1 /*------------------------------------------------------------------------- 2 * drawElements Quality Program Reference Renderer 3 * ----------------------------------------------- 4 * 5 * Copyright 2014 The Android Open Source Project 6 * 7 * Licensed under the Apache License, Version 2.0 (the "License"); 8 * you may not use this file except in compliance with the License. 9 * You may obtain a copy of the License at 10 * 11 * http://www.apache.org/licenses/LICENSE-2.0 12 * 13 * Unless required by applicable law or agreed to in writing, software 14 * distributed under the License is distributed on an "AS IS" BASIS, 15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 * See the License for the specific language governing permissions and 17 * limitations under the License. 18 * 19 *//*! 20 * \file 21 * \brief Reference rasterizer 22 *//*--------------------------------------------------------------------*/ 23 24 #include "rrRasterizer.hpp" 25 #include "deMath.h" 26 #include "tcuVectorUtil.hpp" 27 28 namespace rr 29 { 30 31 inline deInt64 toSubpixelCoord (float v) 32 { 33 return (deInt64)(v * (1<<RASTERIZER_SUBPIXEL_BITS) + (v < 0.f ? -0.5f : 0.5f)); 34 } 35 36 inline deInt64 toSubpixelCoord (deInt32 v) 37 { 38 return v << RASTERIZER_SUBPIXEL_BITS; 39 } 40 41 inline deInt32 ceilSubpixelToPixelCoord (deInt64 coord, bool fillEdge) 42 { 43 if (coord >= 0) 44 return (deInt32)((coord + ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS); 45 else 46 return (deInt32)((coord + (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS); 47 } 48 49 inline deInt32 floorSubpixelToPixelCoord (deInt64 coord, bool fillEdge) 50 { 51 if (coord >= 0) 52 return (deInt32)((coord - (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS); 53 else 54 return (deInt32)((coord - ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS); 55 } 56 57 static inline void initEdgeCCW (EdgeFunction& edge, const HorizontalFill horizontalFill, const VerticalFill verticalFill, const deInt64 x0, const deInt64 y0, const deInt64 x1, const deInt64 y1) 58 { 59 // \note See EdgeFunction documentation for details. 60 61 const deInt64 xd = x1-x0; 62 const deInt64 yd = y1-y0; 63 bool inclusive = false; //!< Inclusive in CCW orientation. 64 65 if (yd == 0) 66 inclusive = verticalFill == FILL_BOTTOM ? xd >= 0 : xd <= 0; 67 else 68 inclusive = horizontalFill == FILL_LEFT ? yd <= 0 : yd >= 0; 69 70 edge.a = (y0 - y1); 71 edge.b = (x1 - x0); 72 edge.c = x0*y1 - y0*x1; 73 edge.inclusive = inclusive; //!< \todo [pyry] Swap for CW triangles 74 } 75 76 static inline void reverseEdge (EdgeFunction& edge) 77 { 78 edge.a = -edge.a; 79 edge.b = -edge.b; 80 edge.c = -edge.c; 81 edge.inclusive = !edge.inclusive; 82 } 83 84 static inline deInt64 evaluateEdge (const EdgeFunction& edge, const deInt64 x, const deInt64 y) 85 { 86 return edge.a*x + edge.b*y + edge.c; 87 } 88 89 static inline bool isInsideCCW (const EdgeFunction& edge, const deInt64 edgeVal) 90 { 91 return edge.inclusive ? (edgeVal >= 0) : (edgeVal > 0); 92 } 93 94 namespace LineRasterUtil 95 { 96 97 struct SubpixelLineSegment 98 { 99 const tcu::Vector<deInt64,2> m_v0; 100 const tcu::Vector<deInt64,2> m_v1; 101 102 SubpixelLineSegment (const tcu::Vector<deInt64,2>& v0, const tcu::Vector<deInt64,2>& v1) 103 : m_v0(v0) 104 , m_v1(v1) 105 { 106 } 107 108 tcu::Vector<deInt64,2> direction (void) const 109 { 110 return m_v1 - m_v0; 111 } 112 }; 113 114 enum LINE_SIDE 115 { 116 LINE_SIDE_INTERSECT = 0, 117 LINE_SIDE_LEFT, 118 LINE_SIDE_RIGHT 119 }; 120 121 static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::Vec2& v) 122 { 123 return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y())); 124 } 125 126 static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::IVec2& v) 127 { 128 return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y())); 129 } 130 131 #if defined(DE_DEBUG) 132 static bool isTheCenterOfTheFragment (const tcu::Vector<deInt64,2>& a) 133 { 134 const deUint64 pixelSize = 1ll << (RASTERIZER_SUBPIXEL_BITS); 135 const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 136 return ((a.x() & (pixelSize-1)) == halfPixel && 137 (a.y() & (pixelSize-1)) == halfPixel); 138 } 139 140 static bool inViewport (const tcu::IVec2& p, const tcu::IVec4& viewport) 141 { 142 return p.x() >= viewport.x() && 143 p.y() >= viewport.y() && 144 p.x() < viewport.x() + viewport.z() && 145 p.y() < viewport.y() + viewport.w(); 146 } 147 #endif // DE_DEBUG 148 149 // returns true if vertex is on the left side of the line 150 static bool vertexOnLeftSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) 151 { 152 const tcu::Vector<deInt64,2> u = l.direction(); 153 const tcu::Vector<deInt64,2> v = ( p - l.m_v0); 154 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); 155 return crossProduct < 0; 156 } 157 158 // returns true if vertex is on the right side of the line 159 static bool vertexOnRightSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) 160 { 161 const tcu::Vector<deInt64,2> u = l.direction(); 162 const tcu::Vector<deInt64,2> v = ( p - l.m_v0); 163 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); 164 return crossProduct > 0; 165 } 166 167 // returns true if vertex is on the line 168 static bool vertexOnLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) 169 { 170 const tcu::Vector<deInt64,2> u = l.direction(); 171 const tcu::Vector<deInt64,2> v = ( p - l.m_v0); 172 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); 173 return crossProduct == 0; // cross product == 0 174 } 175 176 // returns true if vertex is on the line segment 177 static bool vertexOnLineSegment (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) 178 { 179 if (!vertexOnLine(p, l)) 180 return false; 181 182 const tcu::Vector<deInt64,2> v = l.direction(); 183 const tcu::Vector<deInt64,2> u1 = ( p - l.m_v0); 184 const tcu::Vector<deInt64,2> u2 = ( p - l.m_v1); 185 186 if (v.x() == 0 && v.y() == 0) 187 return false; 188 189 return tcu::dot( v, u1) >= 0 && 190 tcu::dot(-v, u2) >= 0; // dot (A->B, A->V) >= 0 and dot (B->A, B->V) >= 0 191 } 192 193 static LINE_SIDE getVertexSide (const tcu::Vector<deInt64,2>& v, const SubpixelLineSegment& l) 194 { 195 if (vertexOnLeftSideOfLine(v, l)) 196 return LINE_SIDE_LEFT; 197 else if (vertexOnRightSideOfLine(v, l)) 198 return LINE_SIDE_RIGHT; 199 else if (vertexOnLine(v, l)) 200 return LINE_SIDE_INTERSECT; 201 else 202 { 203 DE_ASSERT(false); 204 return LINE_SIDE_INTERSECT; 205 } 206 } 207 208 // returns true if angle between line and given cornerExitNormal is in range (-45, 45) 209 bool lineInCornerAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal) 210 { 211 // v0 -> v1 has angle difference to cornerExitNormal in range (-45, 45) 212 const tcu::Vector<deInt64,2> v = line.direction(); 213 const deInt64 dotProduct = dot(v, cornerExitNormal); 214 215 // dotProduct > |v1-v0|*|cornerExitNormal|/sqrt(2) 216 if (dotProduct < 0) 217 return false; 218 return 2 * dotProduct * dotProduct > tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal); 219 } 220 221 // returns true if angle between line and given cornerExitNormal is in range (-135, 135) 222 bool lineInCornerOutsideAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal) 223 { 224 // v0 -> v1 has angle difference to cornerExitNormal in range (-135, 135) 225 const tcu::Vector<deInt64,2> v = line.direction(); 226 const deInt64 dotProduct = dot(v, cornerExitNormal); 227 228 // dotProduct > -|v1-v0|*|cornerExitNormal|/sqrt(2) 229 if (dotProduct >= 0) 230 return true; 231 return 2 * (-dotProduct) * (-dotProduct) < tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal); 232 } 233 234 bool doesLineSegmentExitDiamond (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& diamondCenter) 235 { 236 DE_ASSERT(isTheCenterOfTheFragment(diamondCenter)); 237 238 // Diamond Center is at diamondCenter in subpixel coords 239 240 const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 241 242 // Reject distant diamonds early 243 { 244 const tcu::Vector<deInt64,2> u = line.direction(); 245 const tcu::Vector<deInt64,2> v = (diamondCenter - line.m_v0); 246 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); 247 248 // crossProduct = |p| |l| sin(theta) 249 // distanceFromLine = |p| sin(theta) 250 // => distanceFromLine = crossProduct / |l| 251 // 252 // |distanceFromLine| > C 253 // => distanceFromLine^2 > C^2 254 // => crossProduct^2 / |l|^2 > C^2 255 // => crossProduct^2 > |l|^2 * C^2 256 257 const deInt64 floorSqrtMaxInt64 = 3037000499LL; //!< floor(sqrt(MAX_INT64)) 258 259 const deInt64 broadRejectDistance = 2 * halfPixel; 260 const deInt64 broadRejectDistanceSquared = broadRejectDistance * broadRejectDistance; 261 const bool crossProductOverflows = (crossProduct > floorSqrtMaxInt64 || crossProduct < -floorSqrtMaxInt64); 262 const deInt64 crossProductSquared = (crossProductOverflows) ? (0) : (crossProduct * crossProduct); // avoid overflow 263 const deInt64 lineLengthSquared = tcu::lengthSquared(u); 264 const bool limitValueCouldOverflow = ((64 - deClz64(lineLengthSquared)) + (64 - deClz64(broadRejectDistanceSquared))) > 63; 265 const deInt64 limitValue = (limitValueCouldOverflow) ? (0) : (lineLengthSquared * broadRejectDistanceSquared); // avoid overflow 266 267 // only cross overflows 268 if (crossProductOverflows && !limitValueCouldOverflow) 269 return false; 270 271 // both representable 272 if (!crossProductOverflows && !limitValueCouldOverflow) 273 { 274 if (crossProductSquared > limitValue) 275 return false; 276 } 277 } 278 279 const struct DiamondBound 280 { 281 tcu::Vector<deInt64,2> p0; 282 tcu::Vector<deInt64,2> p1; 283 bool edgeInclusive; // would a point on the bound be inside of the region 284 } bounds[] = 285 { 286 { diamondCenter + tcu::Vector<deInt64,2>(0, -halfPixel), diamondCenter + tcu::Vector<deInt64,2>(-halfPixel, 0), false }, 287 { diamondCenter + tcu::Vector<deInt64,2>(-halfPixel, 0), diamondCenter + tcu::Vector<deInt64,2>(0, halfPixel), false }, 288 { diamondCenter + tcu::Vector<deInt64,2>(0, halfPixel), diamondCenter + tcu::Vector<deInt64,2>(halfPixel, 0), true }, 289 { diamondCenter + tcu::Vector<deInt64,2>(halfPixel, 0), diamondCenter + tcu::Vector<deInt64,2>(0, -halfPixel), true }, 290 }; 291 292 const struct DiamondCorners 293 { 294 enum CORNER_EDGE_CASE_BEHAVIOR 295 { 296 CORNER_EDGE_CASE_NONE, // if the line intersects just a corner, no entering or exiting 297 CORNER_EDGE_CASE_HIT, // if the line intersects just a corner, entering and exit 298 CORNER_EDGE_CASE_HIT_FIRST_QUARTER, // if the line intersects just a corner and the line has either endpoint in (+X,-Y) direction (preturbing moves the line inside) 299 CORNER_EDGE_CASE_HIT_SECOND_QUARTER // if the line intersects just a corner and the line has either endpoint in (+X,+Y) direction (preturbing moves the line inside) 300 }; 301 enum CORNER_START_CASE_BEHAVIOR 302 { 303 CORNER_START_CASE_NONE, // the line starting point is outside, no exiting 304 CORNER_START_CASE_OUTSIDE, // exit, if line does not intersect the region (preturbing moves the start point inside) 305 CORNER_START_CASE_POSITIVE_Y_45, // exit, if line the angle of line vector and X-axis is in range (0, 45] in positive Y side. 306 CORNER_START_CASE_NEGATIVE_Y_45 // exit, if line the angle of line vector and X-axis is in range [0, 45] in negative Y side. 307 }; 308 enum CORNER_END_CASE_BEHAVIOR 309 { 310 CORNER_END_CASE_NONE, // end is inside, no exiting (preturbing moves the line end inside) 311 CORNER_END_CASE_DIRECTION, // exit, if line intersected the region (preturbing moves the line end outside) 312 CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER, // exit, if line intersected the region, or line originates from (+X,-Y) direction (preturbing moves the line end outside) 313 CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER // exit, if line intersected the region, or line originates from (+X,+Y) direction (preturbing moves the line end outside) 314 }; 315 316 tcu::Vector<deInt64,2> dp; 317 bool pointInclusive; // would a point in this corner intersect with the region 318 CORNER_EDGE_CASE_BEHAVIOR lineBehavior; // would a line segment going through this corner intersect with the region 319 CORNER_START_CASE_BEHAVIOR startBehavior; // how the corner behaves if the start point at the corner 320 CORNER_END_CASE_BEHAVIOR endBehavior; // how the corner behaves if the end point at the corner 321 } corners[] = 322 { 323 { tcu::Vector<deInt64,2>(0, -halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER, DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER}, 324 { tcu::Vector<deInt64,2>(-halfPixel, 0), false, DiamondCorners::CORNER_EDGE_CASE_NONE, DiamondCorners::CORNER_START_CASE_NONE, DiamondCorners::CORNER_END_CASE_DIRECTION }, 325 { tcu::Vector<deInt64,2>(0, halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER, DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER }, 326 { tcu::Vector<deInt64,2>(halfPixel, 0), true, DiamondCorners::CORNER_EDGE_CASE_HIT, DiamondCorners::CORNER_START_CASE_OUTSIDE, DiamondCorners::CORNER_END_CASE_NONE }, 327 }; 328 329 // Corner cases at the corners 330 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(corners); ++ndx) 331 { 332 const tcu::Vector<deInt64,2> p = diamondCenter + corners[ndx].dp; 333 const bool intersectsAtCorner = LineRasterUtil::vertexOnLineSegment(p, line); 334 335 if (!intersectsAtCorner) 336 continue; 337 338 // line segment body intersects with the corner 339 if (p != line.m_v0 && p != line.m_v1) 340 { 341 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT) 342 return true; 343 344 // endpoint in (+X, -Y) (X or Y may be 0) direction <==> x*y <= 0 345 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER && 346 (line.direction().x() * line.direction().y()) <= 0) 347 return true; 348 349 // endpoint in (+X, +Y) (Y > 0) direction <==> x*y > 0 350 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER && 351 (line.direction().x() * line.direction().y()) > 0) 352 return true; 353 } 354 355 // line exits the area at the corner 356 if (lineInCornerAngleRange(line, corners[ndx].dp)) 357 { 358 const bool startIsInside = corners[ndx].pointInclusive || p != line.m_v0; 359 const bool endIsOutside = !corners[ndx].pointInclusive || p != line.m_v1; 360 361 // starting point is inside the region and end endpoint is outside 362 if (startIsInside && endIsOutside) 363 return true; 364 } 365 366 // line end is at the corner 367 if (p == line.m_v1) 368 { 369 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION || 370 corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER || 371 corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER) 372 { 373 // did the line intersect the region 374 if (lineInCornerAngleRange(line, corners[ndx].dp)) 375 return true; 376 } 377 378 // due to the perturbed endpoint, lines at this the angle will cause and enter-exit pair 379 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER && 380 line.direction().x() < 0 && 381 line.direction().y() > 0) 382 return true; 383 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER && 384 line.direction().x() > 0 && 385 line.direction().y() > 0) 386 return true; 387 } 388 389 // line start is at the corner 390 if (p == line.m_v0) 391 { 392 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_OUTSIDE) 393 { 394 // if the line is not going inside, it will exit 395 if (lineInCornerOutsideAngleRange(line, corners[ndx].dp)) 396 return true; 397 } 398 399 // exit, if line the angle between line vector and X-axis is in range (0, 45] in positive Y side. 400 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45 && 401 line.direction().x() > 0 && 402 line.direction().y() > 0 && 403 line.direction().y() <= line.direction().x()) 404 return true; 405 406 // exit, if line the angle between line vector and X-axis is in range [0, 45] in negative Y side. 407 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45 && 408 line.direction().x() > 0 && 409 line.direction().y() <= 0 && 410 -line.direction().y() <= line.direction().x()) 411 return true; 412 } 413 } 414 415 // Does the line intersect boundary at the left == exits the diamond 416 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(bounds); ++ndx) 417 { 418 const bool startVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) || 419 (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1))); 420 const bool endVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) || 421 (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1))); 422 423 // start must be on inside this half space (left or at the inclusive boundary) 424 if (!startVertexInside) 425 continue; 426 427 // end must be outside of this half-space (right or at non-inclusive boundary) 428 if (endVertexInside) 429 continue; 430 431 // Does the line via v0 and v1 intersect the line segment p0-p1 432 // <==> p0 and p1 are the different sides (LEFT, RIGHT) of the v0-v1 line. 433 // Corners are not allowed, they are checked already 434 LineRasterUtil::LINE_SIDE sideP0 = LineRasterUtil::getVertexSide(bounds[ndx].p0, line); 435 LineRasterUtil::LINE_SIDE sideP1 = LineRasterUtil::getVertexSide(bounds[ndx].p1, line); 436 437 if (sideP0 != LineRasterUtil::LINE_SIDE_INTERSECT && 438 sideP1 != LineRasterUtil::LINE_SIDE_INTERSECT && 439 sideP0 != sideP1) 440 return true; 441 } 442 443 return false; 444 } 445 446 } // LineRasterUtil 447 448 TriangleRasterizer::TriangleRasterizer (const tcu::IVec4& viewport, const int numSamples, const RasterizationState& state) 449 : m_viewport (viewport) 450 , m_numSamples (numSamples) 451 , m_winding (state.winding) 452 , m_horizontalFill (state.horizontalFill) 453 , m_verticalFill (state.verticalFill) 454 , m_face (FACETYPE_LAST) 455 , m_viewportOrientation (state.viewportOrientation) 456 { 457 } 458 459 /*--------------------------------------------------------------------*//*! 460 * \brief Initialize triangle rasterization 461 * \param v0 Screen-space coordinates (x, y, z) and 1/w for vertex 0. 462 * \param v1 Screen-space coordinates (x, y, z) and 1/w for vertex 1. 463 * \param v2 Screen-space coordinates (x, y, z) and 1/w for vertex 2. 464 *//*--------------------------------------------------------------------*/ 465 void TriangleRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, const tcu::Vec4& v2) 466 { 467 m_v0 = v0; 468 m_v1 = v1; 469 m_v2 = v2; 470 471 // Positions in fixed-point coordinates. 472 const deInt64 x0 = toSubpixelCoord(v0.x()); 473 const deInt64 y0 = toSubpixelCoord(v0.y()); 474 const deInt64 x1 = toSubpixelCoord(v1.x()); 475 const deInt64 y1 = toSubpixelCoord(v1.y()); 476 const deInt64 x2 = toSubpixelCoord(v2.x()); 477 const deInt64 y2 = toSubpixelCoord(v2.y()); 478 479 // Initialize edge functions. 480 if (m_winding == WINDING_CCW) 481 { 482 initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x0, y0, x1, y1); 483 initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x1, y1, x2, y2); 484 initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x2, y2, x0, y0); 485 } 486 else 487 { 488 // Reverse edges 489 initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x1, y1, x0, y0); 490 initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x2, y2, x1, y1); 491 initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x0, y0, x2, y2); 492 } 493 494 // Determine face. 495 const deInt64 s = evaluateEdge(m_edge01, x2, y2); 496 const bool positiveArea = (m_winding == WINDING_CCW) ? (s > 0) : (s < 0); 497 498 if (m_viewportOrientation == VIEWPORTORIENTATION_UPPER_LEFT) 499 m_face = positiveArea ? FACETYPE_BACK : FACETYPE_FRONT; 500 else 501 m_face = positiveArea ? FACETYPE_FRONT : FACETYPE_BACK; 502 503 if (!positiveArea) 504 { 505 // Reverse edges so that we can use CCW area tests & interpolation 506 reverseEdge(m_edge01); 507 reverseEdge(m_edge12); 508 reverseEdge(m_edge20); 509 } 510 511 // Bounding box 512 const deInt64 xMin = de::min(de::min(x0, x1), x2); 513 const deInt64 xMax = de::max(de::max(x0, x1), x2); 514 const deInt64 yMin = de::min(de::min(y0, y1), y2); 515 const deInt64 yMax = de::max(de::max(y0, y1), y2); 516 517 m_bboxMin.x() = floorSubpixelToPixelCoord (xMin, m_horizontalFill == FILL_LEFT); 518 m_bboxMin.y() = floorSubpixelToPixelCoord (yMin, m_verticalFill == FILL_BOTTOM); 519 m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, m_horizontalFill == FILL_RIGHT); 520 m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, m_verticalFill == FILL_TOP); 521 522 // Clamp to viewport 523 const int wX0 = m_viewport.x(); 524 const int wY0 = m_viewport.y(); 525 const int wX1 = wX0 + m_viewport.z() - 1; 526 const int wY1 = wY0 + m_viewport.w() -1; 527 528 m_bboxMin.x() = de::clamp(m_bboxMin.x(), wX0, wX1); 529 m_bboxMin.y() = de::clamp(m_bboxMin.y(), wY0, wY1); 530 m_bboxMax.x() = de::clamp(m_bboxMax.x(), wX0, wX1); 531 m_bboxMax.y() = de::clamp(m_bboxMax.y(), wY0, wY1); 532 533 m_curPos = m_bboxMin; 534 } 535 536 void TriangleRasterizer::rasterizeSingleSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 537 { 538 DE_ASSERT(maxFragmentPackets > 0); 539 540 const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 541 int packetNdx = 0; 542 543 // For depth interpolation; given barycentrics A, B, C = (1 - A - B) 544 // we can reformulate the usual z = z0*A + z1*B + z2*C into more 545 // stable equation z = A*(z0 - z2) + B*(z1 - z2) + z2. 546 const float za = m_v0.z()-m_v2.z(); 547 const float zb = m_v1.z()-m_v2.z(); 548 const float zc = m_v2.z(); 549 550 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) 551 { 552 const int x0 = m_curPos.x(); 553 const int y0 = m_curPos.y(); 554 555 // Subpixel coords 556 const deInt64 sx0 = toSubpixelCoord(x0) + halfPixel; 557 const deInt64 sx1 = toSubpixelCoord(x0+1) + halfPixel; 558 const deInt64 sy0 = toSubpixelCoord(y0) + halfPixel; 559 const deInt64 sy1 = toSubpixelCoord(y0+1) + halfPixel; 560 561 const deInt64 sx[4] = { sx0, sx1, sx0, sx1 }; 562 const deInt64 sy[4] = { sy0, sy0, sy1, sy1 }; 563 564 // Viewport test 565 const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z(); 566 const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w(); 567 568 DE_ASSERT(x0 < m_viewport.x()+m_viewport.z()); 569 DE_ASSERT(y0 < m_viewport.y()+m_viewport.w()); 570 571 // Edge values 572 tcu::Vector<deInt64, 4> e01; 573 tcu::Vector<deInt64, 4> e12; 574 tcu::Vector<deInt64, 4> e20; 575 576 // Coverage 577 deUint64 coverage = 0; 578 579 // Evaluate edge values 580 for (int i = 0; i < 4; i++) 581 { 582 e01[i] = evaluateEdge(m_edge01, sx[i], sy[i]); 583 e12[i] = evaluateEdge(m_edge12, sx[i], sy[i]); 584 e20[i] = evaluateEdge(m_edge20, sx[i], sy[i]); 585 } 586 587 // Compute coverage mask 588 coverage = setCoverageValue(coverage, 1, 0, 0, 0, isInsideCCW(m_edge01, e01[0]) && isInsideCCW(m_edge12, e12[0]) && isInsideCCW(m_edge20, e20[0])); 589 coverage = setCoverageValue(coverage, 1, 1, 0, 0, !outX1 && isInsideCCW(m_edge01, e01[1]) && isInsideCCW(m_edge12, e12[1]) && isInsideCCW(m_edge20, e20[1])); 590 coverage = setCoverageValue(coverage, 1, 0, 1, 0, !outY1 && isInsideCCW(m_edge01, e01[2]) && isInsideCCW(m_edge12, e12[2]) && isInsideCCW(m_edge20, e20[2])); 591 coverage = setCoverageValue(coverage, 1, 1, 1, 0, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[3]) && isInsideCCW(m_edge12, e12[3]) && isInsideCCW(m_edge20, e20[3])); 592 593 // Advance to next location 594 m_curPos.x() += 2; 595 if (m_curPos.x() > m_bboxMax.x()) 596 { 597 m_curPos.y() += 2; 598 m_curPos.x() = m_bboxMin.x(); 599 } 600 601 if (coverage == 0) 602 continue; // Discard. 603 604 // Floating-point edge values for barycentrics etc. 605 const tcu::Vec4 e01f = e01.asFloat(); 606 const tcu::Vec4 e12f = e12.asFloat(); 607 const tcu::Vec4 e20f = e20.asFloat(); 608 609 // Compute depth values. 610 if (depthValues) 611 { 612 const tcu::Vec4 edgeSum = e01f + e12f + e20f; 613 const tcu::Vec4 z0 = e12f / edgeSum; 614 const tcu::Vec4 z1 = e20f / edgeSum; 615 616 depthValues[packetNdx*4+0] = z0[0]*za + z1[0]*zb + zc; 617 depthValues[packetNdx*4+1] = z0[1]*za + z1[1]*zb + zc; 618 depthValues[packetNdx*4+2] = z0[2]*za + z1[2]*zb + zc; 619 depthValues[packetNdx*4+3] = z0[3]*za + z1[3]*zb + zc; 620 } 621 622 // Compute barycentrics and write out fragment packet 623 { 624 FragmentPacket& packet = fragmentPackets[packetNdx]; 625 626 const tcu::Vec4 b0 = e12f * m_v0.w(); 627 const tcu::Vec4 b1 = e20f * m_v1.w(); 628 const tcu::Vec4 b2 = e01f * m_v2.w(); 629 const tcu::Vec4 bSum = b0 + b1 + b2; 630 631 packet.position = tcu::IVec2(x0, y0); 632 packet.coverage = coverage; 633 packet.barycentric[0] = b0 / bSum; 634 packet.barycentric[1] = b1 / bSum; 635 packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1]; 636 637 packetNdx += 1; 638 } 639 } 640 641 DE_ASSERT(packetNdx <= maxFragmentPackets); 642 numPacketsRasterized = packetNdx; 643 } 644 645 // Sample positions - ordered as (x, y) list. 646 647 // \note Macros are used to eliminate function calls even in debug builds. 648 #define SAMPLE_POS_TO_SUBPIXEL_COORD(POS) \ 649 (deInt64)((POS) * (1<<RASTERIZER_SUBPIXEL_BITS) + 0.5f) 650 651 #define SAMPLE_POS(X, Y) \ 652 SAMPLE_POS_TO_SUBPIXEL_COORD(X), SAMPLE_POS_TO_SUBPIXEL_COORD(Y) 653 654 static const deInt64 s_samplePos2[] = 655 { 656 SAMPLE_POS(0.3f, 0.3f), 657 SAMPLE_POS(0.7f, 0.7f) 658 }; 659 660 static const deInt64 s_samplePos4[] = 661 { 662 SAMPLE_POS(0.25f, 0.25f), 663 SAMPLE_POS(0.75f, 0.25f), 664 SAMPLE_POS(0.25f, 0.75f), 665 SAMPLE_POS(0.75f, 0.75f) 666 }; 667 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos4) == 4*2); 668 669 static const deInt64 s_samplePos8[] = 670 { 671 SAMPLE_POS( 7.f/16.f, 9.f/16.f), 672 SAMPLE_POS( 9.f/16.f, 13.f/16.f), 673 SAMPLE_POS(11.f/16.f, 3.f/16.f), 674 SAMPLE_POS(13.f/16.f, 11.f/16.f), 675 SAMPLE_POS( 1.f/16.f, 7.f/16.f), 676 SAMPLE_POS( 5.f/16.f, 1.f/16.f), 677 SAMPLE_POS(15.f/16.f, 5.f/16.f), 678 SAMPLE_POS( 3.f/16.f, 15.f/16.f) 679 }; 680 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos8) == 8*2); 681 682 static const deInt64 s_samplePos16[] = 683 { 684 SAMPLE_POS(1.f/8.f, 1.f/8.f), 685 SAMPLE_POS(3.f/8.f, 1.f/8.f), 686 SAMPLE_POS(5.f/8.f, 1.f/8.f), 687 SAMPLE_POS(7.f/8.f, 1.f/8.f), 688 SAMPLE_POS(1.f/8.f, 3.f/8.f), 689 SAMPLE_POS(3.f/8.f, 3.f/8.f), 690 SAMPLE_POS(5.f/8.f, 3.f/8.f), 691 SAMPLE_POS(7.f/8.f, 3.f/8.f), 692 SAMPLE_POS(1.f/8.f, 5.f/8.f), 693 SAMPLE_POS(3.f/8.f, 5.f/8.f), 694 SAMPLE_POS(5.f/8.f, 5.f/8.f), 695 SAMPLE_POS(7.f/8.f, 5.f/8.f), 696 SAMPLE_POS(1.f/8.f, 7.f/8.f), 697 SAMPLE_POS(3.f/8.f, 7.f/8.f), 698 SAMPLE_POS(5.f/8.f, 7.f/8.f), 699 SAMPLE_POS(7.f/8.f, 7.f/8.f) 700 }; 701 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos16) == 16*2); 702 703 #undef SAMPLE_POS 704 #undef SAMPLE_POS_TO_SUBPIXEL_COORD 705 706 template<int NumSamples> 707 void TriangleRasterizer::rasterizeMultiSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 708 { 709 DE_ASSERT(maxFragmentPackets > 0); 710 711 const deInt64* samplePos = DE_NULL; 712 const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 713 int packetNdx = 0; 714 715 // For depth interpolation, see rasterizeSingleSample 716 const float za = m_v0.z()-m_v2.z(); 717 const float zb = m_v1.z()-m_v2.z(); 718 const float zc = m_v2.z(); 719 720 switch (NumSamples) 721 { 722 case 2: samplePos = s_samplePos2; break; 723 case 4: samplePos = s_samplePos4; break; 724 case 8: samplePos = s_samplePos8; break; 725 case 16: samplePos = s_samplePos16; break; 726 default: 727 DE_ASSERT(false); 728 } 729 730 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) 731 { 732 const int x0 = m_curPos.x(); 733 const int y0 = m_curPos.y(); 734 735 // Base subpixel coords 736 const deInt64 sx0 = toSubpixelCoord(x0); 737 const deInt64 sx1 = toSubpixelCoord(x0+1); 738 const deInt64 sy0 = toSubpixelCoord(y0); 739 const deInt64 sy1 = toSubpixelCoord(y0+1); 740 741 const deInt64 sx[4] = { sx0, sx1, sx0, sx1 }; 742 const deInt64 sy[4] = { sy0, sy0, sy1, sy1 }; 743 744 // Viewport test 745 const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z(); 746 const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w(); 747 748 DE_ASSERT(x0 < m_viewport.x()+m_viewport.z()); 749 DE_ASSERT(y0 < m_viewport.y()+m_viewport.w()); 750 751 // Edge values 752 tcu::Vector<deInt64, 4> e01[NumSamples]; 753 tcu::Vector<deInt64, 4> e12[NumSamples]; 754 tcu::Vector<deInt64, 4> e20[NumSamples]; 755 756 // Coverage 757 deUint64 coverage = 0; 758 759 // Evaluate edge values at sample positions 760 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) 761 { 762 const deInt64 ox = samplePos[sampleNdx*2 + 0]; 763 const deInt64 oy = samplePos[sampleNdx*2 + 1]; 764 765 for (int fragNdx = 0; fragNdx < 4; fragNdx++) 766 { 767 e01[sampleNdx][fragNdx] = evaluateEdge(m_edge01, sx[fragNdx] + ox, sy[fragNdx] + oy); 768 e12[sampleNdx][fragNdx] = evaluateEdge(m_edge12, sx[fragNdx] + ox, sy[fragNdx] + oy); 769 e20[sampleNdx][fragNdx] = evaluateEdge(m_edge20, sx[fragNdx] + ox, sy[fragNdx] + oy); 770 } 771 } 772 773 // Compute coverage mask 774 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) 775 { 776 coverage = setCoverageValue(coverage, NumSamples, 0, 0, sampleNdx, isInsideCCW(m_edge01, e01[sampleNdx][0]) && isInsideCCW(m_edge12, e12[sampleNdx][0]) && isInsideCCW(m_edge20, e20[sampleNdx][0])); 777 coverage = setCoverageValue(coverage, NumSamples, 1, 0, sampleNdx, !outX1 && isInsideCCW(m_edge01, e01[sampleNdx][1]) && isInsideCCW(m_edge12, e12[sampleNdx][1]) && isInsideCCW(m_edge20, e20[sampleNdx][1])); 778 coverage = setCoverageValue(coverage, NumSamples, 0, 1, sampleNdx, !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][2]) && isInsideCCW(m_edge12, e12[sampleNdx][2]) && isInsideCCW(m_edge20, e20[sampleNdx][2])); 779 coverage = setCoverageValue(coverage, NumSamples, 1, 1, sampleNdx, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][3]) && isInsideCCW(m_edge12, e12[sampleNdx][3]) && isInsideCCW(m_edge20, e20[sampleNdx][3])); 780 } 781 782 // Advance to next location 783 m_curPos.x() += 2; 784 if (m_curPos.x() > m_bboxMax.x()) 785 { 786 m_curPos.y() += 2; 787 m_curPos.x() = m_bboxMin.x(); 788 } 789 790 if (coverage == 0) 791 continue; // Discard. 792 793 // Compute depth values. 794 if (depthValues) 795 { 796 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) 797 { 798 // Floating-point edge values at sample coordinates. 799 const tcu::Vec4& e01f = e01[sampleNdx].asFloat(); 800 const tcu::Vec4& e12f = e12[sampleNdx].asFloat(); 801 const tcu::Vec4& e20f = e20[sampleNdx].asFloat(); 802 803 const tcu::Vec4 edgeSum = e01f + e12f + e20f; 804 const tcu::Vec4 z0 = e12f / edgeSum; 805 const tcu::Vec4 z1 = e20f / edgeSum; 806 807 depthValues[(packetNdx*4+0)*NumSamples + sampleNdx] = z0[0]*za + z1[0]*zb + zc; 808 depthValues[(packetNdx*4+1)*NumSamples + sampleNdx] = z0[1]*za + z1[1]*zb + zc; 809 depthValues[(packetNdx*4+2)*NumSamples + sampleNdx] = z0[2]*za + z1[2]*zb + zc; 810 depthValues[(packetNdx*4+3)*NumSamples + sampleNdx] = z0[3]*za + z1[3]*zb + zc; 811 } 812 } 813 814 // Compute barycentrics and write out fragment packet 815 { 816 FragmentPacket& packet = fragmentPackets[packetNdx]; 817 818 // Floating-point edge values at pixel center. 819 tcu::Vec4 e01f; 820 tcu::Vec4 e12f; 821 tcu::Vec4 e20f; 822 823 for (int i = 0; i < 4; i++) 824 { 825 e01f[i] = float(evaluateEdge(m_edge01, sx[i] + halfPixel, sy[i] + halfPixel)); 826 e12f[i] = float(evaluateEdge(m_edge12, sx[i] + halfPixel, sy[i] + halfPixel)); 827 e20f[i] = float(evaluateEdge(m_edge20, sx[i] + halfPixel, sy[i] + halfPixel)); 828 } 829 830 // Barycentrics & scale. 831 const tcu::Vec4 b0 = e12f * m_v0.w(); 832 const tcu::Vec4 b1 = e20f * m_v1.w(); 833 const tcu::Vec4 b2 = e01f * m_v2.w(); 834 const tcu::Vec4 bSum = b0 + b1 + b2; 835 836 packet.position = tcu::IVec2(x0, y0); 837 packet.coverage = coverage; 838 packet.barycentric[0] = b0 / bSum; 839 packet.barycentric[1] = b1 / bSum; 840 packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1]; 841 842 packetNdx += 1; 843 } 844 } 845 846 DE_ASSERT(packetNdx <= maxFragmentPackets); 847 numPacketsRasterized = packetNdx; 848 } 849 850 void TriangleRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 851 { 852 DE_ASSERT(maxFragmentPackets > 0); 853 854 switch (m_numSamples) 855 { 856 case 1: rasterizeSingleSample (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 857 case 2: rasterizeMultiSample<2> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 858 case 4: rasterizeMultiSample<4> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 859 case 8: rasterizeMultiSample<8> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 860 case 16: rasterizeMultiSample<16> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 861 default: 862 DE_ASSERT(DE_FALSE); 863 } 864 } 865 866 SingleSampleLineRasterizer::SingleSampleLineRasterizer (const tcu::IVec4& viewport) 867 : m_viewport (viewport) 868 , m_curRowFragment (0) 869 , m_lineWidth (0.0f) 870 { 871 } 872 873 SingleSampleLineRasterizer::~SingleSampleLineRasterizer (void) 874 { 875 } 876 877 void SingleSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth) 878 { 879 const bool isXMajor = de::abs((v1 - v0).x()) >= de::abs((v1 - v0).y()); 880 881 // Bounding box \note: with wide lines, the line is actually moved as in the spec 882 const deInt32 lineWidthPixels = (lineWidth > 1.0f) ? (deInt32)floor(lineWidth + 0.5f) : 1; 883 884 const tcu::Vector<deInt64,2> widthOffset = (isXMajor ? tcu::Vector<deInt64,2>(0, -1) : tcu::Vector<deInt64,2>(-1, 0)) * (toSubpixelCoord(lineWidthPixels - 1) / 2); 885 886 const deInt64 x0 = toSubpixelCoord(v0.x()) + widthOffset.x(); 887 const deInt64 y0 = toSubpixelCoord(v0.y()) + widthOffset.y(); 888 const deInt64 x1 = toSubpixelCoord(v1.x()) + widthOffset.x(); 889 const deInt64 y1 = toSubpixelCoord(v1.y()) + widthOffset.y(); 890 891 // line endpoints might be perturbed, add some margin 892 const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1); 893 const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1); 894 const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1); 895 const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1); 896 897 // Remove invisible area 898 899 if (isXMajor) 900 { 901 // clamp to viewport in major direction 902 m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1); 903 m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1); 904 905 // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction) 906 m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1); 907 m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1); 908 } 909 else 910 { 911 // clamp to viewport in major direction 912 m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1); 913 m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1); 914 915 // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction) 916 m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1); 917 m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1); 918 } 919 920 m_lineWidth = lineWidth; 921 922 m_v0 = v0; 923 m_v1 = v1; 924 925 m_curPos = m_bboxMin; 926 m_curRowFragment = 0; 927 } 928 929 void SingleSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 930 { 931 DE_ASSERT(maxFragmentPackets > 0); 932 933 const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 934 const deInt32 lineWidth = (m_lineWidth > 1.0f) ? deFloorFloatToInt32(m_lineWidth + 0.5f) : 1; 935 const bool isXMajor = de::abs((m_v1 - m_v0).x()) >= de::abs((m_v1 - m_v0).y()); 936 const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0)); 937 const int minViewportLimit = (isXMajor) ? (m_viewport.y()) : (m_viewport.x()); 938 const int maxViewportLimit = (isXMajor) ? (m_viewport.y() + m_viewport.w()) : (m_viewport.x() + m_viewport.z()); 939 const tcu::Vector<deInt64,2> widthOffset = -minorDirection.cast<deInt64>() * (toSubpixelCoord(lineWidth - 1) / 2); 940 const tcu::Vector<deInt64,2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy()) + widthOffset; 941 const tcu::Vector<deInt64,2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy()) + widthOffset; 942 const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb); 943 944 int packetNdx = 0; 945 946 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) 947 { 948 const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel); 949 950 // Should current fragment be drawn? == does the segment exit this diamond? 951 if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition)) 952 { 953 const tcu::Vector<deInt64,2> pr = diamondPosition; 954 const float t = tcu::dot((pr - pa).asFloat(), (pb - pa).asFloat()) / tcu::lengthSquared(pb.asFloat() - pa.asFloat()); 955 956 // Rasterize on only fragments that are would end up in the viewport (i.e. visible) 957 const int fragmentLocation = (isXMajor) ? (m_curPos.y()) : (m_curPos.x()); 958 const int rowFragBegin = de::max(0, minViewportLimit - fragmentLocation); 959 const int rowFragEnd = de::min(maxViewportLimit - fragmentLocation, lineWidth); 960 961 // Wide lines require multiple fragments. 962 for (; rowFragBegin + m_curRowFragment < rowFragEnd; m_curRowFragment++) 963 { 964 const int replicationId = rowFragBegin + m_curRowFragment; 965 const tcu::IVec2 fragmentPos = m_curPos + minorDirection * replicationId; 966 967 // We only rasterize visible area 968 DE_ASSERT(LineRasterUtil::inViewport(fragmentPos, m_viewport)); 969 970 // Compute depth values. 971 if (depthValues) 972 { 973 const float za = m_v0.z(); 974 const float zb = m_v1.z(); 975 976 depthValues[packetNdx*4+0] = (1 - t) * za + t * zb; 977 depthValues[packetNdx*4+1] = 0; 978 depthValues[packetNdx*4+2] = 0; 979 depthValues[packetNdx*4+3] = 0; 980 } 981 982 { 983 // output this fragment 984 // \note In order to make consistent output with multisampled line rasterization, output "barycentric" coordinates 985 FragmentPacket& packet = fragmentPackets[packetNdx]; 986 987 const tcu::Vec4 b0 = tcu::Vec4(1 - t); 988 const tcu::Vec4 b1 = tcu::Vec4(t); 989 const tcu::Vec4 ooSum = 1.0f / (b0 + b1); 990 991 packet.position = fragmentPos; 992 packet.coverage = getCoverageBit(1, 0, 0, 0); 993 packet.barycentric[0] = b0 * ooSum; 994 packet.barycentric[1] = b1 * ooSum; 995 packet.barycentric[2] = tcu::Vec4(0.0f); 996 997 packetNdx += 1; 998 } 999 1000 if (packetNdx == maxFragmentPackets) 1001 { 1002 m_curRowFragment++; // don't redraw this fragment again next time 1003 numPacketsRasterized = packetNdx; 1004 return; 1005 } 1006 } 1007 1008 m_curRowFragment = 0; 1009 } 1010 1011 ++m_curPos.x(); 1012 if (m_curPos.x() > m_bboxMax.x()) 1013 { 1014 ++m_curPos.y(); 1015 m_curPos.x() = m_bboxMin.x(); 1016 } 1017 } 1018 1019 DE_ASSERT(packetNdx <= maxFragmentPackets); 1020 numPacketsRasterized = packetNdx; 1021 } 1022 1023 MultiSampleLineRasterizer::MultiSampleLineRasterizer (const int numSamples, const tcu::IVec4& viewport) 1024 : m_numSamples (numSamples) 1025 , m_triangleRasterizer0 (viewport, m_numSamples, RasterizationState()) 1026 , m_triangleRasterizer1 (viewport, m_numSamples, RasterizationState()) 1027 { 1028 } 1029 1030 MultiSampleLineRasterizer::~MultiSampleLineRasterizer () 1031 { 1032 } 1033 1034 void MultiSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth) 1035 { 1036 // allow creation of single sampled rasterizer objects but do not allow using them 1037 DE_ASSERT(m_numSamples > 1); 1038 1039 const tcu::Vec2 lineVec = tcu::Vec2(tcu::Vec4(v1).xy()) - tcu::Vec2(tcu::Vec4(v0).xy()); 1040 const tcu::Vec2 normal2 = tcu::normalize(tcu::Vec2(-lineVec[1], lineVec[0])); 1041 const tcu::Vec4 normal4 = tcu::Vec4(normal2.x(), normal2.y(), 0, 0); 1042 const float offset = lineWidth / 2.0f; 1043 1044 const tcu::Vec4 p0 = v0 + normal4 * offset; 1045 const tcu::Vec4 p1 = v0 - normal4 * offset; 1046 const tcu::Vec4 p2 = v1 - normal4 * offset; 1047 const tcu::Vec4 p3 = v1 + normal4 * offset; 1048 1049 // Edge 0 -> 1 is always along the line and edge 1 -> 2 is in 90 degree angle to the line 1050 m_triangleRasterizer0.init(p0, p3, p2); 1051 m_triangleRasterizer1.init(p2, p1, p0); 1052 } 1053 1054 void MultiSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 1055 { 1056 DE_ASSERT(maxFragmentPackets > 0); 1057 1058 m_triangleRasterizer0.rasterize(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); 1059 1060 // Remove 3rd barycentric value and rebalance. Lines do not have non-zero barycentric at index 2 1061 for (int packNdx = 0; packNdx < numPacketsRasterized; ++packNdx) 1062 for (int fragNdx = 0; fragNdx < 4; fragNdx++) 1063 { 1064 float removedValue = fragmentPackets[packNdx].barycentric[2][fragNdx]; 1065 fragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f; 1066 fragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue; 1067 } 1068 1069 // rasterizer 0 filled the whole buffer? 1070 if (numPacketsRasterized == maxFragmentPackets) 1071 return; 1072 1073 { 1074 FragmentPacket* const nextFragmentPackets = fragmentPackets + numPacketsRasterized; 1075 float* nextDepthValues = (depthValues) ? (depthValues+4*numPacketsRasterized*m_numSamples) : (DE_NULL); 1076 int numPacketsRasterized2 = 0; 1077 1078 m_triangleRasterizer1.rasterize(nextFragmentPackets, nextDepthValues, maxFragmentPackets - numPacketsRasterized, numPacketsRasterized2); 1079 1080 numPacketsRasterized += numPacketsRasterized2; 1081 1082 // Fix swapped barycentrics in the second triangle 1083 for (int packNdx = 0; packNdx < numPacketsRasterized2; ++packNdx) 1084 for (int fragNdx = 0; fragNdx < 4; fragNdx++) 1085 { 1086 float removedValue = nextFragmentPackets[packNdx].barycentric[2][fragNdx]; 1087 nextFragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f; 1088 nextFragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue; 1089 1090 // edge has reversed direction 1091 std::swap(nextFragmentPackets[packNdx].barycentric[0][fragNdx], nextFragmentPackets[packNdx].barycentric[1][fragNdx]); 1092 } 1093 } 1094 } 1095 1096 LineExitDiamondGenerator::LineExitDiamondGenerator (void) 1097 { 1098 } 1099 1100 LineExitDiamondGenerator::~LineExitDiamondGenerator (void) 1101 { 1102 } 1103 1104 void LineExitDiamondGenerator::init (const tcu::Vec4& v0, const tcu::Vec4& v1) 1105 { 1106 const deInt64 x0 = toSubpixelCoord(v0.x()); 1107 const deInt64 y0 = toSubpixelCoord(v0.y()); 1108 const deInt64 x1 = toSubpixelCoord(v1.x()); 1109 const deInt64 y1 = toSubpixelCoord(v1.y()); 1110 1111 // line endpoints might be perturbed, add some margin 1112 const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1); 1113 const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1); 1114 const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1); 1115 const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1); 1116 1117 m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, true); 1118 m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, true); 1119 m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, true); 1120 m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, true); 1121 1122 m_v0 = v0; 1123 m_v1 = v1; 1124 1125 m_curPos = m_bboxMin; 1126 } 1127 1128 void LineExitDiamondGenerator::rasterize (LineExitDiamond* const lineDiamonds, const int maxDiamonds, int& numWritten) 1129 { 1130 DE_ASSERT(maxDiamonds > 0); 1131 1132 const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 1133 const tcu::Vector<deInt64,2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy()); 1134 const tcu::Vector<deInt64,2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy()); 1135 const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb); 1136 1137 int diamondNdx = 0; 1138 1139 while (m_curPos.y() <= m_bboxMax.y() && diamondNdx < maxDiamonds) 1140 { 1141 const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel); 1142 1143 if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition)) 1144 { 1145 LineExitDiamond& packet = lineDiamonds[diamondNdx]; 1146 packet.position = m_curPos; 1147 ++diamondNdx; 1148 } 1149 1150 ++m_curPos.x(); 1151 if (m_curPos.x() > m_bboxMax.x()) 1152 { 1153 ++m_curPos.y(); 1154 m_curPos.x() = m_bboxMin.x(); 1155 } 1156 } 1157 1158 DE_ASSERT(diamondNdx <= maxDiamonds); 1159 numWritten = diamondNdx; 1160 } 1161 1162 } // rr 1163