Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/MC/MCAsmBackend.h"
     11 #include "MCTargetDesc/X86BaseInfo.h"
     12 #include "MCTargetDesc/X86FixupKinds.h"
     13 #include "llvm/ADT/Twine.h"
     14 #include "llvm/MC/MCAssembler.h"
     15 #include "llvm/MC/MCELFObjectWriter.h"
     16 #include "llvm/MC/MCExpr.h"
     17 #include "llvm/MC/MCFixupKindInfo.h"
     18 #include "llvm/MC/MCMachObjectWriter.h"
     19 #include "llvm/MC/MCObjectWriter.h"
     20 #include "llvm/MC/MCSectionCOFF.h"
     21 #include "llvm/MC/MCSectionELF.h"
     22 #include "llvm/MC/MCSectionMachO.h"
     23 #include "llvm/Object/MachOFormat.h"
     24 #include "llvm/Support/CommandLine.h"
     25 #include "llvm/Support/ELF.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/TargetRegistry.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 using namespace llvm;
     30 
     31 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
     32 // is useful when running bitwise comparison experiments on Darwin. We should be
     33 // able to remove this once PR9807 is resolved.
     34 static cl::opt<bool>
     35 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
     36          cl::desc("Disable relaxation of arithmetic instruction for X86"));
     37 
     38 static unsigned getFixupKindLog2Size(unsigned Kind) {
     39   switch (Kind) {
     40   default: assert(0 && "invalid fixup kind!");
     41   case FK_PCRel_1:
     42   case FK_Data_1: return 0;
     43   case FK_PCRel_2:
     44   case FK_Data_2: return 1;
     45   case FK_PCRel_4:
     46   case X86::reloc_riprel_4byte:
     47   case X86::reloc_riprel_4byte_movq_load:
     48   case X86::reloc_signed_4byte:
     49   case X86::reloc_global_offset_table:
     50   case FK_Data_4: return 2;
     51   case FK_PCRel_8:
     52   case FK_Data_8: return 3;
     53   }
     54 }
     55 
     56 namespace {
     57 
     58 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
     59 public:
     60   X86ELFObjectWriter(bool is64Bit, Triple::OSType OSType, uint16_t EMachine,
     61                      bool HasRelocationAddend)
     62     : MCELFObjectTargetWriter(is64Bit, OSType, EMachine, HasRelocationAddend) {}
     63 };
     64 
     65 class X86AsmBackend : public MCAsmBackend {
     66 public:
     67   X86AsmBackend(const Target &T)
     68     : MCAsmBackend() {}
     69 
     70   unsigned getNumFixupKinds() const {
     71     return X86::NumTargetFixupKinds;
     72   }
     73 
     74   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
     75     const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
     76       { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
     77       { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
     78       { "reloc_signed_4byte", 0, 4 * 8, 0},
     79       { "reloc_global_offset_table", 0, 4 * 8, 0}
     80     };
     81 
     82     if (Kind < FirstTargetFixupKind)
     83       return MCAsmBackend::getFixupKindInfo(Kind);
     84 
     85     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
     86            "Invalid kind!");
     87     return Infos[Kind - FirstTargetFixupKind];
     88   }
     89 
     90   void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
     91                   uint64_t Value) const {
     92     unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
     93 
     94     assert(Fixup.getOffset() + Size <= DataSize &&
     95            "Invalid fixup offset!");
     96 
     97     // Check that uppper bits are either all zeros or all ones.
     98     // Specifically ignore overflow/underflow as long as the leakage is
     99     // limited to the lower bits. This is to remain compatible with
    100     // other assemblers.
    101     assert(isIntN(Size * 8 + 1, Value) &&
    102            "Value does not fit in the Fixup field");
    103 
    104     for (unsigned i = 0; i != Size; ++i)
    105       Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
    106   }
    107 
    108   bool MayNeedRelaxation(const MCInst &Inst) const;
    109 
    110   void RelaxInstruction(const MCInst &Inst, MCInst &Res) const;
    111 
    112   bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const;
    113 };
    114 } // end anonymous namespace
    115 
    116 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
    117   switch (Op) {
    118   default:
    119     return Op;
    120 
    121   case X86::JAE_1: return X86::JAE_4;
    122   case X86::JA_1:  return X86::JA_4;
    123   case X86::JBE_1: return X86::JBE_4;
    124   case X86::JB_1:  return X86::JB_4;
    125   case X86::JE_1:  return X86::JE_4;
    126   case X86::JGE_1: return X86::JGE_4;
    127   case X86::JG_1:  return X86::JG_4;
    128   case X86::JLE_1: return X86::JLE_4;
    129   case X86::JL_1:  return X86::JL_4;
    130   case X86::JMP_1: return X86::JMP_4;
    131   case X86::JNE_1: return X86::JNE_4;
    132   case X86::JNO_1: return X86::JNO_4;
    133   case X86::JNP_1: return X86::JNP_4;
    134   case X86::JNS_1: return X86::JNS_4;
    135   case X86::JO_1:  return X86::JO_4;
    136   case X86::JP_1:  return X86::JP_4;
    137   case X86::JS_1:  return X86::JS_4;
    138   }
    139 }
    140 
    141 static unsigned getRelaxedOpcodeArith(unsigned Op) {
    142   switch (Op) {
    143   default:
    144     return Op;
    145 
    146     // IMUL
    147   case X86::IMUL16rri8: return X86::IMUL16rri;
    148   case X86::IMUL16rmi8: return X86::IMUL16rmi;
    149   case X86::IMUL32rri8: return X86::IMUL32rri;
    150   case X86::IMUL32rmi8: return X86::IMUL32rmi;
    151   case X86::IMUL64rri8: return X86::IMUL64rri32;
    152   case X86::IMUL64rmi8: return X86::IMUL64rmi32;
    153 
    154     // AND
    155   case X86::AND16ri8: return X86::AND16ri;
    156   case X86::AND16mi8: return X86::AND16mi;
    157   case X86::AND32ri8: return X86::AND32ri;
    158   case X86::AND32mi8: return X86::AND32mi;
    159   case X86::AND64ri8: return X86::AND64ri32;
    160   case X86::AND64mi8: return X86::AND64mi32;
    161 
    162     // OR
    163   case X86::OR16ri8: return X86::OR16ri;
    164   case X86::OR16mi8: return X86::OR16mi;
    165   case X86::OR32ri8: return X86::OR32ri;
    166   case X86::OR32mi8: return X86::OR32mi;
    167   case X86::OR64ri8: return X86::OR64ri32;
    168   case X86::OR64mi8: return X86::OR64mi32;
    169 
    170     // XOR
    171   case X86::XOR16ri8: return X86::XOR16ri;
    172   case X86::XOR16mi8: return X86::XOR16mi;
    173   case X86::XOR32ri8: return X86::XOR32ri;
    174   case X86::XOR32mi8: return X86::XOR32mi;
    175   case X86::XOR64ri8: return X86::XOR64ri32;
    176   case X86::XOR64mi8: return X86::XOR64mi32;
    177 
    178     // ADD
    179   case X86::ADD16ri8: return X86::ADD16ri;
    180   case X86::ADD16mi8: return X86::ADD16mi;
    181   case X86::ADD32ri8: return X86::ADD32ri;
    182   case X86::ADD32mi8: return X86::ADD32mi;
    183   case X86::ADD64ri8: return X86::ADD64ri32;
    184   case X86::ADD64mi8: return X86::ADD64mi32;
    185 
    186     // SUB
    187   case X86::SUB16ri8: return X86::SUB16ri;
    188   case X86::SUB16mi8: return X86::SUB16mi;
    189   case X86::SUB32ri8: return X86::SUB32ri;
    190   case X86::SUB32mi8: return X86::SUB32mi;
    191   case X86::SUB64ri8: return X86::SUB64ri32;
    192   case X86::SUB64mi8: return X86::SUB64mi32;
    193 
    194     // CMP
    195   case X86::CMP16ri8: return X86::CMP16ri;
    196   case X86::CMP16mi8: return X86::CMP16mi;
    197   case X86::CMP32ri8: return X86::CMP32ri;
    198   case X86::CMP32mi8: return X86::CMP32mi;
    199   case X86::CMP64ri8: return X86::CMP64ri32;
    200   case X86::CMP64mi8: return X86::CMP64mi32;
    201 
    202     // PUSH
    203   case X86::PUSHi8: return X86::PUSHi32;
    204   case X86::PUSHi16: return X86::PUSHi32;
    205   case X86::PUSH64i8: return X86::PUSH64i32;
    206   case X86::PUSH64i16: return X86::PUSH64i32;
    207   }
    208 }
    209 
    210 static unsigned getRelaxedOpcode(unsigned Op) {
    211   unsigned R = getRelaxedOpcodeArith(Op);
    212   if (R != Op)
    213     return R;
    214   return getRelaxedOpcodeBranch(Op);
    215 }
    216 
    217 bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const {
    218   // Branches can always be relaxed.
    219   if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
    220     return true;
    221 
    222   if (MCDisableArithRelaxation)
    223     return false;
    224 
    225   // Check if this instruction is ever relaxable.
    226   if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
    227     return false;
    228 
    229 
    230   // Check if it has an expression and is not RIP relative.
    231   bool hasExp = false;
    232   bool hasRIP = false;
    233   for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
    234     const MCOperand &Op = Inst.getOperand(i);
    235     if (Op.isExpr())
    236       hasExp = true;
    237 
    238     if (Op.isReg() && Op.getReg() == X86::RIP)
    239       hasRIP = true;
    240   }
    241 
    242   // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
    243   // how we do relaxations?
    244   return hasExp && !hasRIP;
    245 }
    246 
    247 // FIXME: Can tblgen help at all here to verify there aren't other instructions
    248 // we can relax?
    249 void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const {
    250   // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
    251   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
    252 
    253   if (RelaxedOp == Inst.getOpcode()) {
    254     SmallString<256> Tmp;
    255     raw_svector_ostream OS(Tmp);
    256     Inst.dump_pretty(OS);
    257     OS << "\n";
    258     report_fatal_error("unexpected instruction to relax: " + OS.str());
    259   }
    260 
    261   Res = Inst;
    262   Res.setOpcode(RelaxedOp);
    263 }
    264 
    265 /// WriteNopData - Write optimal nops to the output file for the \arg Count
    266 /// bytes.  This returns the number of bytes written.  It may return 0 if
    267 /// the \arg Count is more than the maximum optimal nops.
    268 bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const {
    269   static const uint8_t Nops[10][10] = {
    270     // nop
    271     {0x90},
    272     // xchg %ax,%ax
    273     {0x66, 0x90},
    274     // nopl (%[re]ax)
    275     {0x0f, 0x1f, 0x00},
    276     // nopl 0(%[re]ax)
    277     {0x0f, 0x1f, 0x40, 0x00},
    278     // nopl 0(%[re]ax,%[re]ax,1)
    279     {0x0f, 0x1f, 0x44, 0x00, 0x00},
    280     // nopw 0(%[re]ax,%[re]ax,1)
    281     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
    282     // nopl 0L(%[re]ax)
    283     {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
    284     // nopl 0L(%[re]ax,%[re]ax,1)
    285     {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    286     // nopw 0L(%[re]ax,%[re]ax,1)
    287     {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    288     // nopw %cs:0L(%[re]ax,%[re]ax,1)
    289     {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    290   };
    291 
    292   // Write an optimal sequence for the first 15 bytes.
    293   const uint64_t OptimalCount = (Count < 16) ? Count : 15;
    294   const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
    295   for (uint64_t i = 0, e = Prefixes; i != e; i++)
    296     OW->Write8(0x66);
    297   const uint64_t Rest = OptimalCount - Prefixes;
    298   for (uint64_t i = 0, e = Rest; i != e; i++)
    299     OW->Write8(Nops[Rest - 1][i]);
    300 
    301   // Finish with single byte nops.
    302   for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
    303    OW->Write8(0x90);
    304 
    305   return true;
    306 }
    307 
    308 /* *** */
    309 
    310 namespace {
    311 class ELFX86AsmBackend : public X86AsmBackend {
    312 public:
    313   Triple::OSType OSType;
    314   ELFX86AsmBackend(const Target &T, Triple::OSType _OSType)
    315     : X86AsmBackend(T), OSType(_OSType) {
    316     HasReliableSymbolDifference = true;
    317   }
    318 
    319   virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
    320     const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
    321     return ES.getFlags() & ELF::SHF_MERGE;
    322   }
    323 };
    324 
    325 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
    326 public:
    327   ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType)
    328     : ELFX86AsmBackend(T, OSType) {}
    329 
    330   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    331     return createELFObjectWriter(createELFObjectTargetWriter(),
    332                                  OS, /*IsLittleEndian*/ true);
    333   }
    334 
    335   MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
    336     return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false);
    337   }
    338 };
    339 
    340 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
    341 public:
    342   ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType)
    343     : ELFX86AsmBackend(T, OSType) {}
    344 
    345   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    346     return createELFObjectWriter(createELFObjectTargetWriter(),
    347                                  OS, /*IsLittleEndian*/ true);
    348   }
    349 
    350   MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
    351     return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true);
    352   }
    353 };
    354 
    355 class WindowsX86AsmBackend : public X86AsmBackend {
    356   bool Is64Bit;
    357 
    358 public:
    359   WindowsX86AsmBackend(const Target &T, bool is64Bit)
    360     : X86AsmBackend(T)
    361     , Is64Bit(is64Bit) {
    362   }
    363 
    364   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    365     return createWinCOFFObjectWriter(OS, Is64Bit);
    366   }
    367 };
    368 
    369 class DarwinX86AsmBackend : public X86AsmBackend {
    370 public:
    371   DarwinX86AsmBackend(const Target &T)
    372     : X86AsmBackend(T) { }
    373 };
    374 
    375 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
    376 public:
    377   DarwinX86_32AsmBackend(const Target &T)
    378     : DarwinX86AsmBackend(T) {}
    379 
    380   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    381     return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
    382                                      object::mach::CTM_i386,
    383                                      object::mach::CSX86_ALL);
    384   }
    385 };
    386 
    387 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
    388 public:
    389   DarwinX86_64AsmBackend(const Target &T)
    390     : DarwinX86AsmBackend(T) {
    391     HasReliableSymbolDifference = true;
    392   }
    393 
    394   MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
    395     return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
    396                                      object::mach::CTM_x86_64,
    397                                      object::mach::CSX86_ALL);
    398   }
    399 
    400   virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
    401     // Temporary labels in the string literals sections require symbols. The
    402     // issue is that the x86_64 relocation format does not allow symbol +
    403     // offset, and so the linker does not have enough information to resolve the
    404     // access to the appropriate atom unless an external relocation is used. For
    405     // non-cstring sections, we expect the compiler to use a non-temporary label
    406     // for anything that could have an addend pointing outside the symbol.
    407     //
    408     // See <rdar://problem/4765733>.
    409     const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
    410     return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
    411   }
    412 
    413   virtual bool isSectionAtomizable(const MCSection &Section) const {
    414     const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
    415     // Fixed sized data sections are uniqued, they cannot be diced into atoms.
    416     switch (SMO.getType()) {
    417     default:
    418       return true;
    419 
    420     case MCSectionMachO::S_4BYTE_LITERALS:
    421     case MCSectionMachO::S_8BYTE_LITERALS:
    422     case MCSectionMachO::S_16BYTE_LITERALS:
    423     case MCSectionMachO::S_LITERAL_POINTERS:
    424     case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
    425     case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
    426     case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
    427     case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
    428     case MCSectionMachO::S_INTERPOSING:
    429       return false;
    430     }
    431   }
    432 };
    433 
    434 } // end anonymous namespace
    435 
    436 MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT) {
    437   Triple TheTriple(TT);
    438 
    439   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
    440     return new DarwinX86_32AsmBackend(T);
    441 
    442   if (TheTriple.isOSWindows())
    443     return new WindowsX86AsmBackend(T, false);
    444 
    445   return new ELFX86_32AsmBackend(T, TheTriple.getOS());
    446 }
    447 
    448 MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT) {
    449   Triple TheTriple(TT);
    450 
    451   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
    452     return new DarwinX86_64AsmBackend(T);
    453 
    454   if (TheTriple.isOSWindows())
    455     return new WindowsX86AsmBackend(T, true);
    456 
    457   return new ELFX86_64AsmBackend(T, TheTriple.getOS());
    458 }
    459