y_; 121 int n; 122 123 if (mb_y > 0) { 124 memcpy(y_dst - BPS, top_yuv[0].y, 16); 125 memcpy(u_dst - BPS, top_yuv[0].u, 8); 126 memcpy(v_dst - BPS, top_yuv[0].v, 8); 127 } 128 129 // predict and add residuals 130 if (block->is_i4x4_) { // 4x4 131 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); 132 133 if (mb_y > 0) { 134 if (mb_x >= dec->mb_w_ - 1) { // on rightmost border 135 memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); 136 } else { 137 memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); 138 } 139 } 140 // replicate the top-right pixels below 141 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; 142 143 // predict and add residuals for all 4x4 blocks in turn. 144 for (n = 0; n < 16; ++n, bits <<= 2) { 145 uint8_t* const dst = y_dst + kScan[n]; 146 VP8PredLuma4[block->imodes_[n]](dst); 147 DoTransform(bits, coeffs + n * 16, dst); 148 } 149 } else { // 16x16 150 const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]); 151 VP8PredLuma16[pred_func](y_dst); 152 if (bits != 0) { 153 for (n = 0; n < 16; ++n, bits <<= 2) { 154 DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); 155 } 156 } 157 } 158 { 159 // Chroma 160 const uint32_t bits_uv = block->non_zero_uv_; 161 const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); 162 VP8PredChroma8[pred_func](u_dst); 163 VP8PredChroma8[pred_func](v_dst); 164 DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); 165 DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); 166 } 167 168 // stash away top samples for next block 169 if (mb_y < dec->mb_h_ - 1) { 170 memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); 171 memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); 172 memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); 173 } 174 } 175 // Transfer reconstructed samples from yuv_b_ cache to final destination. 176 { 177 const int y_offset = cache_id * 16 * dec->cache_y_stride_; 178 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; 179 uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; 180 uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; 181 uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; 182 for (j = 0; j < 16; ++j) { 183 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); 184 } 185 for (j = 0; j < 8; ++j) { 186 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); 187 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); 188 } 189 } 190 } 191 } 192 193 //------------------------------------------------------------------------------ 194 // Filtering 195 196 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary 197 // for caching, given a filtering level. 198 // Simple filter: up to 2 luma samples are read and 1 is written. 199 // Complex filter: up to 4 luma samples are read and 3 are written. Same for 200 // U/V, so it's 8 samples total (because of the 2x upsampling). 201 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; 202 203 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { 204 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 205 const int cache_id = ctx->id_; 206 const int y_bps = dec->cache_y_stride_; 207 const VP8FInfo* const f_info = ctx->f_info_ + mb_x; 208 uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; 209 const int ilevel = f_info->f_ilevel_; 210 const int limit = f_info->f_limit_; 211 if (limit == 0) { 212 return; 213 } 214 assert(limit >= 3); 215 if (dec->filter_type_ == 1) { // simple 216 if (mb_x > 0) { 217 VP8SimpleHFilter16(y_dst, y_bps, limit + 4); 218 } 219 if (f_info->f_inner_) { 220 VP8SimpleHFilter16i(y_dst, y_bps, limit); 221 } 222 if (mb_y > 0) { 223 VP8SimpleVFilter16(y_dst, y_bps, limit + 4); 224 } 225 if (f_info->f_inner_) { 226 VP8SimpleVFilter16i(y_dst, y_bps, limit); 227 } 228 } else { // complex 229 const int uv_bps = dec->cache_uv_stride_; 230 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; 231 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; 232 const int hev_thresh = f_info->hev_thresh_; 233 if (mb_x > 0) { 234 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 235 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); 236 } 237 if (f_info->f_inner_) { 238 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); 239 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); 240 } 241 if (mb_y > 0) { 242 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 243 VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); 244 } 245 if (f_info->f_inner_) { 246 VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); 247 VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); 248 } 249 } 250 } 251 252 // Filter the decoded macroblock row (if needed) 253 static void FilterRow(const VP8Decoder* const dec) { 254 int mb_x; 255 const int mb_y = dec->thread_ctx_.mb_y_; 256 assert(dec->thread_ctx_.filter_row_); 257 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { 258 DoFilter(dec, mb_x, mb_y); 259 } 260 } 261 262 //------------------------------------------------------------------------------ 263 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode. 264 265 static void PrecomputeFilterStrengths(VP8Decoder* const dec) { 266 if (dec->filter_type_ > 0) { 267 int s; 268 const VP8FilterHeader* const hdr = &dec->filter_hdr_; 269 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { 270 int i4x4; 271 // First, compute the initial level 272 int base_level; 273 if (dec->segment_hdr_.use_segment_) { 274 base_level = dec->segment_hdr_.filter_strength_[s]; 275 if (!dec->segment_hdr_.absolute_delta_) { 276 base_level += hdr->level_; 277 } 278 } else { 279 base_level = hdr->level_; 280 } 281 for (i4x4 = 0; i4x4 <= 1; ++i4x4) { 282 VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; 283 int level = base_level; 284 if (hdr->use_lf_delta_) { 285 level += hdr->ref_lf_delta_[0]; 286 if (i4x4) { 287 level += hdr->mode_lf_delta_[0]; 288 } 289 } 290 level = (level < 0) ? 0 : (level > 63) ? 63 : level; 291 if (level > 0) { 292 int ilevel = level; 293 if (hdr->sharpness_ > 0) { 294 if (hdr->sharpness_ > 4) { 295 ilevel >>= 2; 296 } else { 297 ilevel >>= 1; 298 } 299 if (ilevel > 9 - hdr->sharpness_) { 300 ilevel = 9 - hdr->sharpness_; 301 } 302 } 303 if (ilevel < 1) ilevel = 1; 304 info->f_ilevel_ = ilevel; 305 info->f_limit_ = 2 * level + ilevel; 306 info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; 307 } else { 308 info->f_limit_ = 0; // no filtering 309 } 310 info->f_inner_ = i4x4; 311 } 312 } 313 } 314 } 315 316 //------------------------------------------------------------------------------ 317 // Dithering 318 319 // minimal amp that will provide a non-zero dithering effect 320 #define MIN_DITHER_AMP 4 321 322 #define DITHER_AMP_TAB_SIZE 12 323 static const uint8_t kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { 324 // roughly, it's dqm->uv_mat_[1] 325 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 326 }; 327 328 void VP8InitDithering(const WebPDecoderOptions* const options, 329 VP8Decoder* const dec) { 330 assert(dec != NULL); 331 if (options != NULL) { 332 const int d = options->dithering_strength; 333 const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; 334 const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); 335 if (f > 0) { 336 int s; 337 int all_amp = 0; 338 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { 339 VP8QuantMatrix* const dqm = &dec->dqm_[s]; 340 if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { 341 // TODO(skal): should we specially dither more for uv_quant_ < 0? 342 const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; 343 dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; 344 } 345 all_amp |= dqm->dither_; 346 } 347 if (all_amp != 0) { 348 VP8InitRandom(&dec->dithering_rg_, 1.0f); 349 dec->dither_ = 1; 350 } 351 } 352 // potentially allow alpha dithering 353 dec->alpha_dithering_ = options->alpha_dithering_strength; 354 if (dec->alpha_dithering_ > 100) { 355 dec->alpha_dithering_ = 100; 356 } else if (dec->alpha_dithering_ < 0) { 357 dec->alpha_dithering_ = 0; 358 } 359 } 360 } 361 362 // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 363 static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { 364 uint8_t dither[64]; 365 int i; 366 for (i = 0; i < 8 * 8; ++i) { 367 dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp); 368 } 369 VP8DitherCombine8x8(dither, dst, bps); 370 } 371 372 static void DitherRow(VP8Decoder* const dec) { 373 int mb_x; 374 assert(dec->dither_); 375 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { 376 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 377 const VP8MBData* const data = ctx->mb_data_ + mb_x; 378 const int cache_id = ctx->id_; 379 const int uv_bps = dec->cache_uv_stride_; 380 if (data->dither_ >= MIN_DITHER_AMP) { 381 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; 382 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; 383 Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); 384 Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); 385 } 386 } 387 } 388 389 //------------------------------------------------------------------------------ 390 // This function is called after a row of macroblocks is finished decoding. 391 // It also takes into account the following restrictions: 392 // * In case of in-loop filtering, we must hold off sending some of the bottom 393 // pixels as they are yet unfiltered. They will be when the next macroblock 394 // row is decoded. Meanwhile, we must preserve them by rotating them in the 395 // cache area. This doesn't hold for the very bottom row of the uncropped 396 // picture of course. 397 // * we must clip the remaining pixels against the cropping area. The VP8Io 398 // struct must have the following fields set correctly before calling put(): 399 400 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB 401 402 // Finalize and transmit a complete row. Return false in case of user-abort. 403 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { 404 int ok = 1; 405 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 406 const int cache_id = ctx->id_; 407 const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; 408 const int ysize = extra_y_rows * dec->cache_y_stride_; 409 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; 410 const int y_offset = cache_id * 16 * dec->cache_y_stride_; 411 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; 412 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; 413 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; 414 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; 415 const int mb_y = ctx->mb_y_; 416 const int is_first_row = (mb_y == 0); 417 const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); 418 419 if (dec->mt_method_ == 2) { 420 ReconstructRow(dec, ctx); 421 } 422 423 if (ctx->filter_row_) { 424 FilterRow(dec); 425 } 426 427 if (dec->dither_) { 428 DitherRow(dec); 429 } 430 431 if (io->put != NULL) { 432 int y_start = MACROBLOCK_VPOS(mb_y); 433 int y_end = MACROBLOCK_VPOS(mb_y + 1); 434 if (!is_first_row) { 435 y_start -= extra_y_rows; 436 io->y = ydst; 437 io->u = udst; 438 io->v = vdst; 439 } else { 440 io->y = dec->cache_y_ + y_offset; 441 io->u = dec->cache_u_ + uv_offset; 442 io->v = dec->cache_v_ + uv_offset; 443 } 444 445 if (!is_last_row) { 446 y_end -= extra_y_rows; 447 } 448 if (y_end > io->crop_bottom) { 449 y_end = io->crop_bottom; // make sure we don't overflow on last row. 450 } 451 io->a = NULL; 452 if (dec->alpha_data_ != NULL && y_start < y_end) { 453 // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a 454 // good idea. 455 io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start); 456 if (io->a == NULL) { 457 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, 458 "Could not decode alpha data."); 459 } 460 } 461 if (y_start < io->crop_top) { 462 const int delta_y = io->crop_top - y_start; 463 y_start = io->crop_top; 464 assert(!(delta_y & 1)); 465 io->y += dec->cache_y_stride_ * delta_y; 466 io->u += dec->cache_uv_stride_ * (delta_y >> 1); 467 io->v += dec->cache_uv_stride_ * (delta_y >> 1); 468 if (io->a != NULL) { 469 io->a += io->width * delta_y; 470 } 471 } 472 if (y_start < y_end) { 473 io->y += io->crop_left; 474 io->u += io->crop_left >> 1; 475 io->v += io->crop_left >> 1; 476 if (io->a != NULL) { 477 io->a += io->crop_left; 478 } 479 io->mb_y = y_start - io->crop_top; 480 io->mb_w = io->crop_right - io->crop_left; 481 io->mb_h = y_end - y_start; 482 ok = io->put(io); 483 } 484 } 485 // rotate top samples if needed 486 if (cache_id + 1 == dec->num_caches_) { 487 if (!is_last_row) { 488 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); 489 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); 490 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); 491 } 492 } 493 494 return ok; 495 } 496 497 #undef MACROBLOCK_VPOS 498 499 //------------------------------------------------------------------------------ 500 501 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { 502 int ok = 1; 503 VP8ThreadContext* const ctx = &dec->thread_ctx_; 504 const int filter_row = 505 (dec->filter_type_ > 0) && 506 (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); 507 if (dec->mt_method_ == 0) { 508 // ctx->id_ and ctx->f_info_ are already set 509 ctx->mb_y_ = dec->mb_y_; 510 ctx->filter_row_ = filter_row; 511 ReconstructRow(dec, ctx); 512 ok = FinishRow(dec, io); 513 } else { 514 WebPWorker* const worker = &dec->worker_; 515 // Finish previous job *before* updating context 516 ok &= WebPGetWorkerInterface()->Sync(worker); 517 assert(worker->status_ == OK); 518 if (ok) { // spawn a new deblocking/output job 519 ctx->io_ = *io; 520 ctx->id_ = dec->cache_id_; 521 ctx->mb_y_ = dec->mb_y_; 522 ctx->filter_row_ = filter_row; 523 if (dec->mt_method_ == 2) { // swap macroblock data 524 VP8MBData* const tmp = ctx->mb_data_; 525 ctx->mb_data_ = dec->mb_data_; 526 dec->mb_data_ = tmp; 527 } else { 528 // perform reconstruction directly in main thread 529 ReconstructRow(dec, ctx); 530 } 531 if (filter_row) { // swap filter info 532 VP8FInfo* const tmp = ctx->f_info_; 533 ctx->f_info_ = dec->f_info_; 534 dec->f_info_ = tmp; 535 } 536 // (reconstruct)+filter in parallel 537 WebPGetWorkerInterface()->Launch(worker); 538 if (++dec->cache_id_ == dec->num_caches_) { 539 dec->cache_id_ = 0; 540 } 541 } 542 } 543 return ok; 544 } 545 546 //------------------------------------------------------------------------------ 547 // Finish setting up the decoding parameter once user's setup() is called. 548 549 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { 550 // Call setup() first. This may trigger additional decoding features on 'io'. 551 // Note: Afterward, we must call teardown() no matter what. 552 if (io->setup != NULL && !io->setup(io)) { 553 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); 554 return dec->status_; 555 } 556 557 // Disable filtering per user request 558 if (io->bypass_filtering) { 559 dec->filter_type_ = 0; 560 } 561 // TODO(skal): filter type / strength / sharpness forcing 562 563 // Define the area where we can skip in-loop filtering, in case of cropping. 564 // 565 // 'Simple' filter reads two luma samples outside of the macroblock 566 // and filters one. It doesn't filter the chroma samples. Hence, we can 567 // avoid doing the in-loop filtering before crop_top/crop_left position. 568 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. 569 // Means: there's a dependency chain that goes all the way up to the 570 // top-left corner of the picture (MB #0). We must filter all the previous 571 // macroblocks. 572 // TODO(skal): add an 'approximate_decoding' option, that won't produce 573 // a 1:1 bit-exactness for complex filtering? 574 { 575 const int extra_pixels = kFilterExtraRows[dec->filter_type_]; 576 if (dec->filter_type_ == 2) { 577 // For complex filter, we need to preserve the dependency chain. 578 dec->tl_mb_x_ = 0; 579 dec->tl_mb_y_ = 0; 580 } else { 581 // For simple filter, we can filter only the cropped region. 582 // We include 'extra_pixels' on the other side of the boundary, since 583 // vertical or horizontal filtering of the previous macroblock can 584 // modify some abutting pixels. 585 dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; 586 dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; 587 if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; 588 if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; 589 } 590 // We need some 'extra' pixels on the right/bottom. 591 dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; 592 dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; 593 if (dec->br_mb_x_ > dec->mb_w_) { 594 dec->br_mb_x_ = dec->mb_w_; 595 } 596 if (dec->br_mb_y_ > dec->mb_h_) { 597 dec->br_mb_y_ = dec->mb_h_; 598 } 599 } 600 PrecomputeFilterStrengths(dec); 601 return VP8_STATUS_OK; 602 } 603 604 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { 605 int ok = 1; 606 if (dec->mt_method_ > 0) { 607 ok = WebPGetWorkerInterface()->Sync(&dec->worker_); 608 } 609 610 if (io->teardown != NULL) { 611 io->teardown(io); 612 } 613 return ok; 614 } 615 616 //------------------------------------------------------------------------------ 617 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. 618 // 619 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges 620 // immediately, and needs to wait for first few rows of the next macroblock to 621 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending 622 // on strength). 623 // With two threads, the vertical positions of the rows being decoded are: 624 // Decode: [ 0..15][16..31][32..47][48..63][64..79][... 625 // Deblock: [ 0..11][12..27][28..43][44..59][... 626 // If we use two threads and two caches of 16 pixels, the sequence would be: 627 // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... 628 // Deblock: [ 0..11][12..27!!][-4..11][12..27][... 629 // The problem occurs during row [12..15!!] that both the decoding and 630 // deblocking threads are writing simultaneously. 631 // With 3 cache lines, one get a safe write pattern: 632 // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. 633 // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... 634 // Note that multi-threaded output _without_ deblocking can make use of two 635 // cache lines of 16 pixels only, since there's no lagging behind. The decoding 636 // and output process have non-concurrent writing: 637 // Decode: [ 0..15][16..31][ 0..15][16..31][... 638 // io->put: [ 0..15][16..31][ 0..15][... 639 640 #define MT_CACHE_LINES 3 641 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case 642 643 // Initialize multi/single-thread worker 644 static int InitThreadContext(VP8Decoder* const dec) { 645 dec->cache_id_ = 0; 646 if (dec->mt_method_ > 0) { 647 WebPWorker* const worker = &dec->worker_; 648 if (!WebPGetWorkerInterface()->Reset(worker)) { 649 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 650 "thread initialization failed."); 651 } 652 worker->data1 = dec; 653 worker->data2 = (void*)&dec->thread_ctx_.io_; 654 worker->hook = (WebPWorkerHook)FinishRow; 655 dec->num_caches_ = 656 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; 657 } else { 658 dec->num_caches_ = ST_CACHE_LINES; 659 } 660 return 1; 661 } 662 663 int VP8GetThreadMethod(const WebPDecoderOptions* const options, 664 const WebPHeaderStructure* const headers, 665 int width, int height) { 666 if (options == NULL || options->use_threads == 0) { 667 return 0; 668 } 669 (void)headers; 670 (void)width; 671 (void)height; 672 assert(headers == NULL || !headers->is_lossless); 673 #if defined(WEBP_USE_THREAD) 674 if (width < MIN_WIDTH_FOR_THREADS) return 0; 675 // TODO(skal): tune the heuristic further 676 #if 0 677 if (height < 2 * width) return 2; 678 #endif 679 return 2; 680 #else // !WEBP_USE_THREAD 681 return 0; 682 #endif 683 } 684 685 #undef MT_CACHE_LINES 686 #undef ST_CACHE_LINES 687 688 //------------------------------------------------------------------------------ 689 // Memory setup 690 691 static int AllocateMemory(VP8Decoder* const dec) { 692 const int num_caches = dec->num_caches_; 693 const int mb_w = dec->mb_w_; 694 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. 695 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); 696 const size_t top_size = sizeof(VP8TopSamples) * mb_w; 697 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); 698 const size_t f_info_size = 699 (dec->filter_type_ > 0) ? 700 mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) 701 : 0; 702 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); 703 const size_t mb_data_size = 704 (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); 705 const size_t cache_height = (16 * num_caches 706 + kFilterExtraRows[dec->filter_type_]) * 3 / 2; 707 const size_t cache_size = top_size * cache_height; 708 // alpha_size is the only one that scales as width x height. 709 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? 710 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; 711 const uint64_t needed = (uint64_t)intra_pred_mode_size 712 + top_size + mb_info_size + f_info_size 713 + yuv_size + mb_data_size 714 + cache_size + alpha_size + WEBP_ALIGN_CST; 715 uint8_t* mem; 716 717 if (needed != (size_t)needed) return 0; // check for overflow 718 if (needed > dec->mem_size_) { 719 WebPSafeFree(dec->mem_); 720 dec->mem_size_ = 0; 721 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); 722 if (dec->mem_ == NULL) { 723 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 724 "no memory during frame initialization."); 725 } 726 // down-cast is ok, thanks to WebPSafeMalloc() above. 727 dec->mem_size_ = (size_t)needed; 728 } 729 730 mem = (uint8_t*)dec->mem_; 731 dec->intra_t_ = mem; 732 mem += intra_pred_mode_size; 733 734 dec->yuv_t_ = (VP8TopSamples*)mem; 735 mem += top_size; 736 737 dec->mb_info_ = ((VP8MB*)mem) + 1; 738 mem += mb_info_size; 739 740 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; 741 mem += f_info_size; 742 dec->thread_ctx_.id_ = 0; 743 dec->thread_ctx_.f_info_ = dec->f_info_; 744 if (dec->mt_method_ > 0) { 745 // secondary cache line. The deblocking process need to make use of the 746 // filtering strength from previous macroblock row, while the new ones 747 // are being decoded in parallel. We'll just swap the pointers. 748 dec->thread_ctx_.f_info_ += mb_w; 749 } 750 751 mem = (uint8_t*)WEBP_ALIGN(mem); 752 assert((yuv_size & WEBP_ALIGN_CST) == 0); 753 dec->yuv_b_ = mem; 754 mem += yuv_size; 755 756 dec->mb_data_ = (VP8MBData*)mem; 757 dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; 758 if (dec->mt_method_ == 2) { 759 dec->thread_ctx_.mb_data_ += mb_w; 760 } 761 mem += mb_data_size; 762 763 dec->cache_y_stride_ = 16 * mb_w; 764 dec->cache_uv_stride_ = 8 * mb_w; 765 { 766 const int extra_rows = kFilterExtraRows[dec->filter_type_]; 767 const int extra_y = extra_rows * dec->cache_y_stride_; 768 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; 769 dec->cache_y_ = mem + extra_y; 770 dec->cache_u_ = dec->cache_y_ 771 + 16 * num_caches * dec->cache_y_stride_ + extra_uv; 772 dec->cache_v_ = dec->cache_u_ 773 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; 774 dec->cache_id_ = 0; 775 } 776 mem += cache_size; 777 778 // alpha plane 779 dec->alpha_plane_ = alpha_size ? mem : NULL; 780 mem += alpha_size; 781 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); 782 783 // note: left/top-info is initialized once for all. 784 memset(dec->mb_info_ - 1, 0, mb_info_size); 785 VP8InitScanline(dec); // initialize left too. 786 787 // initialize top 788 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); 789 790 return 1; 791 } 792 793 static void InitIo(VP8Decoder* const dec, VP8Io* io) { 794 // prepare 'io' 795 io->mb_y = 0; 796 io->y = dec->cache_y_; 797 io->u = dec->cache_u_; 798 io->v = dec->cache_v_; 799 io->y_stride = dec->cache_y_stride_; 800 io->uv_stride = dec->cache_uv_stride_; 801 io->a = NULL; 802 } 803 804 int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) { 805 if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. 806 if (!AllocateMemory(dec)) return 0; 807 InitIo(dec, io); 808 VP8DspInit(); // Init critical function pointers and look-up tables. 809 return 1; 810 } 811 812 //------------------------------------------------------------------------------ 813