1 2 /*--------------------------------------------------------------------*/ 3 /*--- An implementation of malloc/free which doesn't use sbrk. ---*/ 4 /*--- m_mallocfree.c ---*/ 5 /*--------------------------------------------------------------------*/ 6 7 /* 8 This file is part of Valgrind, a dynamic binary instrumentation 9 framework. 10 11 Copyright (C) 2000-2017 Julian Seward 12 jseward (at) acm.org 13 14 This program is free software; you can redistribute it and/or 15 modify it under the terms of the GNU General Public License as 16 published by the Free Software Foundation; either version 2 of the 17 License, or (at your option) any later version. 18 19 This program is distributed in the hope that it will be useful, but 20 WITHOUT ANY WARRANTY; without even the implied warranty of 21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 General Public License for more details. 23 24 You should have received a copy of the GNU General Public License 25 along with this program; if not, write to the Free Software 26 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 27 02111-1307, USA. 28 29 The GNU General Public License is contained in the file COPYING. 30 */ 31 32 #include "pub_core_basics.h" 33 #include "pub_core_vki.h" 34 #include "pub_core_debuglog.h" 35 #include "pub_core_libcbase.h" 36 #include "pub_core_aspacemgr.h" 37 #include "pub_core_libcassert.h" 38 #include "pub_core_libcprint.h" 39 #include "pub_core_mallocfree.h" 40 #include "pub_core_options.h" 41 #include "pub_core_threadstate.h" // For VG_INVALID_THREADID 42 #include "pub_core_gdbserver.h" 43 #include "pub_core_transtab.h" 44 #include "pub_core_tooliface.h" 45 46 #include "pub_core_inner.h" 47 #if defined(ENABLE_INNER_CLIENT_REQUEST) 48 #include "memcheck/memcheck.h" 49 #endif 50 51 // #define DEBUG_MALLOC // turn on heavyweight debugging machinery 52 // #define VERBOSE_MALLOC // make verbose, esp. in debugging machinery 53 54 /* Number and total size of blocks in free queue. Used by mallinfo(). */ 55 Long VG_(free_queue_volume) = 0; 56 Long VG_(free_queue_length) = 0; 57 58 static void cc_analyse_alloc_arena ( ArenaId aid ); /* fwds */ 59 60 /*------------------------------------------------------------*/ 61 /*--- Main types ---*/ 62 /*------------------------------------------------------------*/ 63 64 #define N_MALLOC_LISTS 112 // do not change this 65 66 // The amount you can ask for is limited only by sizeof(SizeT)... 67 #define MAX_PSZB (~((SizeT)0x0)) 68 69 // Each arena has a sorted array of superblocks, which expands 70 // dynamically. This is its initial size. 71 #define SBLOCKS_SIZE_INITIAL 50 72 73 typedef UChar UByte; 74 75 /* Layout of an in-use block: 76 77 cost center (OPTIONAL) (VG_MIN_MALLOC_SZB bytes, only when h-p enabled) 78 this block total szB (sizeof(SizeT) bytes) 79 red zone bytes (depends on Arena.rz_szB, but >= sizeof(void*)) 80 (payload bytes) 81 red zone bytes (depends on Arena.rz_szB, but >= sizeof(void*)) 82 this block total szB (sizeof(SizeT) bytes) 83 84 Layout of a block on the free list: 85 86 cost center (OPTIONAL) (VG_MIN_MALLOC_SZB bytes, only when h-p enabled) 87 this block total szB (sizeof(SizeT) bytes) 88 freelist previous ptr (sizeof(void*) bytes) 89 excess red zone bytes (if Arena.rz_szB > sizeof(void*)) 90 (payload bytes) 91 excess red zone bytes (if Arena.rz_szB > sizeof(void*)) 92 freelist next ptr (sizeof(void*) bytes) 93 this block total szB (sizeof(SizeT) bytes) 94 95 Total size in bytes (bszB) and payload size in bytes (pszB) 96 are related by: 97 98 bszB == pszB + 2*sizeof(SizeT) + 2*a->rz_szB 99 100 when heap profiling is not enabled, and 101 102 bszB == pszB + 2*sizeof(SizeT) + 2*a->rz_szB + VG_MIN_MALLOC_SZB 103 104 when it is enabled. It follows that the minimum overhead per heap 105 block for arenas used by the core is: 106 107 32-bit platforms: 2*4 + 2*4 == 16 bytes 108 64-bit platforms: 2*8 + 2*8 == 32 bytes 109 110 when heap profiling is not enabled, and 111 112 32-bit platforms: 2*4 + 2*4 + 8 == 24 bytes 113 64-bit platforms: 2*8 + 2*8 + 16 == 48 bytes 114 115 when it is enabled. In all cases, extra overhead may be incurred 116 when rounding the payload size up to VG_MIN_MALLOC_SZB. 117 118 Furthermore, both size fields in the block have their least-significant 119 bit set if the block is not in use, and unset if it is in use. 120 (The bottom 3 or so bits are always free for this because of alignment.) 121 A block size of zero is not possible, because a block always has at 122 least two SizeTs and two pointers of overhead. 123 124 Nb: All Block payloads must be VG_MIN_MALLOC_SZB-aligned. This is 125 achieved by ensuring that Superblocks are VG_MIN_MALLOC_SZB-aligned 126 (see newSuperblock() for how), and that the lengths of the following 127 things are a multiple of VG_MIN_MALLOC_SZB: 128 - Superblock admin section lengths (due to elastic padding) 129 - Block admin section (low and high) lengths (due to elastic redzones) 130 - Block payload lengths (due to req_pszB rounding up) 131 132 The heap-profile cost-center field is 8 bytes even on 32 bit 133 platforms. This is so as to keep the payload field 8-aligned. On 134 a 64-bit platform, this cc-field contains a pointer to a const 135 HChar*, which is the cost center name. On 32-bit platforms, the 136 pointer lives in the lower-addressed half of the field, regardless 137 of the endianness of the host. 138 */ 139 typedef 140 struct { 141 // No fields are actually used in this struct, because a Block has 142 // many variable sized fields and so can't be accessed 143 // meaningfully with normal fields. So we use access functions all 144 // the time. This struct gives us a type to use, though. Also, we 145 // make sizeof(Block) 1 byte so that we can do arithmetic with the 146 // Block* type in increments of 1! 147 UByte dummy; 148 } 149 Block; 150 151 /* Ensure that Block payloads can be safely cast to various pointers below. */ 152 STATIC_ASSERT(VG_MIN_MALLOC_SZB % sizeof(void *) == 0); 153 154 // A superblock. 'padding' is never used, it just ensures that if the 155 // entire Superblock is aligned to VG_MIN_MALLOC_SZB, then payload_bytes[] 156 // will be too. It can add small amounts of padding unnecessarily -- eg. 157 // 8-bytes on 32-bit machines with an 8-byte VG_MIN_MALLOC_SZB -- because 158 // it's too hard to make a constant expression that works perfectly in all 159 // cases. 160 // 'unsplittable' is set to NULL if superblock can be split, otherwise 161 // it is set to the address of the superblock. An unsplittable superblock 162 // will contain only one allocated block. An unsplittable superblock will 163 // be unmapped when its (only) allocated block is freed. 164 // The free space at the end of an unsplittable superblock is not used to 165 // make a free block. Note that this means that an unsplittable superblock can 166 // have up to slightly less than 1 page of unused bytes at the end of the 167 // superblock. 168 // 'unsplittable' is used to avoid quadratic memory usage for linear 169 // reallocation of big structures 170 // (see http://bugs.kde.org/show_bug.cgi?id=250101). 171 // ??? unsplittable replaces 'void *padding2'. Choosed this 172 // ??? to avoid changing the alignment logic. Maybe something cleaner 173 // ??? can be done. 174 // A splittable block can be reclaimed when all its blocks are freed : 175 // the reclaim of such a block is deferred till either another superblock 176 // of the same arena can be reclaimed or till a new superblock is needed 177 // in any arena. 178 // payload_bytes[] is made a single big Block when the Superblock is 179 // created, and then can be split and the splittings remerged, but Blocks 180 // always cover its entire length -- there's never any unused bytes at the 181 // end, for example. 182 typedef 183 struct _Superblock { 184 SizeT n_payload_bytes; 185 struct _Superblock* unsplittable; 186 UByte padding[ VG_MIN_MALLOC_SZB - 187 ((sizeof(struct _Superblock*) + sizeof(SizeT)) % 188 VG_MIN_MALLOC_SZB) ]; 189 UByte payload_bytes[0]; 190 } 191 Superblock; 192 193 // An arena. 'freelist' is a circular, doubly-linked list. 'rz_szB' is 194 // elastic, in that it can be bigger than asked-for to ensure alignment. 195 typedef 196 struct { 197 const HChar* name; 198 Bool clientmem; // Allocates in the client address space? 199 SizeT rz_szB; // Red zone size in bytes 200 SizeT min_sblock_szB; // Minimum superblock size in bytes 201 SizeT min_unsplittable_sblock_szB; 202 // Minimum unsplittable superblock size in bytes. To be marked as 203 // unsplittable, a superblock must have a 204 // size >= min_unsplittable_sblock_szB and cannot be split. 205 // So, to avoid big overhead, superblocks used to provide aligned 206 // blocks on big alignments are splittable. 207 // Unsplittable superblocks will be reclaimed when their (only) 208 // allocated block is freed. 209 // Smaller size superblocks are splittable and can be reclaimed when all 210 // their blocks are freed. 211 Block* freelist[N_MALLOC_LISTS]; 212 // A dynamically expanding, ordered array of (pointers to) 213 // superblocks in the arena. If this array is expanded, which 214 // is rare, the previous space it occupies is simply abandoned. 215 // To avoid having to get yet another block from m_aspacemgr for 216 // the first incarnation of this array, the first allocation of 217 // it is within this struct. If it has to be expanded then the 218 // new space is acquired from m_aspacemgr as you would expect. 219 Superblock** sblocks; 220 SizeT sblocks_size; 221 SizeT sblocks_used; 222 Superblock* sblocks_initial[SBLOCKS_SIZE_INITIAL]; 223 Superblock* deferred_reclaimed_sb; 224 225 // VG_(arena_perm_malloc) returns memory from superblocks 226 // only used for permanent blocks. No overhead. These superblocks 227 // are not stored in sblocks array above. 228 Addr perm_malloc_current; // first byte free in perm_malloc sb. 229 Addr perm_malloc_limit; // maximum usable byte in perm_malloc sb. 230 231 // Stats only 232 SizeT stats__perm_bytes_on_loan; 233 SizeT stats__perm_blocks; 234 235 ULong stats__nreclaim_unsplit; 236 ULong stats__nreclaim_split; 237 /* total # of reclaim executed for unsplittable/splittable superblocks */ 238 SizeT stats__bytes_on_loan; 239 SizeT stats__bytes_mmaped; 240 SizeT stats__bytes_on_loan_max; 241 ULong stats__tot_blocks; /* total # blocks alloc'd */ 242 ULong stats__tot_bytes; /* total # bytes alloc'd */ 243 ULong stats__nsearches; /* total # freelist checks */ 244 // If profiling, when should the next profile happen at 245 // (in terms of stats__bytes_on_loan_max) ? 246 SizeT next_profile_at; 247 SizeT stats__bytes_mmaped_max; 248 } 249 Arena; 250 251 252 /*------------------------------------------------------------*/ 253 /*--- Low-level functions for working with Blocks. ---*/ 254 /*------------------------------------------------------------*/ 255 256 #define SIZE_T_0x1 ((SizeT)0x1) 257 258 static const char* probably_your_fault = 259 "This is probably caused by your program erroneously writing past the\n" 260 "end of a heap block and corrupting heap metadata. If you fix any\n" 261 "invalid writes reported by Memcheck, this assertion failure will\n" 262 "probably go away. Please try that before reporting this as a bug.\n"; 263 264 // Mark a bszB as in-use, and not in-use, and remove the in-use attribute. 265 static __inline__ 266 SizeT mk_inuse_bszB ( SizeT bszB ) 267 { 268 vg_assert2(bszB != 0, probably_your_fault); 269 return bszB & (~SIZE_T_0x1); 270 } 271 static __inline__ 272 SizeT mk_free_bszB ( SizeT bszB ) 273 { 274 vg_assert2(bszB != 0, probably_your_fault); 275 return bszB | SIZE_T_0x1; 276 } 277 static __inline__ 278 SizeT mk_plain_bszB ( SizeT bszB ) 279 { 280 vg_assert2(bszB != 0, probably_your_fault); 281 return bszB & (~SIZE_T_0x1); 282 } 283 284 // Forward definition. 285 static 286 void ensure_mm_init ( ArenaId aid ); 287 288 // return either 0 or sizeof(ULong) depending on whether or not 289 // heap profiling is engaged 290 #define hp_overhead_szB() set_at_init_hp_overhead_szB 291 static SizeT set_at_init_hp_overhead_szB = -1000000; 292 // startup value chosen to very likely cause a problem if used before 293 // a proper value is given by ensure_mm_init. 294 295 //--------------------------------------------------------------------------- 296 297 // Get a block's size as stored, ie with the in-use/free attribute. 298 static __inline__ 299 SizeT get_bszB_as_is ( Block* b ) 300 { 301 UByte* b2 = (UByte*)b; 302 SizeT bszB_lo = *ASSUME_ALIGNED(SizeT*, &b2[0 + hp_overhead_szB()]); 303 SizeT bszB_hi = *ASSUME_ALIGNED(SizeT*, 304 &b2[mk_plain_bszB(bszB_lo) - sizeof(SizeT)]); 305 vg_assert2(bszB_lo == bszB_hi, 306 "Heap block lo/hi size mismatch: lo = %llu, hi = %llu.\n%s", 307 (ULong)bszB_lo, (ULong)bszB_hi, probably_your_fault); 308 return bszB_lo; 309 } 310 311 // Get a block's plain size, ie. remove the in-use/free attribute. 312 static __inline__ 313 SizeT get_bszB ( Block* b ) 314 { 315 return mk_plain_bszB(get_bszB_as_is(b)); 316 } 317 318 // Set the size fields of a block. bszB may have the in-use/free attribute. 319 static __inline__ 320 void set_bszB ( Block* b, SizeT bszB ) 321 { 322 UByte* b2 = (UByte*)b; 323 *ASSUME_ALIGNED(SizeT*, &b2[0 + hp_overhead_szB()]) = bszB; 324 *ASSUME_ALIGNED(SizeT*, &b2[mk_plain_bszB(bszB) - sizeof(SizeT)]) = bszB; 325 } 326 327 //--------------------------------------------------------------------------- 328 329 // Does this block have the in-use attribute? 330 static __inline__ 331 Bool is_inuse_block ( Block* b ) 332 { 333 SizeT bszB = get_bszB_as_is(b); 334 vg_assert2(bszB != 0, probably_your_fault); 335 return (0 != (bszB & SIZE_T_0x1)) ? False : True; 336 } 337 338 //--------------------------------------------------------------------------- 339 340 // Return the lower, upper and total overhead in bytes for a block. 341 // These are determined purely by which arena the block lives in. 342 static __inline__ 343 SizeT overhead_szB_lo ( Arena* a ) 344 { 345 return hp_overhead_szB() + sizeof(SizeT) + a->rz_szB; 346 } 347 static __inline__ 348 SizeT overhead_szB_hi ( Arena* a ) 349 { 350 return a->rz_szB + sizeof(SizeT); 351 } 352 static __inline__ 353 SizeT overhead_szB ( Arena* a ) 354 { 355 return overhead_szB_lo(a) + overhead_szB_hi(a); 356 } 357 358 //--------------------------------------------------------------------------- 359 360 // Return the minimum bszB for a block in this arena. Can have zero-length 361 // payloads, so it's the size of the admin bytes. 362 static __inline__ 363 SizeT min_useful_bszB ( Arena* a ) 364 { 365 return overhead_szB(a); 366 } 367 368 //--------------------------------------------------------------------------- 369 370 // Convert payload size <--> block size (both in bytes). 371 static __inline__ 372 SizeT pszB_to_bszB ( Arena* a, SizeT pszB ) 373 { 374 return pszB + overhead_szB(a); 375 } 376 static __inline__ 377 SizeT bszB_to_pszB ( Arena* a, SizeT bszB ) 378 { 379 vg_assert2(bszB >= overhead_szB(a), probably_your_fault); 380 return bszB - overhead_szB(a); 381 } 382 383 //--------------------------------------------------------------------------- 384 385 // Get a block's payload size. 386 static __inline__ 387 SizeT get_pszB ( Arena* a, Block* b ) 388 { 389 return bszB_to_pszB(a, get_bszB(b)); 390 } 391 392 //--------------------------------------------------------------------------- 393 394 // Given the addr of a block, return the addr of its payload, and vice versa. 395 static __inline__ 396 UByte* get_block_payload ( Arena* a, Block* b ) 397 { 398 UByte* b2 = (UByte*)b; 399 return & b2[ overhead_szB_lo(a) ]; 400 } 401 // Given the addr of a block's payload, return the addr of the block itself. 402 static __inline__ 403 Block* get_payload_block ( Arena* a, UByte* payload ) 404 { 405 return (Block*)&payload[ -overhead_szB_lo(a) ]; 406 } 407 408 //--------------------------------------------------------------------------- 409 410 // Set and get the next and previous link fields of a block. 411 static __inline__ 412 void set_prev_b ( Block* b, Block* prev_p ) 413 { 414 UByte* b2 = (UByte*)b; 415 *ASSUME_ALIGNED(Block**, &b2[hp_overhead_szB() + sizeof(SizeT)]) = prev_p; 416 } 417 static __inline__ 418 void set_next_b ( Block* b, Block* next_p ) 419 { 420 UByte* b2 = (UByte*)b; 421 *ASSUME_ALIGNED(Block**, 422 &b2[get_bszB(b) - sizeof(SizeT) - sizeof(void*)]) = next_p; 423 } 424 static __inline__ 425 Block* get_prev_b ( Block* b ) 426 { 427 UByte* b2 = (UByte*)b; 428 return *ASSUME_ALIGNED(Block**, &b2[hp_overhead_szB() + sizeof(SizeT)]); 429 } 430 static __inline__ 431 Block* get_next_b ( Block* b ) 432 { 433 UByte* b2 = (UByte*)b; 434 return *ASSUME_ALIGNED(Block**, 435 &b2[get_bszB(b) - sizeof(SizeT) - sizeof(void*)]); 436 } 437 438 //--------------------------------------------------------------------------- 439 440 // Set and get the cost-center field of a block. 441 static __inline__ 442 void set_cc ( Block* b, const HChar* cc ) 443 { 444 UByte* b2 = (UByte*)b; 445 vg_assert( VG_(clo_profile_heap) ); 446 *ASSUME_ALIGNED(const HChar**, &b2[0]) = cc; 447 } 448 static __inline__ 449 const HChar* get_cc ( Block* b ) 450 { 451 UByte* b2 = (UByte*)b; 452 vg_assert( VG_(clo_profile_heap) ); 453 return *ASSUME_ALIGNED(const HChar**, &b2[0]); 454 } 455 456 //--------------------------------------------------------------------------- 457 458 // Get the block immediately preceding this one in the Superblock. 459 static __inline__ 460 Block* get_predecessor_block ( Block* b ) 461 { 462 UByte* b2 = (UByte*)b; 463 SizeT bszB = mk_plain_bszB(*ASSUME_ALIGNED(SizeT*, &b2[-sizeof(SizeT)])); 464 return (Block*)&b2[-bszB]; 465 } 466 467 //--------------------------------------------------------------------------- 468 469 // Read and write the lower and upper red-zone bytes of a block. 470 static __inline__ 471 void set_rz_lo_byte ( Block* b, UInt rz_byteno, UByte v ) 472 { 473 UByte* b2 = (UByte*)b; 474 b2[hp_overhead_szB() + sizeof(SizeT) + rz_byteno] = v; 475 } 476 static __inline__ 477 void set_rz_hi_byte ( Block* b, UInt rz_byteno, UByte v ) 478 { 479 UByte* b2 = (UByte*)b; 480 b2[get_bszB(b) - sizeof(SizeT) - rz_byteno - 1] = v; 481 } 482 static __inline__ 483 UByte get_rz_lo_byte ( Block* b, UInt rz_byteno ) 484 { 485 UByte* b2 = (UByte*)b; 486 return b2[hp_overhead_szB() + sizeof(SizeT) + rz_byteno]; 487 } 488 static __inline__ 489 UByte get_rz_hi_byte ( Block* b, UInt rz_byteno ) 490 { 491 UByte* b2 = (UByte*)b; 492 return b2[get_bszB(b) - sizeof(SizeT) - rz_byteno - 1]; 493 } 494 495 #if defined(ENABLE_INNER_CLIENT_REQUEST) 496 /* When running as an inner, the block headers before and after 497 (see 'Layout of an in-use block:' above) are made non accessible 498 by VALGRIND_MALLOCLIKE_BLOCK/VALGRIND_FREELIKE_BLOCK 499 to allow the outer to detect block overrun. 500 The below two functions are used when these headers must be 501 temporarily accessed. */ 502 static void mkBhdrAccess( Arena* a, Block* b ) 503 { 504 VALGRIND_MAKE_MEM_DEFINED (b, 505 hp_overhead_szB() + sizeof(SizeT) + a->rz_szB); 506 VALGRIND_MAKE_MEM_DEFINED (b + get_bszB(b) - a->rz_szB - sizeof(SizeT), 507 a->rz_szB + sizeof(SizeT)); 508 } 509 510 /* Mark block hdr as not accessible. 511 !!! Currently, we do not mark the cost center and szB fields unaccessible 512 as these are accessed at too many places. */ 513 static void mkBhdrNoAccess( Arena* a, Block* b ) 514 { 515 VALGRIND_MAKE_MEM_NOACCESS (b + hp_overhead_szB() + sizeof(SizeT), 516 a->rz_szB); 517 VALGRIND_MAKE_MEM_NOACCESS (b + get_bszB(b) - sizeof(SizeT) - a->rz_szB, 518 a->rz_szB); 519 } 520 521 /* Make the cc+szB fields accessible. */ 522 static void mkBhdrSzAccess( Arena* a, Block* b ) 523 { 524 VALGRIND_MAKE_MEM_DEFINED (b, 525 hp_overhead_szB() + sizeof(SizeT)); 526 /* We cannot use get_bszB(b), as this reads the 'hi' szB we want 527 to mark accessible. So, we only access the 'lo' szB. */ 528 SizeT bszB_lo = mk_plain_bszB(*(SizeT*)&b[0 + hp_overhead_szB()]); 529 VALGRIND_MAKE_MEM_DEFINED (b + bszB_lo - sizeof(SizeT), 530 sizeof(SizeT)); 531 } 532 #endif 533 534 /*------------------------------------------------------------*/ 535 /*--- Arena management ---*/ 536 /*------------------------------------------------------------*/ 537 538 #define CORE_ARENA_MIN_SZB 1048576 539 540 // The arena structures themselves. 541 static Arena vg_arena[VG_N_ARENAS]; 542 543 // Functions external to this module identify arenas using ArenaIds, 544 // not Arena*s. This fn converts the former to the latter. 545 static Arena* arenaId_to_ArenaP ( ArenaId arena ) 546 { 547 vg_assert(arena >= 0 && arena < VG_N_ARENAS); 548 return & vg_arena[arena]; 549 } 550 551 static ArenaId arenaP_to_ArenaId ( Arena *a ) 552 { 553 ArenaId arena = a -vg_arena; 554 vg_assert(arena >= 0 && arena < VG_N_ARENAS); 555 return arena; 556 } 557 558 // Initialise an arena. rz_szB is the (default) minimum redzone size; 559 // It might be overridden by VG_(clo_redzone_size) or VG_(clo_core_redzone_size). 560 // it might be made bigger to ensure that VG_MIN_MALLOC_SZB is observed. 561 static 562 void arena_init ( ArenaId aid, const HChar* name, SizeT rz_szB, 563 SizeT min_sblock_szB, SizeT min_unsplittable_sblock_szB ) 564 { 565 SizeT i; 566 Arena* a = arenaId_to_ArenaP(aid); 567 568 // Ensure default redzones are a reasonable size. 569 vg_assert(rz_szB <= MAX_REDZONE_SZB); 570 571 /* Override the default redzone size if a clo value was given. 572 Note that the clo value can be significantly bigger than MAX_REDZONE_SZB 573 to allow the user to chase horrible bugs using up to 1 page 574 of protection. */ 575 if (VG_AR_CLIENT == aid) { 576 if (VG_(clo_redzone_size) != -1) 577 rz_szB = VG_(clo_redzone_size); 578 } else { 579 if (VG_(clo_core_redzone_size) != rz_szB) 580 rz_szB = VG_(clo_core_redzone_size); 581 } 582 583 // Redzones must always be at least the size of a pointer, for holding the 584 // prev/next pointer (see the layout details at the top of this file). 585 if (rz_szB < sizeof(void*)) rz_szB = sizeof(void*); 586 587 // The size of the low and high admin sections in a block must be a 588 // multiple of VG_MIN_MALLOC_SZB. So we round up the asked-for 589 // redzone size if necessary to achieve this. 590 a->rz_szB = rz_szB; 591 while (0 != overhead_szB_lo(a) % VG_MIN_MALLOC_SZB) a->rz_szB++; 592 vg_assert(overhead_szB_lo(a) - hp_overhead_szB() == overhead_szB_hi(a)); 593 594 // Here we have established the effective redzone size. 595 596 597 vg_assert((min_sblock_szB % VKI_PAGE_SIZE) == 0); 598 a->name = name; 599 a->clientmem = ( VG_AR_CLIENT == aid ? True : False ); 600 601 a->min_sblock_szB = min_sblock_szB; 602 a->min_unsplittable_sblock_szB = min_unsplittable_sblock_szB; 603 for (i = 0; i < N_MALLOC_LISTS; i++) a->freelist[i] = NULL; 604 605 a->sblocks = & a->sblocks_initial[0]; 606 a->sblocks_size = SBLOCKS_SIZE_INITIAL; 607 a->sblocks_used = 0; 608 a->deferred_reclaimed_sb = 0; 609 a->perm_malloc_current = 0; 610 a->perm_malloc_limit = 0; 611 a->stats__perm_bytes_on_loan= 0; 612 a->stats__perm_blocks = 0; 613 a->stats__nreclaim_unsplit = 0; 614 a->stats__nreclaim_split = 0; 615 a->stats__bytes_on_loan = 0; 616 a->stats__bytes_mmaped = 0; 617 a->stats__bytes_on_loan_max = 0; 618 a->stats__bytes_mmaped_max = 0; 619 a->stats__tot_blocks = 0; 620 a->stats__tot_bytes = 0; 621 a->stats__nsearches = 0; 622 a->next_profile_at = 25 * 1000 * 1000; 623 vg_assert(sizeof(a->sblocks_initial) 624 == SBLOCKS_SIZE_INITIAL * sizeof(Superblock*)); 625 } 626 627 /* Print vital stats for an arena. */ 628 void VG_(print_all_arena_stats) ( void ) 629 { 630 UInt i; 631 for (i = 0; i < VG_N_ARENAS; i++) { 632 Arena* a = arenaId_to_ArenaP(i); 633 VG_(message)(Vg_DebugMsg, 634 "%-8s: %'13lu/%'13lu max/curr mmap'd, " 635 "%llu/%llu unsplit/split sb unmmap'd, " 636 "%'13lu/%'13lu max/curr, " 637 "%10llu/%10llu totalloc-blocks/bytes," 638 " %10llu searches %lu rzB\n", 639 a->name, 640 a->stats__bytes_mmaped_max, a->stats__bytes_mmaped, 641 a->stats__nreclaim_unsplit, a->stats__nreclaim_split, 642 a->stats__bytes_on_loan_max, 643 a->stats__bytes_on_loan, 644 a->stats__tot_blocks, a->stats__tot_bytes, 645 a->stats__nsearches, 646 a->rz_szB 647 ); 648 } 649 } 650 651 void VG_(print_arena_cc_analysis) ( void ) 652 { 653 UInt i; 654 vg_assert( VG_(clo_profile_heap) ); 655 for (i = 0; i < VG_N_ARENAS; i++) { 656 cc_analyse_alloc_arena(i); 657 } 658 } 659 660 661 /* This library is self-initialising, as it makes this more self-contained, 662 less coupled with the outside world. Hence VG_(arena_malloc)() and 663 VG_(arena_free)() below always call ensure_mm_init() to ensure things are 664 correctly initialised. 665 666 We initialise the client arena separately (and later) because the core 667 must do non-client allocation before the tool has a chance to set the 668 client arena's redzone size. 669 */ 670 static Bool client_inited = False; 671 static Bool nonclient_inited = False; 672 673 static 674 void ensure_mm_init ( ArenaId aid ) 675 { 676 static SizeT client_rz_szB = 8; // default: be paranoid 677 678 /* We use checked red zones (of various sizes) for our internal stuff, 679 and an unchecked zone of arbitrary size for the client. Of 680 course the client's red zone can be checked by the tool, eg. 681 by using addressibility maps, but not by the mechanism implemented 682 here, which merely checks at the time of freeing that the red 683 zone bytes are unchanged. 684 685 Nb: redzone sizes are *minimums*; they could be made bigger to ensure 686 alignment. Eg. with 8 byte alignment, on 32-bit machines 4 stays as 687 4, but 16 becomes 20; but on 64-bit machines 4 becomes 8, and 16 688 stays as 16 --- the extra 4 bytes in both are accounted for by the 689 larger prev/next ptr. 690 */ 691 if (VG_AR_CLIENT == aid) { 692 Int ar_client_sbszB; 693 if (client_inited) { 694 // This assertion ensures that a tool cannot try to change the client 695 // redzone size with VG_(needs_malloc_replacement)() after this module 696 // has done its first allocation from the client arena. 697 if (VG_(needs).malloc_replacement) 698 vg_assert(client_rz_szB == VG_(tdict).tool_client_redzone_szB); 699 return; 700 } 701 702 // Check and set the client arena redzone size 703 if (VG_(needs).malloc_replacement) { 704 client_rz_szB = VG_(tdict).tool_client_redzone_szB; 705 if (client_rz_szB > MAX_REDZONE_SZB) { 706 VG_(printf)( "\nTool error:\n" 707 " specified redzone size is too big (%llu)\n", 708 (ULong)client_rz_szB); 709 VG_(exit)(1); 710 } 711 } 712 // Initialise the client arena. On all platforms, 713 // increasing the superblock size reduces the number of superblocks 714 // in the client arena, which makes findSb cheaper. 715 ar_client_sbszB = 4194304; 716 // superblocks with a size > ar_client_sbszB will be unsplittable 717 // (unless used for providing memalign-ed blocks). 718 arena_init ( VG_AR_CLIENT, "client", client_rz_szB, 719 ar_client_sbszB, ar_client_sbszB+1); 720 client_inited = True; 721 722 } else { 723 if (nonclient_inited) { 724 return; 725 } 726 set_at_init_hp_overhead_szB = 727 VG_(clo_profile_heap) ? VG_MIN_MALLOC_SZB : 0; 728 // Initialise the non-client arenas 729 // Similarly to client arena, big allocations will be unsplittable. 730 arena_init ( VG_AR_CORE, "core", CORE_REDZONE_DEFAULT_SZB, 731 4194304, 4194304+1 ); 732 arena_init ( VG_AR_DINFO, "dinfo", CORE_REDZONE_DEFAULT_SZB, 733 1048576, 1048576+1 ); 734 arena_init ( VG_AR_DEMANGLE, "demangle", CORE_REDZONE_DEFAULT_SZB, 735 65536, 65536+1 ); 736 arena_init ( VG_AR_TTAUX, "ttaux", CORE_REDZONE_DEFAULT_SZB, 737 65536, 65536+1 ); 738 nonclient_inited = True; 739 } 740 741 # ifdef DEBUG_MALLOC 742 VG_(printf)("ZZZ1\n"); 743 VG_(sanity_check_malloc_all)(); 744 VG_(printf)("ZZZ2\n"); 745 # endif 746 } 747 748 749 /*------------------------------------------------------------*/ 750 /*--- Superblock management ---*/ 751 /*------------------------------------------------------------*/ 752 753 __attribute__((noreturn)) 754 void VG_(out_of_memory_NORETURN) ( const HChar* who, SizeT szB ) 755 { 756 static Int outputTrial = 0; 757 // We try once to output the full memory state followed by the below message. 758 // If that fails (due to out of memory during first trial), we try to just 759 // output the below message. 760 // And then we abandon. 761 762 ULong tot_alloc = VG_(am_get_anonsize_total)(); 763 const HChar* s1 = 764 "\n" 765 " Valgrind's memory management: out of memory:\n" 766 " %s's request for %llu bytes failed.\n" 767 " %'13llu bytes have already been mmap-ed ANONYMOUS.\n" 768 " Valgrind cannot continue. Sorry.\n\n" 769 " There are several possible reasons for this.\n" 770 " - You have some kind of memory limit in place. Look at the\n" 771 " output of 'ulimit -a'. Is there a limit on the size of\n" 772 " virtual memory or address space?\n" 773 " - You have run out of swap space.\n" 774 " - Valgrind has a bug. If you think this is the case or you are\n" 775 " not sure, please let us know and we'll try to fix it.\n" 776 " Please note that programs can take substantially more memory than\n" 777 " normal when running under Valgrind tools, eg. up to twice or\n" 778 " more, depending on the tool. On a 64-bit machine, Valgrind\n" 779 " should be able to make use of up 32GB memory. On a 32-bit\n" 780 " machine, Valgrind should be able to use all the memory available\n" 781 " to a single process, up to 4GB if that's how you have your\n" 782 " kernel configured. Most 32-bit Linux setups allow a maximum of\n" 783 " 3GB per process.\n\n" 784 " Whatever the reason, Valgrind cannot continue. Sorry.\n"; 785 786 if (outputTrial <= 1) { 787 if (outputTrial == 0) { 788 outputTrial++; 789 // First print the memory stats with the aspacemgr data. 790 VG_(am_show_nsegments) (0, "out_of_memory"); 791 VG_(print_all_arena_stats) (); 792 if (VG_(clo_profile_heap)) 793 VG_(print_arena_cc_analysis) (); 794 // And then print some other information that might help. 795 VG_(print_all_stats) (False, /* Memory stats */ 796 True /* Tool stats */); 797 VG_(show_sched_status) (True, // host_stacktrace 798 True, // valgrind_stack_usage 799 True); // exited_threads 800 /* In case we are an inner valgrind, asks the outer to report 801 its memory state in its log output. */ 802 INNER_REQUEST(VALGRIND_MONITOR_COMMAND("v.set log_output")); 803 INNER_REQUEST(VALGRIND_MONITOR_COMMAND("v.info memory aspacemgr")); 804 } 805 outputTrial++; 806 VG_(message)(Vg_UserMsg, s1, who, (ULong)szB, tot_alloc); 807 } else { 808 VG_(debugLog)(0,"mallocfree", s1, who, (ULong)szB, tot_alloc); 809 } 810 811 VG_(exit)(1); 812 } 813 814 815 // Align ptr p upwards to an align-sized boundary. 816 static 817 void* align_upwards ( void* p, SizeT align ) 818 { 819 Addr a = (Addr)p; 820 if ((a % align) == 0) return (void*)a; 821 return (void*)(a - (a % align) + align); 822 } 823 824 // Forward definition. 825 static 826 void deferred_reclaimSuperblock ( Arena* a, Superblock* sb); 827 828 // If not enough memory available, either aborts (for non-client memory) 829 // or returns 0 (for client memory). 830 static 831 Superblock* newSuperblock ( Arena* a, SizeT cszB ) 832 { 833 Superblock* sb; 834 SysRes sres; 835 Bool unsplittable; 836 ArenaId aid; 837 838 // A new superblock is needed for arena a. We will execute the deferred 839 // reclaim in all arenas in order to minimise fragmentation and 840 // peak memory usage. 841 for (aid = 0; aid < VG_N_ARENAS; aid++) { 842 Arena* arena = arenaId_to_ArenaP(aid); 843 if (arena->deferred_reclaimed_sb != NULL) 844 deferred_reclaimSuperblock (arena, NULL); 845 } 846 847 // Take into account admin bytes in the Superblock. 848 cszB += sizeof(Superblock); 849 850 if (cszB < a->min_sblock_szB) cszB = a->min_sblock_szB; 851 cszB = VG_PGROUNDUP(cszB); 852 853 if (cszB >= a->min_unsplittable_sblock_szB) 854 unsplittable = True; 855 else 856 unsplittable = False; 857 858 859 if (a->clientmem) { 860 // client allocation -- return 0 to client if it fails 861 sres = VG_(am_mmap_client_heap) 862 ( cszB, VKI_PROT_READ|VKI_PROT_WRITE|VKI_PROT_EXEC ); 863 if (sr_isError(sres)) 864 return 0; 865 sb = (Superblock*)(Addr)sr_Res(sres); 866 } else { 867 // non-client allocation -- abort if it fails 868 sres = VG_(am_mmap_anon_float_valgrind)( cszB ); 869 if (sr_isError(sres)) { 870 VG_(out_of_memory_NORETURN)("newSuperblock", cszB); 871 /* NOTREACHED */ 872 sb = NULL; /* keep gcc happy */ 873 } else { 874 sb = (Superblock*)(Addr)sr_Res(sres); 875 } 876 } 877 vg_assert(NULL != sb); 878 INNER_REQUEST(VALGRIND_MAKE_MEM_UNDEFINED(sb, cszB)); 879 vg_assert(0 == (Addr)sb % VG_MIN_MALLOC_SZB); 880 sb->n_payload_bytes = cszB - sizeof(Superblock); 881 sb->unsplittable = (unsplittable ? sb : NULL); 882 a->stats__bytes_mmaped += cszB; 883 if (a->stats__bytes_mmaped > a->stats__bytes_mmaped_max) 884 a->stats__bytes_mmaped_max = a->stats__bytes_mmaped; 885 VG_(debugLog)(1, "mallocfree", 886 "newSuperblock at %p (pszB %7lu) %s owner %s/%s\n", 887 sb, sb->n_payload_bytes, 888 (unsplittable ? "unsplittable" : ""), 889 a->clientmem ? "CLIENT" : "VALGRIND", a->name ); 890 return sb; 891 } 892 893 // Reclaims the given superblock: 894 // * removes sb from arena sblocks list. 895 // * munmap the superblock segment. 896 static 897 void reclaimSuperblock ( Arena* a, Superblock* sb) 898 { 899 SysRes sres; 900 SizeT cszB; 901 UInt i, j; 902 903 VG_(debugLog)(1, "mallocfree", 904 "reclaimSuperblock at %p (pszB %7lu) %s owner %s/%s\n", 905 sb, sb->n_payload_bytes, 906 (sb->unsplittable ? "unsplittable" : ""), 907 a->clientmem ? "CLIENT" : "VALGRIND", a->name ); 908 909 // Take into account admin bytes in the Superblock. 910 cszB = sizeof(Superblock) + sb->n_payload_bytes; 911 912 // removes sb from superblock list. 913 for (i = 0; i < a->sblocks_used; i++) { 914 if (a->sblocks[i] == sb) 915 break; 916 } 917 vg_assert(i >= 0 && i < a->sblocks_used); 918 for (j = i; j < a->sblocks_used; j++) 919 a->sblocks[j] = a->sblocks[j+1]; 920 a->sblocks_used--; 921 a->sblocks[a->sblocks_used] = NULL; 922 // paranoia: NULLify ptr to reclaimed sb or NULLify copy of ptr to last sb. 923 924 a->stats__bytes_mmaped -= cszB; 925 if (sb->unsplittable) 926 a->stats__nreclaim_unsplit++; 927 else 928 a->stats__nreclaim_split++; 929 930 // Now that the sb is removed from the list, mnumap its space. 931 if (a->clientmem) { 932 // reclaimable client allocation 933 Bool need_discard = False; 934 sres = VG_(am_munmap_client)(&need_discard, (Addr) sb, cszB); 935 vg_assert2(! sr_isError(sres), "superblock client munmap failure\n"); 936 /* We somewhat help the client by discarding the range. 937 Note however that if the client has JITted some code in 938 a small block that was freed, we do not provide this 939 'discard support' */ 940 /* JRS 2011-Sept-26: it would be nice to move the discard 941 outwards somewhat (in terms of calls) so as to make it easier 942 to verify that there will be no nonterminating recursive set 943 of calls a result of calling VG_(discard_translations). 944 Another day, perhaps. */ 945 if (need_discard) 946 VG_(discard_translations) ((Addr) sb, cszB, "reclaimSuperblock"); 947 } else { 948 // reclaimable non-client allocation 949 sres = VG_(am_munmap_valgrind)((Addr) sb, cszB); 950 vg_assert2(! sr_isError(sres), "superblock valgrind munmap failure\n"); 951 } 952 953 } 954 955 // Find the superblock containing the given chunk. 956 static 957 Superblock* findSb ( Arena* a, Block* b ) 958 { 959 SizeT min = 0; 960 SizeT max = a->sblocks_used; 961 962 while (min <= max) { 963 Superblock * sb; 964 SizeT pos = min + (max - min)/2; 965 966 vg_assert(pos >= 0 && pos < a->sblocks_used); 967 sb = a->sblocks[pos]; 968 if ((Block*)&sb->payload_bytes[0] <= b 969 && b < (Block*)&sb->payload_bytes[sb->n_payload_bytes]) 970 { 971 return sb; 972 } else if ((Block*)&sb->payload_bytes[0] <= b) { 973 min = pos + 1; 974 } else { 975 max = pos - 1; 976 } 977 } 978 VG_(printf)("findSb: can't find pointer %p in arena '%s'\n", 979 b, a->name ); 980 VG_(core_panic)("findSb: VG_(arena_free)() in wrong arena?"); 981 return NULL; /*NOTREACHED*/ 982 } 983 984 985 // Find the superblock containing the given address. 986 // If superblock not found, return NULL. 987 static 988 Superblock* maybe_findSb ( Arena* a, Addr ad ) 989 { 990 SizeT min = 0; 991 SizeT max = a->sblocks_used; 992 993 while (min <= max) { 994 Superblock * sb; 995 SizeT pos = min + (max - min)/2; 996 if (pos < 0 || pos >= a->sblocks_used) 997 return NULL; 998 sb = a->sblocks[pos]; 999 if ((Addr)&sb->payload_bytes[0] <= ad 1000 && ad < (Addr)&sb->payload_bytes[sb->n_payload_bytes]) { 1001 return sb; 1002 } else if ((Addr)&sb->payload_bytes[0] <= ad) { 1003 min = pos + 1; 1004 } else { 1005 max = pos - 1; 1006 } 1007 } 1008 return NULL; 1009 } 1010 1011 1012 /*------------------------------------------------------------*/ 1013 /*--- Functions for working with freelists. ---*/ 1014 /*------------------------------------------------------------*/ 1015 1016 // Nb: Determination of which freelist a block lives on is based on the 1017 // payload size, not block size. 1018 1019 // Convert a payload size in bytes to a freelist number. 1020 static __attribute__((noinline)) 1021 UInt pszB_to_listNo_SLOW ( SizeT pszB__divided_by__VG_MIN_MALLOC_SZB ) 1022 { 1023 SizeT n = pszB__divided_by__VG_MIN_MALLOC_SZB; 1024 1025 if (n < 299) { 1026 if (n < 114) { 1027 if (n < 85) { 1028 if (n < 74) { 1029 /* -- Exponential slope up, factor 1.05 -- */ 1030 if (n < 67) return 64; 1031 if (n < 70) return 65; 1032 /* else */ return 66; 1033 } else { 1034 if (n < 77) return 67; 1035 if (n < 81) return 68; 1036 /* else */ return 69; 1037 } 1038 } else { 1039 if (n < 99) { 1040 if (n < 90) return 70; 1041 if (n < 94) return 71; 1042 /* else */ return 72; 1043 } else { 1044 if (n < 104) return 73; 1045 if (n < 109) return 74; 1046 /* else */ return 75; 1047 } 1048 } 1049 } else { 1050 if (n < 169) { 1051 if (n < 133) { 1052 if (n < 120) return 76; 1053 if (n < 126) return 77; 1054 /* else */ return 78; 1055 } else { 1056 if (n < 139) return 79; 1057 /* -- Exponential slope up, factor 1.10 -- */ 1058 if (n < 153) return 80; 1059 /* else */ return 81; 1060 } 1061 } else { 1062 if (n < 224) { 1063 if (n < 185) return 82; 1064 if (n < 204) return 83; 1065 /* else */ return 84; 1066 } else { 1067 if (n < 247) return 85; 1068 if (n < 272) return 86; 1069 /* else */ return 87; 1070 } 1071 } 1072 } 1073 } else { 1074 if (n < 1331) { 1075 if (n < 530) { 1076 if (n < 398) { 1077 if (n < 329) return 88; 1078 if (n < 362) return 89; 1079 /* else */ return 90; 1080 } else { 1081 if (n < 438) return 91; 1082 if (n < 482) return 92; 1083 /* else */ return 93; 1084 } 1085 } else { 1086 if (n < 770) { 1087 if (n < 583) return 94; 1088 if (n < 641) return 95; 1089 /* -- Exponential slope up, factor 1.20 -- */ 1090 /* else */ return 96; 1091 } else { 1092 if (n < 924) return 97; 1093 if (n < 1109) return 98; 1094 /* else */ return 99; 1095 } 1096 } 1097 } else { 1098 if (n < 3974) { 1099 if (n < 2300) { 1100 if (n < 1597) return 100; 1101 if (n < 1916) return 101; 1102 return 102; 1103 } else { 1104 if (n < 2760) return 103; 1105 if (n < 3312) return 104; 1106 /* else */ return 105; 1107 } 1108 } else { 1109 if (n < 6868) { 1110 if (n < 4769) return 106; 1111 if (n < 5723) return 107; 1112 /* else */ return 108; 1113 } else { 1114 if (n < 8241) return 109; 1115 if (n < 9890) return 110; 1116 /* else */ return 111; 1117 } 1118 } 1119 } 1120 } 1121 /*NOTREACHED*/ 1122 vg_assert(0); 1123 } 1124 1125 static inline 1126 UInt pszB_to_listNo ( SizeT pszB ) 1127 { 1128 SizeT n = pszB / VG_MIN_MALLOC_SZB; 1129 vg_assert(0 == (pszB % VG_MIN_MALLOC_SZB)); 1130 1131 // The first 64 lists hold blocks of size VG_MIN_MALLOC_SZB * list_num. 1132 // The final 48 hold bigger blocks and are dealt with by the _SLOW 1133 // case. 1134 if (LIKELY(n < 64)) { 1135 return (UInt)n; 1136 } else { 1137 return pszB_to_listNo_SLOW(n); 1138 } 1139 } 1140 1141 // What is the minimum payload size for a given list? 1142 static 1143 SizeT listNo_to_pszB_min ( UInt listNo ) 1144 { 1145 /* Repeatedly computing this function at every request is 1146 expensive. Hence at the first call just cache the result for 1147 every possible argument. */ 1148 static SizeT cache[N_MALLOC_LISTS]; 1149 static Bool cache_valid = False; 1150 if (!cache_valid) { 1151 UInt i; 1152 for (i = 0; i < N_MALLOC_LISTS; i++) { 1153 SizeT pszB = 0; 1154 while (pszB_to_listNo(pszB) < i) 1155 pszB += VG_MIN_MALLOC_SZB; 1156 cache[i] = pszB; 1157 } 1158 cache_valid = True; 1159 } 1160 /* Returned cached answer. */ 1161 vg_assert(listNo <= N_MALLOC_LISTS); 1162 return cache[listNo]; 1163 } 1164 1165 // What is the maximum payload size for a given list? 1166 static 1167 SizeT listNo_to_pszB_max ( UInt listNo ) 1168 { 1169 vg_assert(listNo <= N_MALLOC_LISTS); 1170 if (listNo == N_MALLOC_LISTS-1) { 1171 return MAX_PSZB; 1172 } else { 1173 return listNo_to_pszB_min(listNo+1) - 1; 1174 } 1175 } 1176 1177 1178 /* A nasty hack to try and reduce fragmentation. Try and replace 1179 a->freelist[lno] with another block on the same list but with a 1180 lower address, with the idea of attempting to recycle the same 1181 blocks rather than cruise through the address space. */ 1182 static 1183 void swizzle ( Arena* a, UInt lno ) 1184 { 1185 Block* p_best; 1186 Block* pp; 1187 Block* pn; 1188 UInt i; 1189 1190 p_best = a->freelist[lno]; 1191 if (p_best == NULL) return; 1192 1193 pn = pp = p_best; 1194 1195 // This loop bound was 20 for a long time, but experiments showed that 1196 // reducing it to 10 gave the same result in all the tests, and 5 got the 1197 // same result in 85--100% of cases. And it's called often enough to be 1198 // noticeable in programs that allocated a lot. 1199 for (i = 0; i < 5; i++) { 1200 pn = get_next_b(pn); 1201 pp = get_prev_b(pp); 1202 if (pn < p_best) p_best = pn; 1203 if (pp < p_best) p_best = pp; 1204 } 1205 if (p_best < a->freelist[lno]) { 1206 # ifdef VERBOSE_MALLOC 1207 VG_(printf)("retreat by %ld\n", (Word)(a->freelist[lno] - p_best)); 1208 # endif 1209 a->freelist[lno] = p_best; 1210 } 1211 } 1212 1213 1214 /*------------------------------------------------------------*/ 1215 /*--- Sanity-check/debugging machinery. ---*/ 1216 /*------------------------------------------------------------*/ 1217 1218 #define REDZONE_LO_MASK 0x31 1219 #define REDZONE_HI_MASK 0x7c 1220 1221 // Do some crude sanity checks on a Block. 1222 static 1223 Bool blockSane ( Arena* a, Block* b ) 1224 { 1225 # define BLEAT(str) VG_(printf)("blockSane: fail -- %s\n",str) 1226 UInt i; 1227 // The lo and hi size fields will be checked (indirectly) by the call 1228 // to get_rz_hi_byte(). 1229 if (!a->clientmem && is_inuse_block(b)) { 1230 // In the inner, for memcheck sake, temporarily mark redzone accessible. 1231 INNER_REQUEST(mkBhdrAccess(a,b)); 1232 for (i = 0; i < a->rz_szB; i++) { 1233 if (get_rz_lo_byte(b, i) != 1234 (UByte)(((Addr)b&0xff) ^ REDZONE_LO_MASK)) 1235 {BLEAT("redzone-lo");return False;} 1236 if (get_rz_hi_byte(b, i) != 1237 (UByte)(((Addr)b&0xff) ^ REDZONE_HI_MASK)) 1238 {BLEAT("redzone-hi");return False;} 1239 } 1240 INNER_REQUEST(mkBhdrNoAccess(a,b)); 1241 } 1242 return True; 1243 # undef BLEAT 1244 } 1245 1246 // Sanity checks on a Block inside an unsplittable superblock 1247 static 1248 Bool unsplittableBlockSane ( Arena* a, Superblock *sb, Block* b ) 1249 { 1250 # define BLEAT(str) VG_(printf)("unsplittableBlockSane: fail -- %s\n",str) 1251 Block* other_b; 1252 UByte* sb_start; 1253 UByte* sb_end; 1254 1255 if (!blockSane (a, b)) 1256 {BLEAT("blockSane");return False;} 1257 1258 if (sb->unsplittable != sb) 1259 {BLEAT("unsplittable");return False;} 1260 1261 sb_start = &sb->payload_bytes[0]; 1262 sb_end = &sb->payload_bytes[sb->n_payload_bytes - 1]; 1263 1264 // b must be first block (i.e. no unused bytes at the beginning) 1265 if ((Block*)sb_start != b) 1266 {BLEAT("sb_start");return False;} 1267 1268 // b must be last block (i.e. no unused bytes at the end) 1269 other_b = b + get_bszB(b); 1270 if (other_b-1 != (Block*)sb_end) 1271 {BLEAT("sb_end");return False;} 1272 1273 return True; 1274 # undef BLEAT 1275 } 1276 1277 // Print superblocks (only for debugging). 1278 static 1279 void ppSuperblocks ( Arena* a ) 1280 { 1281 UInt i, j, blockno = 1; 1282 SizeT b_bszB; 1283 1284 for (j = 0; j < a->sblocks_used; ++j) { 1285 Superblock * sb = a->sblocks[j]; 1286 1287 VG_(printf)( "\n" ); 1288 VG_(printf)( "superblock %u at %p %s, sb->n_pl_bs = %lu\n", 1289 blockno++, sb, (sb->unsplittable ? "unsplittable" : ""), 1290 sb->n_payload_bytes); 1291 for (i = 0; i < sb->n_payload_bytes; i += b_bszB) { 1292 Block* b = (Block*)&sb->payload_bytes[i]; 1293 b_bszB = get_bszB(b); 1294 VG_(printf)( " block at %u, bszB %lu: ", i, b_bszB ); 1295 VG_(printf)( "%s, ", is_inuse_block(b) ? "inuse" : "free"); 1296 VG_(printf)( "%s\n", blockSane(a, b) ? "ok" : "BAD" ); 1297 } 1298 vg_assert(i == sb->n_payload_bytes); // no overshoot at end of Sb 1299 } 1300 VG_(printf)( "end of superblocks\n\n" ); 1301 } 1302 1303 // Sanity check both the superblocks and the chains. 1304 static void sanity_check_malloc_arena ( ArenaId aid ) 1305 { 1306 UInt i, j, superblockctr, blockctr_sb, blockctr_li; 1307 UInt blockctr_sb_free, listno; 1308 SizeT b_bszB, b_pszB, list_min_pszB, list_max_pszB; 1309 Bool thisFree, lastWasFree, sblockarrOK; 1310 Block* b; 1311 Block* b_prev; 1312 SizeT arena_bytes_on_loan; 1313 Arena* a; 1314 1315 # define BOMB VG_(core_panic)("sanity_check_malloc_arena") 1316 1317 a = arenaId_to_ArenaP(aid); 1318 1319 // Check the superblock array. 1320 sblockarrOK 1321 = a->sblocks != NULL 1322 && a->sblocks_size >= SBLOCKS_SIZE_INITIAL 1323 && a->sblocks_used <= a->sblocks_size 1324 && (a->sblocks_size == SBLOCKS_SIZE_INITIAL 1325 ? (a->sblocks == &a->sblocks_initial[0]) 1326 : (a->sblocks != &a->sblocks_initial[0])); 1327 if (!sblockarrOK) { 1328 VG_(printf)("sanity_check_malloc_arena: sblock array BAD\n"); 1329 BOMB; 1330 } 1331 1332 // First, traverse all the superblocks, inspecting the Blocks in each. 1333 superblockctr = blockctr_sb = blockctr_sb_free = 0; 1334 arena_bytes_on_loan = 0; 1335 for (j = 0; j < a->sblocks_used; ++j) { 1336 Superblock * sb = a->sblocks[j]; 1337 lastWasFree = False; 1338 superblockctr++; 1339 for (i = 0; i < sb->n_payload_bytes; i += mk_plain_bszB(b_bszB)) { 1340 blockctr_sb++; 1341 b = (Block*)&sb->payload_bytes[i]; 1342 b_bszB = get_bszB_as_is(b); 1343 if (!blockSane(a, b)) { 1344 VG_(printf)("sanity_check_malloc_arena: sb %p, block %u " 1345 "(bszB %lu): BAD\n", sb, i, b_bszB ); 1346 BOMB; 1347 } 1348 thisFree = !is_inuse_block(b); 1349 if (thisFree && lastWasFree) { 1350 VG_(printf)("sanity_check_malloc_arena: sb %p, block %u " 1351 "(bszB %lu): UNMERGED FREES\n", sb, i, b_bszB ); 1352 BOMB; 1353 } 1354 if (thisFree) blockctr_sb_free++; 1355 if (!thisFree) 1356 arena_bytes_on_loan += bszB_to_pszB(a, b_bszB); 1357 lastWasFree = thisFree; 1358 } 1359 if (i > sb->n_payload_bytes) { 1360 VG_(printf)( "sanity_check_malloc_arena: sb %p: last block " 1361 "overshoots end\n", sb); 1362 BOMB; 1363 } 1364 } 1365 1366 arena_bytes_on_loan += a->stats__perm_bytes_on_loan; 1367 1368 if (arena_bytes_on_loan != a->stats__bytes_on_loan) { 1369 # ifdef VERBOSE_MALLOC 1370 VG_(printf)( "sanity_check_malloc_arena: a->bytes_on_loan %lu, " 1371 "arena_bytes_on_loan %lu: " 1372 "MISMATCH\n", a->stats__bytes_on_loan, arena_bytes_on_loan); 1373 # endif 1374 ppSuperblocks(a); 1375 BOMB; 1376 } 1377 1378 /* Second, traverse each list, checking that the back pointers make 1379 sense, counting blocks encountered, and checking that each block 1380 is an appropriate size for this list. */ 1381 blockctr_li = 0; 1382 for (listno = 0; listno < N_MALLOC_LISTS; listno++) { 1383 list_min_pszB = listNo_to_pszB_min(listno); 1384 list_max_pszB = listNo_to_pszB_max(listno); 1385 b = a->freelist[listno]; 1386 if (b == NULL) continue; 1387 while (True) { 1388 b_prev = b; 1389 b = get_next_b(b); 1390 if (get_prev_b(b) != b_prev) { 1391 VG_(printf)( "sanity_check_malloc_arena: list %u at %p: " 1392 "BAD LINKAGE\n", 1393 listno, b ); 1394 BOMB; 1395 } 1396 b_pszB = get_pszB(a, b); 1397 if (b_pszB < list_min_pszB || b_pszB > list_max_pszB) { 1398 VG_(printf)( 1399 "sanity_check_malloc_arena: list %u at %p: " 1400 "WRONG CHAIN SIZE %luB (%luB, %luB)\n", 1401 listno, b, b_pszB, list_min_pszB, list_max_pszB ); 1402 BOMB; 1403 } 1404 blockctr_li++; 1405 if (b == a->freelist[listno]) break; 1406 } 1407 } 1408 1409 if (blockctr_sb_free != blockctr_li) { 1410 # ifdef VERBOSE_MALLOC 1411 VG_(printf)( "sanity_check_malloc_arena: BLOCK COUNT MISMATCH " 1412 "(via sbs %d, via lists %d)\n", 1413 blockctr_sb_free, blockctr_li ); 1414 # endif 1415 ppSuperblocks(a); 1416 BOMB; 1417 } 1418 1419 if (VG_(clo_verbosity) > 2) 1420 VG_(message)(Vg_DebugMsg, 1421 "%-8s: %2u sbs, %5u bs, %2u/%-2u free bs, " 1422 "%7lu mmap, %7lu loan\n", 1423 a->name, 1424 superblockctr, 1425 blockctr_sb, blockctr_sb_free, blockctr_li, 1426 a->stats__bytes_mmaped, a->stats__bytes_on_loan); 1427 # undef BOMB 1428 } 1429 1430 1431 #define N_AN_CCS 1000 1432 1433 typedef struct { 1434 ULong nBytes; 1435 ULong nBlocks; 1436 const HChar* cc; 1437 } AnCC; 1438 1439 static AnCC anCCs[N_AN_CCS]; 1440 1441 /* Sorting by decreasing cost center nBytes, to have the biggest 1442 cost centres at the top. */ 1443 static Int cmp_AnCC_by_vol ( const void* v1, const void* v2 ) { 1444 const AnCC* ancc1 = v1; 1445 const AnCC* ancc2 = v2; 1446 if (ancc1->nBytes < ancc2->nBytes) return 1; 1447 if (ancc1->nBytes > ancc2->nBytes) return -1; 1448 return 0; 1449 } 1450 1451 static void cc_analyse_alloc_arena ( ArenaId aid ) 1452 { 1453 Word i, j, k; 1454 Arena* a; 1455 Block* b; 1456 Bool thisFree, lastWasFree; 1457 SizeT b_bszB; 1458 1459 const HChar* cc; 1460 UInt n_ccs = 0; 1461 //return; 1462 a = arenaId_to_ArenaP(aid); 1463 if (a->name == NULL) { 1464 /* arena is not in use, is not initialised and will fail the 1465 sanity check that follows. */ 1466 return; 1467 } 1468 1469 sanity_check_malloc_arena(aid); 1470 1471 VG_(printf)( 1472 "-------- Arena \"%s\": %'lu/%'lu max/curr mmap'd, " 1473 "%llu/%llu unsplit/split sb unmmap'd, " 1474 "%'lu/%'lu max/curr on_loan %lu rzB --------\n", 1475 a->name, a->stats__bytes_mmaped_max, a->stats__bytes_mmaped, 1476 a->stats__nreclaim_unsplit, a->stats__nreclaim_split, 1477 a->stats__bytes_on_loan_max, a->stats__bytes_on_loan, 1478 a->rz_szB 1479 ); 1480 1481 for (j = 0; j < a->sblocks_used; ++j) { 1482 Superblock * sb = a->sblocks[j]; 1483 lastWasFree = False; 1484 for (i = 0; i < sb->n_payload_bytes; i += mk_plain_bszB(b_bszB)) { 1485 b = (Block*)&sb->payload_bytes[i]; 1486 b_bszB = get_bszB_as_is(b); 1487 if (!blockSane(a, b)) { 1488 VG_(printf)("sanity_check_malloc_arena: sb %p, block %ld " 1489 "(bszB %lu): BAD\n", sb, i, b_bszB ); 1490 vg_assert(0); 1491 } 1492 thisFree = !is_inuse_block(b); 1493 if (thisFree && lastWasFree) { 1494 VG_(printf)("sanity_check_malloc_arena: sb %p, block %ld " 1495 "(bszB %lu): UNMERGED FREES\n", sb, i, b_bszB ); 1496 vg_assert(0); 1497 } 1498 lastWasFree = thisFree; 1499 1500 if (thisFree) continue; 1501 1502 if (VG_(clo_profile_heap)) 1503 cc = get_cc(b); 1504 else 1505 cc = "(--profile-heap=yes for details)"; 1506 if (0) 1507 VG_(printf)("block: inUse=%d pszB=%d cc=%s\n", 1508 (Int)(!thisFree), 1509 (Int)bszB_to_pszB(a, b_bszB), 1510 get_cc(b)); 1511 vg_assert(cc); 1512 for (k = 0; k < n_ccs; k++) { 1513 vg_assert(anCCs[k].cc); 1514 if (0 == VG_(strcmp)(cc, anCCs[k].cc)) 1515 break; 1516 } 1517 vg_assert(k >= 0 && k <= n_ccs); 1518 1519 if (k == n_ccs) { 1520 vg_assert(n_ccs < N_AN_CCS-1); 1521 n_ccs++; 1522 anCCs[k].nBytes = 0; 1523 anCCs[k].nBlocks = 0; 1524 anCCs[k].cc = cc; 1525 } 1526 1527 vg_assert(k >= 0 && k < n_ccs && k < N_AN_CCS); 1528 anCCs[k].nBytes += (ULong)bszB_to_pszB(a, b_bszB); 1529 anCCs[k].nBlocks++; 1530 } 1531 if (i > sb->n_payload_bytes) { 1532 VG_(printf)( "sanity_check_malloc_arena: sb %p: last block " 1533 "overshoots end\n", sb); 1534 vg_assert(0); 1535 } 1536 } 1537 1538 if (a->stats__perm_bytes_on_loan > 0) { 1539 vg_assert(n_ccs < N_AN_CCS-1); 1540 anCCs[n_ccs].nBytes = a->stats__perm_bytes_on_loan; 1541 anCCs[n_ccs].nBlocks = a->stats__perm_blocks; 1542 anCCs[n_ccs].cc = "perm_malloc"; 1543 n_ccs++; 1544 } 1545 1546 VG_(ssort)( &anCCs[0], n_ccs, sizeof(anCCs[0]), cmp_AnCC_by_vol ); 1547 1548 for (k = 0; k < n_ccs; k++) { 1549 VG_(printf)("%'13llu in %'9llu: %s\n", 1550 anCCs[k].nBytes, anCCs[k].nBlocks, anCCs[k].cc ); 1551 } 1552 1553 VG_(printf)("\n"); 1554 } 1555 1556 1557 void VG_(sanity_check_malloc_all) ( void ) 1558 { 1559 UInt i; 1560 for (i = 0; i < VG_N_ARENAS; i++) { 1561 if (i == VG_AR_CLIENT && !client_inited) 1562 continue; 1563 sanity_check_malloc_arena ( i ); 1564 } 1565 } 1566 1567 void VG_(describe_arena_addr) ( Addr a, AddrArenaInfo* aai ) 1568 { 1569 UInt i; 1570 Superblock *sb; 1571 Arena *arena; 1572 1573 for (i = 0; i < VG_N_ARENAS; i++) { 1574 if (i == VG_AR_CLIENT && !client_inited) 1575 continue; 1576 arena = arenaId_to_ArenaP(i); 1577 sb = maybe_findSb( arena, a ); 1578 if (sb != NULL) { 1579 Word j; 1580 SizeT b_bszB; 1581 Block *b = NULL; 1582 1583 aai->aid = i; 1584 aai->name = arena->name; 1585 for (j = 0; j < sb->n_payload_bytes; j += mk_plain_bszB(b_bszB)) { 1586 b = (Block*)&sb->payload_bytes[j]; 1587 b_bszB = get_bszB_as_is(b); 1588 if (a < (Addr)b + mk_plain_bszB(b_bszB)) 1589 break; 1590 } 1591 vg_assert (b); 1592 aai->block_szB = get_pszB(arena, b); 1593 aai->rwoffset = a - (Addr)get_block_payload(arena, b); 1594 aai->free = !is_inuse_block(b); 1595 return; 1596 } 1597 } 1598 aai->aid = 0; 1599 aai->name = NULL; 1600 aai->block_szB = 0; 1601 aai->rwoffset = 0; 1602 aai->free = False; 1603 } 1604 1605 /*------------------------------------------------------------*/ 1606 /*--- Creating and deleting blocks. ---*/ 1607 /*------------------------------------------------------------*/ 1608 1609 // Mark the bytes at b .. b+bszB-1 as not in use, and add them to the 1610 // relevant free list. 1611 1612 static 1613 void mkFreeBlock ( Arena* a, Block* b, SizeT bszB, UInt b_lno ) 1614 { 1615 SizeT pszB = bszB_to_pszB(a, bszB); 1616 vg_assert(b_lno == pszB_to_listNo(pszB)); 1617 INNER_REQUEST(VALGRIND_MAKE_MEM_UNDEFINED(b, bszB)); 1618 // Set the size fields and indicate not-in-use. 1619 set_bszB(b, mk_free_bszB(bszB)); 1620 1621 // Add to the relevant list. 1622 if (a->freelist[b_lno] == NULL) { 1623 set_prev_b(b, b); 1624 set_next_b(b, b); 1625 a->freelist[b_lno] = b; 1626 } else { 1627 Block* b_prev = get_prev_b(a->freelist[b_lno]); 1628 Block* b_next = a->freelist[b_lno]; 1629 set_next_b(b_prev, b); 1630 set_prev_b(b_next, b); 1631 set_next_b(b, b_next); 1632 set_prev_b(b, b_prev); 1633 } 1634 # ifdef DEBUG_MALLOC 1635 (void)blockSane(a,b); 1636 # endif 1637 } 1638 1639 // Mark the bytes at b .. b+bszB-1 as in use, and set up the block 1640 // appropriately. 1641 static 1642 void mkInuseBlock ( Arena* a, Block* b, SizeT bszB ) 1643 { 1644 UInt i; 1645 vg_assert(bszB >= min_useful_bszB(a)); 1646 INNER_REQUEST(VALGRIND_MAKE_MEM_UNDEFINED(b, bszB)); 1647 set_bszB(b, mk_inuse_bszB(bszB)); 1648 set_prev_b(b, NULL); // Take off freelist 1649 set_next_b(b, NULL); // ditto 1650 if (!a->clientmem) { 1651 for (i = 0; i < a->rz_szB; i++) { 1652 set_rz_lo_byte(b, i, (UByte)(((Addr)b&0xff) ^ REDZONE_LO_MASK)); 1653 set_rz_hi_byte(b, i, (UByte)(((Addr)b&0xff) ^ REDZONE_HI_MASK)); 1654 } 1655 } 1656 # ifdef DEBUG_MALLOC 1657 (void)blockSane(a,b); 1658 # endif 1659 } 1660 1661 // Mark the bytes at b .. b+bszB-1 as being part of a block that has been shrunk. 1662 static 1663 void shrinkInuseBlock ( Arena* a, Block* b, SizeT bszB ) 1664 { 1665 UInt i; 1666 1667 vg_assert(bszB >= min_useful_bszB(a)); 1668 INNER_REQUEST(mkBhdrAccess(a,b)); 1669 set_bszB(b, mk_inuse_bszB(bszB)); 1670 if (!a->clientmem) { 1671 for (i = 0; i < a->rz_szB; i++) { 1672 set_rz_lo_byte(b, i, (UByte)(((Addr)b&0xff) ^ REDZONE_LO_MASK)); 1673 set_rz_hi_byte(b, i, (UByte)(((Addr)b&0xff) ^ REDZONE_HI_MASK)); 1674 } 1675 } 1676 INNER_REQUEST(mkBhdrNoAccess(a,b)); 1677 1678 # ifdef DEBUG_MALLOC 1679 (void)blockSane(a,b); 1680 # endif 1681 } 1682 1683 // Remove a block from a given list. Does no sanity checking. 1684 static 1685 void unlinkBlock ( Arena* a, Block* b, UInt listno ) 1686 { 1687 vg_assert(listno < N_MALLOC_LISTS); 1688 if (get_prev_b(b) == b) { 1689 // Only one element in the list; treat it specially. 1690 vg_assert(get_next_b(b) == b); 1691 a->freelist[listno] = NULL; 1692 } else { 1693 Block* b_prev = get_prev_b(b); 1694 Block* b_next = get_next_b(b); 1695 a->freelist[listno] = b_prev; 1696 set_next_b(b_prev, b_next); 1697 set_prev_b(b_next, b_prev); 1698 swizzle ( a, listno ); 1699 } 1700 set_prev_b(b, NULL); 1701 set_next_b(b, NULL); 1702 } 1703 1704 1705 /*------------------------------------------------------------*/ 1706 /*--- Core-visible functions. ---*/ 1707 /*------------------------------------------------------------*/ 1708 1709 // Align the request size. 1710 static __inline__ 1711 SizeT align_req_pszB ( SizeT req_pszB ) 1712 { 1713 SizeT n = VG_MIN_MALLOC_SZB-1; 1714 return ((req_pszB + n) & (~n)); 1715 } 1716 1717 static 1718 void add_one_block_to_stats (Arena* a, SizeT loaned) 1719 { 1720 a->stats__bytes_on_loan += loaned; 1721 if (a->stats__bytes_on_loan > a->stats__bytes_on_loan_max) { 1722 a->stats__bytes_on_loan_max = a->stats__bytes_on_loan; 1723 if (a->stats__bytes_on_loan_max >= a->next_profile_at) { 1724 /* next profile after 10% more growth */ 1725 a->next_profile_at 1726 = (SizeT)( 1727 (((ULong)a->stats__bytes_on_loan_max) * 105ULL) / 100ULL ); 1728 if (VG_(clo_profile_heap)) 1729 cc_analyse_alloc_arena(arenaP_to_ArenaId (a)); 1730 } 1731 } 1732 a->stats__tot_blocks += (ULong)1; 1733 a->stats__tot_bytes += (ULong)loaned; 1734 } 1735 1736 /* Allocate a piece of memory of req_pszB bytes on the given arena. 1737 The function may return NULL if (and only if) aid == VG_AR_CLIENT. 1738 Otherwise, the function returns a non-NULL value. */ 1739 void* VG_(arena_malloc) ( ArenaId aid, const HChar* cc, SizeT req_pszB ) 1740 { 1741 SizeT req_bszB, frag_bszB, b_bszB; 1742 UInt lno, i; 1743 Superblock* new_sb = NULL; 1744 Block* b = NULL; 1745 Arena* a; 1746 void* v; 1747 UWord stats__nsearches = 0; 1748 1749 ensure_mm_init(aid); 1750 a = arenaId_to_ArenaP(aid); 1751 1752 vg_assert(req_pszB < MAX_PSZB); 1753 req_pszB = align_req_pszB(req_pszB); 1754 req_bszB = pszB_to_bszB(a, req_pszB); 1755 1756 // You must provide a cost-center name against which to charge 1757 // this allocation; it isn't optional. 1758 vg_assert(cc); 1759 1760 // Scan through all the big-enough freelists for a block. 1761 // 1762 // Nb: this scanning might be expensive in some cases. Eg. if you 1763 // allocate lots of small objects without freeing them, but no 1764 // medium-sized objects, it will repeatedly scanning through the whole 1765 // list, and each time not find any free blocks until the last element. 1766 // 1767 // If this becomes a noticeable problem... the loop answers the question 1768 // "where is the first nonempty list above me?" And most of the time, 1769 // you ask the same question and get the same answer. So it would be 1770 // good to somehow cache the results of previous searches. 1771 // One possibility is an array (with N_MALLOC_LISTS elements) of 1772 // shortcuts. shortcut[i] would give the index number of the nearest 1773 // larger list above list i which is non-empty. Then this loop isn't 1774 // necessary. However, we'd have to modify some section [ .. i-1] of the 1775 // shortcut array every time a list [i] changes from empty to nonempty or 1776 // back. This would require care to avoid pathological worst-case 1777 // behaviour. 1778 // 1779 for (lno = pszB_to_listNo(req_pszB); lno < N_MALLOC_LISTS; lno++) { 1780 UWord nsearches_this_level = 0; 1781 b = a->freelist[lno]; 1782 if (NULL == b) continue; // If this list is empty, try the next one. 1783 while (True) { 1784 stats__nsearches++; 1785 nsearches_this_level++; 1786 if (UNLIKELY(nsearches_this_level >= 100) 1787 && lno < N_MALLOC_LISTS-1) { 1788 /* Avoid excessive scanning on this freelist, and instead 1789 try the next one up. But first, move this freelist's 1790 start pointer one element along, so as to ensure that 1791 subsequent searches of this list don't endlessly 1792 revisit only these 100 elements, but in fact slowly 1793 progress through the entire list. */ 1794 b = a->freelist[lno]; 1795 vg_assert(b); // this list must be nonempty! 1796 a->freelist[lno] = get_next_b(b); // step one along 1797 break; 1798 } 1799 b_bszB = get_bszB(b); 1800 if (b_bszB >= req_bszB) goto obtained_block; // success! 1801 b = get_next_b(b); 1802 if (b == a->freelist[lno]) break; // traversed entire freelist 1803 } 1804 } 1805 1806 // If we reach here, no suitable block found, allocate a new superblock 1807 vg_assert(lno == N_MALLOC_LISTS); 1808 new_sb = newSuperblock(a, req_bszB); 1809 if (NULL == new_sb) { 1810 // Should only fail if for client, otherwise, should have aborted 1811 // already. 1812 vg_assert(VG_AR_CLIENT == aid); 1813 return NULL; 1814 } 1815 1816 vg_assert(a->sblocks_used <= a->sblocks_size); 1817 if (a->sblocks_used == a->sblocks_size) { 1818 Superblock ** array; 1819 SysRes sres = VG_(am_mmap_anon_float_valgrind)(sizeof(Superblock *) * 1820 a->sblocks_size * 2); 1821 if (sr_isError(sres)) { 1822 VG_(out_of_memory_NORETURN)("arena_init", sizeof(Superblock *) * 1823 a->sblocks_size * 2); 1824 /* NOTREACHED */ 1825 } 1826 array = (Superblock**)(Addr)sr_Res(sres); 1827 for (i = 0; i < a->sblocks_used; ++i) array[i] = a->sblocks[i]; 1828 1829 a->sblocks_size *= 2; 1830 a->sblocks = array; 1831 VG_(debugLog)(1, "mallocfree", 1832 "sblock array for arena `%s' resized to %lu\n", 1833 a->name, a->sblocks_size); 1834 } 1835 1836 vg_assert(a->sblocks_used < a->sblocks_size); 1837 1838 i = a->sblocks_used; 1839 while (i > 0) { 1840 if (a->sblocks[i-1] > new_sb) { 1841 a->sblocks[i] = a->sblocks[i-1]; 1842 } else { 1843 break; 1844 } 1845 --i; 1846 } 1847 a->sblocks[i] = new_sb; 1848 a->sblocks_used++; 1849 1850 b = (Block*)&new_sb->payload_bytes[0]; 1851 lno = pszB_to_listNo(bszB_to_pszB(a, new_sb->n_payload_bytes)); 1852 mkFreeBlock ( a, b, new_sb->n_payload_bytes, lno); 1853 if (VG_(clo_profile_heap)) 1854 set_cc(b, "admin.free-new-sb-1"); 1855 // fall through 1856 1857 obtained_block: 1858 // Ok, we can allocate from b, which lives in list lno. 1859 vg_assert(b != NULL); 1860 vg_assert(lno < N_MALLOC_LISTS); 1861 vg_assert(a->freelist[lno] != NULL); 1862 b_bszB = get_bszB(b); 1863 // req_bszB is the size of the block we are after. b_bszB is the 1864 // size of what we've actually got. */ 1865 vg_assert(b_bszB >= req_bszB); 1866 1867 // Could we split this block and still get a useful fragment? 1868 // A block in an unsplittable superblock can never be split. 1869 frag_bszB = b_bszB - req_bszB; 1870 if (frag_bszB >= min_useful_bszB(a) 1871 && (NULL == new_sb || ! new_sb->unsplittable)) { 1872 // Yes, split block in two, put the fragment on the appropriate free 1873 // list, and update b_bszB accordingly. 1874 // printf( "split %dB into %dB and %dB\n", b_bszB, req_bszB, frag_bszB ); 1875 unlinkBlock(a, b, lno); 1876 mkInuseBlock(a, b, req_bszB); 1877 if (VG_(clo_profile_heap)) 1878 set_cc(b, cc); 1879 mkFreeBlock(a, &b[req_bszB], frag_bszB, 1880 pszB_to_listNo(bszB_to_pszB(a, frag_bszB))); 1881 if (VG_(clo_profile_heap)) 1882 set_cc(&b[req_bszB], "admin.fragmentation-1"); 1883 b_bszB = get_bszB(b); 1884 } else { 1885 // No, mark as in use and use as-is. 1886 unlinkBlock(a, b, lno); 1887 mkInuseBlock(a, b, b_bszB); 1888 if (VG_(clo_profile_heap)) 1889 set_cc(b, cc); 1890 } 1891 1892 // Update stats 1893 SizeT loaned = bszB_to_pszB(a, b_bszB); 1894 add_one_block_to_stats (a, loaned); 1895 a->stats__nsearches += (ULong)stats__nsearches; 1896 1897 # ifdef DEBUG_MALLOC 1898 sanity_check_malloc_arena(aid); 1899 # endif 1900 1901 v = get_block_payload(a, b); 1902 vg_assert( (((Addr)v) & (VG_MIN_MALLOC_SZB-1)) == 0 ); 1903 1904 // Which size should we pass to VALGRIND_MALLOCLIKE_BLOCK ? 1905 // We have 2 possible options: 1906 // 1. The final resulting usable size. 1907 // 2. The initial (non-aligned) req_pszB. 1908 // Memcheck implements option 2 easily, as the initial requested size 1909 // is maintained in the mc_chunk data structure. 1910 // This is not as easy in the core, as there is no such structure. 1911 // (note: using the aligned req_pszB is not simpler than 2, as 1912 // requesting an aligned req_pszB might still be satisfied by returning 1913 // a (slightly) bigger block than requested if the remaining part of 1914 // of a free block is not big enough to make a free block by itself). 1915 // Implement Sol 2 can be done the following way: 1916 // After having called VALGRIND_MALLOCLIKE_BLOCK, the non accessible 1917 // redzone just after the block can be used to determine the 1918 // initial requested size. 1919 // Currently, not implemented => we use Option 1. 1920 INNER_REQUEST 1921 (VALGRIND_MALLOCLIKE_BLOCK(v, 1922 VG_(arena_malloc_usable_size)(aid, v), 1923 a->rz_szB, False)); 1924 1925 /* For debugging/testing purposes, fill the newly allocated area 1926 with a definite value in an attempt to shake out any 1927 uninitialised uses of the data (by V core / V tools, not by the 1928 client). Testing on 25 Nov 07 with the values 0x00, 0xFF, 0x55, 1929 0xAA showed no differences in the regression tests on 1930 amd64-linux. Note, is disabled by default. */ 1931 if (0 && aid != VG_AR_CLIENT) 1932 VG_(memset)(v, 0xAA, (SizeT)req_pszB); 1933 1934 return v; 1935 } 1936 1937 // If arena has already a deferred reclaimed superblock and 1938 // this superblock is still reclaimable, then this superblock is first 1939 // reclaimed. 1940 // sb becomes then the new arena deferred superblock. 1941 // Passing NULL as sb allows to reclaim a deferred sb without setting a new 1942 // deferred reclaim. 1943 static 1944 void deferred_reclaimSuperblock ( Arena* a, Superblock* sb) 1945 { 1946 1947 if (sb == NULL) { 1948 if (!a->deferred_reclaimed_sb) 1949 // no deferred sb to reclaim now, nothing to do in the future => 1950 // return directly. 1951 return; 1952 1953 VG_(debugLog)(1, "mallocfree", 1954 "deferred_reclaimSuperblock NULL " 1955 "(prev %p) owner %s/%s\n", 1956 a->deferred_reclaimed_sb, 1957 a->clientmem ? "CLIENT" : "VALGRIND", a->name ); 1958 } else 1959 VG_(debugLog)(1, "mallocfree", 1960 "deferred_reclaimSuperblock at %p (pszB %7lu) %s " 1961 "(prev %p) owner %s/%s\n", 1962 sb, sb->n_payload_bytes, 1963 (sb->unsplittable ? "unsplittable" : ""), 1964 a->deferred_reclaimed_sb, 1965 a->clientmem ? "CLIENT" : "VALGRIND", a->name ); 1966 1967 if (a->deferred_reclaimed_sb && a->deferred_reclaimed_sb != sb) { 1968 // If we are deferring another block that the current block deferred, 1969 // then if this block can stil be reclaimed, reclaim it now. 1970 // Note that we might have a re-deferred reclaim of the same block 1971 // with a sequence: free (causing a deferred reclaim of sb) 1972 // alloc (using a piece of memory of the deferred sb) 1973 // free of the just alloc-ed block (causing a re-defer). 1974 UByte* def_sb_start; 1975 UByte* def_sb_end; 1976 Superblock* def_sb; 1977 Block* b; 1978 1979 def_sb = a->deferred_reclaimed_sb; 1980 def_sb_start = &def_sb->payload_bytes[0]; 1981 def_sb_end = &def_sb->payload_bytes[def_sb->n_payload_bytes - 1]; 1982 b = (Block *)def_sb_start; 1983 vg_assert (blockSane(a, b)); 1984 1985 // Check if the deferred_reclaimed_sb is still reclaimable. 1986 // If yes, we will execute the reclaim. 1987 if (!is_inuse_block(b)) { 1988 // b (at the beginning of def_sb) is not in use. 1989 UInt b_listno; 1990 SizeT b_bszB, b_pszB; 1991 b_bszB = get_bszB(b); 1992 b_pszB = bszB_to_pszB(a, b_bszB); 1993 if (b + b_bszB-1 == (Block*)def_sb_end) { 1994 // b (not in use) covers the full superblock. 1995 // => def_sb is still reclaimable 1996 // => execute now the reclaim of this def_sb. 1997 b_listno = pszB_to_listNo(b_pszB); 1998 unlinkBlock( a, b, b_listno ); 1999 reclaimSuperblock (a, def_sb); 2000 a->deferred_reclaimed_sb = NULL; 2001 } 2002 } 2003 } 2004 2005 // sb (possibly NULL) becomes the new deferred reclaimed superblock. 2006 a->deferred_reclaimed_sb = sb; 2007 } 2008 2009 /* b must be a free block, of size b_bszB. 2010 If b is followed by another free block, merge them. 2011 If b is preceded by another free block, merge them. 2012 If the merge results in the superblock being fully free, 2013 deferred_reclaimSuperblock the superblock. */ 2014 static void mergeWithFreeNeighbours (Arena* a, Superblock* sb, 2015 Block* b, SizeT b_bszB) 2016 { 2017 UByte* sb_start; 2018 UByte* sb_end; 2019 Block* other_b; 2020 SizeT other_bszB; 2021 UInt b_listno; 2022 2023 sb_start = &sb->payload_bytes[0]; 2024 sb_end = &sb->payload_bytes[sb->n_payload_bytes - 1]; 2025 2026 b_listno = pszB_to_listNo(bszB_to_pszB(a, b_bszB)); 2027 2028 // See if this block can be merged with its successor. 2029 // First test if we're far enough before the superblock's end to possibly 2030 // have a successor. 2031 other_b = b + b_bszB; 2032 if (other_b+min_useful_bszB(a)-1 <= (Block*)sb_end) { 2033 // Ok, we have a successor, merge if it's not in use. 2034 other_bszB = get_bszB(other_b); 2035 if (!is_inuse_block(other_b)) { 2036 // VG_(printf)( "merge-successor\n"); 2037 # ifdef DEBUG_MALLOC 2038 vg_assert(blockSane(a, other_b)); 2039 # endif 2040 unlinkBlock( a, b, b_listno ); 2041 unlinkBlock( a, other_b, 2042 pszB_to_listNo(bszB_to_pszB(a,other_bszB)) ); 2043 b_bszB += other_bszB; 2044 b_listno = pszB_to_listNo(bszB_to_pszB(a, b_bszB)); 2045 mkFreeBlock( a, b, b_bszB, b_listno ); 2046 if (VG_(clo_profile_heap)) 2047 set_cc(b, "admin.free-2"); 2048 } 2049 } else { 2050 // Not enough space for successor: check that b is the last block 2051 // ie. there are no unused bytes at the end of the Superblock. 2052 vg_assert(other_b-1 == (Block*)sb_end); 2053 } 2054 2055 // Then see if this block can be merged with its predecessor. 2056 // First test if we're far enough after the superblock's start to possibly 2057 // have a predecessor. 2058 if (b >= (Block*)sb_start + min_useful_bszB(a)) { 2059 // Ok, we have a predecessor, merge if it's not in use. 2060 other_b = get_predecessor_block( b ); 2061 other_bszB = get_bszB(other_b); 2062 if (!is_inuse_block(other_b)) { 2063 // VG_(printf)( "merge-predecessor\n"); 2064 unlinkBlock( a, b, b_listno ); 2065 unlinkBlock( a, other_b, 2066 pszB_to_listNo(bszB_to_pszB(a, other_bszB)) ); 2067 b = other_b; 2068 b_bszB += other_bszB; 2069 b_listno = pszB_to_listNo(bszB_to_pszB(a, b_bszB)); 2070 mkFreeBlock( a, b, b_bszB, b_listno ); 2071 if (VG_(clo_profile_heap)) 2072 set_cc(b, "admin.free-3"); 2073 } 2074 } else { 2075 // Not enough space for predecessor: check that b is the first block, 2076 // ie. there are no unused bytes at the start of the Superblock. 2077 vg_assert((Block*)sb_start == b); 2078 } 2079 2080 /* If the block b just merged is the only block of the superblock sb, 2081 then we defer reclaim sb. */ 2082 if ( ((Block*)sb_start == b) && (b + b_bszB-1 == (Block*)sb_end) ) { 2083 deferred_reclaimSuperblock (a, sb); 2084 } 2085 } 2086 2087 void VG_(arena_free) ( ArenaId aid, void* ptr ) 2088 { 2089 Superblock* sb; 2090 Block* b; 2091 SizeT b_bszB, b_pszB; 2092 UInt b_listno; 2093 Arena* a; 2094 2095 ensure_mm_init(aid); 2096 a = arenaId_to_ArenaP(aid); 2097 2098 if (ptr == NULL) { 2099 return; 2100 } 2101 2102 b = get_payload_block(a, ptr); 2103 2104 /* If this is one of V's areas, check carefully the block we're 2105 getting back. This picks up simple block-end overruns. */ 2106 if (aid != VG_AR_CLIENT) 2107 vg_assert(is_inuse_block(b) && blockSane(a, b)); 2108 2109 b_bszB = get_bszB(b); 2110 b_pszB = bszB_to_pszB(a, b_bszB); 2111 sb = findSb( a, b ); 2112 2113 a->stats__bytes_on_loan -= b_pszB; 2114 2115 /* If this is one of V's areas, fill it up with junk to enhance the 2116 chances of catching any later reads of it. Note, 0xDD is 2117 carefully chosen junk :-), in that: (1) 0xDDDDDDDD is an invalid 2118 and non-word-aligned address on most systems, and (2) 0xDD is a 2119 value which is unlikely to be generated by the new compressed 2120 Vbits representation for memcheck. */ 2121 if (aid != VG_AR_CLIENT) 2122 VG_(memset)(ptr, 0xDD, (SizeT)b_pszB); 2123 2124 if (! sb->unsplittable) { 2125 // Put this chunk back on a list somewhere. 2126 b_listno = pszB_to_listNo(b_pszB); 2127 mkFreeBlock( a, b, b_bszB, b_listno ); 2128 if (VG_(clo_profile_heap)) 2129 set_cc(b, "admin.free-1"); 2130 2131 /* Possibly merge b with its predecessor or successor. */ 2132 mergeWithFreeNeighbours (a, sb, b, b_bszB); 2133 2134 // Inform that ptr has been released. We give redzone size 2135 // 0 instead of a->rz_szB as proper accessibility is done just after. 2136 INNER_REQUEST(VALGRIND_FREELIKE_BLOCK(ptr, 0)); 2137 2138 // We need to (re-)establish the minimum accessibility needed 2139 // for free list management. E.g. if block ptr has been put in a free 2140 // list and a neighbour block is released afterwards, the 2141 // "lo" and "hi" portions of the block ptr will be accessed to 2142 // glue the 2 blocks together. 2143 // We could mark the whole block as not accessible, and each time 2144 // transiently mark accessible the needed lo/hi parts. Not done as this 2145 // is quite complex, for very little expected additional bug detection. 2146 // fully unaccessible. Note that the below marks the (possibly) merged 2147 // block, not the block corresponding to the ptr argument. 2148 2149 // First mark the whole block unaccessible. 2150 INNER_REQUEST(VALGRIND_MAKE_MEM_NOACCESS(b, b_bszB)); 2151 // Then mark the relevant administrative headers as defined. 2152 // No need to mark the heap profile portion as defined, this is not 2153 // used for free blocks. 2154 INNER_REQUEST(VALGRIND_MAKE_MEM_DEFINED(b + hp_overhead_szB(), 2155 sizeof(SizeT) + sizeof(void*))); 2156 INNER_REQUEST(VALGRIND_MAKE_MEM_DEFINED(b + b_bszB 2157 - sizeof(SizeT) - sizeof(void*), 2158 sizeof(SizeT) + sizeof(void*))); 2159 } else { 2160 vg_assert(unsplittableBlockSane(a, sb, b)); 2161 2162 // Inform that ptr has been released. Redzone size value 2163 // is not relevant (so we give 0 instead of a->rz_szB) 2164 // as it is expected that the aspacemgr munmap will be used by 2165 // outer to mark the whole superblock as unaccessible. 2166 INNER_REQUEST(VALGRIND_FREELIKE_BLOCK(ptr, 0)); 2167 2168 // Reclaim immediately the unsplittable superblock sb. 2169 reclaimSuperblock (a, sb); 2170 } 2171 2172 # ifdef DEBUG_MALLOC 2173 sanity_check_malloc_arena(aid); 2174 # endif 2175 2176 } 2177 2178 2179 /* 2180 The idea for malloc_aligned() is to allocate a big block, base, and 2181 then split it into two parts: frag, which is returned to the free 2182 pool, and align, which is the bit we're really after. Here's 2183 a picture. L and H denote the block lower and upper overheads, in 2184 bytes. The details are gruesome. Note it is slightly complicated 2185 because the initial request to generate base may return a bigger 2186 block than we asked for, so it is important to distinguish the base 2187 request size and the base actual size. 2188 2189 frag_b align_b 2190 | | 2191 | frag_p | align_p 2192 | | | | 2193 v v v v 2194 2195 +---+ +---+---+ +---+ 2196 | L |----------------| H | L |---------------| H | 2197 +---+ +---+---+ +---+ 2198 2199 ^ ^ ^ 2200 | | : 2201 | base_p this addr must be aligned 2202 | 2203 base_b 2204 2205 . . . . . . . 2206 <------ frag_bszB -------> . . . 2207 . <------------- base_pszB_act -----------> . 2208 . . . . . . . 2209 2210 */ 2211 void* VG_(arena_memalign) ( ArenaId aid, const HChar* cc, 2212 SizeT req_alignB, SizeT req_pszB ) 2213 { 2214 SizeT base_pszB_req, base_pszB_act, frag_bszB; 2215 Block *base_b, *align_b; 2216 UByte *base_p, *align_p; 2217 SizeT saved_bytes_on_loan; 2218 Arena* a; 2219 2220 ensure_mm_init(aid); 2221 a = arenaId_to_ArenaP(aid); 2222 2223 vg_assert(req_pszB < MAX_PSZB); 2224 2225 // You must provide a cost-center name against which to charge 2226 // this allocation; it isn't optional. 2227 vg_assert(cc); 2228 2229 // Check that the requested alignment has a plausible size. 2230 // Check that the requested alignment seems reasonable; that is, is 2231 // a power of 2. 2232 if (req_alignB < VG_MIN_MALLOC_SZB 2233 || req_alignB > 16 * 1024 * 1024 2234 || VG_(log2)( req_alignB ) == -1 /* not a power of 2 */) { 2235 VG_(printf)("VG_(arena_memalign)(%p, %lu, %lu)\n" 2236 "bad alignment value %lu\n" 2237 "(it is too small, too big, or not a power of two)", 2238 a, req_alignB, req_pszB, req_alignB ); 2239 VG_(core_panic)("VG_(arena_memalign)"); 2240 /*NOTREACHED*/ 2241 } 2242 // Paranoid 2243 vg_assert(req_alignB % VG_MIN_MALLOC_SZB == 0); 2244 2245 /* Required payload size for the aligned chunk. */ 2246 req_pszB = align_req_pszB(req_pszB); 2247 2248 /* Payload size to request for the big block that we will split up. */ 2249 base_pszB_req = req_pszB + min_useful_bszB(a) + req_alignB; 2250 2251 /* Payload ptr for the block we are going to split. Note this 2252 changes a->bytes_on_loan; we save and restore it ourselves. */ 2253 saved_bytes_on_loan = a->stats__bytes_on_loan; 2254 { 2255 /* As we will split the block given back by VG_(arena_malloc), 2256 we have to (temporarily) disable unsplittable for this arena, 2257 as unsplittable superblocks cannot be split. */ 2258 const SizeT save_min_unsplittable_sblock_szB 2259 = a->min_unsplittable_sblock_szB; 2260 a->min_unsplittable_sblock_szB = MAX_PSZB; 2261 base_p = VG_(arena_malloc) ( aid, cc, base_pszB_req ); 2262 a->min_unsplittable_sblock_szB = save_min_unsplittable_sblock_szB; 2263 } 2264 a->stats__bytes_on_loan = saved_bytes_on_loan; 2265 2266 /* Give up if we couldn't allocate enough space */ 2267 if (base_p == 0) 2268 return 0; 2269 /* base_p was marked as allocated by VALGRIND_MALLOCLIKE_BLOCK 2270 inside VG_(arena_malloc). We need to indicate it is free, then 2271 we need to mark it undefined to allow the below code to access is. */ 2272 INNER_REQUEST(VALGRIND_FREELIKE_BLOCK(base_p, a->rz_szB)); 2273 INNER_REQUEST(VALGRIND_MAKE_MEM_UNDEFINED(base_p, base_pszB_req)); 2274 2275 /* Block ptr for the block we are going to split. */ 2276 base_b = get_payload_block ( a, base_p ); 2277 2278 /* Pointer to the payload of the aligned block we are going to 2279 return. This has to be suitably aligned. */ 2280 align_p = align_upwards ( base_b + 2 * overhead_szB_lo(a) 2281 + overhead_szB_hi(a), 2282 req_alignB ); 2283 align_b = get_payload_block(a, align_p); 2284 2285 /* The block size of the fragment we will create. This must be big 2286 enough to actually create a fragment. */ 2287 frag_bszB = align_b - base_b; 2288 2289 vg_assert(frag_bszB >= min_useful_bszB(a)); 2290 2291 /* The actual payload size of the block we are going to split. */ 2292 base_pszB_act = get_pszB(a, base_b); 2293 2294 /* Create the fragment block, and put it back on the relevant free list. */ 2295 mkFreeBlock ( a, base_b, frag_bszB, 2296 pszB_to_listNo(bszB_to_pszB(a, frag_bszB)) ); 2297 if (VG_(clo_profile_heap)) 2298 set_cc(base_b, "admin.frag-memalign-1"); 2299 2300 /* Create the aligned block. */ 2301 mkInuseBlock ( a, align_b, 2302 base_p + base_pszB_act 2303 + overhead_szB_hi(a) - (UByte*)align_b ); 2304 if (VG_(clo_profile_heap)) 2305 set_cc(align_b, cc); 2306 2307 /* Final sanity checks. */ 2308 vg_assert( is_inuse_block(get_payload_block(a, align_p)) ); 2309 2310 vg_assert(req_pszB <= get_pszB(a, get_payload_block(a, align_p))); 2311 2312 a->stats__bytes_on_loan += get_pszB(a, get_payload_block(a, align_p)); 2313 if (a->stats__bytes_on_loan > a->stats__bytes_on_loan_max) { 2314 a->stats__bytes_on_loan_max = a->stats__bytes_on_loan; 2315 } 2316 /* a->stats__tot_blocks, a->stats__tot_bytes, a->stats__nsearches 2317 are updated by the call to VG_(arena_malloc) just a few lines 2318 above. So we don't need to update them here. */ 2319 2320 # ifdef DEBUG_MALLOC 2321 sanity_check_malloc_arena(aid); 2322 # endif 2323 2324 vg_assert( (((Addr)align_p) % req_alignB) == 0 ); 2325 2326 INNER_REQUEST(VALGRIND_MALLOCLIKE_BLOCK(align_p, 2327 req_pszB, a->rz_szB, False)); 2328 2329 return align_p; 2330 } 2331 2332 2333 SizeT VG_(arena_malloc_usable_size) ( ArenaId aid, void* ptr ) 2334 { 2335 Arena* a = arenaId_to_ArenaP(aid); 2336 Block* b = get_payload_block(a, ptr); 2337 return get_pszB(a, b); 2338 } 2339 2340 2341 // Implementation of mallinfo(). There is no recent standard that defines 2342 // the behavior of mallinfo(). The meaning of the fields in struct mallinfo 2343 // is as follows: 2344 // 2345 // struct mallinfo { 2346 // int arena; /* total space in arena */ 2347 // int ordblks; /* number of ordinary blocks */ 2348 // int smblks; /* number of small blocks */ 2349 // int hblks; /* number of holding blocks */ 2350 // int hblkhd; /* space in holding block headers */ 2351 // int usmblks; /* space in small blocks in use */ 2352 // int fsmblks; /* space in free small blocks */ 2353 // int uordblks; /* space in ordinary blocks in use */ 2354 // int fordblks; /* space in free ordinary blocks */ 2355 // int keepcost; /* space penalty if keep option */ 2356 // /* is used */ 2357 // }; 2358 // 2359 // The glibc documentation about mallinfo (which is somewhat outdated) can 2360 // be found here: 2361 // http://www.gnu.org/software/libtool/manual/libc/Statistics-of-Malloc.html 2362 // 2363 // See also http://bugs.kde.org/show_bug.cgi?id=160956. 2364 // 2365 // Regarding the implementation of VG_(mallinfo)(): we cannot return the 2366 // whole struct as the library function does, because this is called by a 2367 // client request. So instead we use a pointer to do call by reference. 2368 void VG_(mallinfo) ( ThreadId tid, struct vg_mallinfo* mi ) 2369 { 2370 UWord i, free_blocks, free_blocks_size; 2371 Arena* a = arenaId_to_ArenaP(VG_AR_CLIENT); 2372 2373 // Traverse free list and calculate free blocks statistics. 2374 // This may seem slow but glibc works the same way. 2375 free_blocks_size = free_blocks = 0; 2376 for (i = 0; i < N_MALLOC_LISTS; i++) { 2377 Block* b = a->freelist[i]; 2378 if (b == NULL) continue; 2379 for (;;) { 2380 free_blocks++; 2381 free_blocks_size += (UWord)get_pszB(a, b); 2382 b = get_next_b(b); 2383 if (b == a->freelist[i]) break; 2384 } 2385 } 2386 2387 // We don't have fastbins so smblks & fsmblks are always 0. Also we don't 2388 // have a separate mmap allocator so set hblks & hblkhd to 0. 2389 mi->arena = a->stats__bytes_mmaped; 2390 mi->ordblks = free_blocks + VG_(free_queue_length); 2391 mi->smblks = 0; 2392 mi->hblks = 0; 2393 mi->hblkhd = 0; 2394 mi->usmblks = 0; 2395 mi->fsmblks = 0; 2396 mi->uordblks = a->stats__bytes_on_loan - VG_(free_queue_volume); 2397 mi->fordblks = free_blocks_size + VG_(free_queue_volume); 2398 mi->keepcost = 0; // may want some value in here 2399 } 2400 2401 SizeT VG_(arena_redzone_size) ( ArenaId aid ) 2402 { 2403 ensure_mm_init (VG_AR_CLIENT); 2404 /* ensure_mm_init will call arena_init if not yet done. 2405 This then ensures that the arena redzone size is properly 2406 initialised. */ 2407 return arenaId_to_ArenaP(aid)->rz_szB; 2408 } 2409 2410 /*------------------------------------------------------------*/ 2411 /*--- Services layered on top of malloc/free. ---*/ 2412 /*------------------------------------------------------------*/ 2413 2414 void* VG_(arena_calloc) ( ArenaId aid, const HChar* cc, 2415 SizeT nmemb, SizeT bytes_per_memb ) 2416 { 2417 SizeT size; 2418 void* p; 2419 2420 size = nmemb * bytes_per_memb; 2421 vg_assert(size >= nmemb && size >= bytes_per_memb);// check against overflow 2422 2423 p = VG_(arena_malloc) ( aid, cc, size ); 2424 2425 if (p != NULL) 2426 VG_(memset)(p, 0, size); 2427 2428 return p; 2429 } 2430 2431 2432 void* VG_(arena_realloc) ( ArenaId aid, const HChar* cc, 2433 void* ptr, SizeT req_pszB ) 2434 { 2435 Arena* a; 2436 SizeT old_pszB; 2437 void* p_new; 2438 Block* b; 2439 2440 ensure_mm_init(aid); 2441 a = arenaId_to_ArenaP(aid); 2442 2443 vg_assert(req_pszB < MAX_PSZB); 2444 2445 if (NULL == ptr) { 2446 return VG_(arena_malloc)(aid, cc, req_pszB); 2447 } 2448 2449 if (req_pszB == 0) { 2450 VG_(arena_free)(aid, ptr); 2451 return NULL; 2452 } 2453 2454 b = get_payload_block(a, ptr); 2455 vg_assert(blockSane(a, b)); 2456 2457 vg_assert(is_inuse_block(b)); 2458 old_pszB = get_pszB(a, b); 2459 2460 if (req_pszB <= old_pszB) { 2461 return ptr; 2462 } 2463 2464 p_new = VG_(arena_malloc) ( aid, cc, req_pszB ); 2465 2466 VG_(memcpy)(p_new, ptr, old_pszB); 2467 2468 VG_(arena_free)(aid, ptr); 2469 2470 return p_new; 2471 } 2472 2473 2474 void VG_(arena_realloc_shrink) ( ArenaId aid, 2475 void* ptr, SizeT req_pszB ) 2476 { 2477 SizeT req_bszB, frag_bszB, b_bszB; 2478 Superblock* sb; 2479 Arena* a; 2480 SizeT old_pszB; 2481 Block* b; 2482 2483 ensure_mm_init(aid); 2484 2485 a = arenaId_to_ArenaP(aid); 2486 b = get_payload_block(a, ptr); 2487 vg_assert(blockSane(a, b)); 2488 vg_assert(is_inuse_block(b)); 2489 2490 old_pszB = get_pszB(a, b); 2491 req_pszB = align_req_pszB(req_pszB); 2492 vg_assert(old_pszB >= req_pszB); 2493 if (old_pszB == req_pszB) 2494 return; 2495 2496 sb = findSb( a, b ); 2497 if (sb->unsplittable) { 2498 const UByte* sb_start = &sb->payload_bytes[0]; 2499 const UByte* sb_end = &sb->payload_bytes[sb->n_payload_bytes - 1]; 2500 Addr frag; 2501 2502 vg_assert(unsplittableBlockSane(a, sb, b)); 2503 2504 frag = VG_PGROUNDUP((Addr) sb 2505 + sizeof(Superblock) + pszB_to_bszB(a, req_pszB)); 2506 frag_bszB = (Addr)sb_end - frag + 1; 2507 2508 if (frag_bszB >= VKI_PAGE_SIZE) { 2509 SysRes sres; 2510 2511 a->stats__bytes_on_loan -= old_pszB; 2512 b_bszB = (UByte*)frag - sb_start; 2513 shrinkInuseBlock(a, b, b_bszB); 2514 INNER_REQUEST 2515 (VALGRIND_RESIZEINPLACE_BLOCK(ptr, 2516 old_pszB, 2517 VG_(arena_malloc_usable_size)(aid, ptr), 2518 a->rz_szB)); 2519 /* Have the minimum admin headers needed accessibility. */ 2520 INNER_REQUEST(mkBhdrSzAccess(a, b)); 2521 a->stats__bytes_on_loan += bszB_to_pszB(a, b_bszB); 2522 2523 sb->n_payload_bytes -= frag_bszB; 2524 VG_(debugLog)(1, "mallocfree", 2525 "shrink superblock %p to (pszB %7lu) " 2526 "owner %s/%s (munmap-ing %p %7lu)\n", 2527 sb, sb->n_payload_bytes, 2528 a->clientmem ? "CLIENT" : "VALGRIND", a->name, 2529 (void*) frag, frag_bszB); 2530 if (a->clientmem) { 2531 Bool need_discard = False; 2532 sres = VG_(am_munmap_client)(&need_discard, 2533 frag, 2534 frag_bszB); 2535 vg_assert (!need_discard); 2536 } else { 2537 sres = VG_(am_munmap_valgrind)(frag, 2538 frag_bszB); 2539 } 2540 vg_assert2(! sr_isError(sres), "shrink superblock munmap failure\n"); 2541 a->stats__bytes_mmaped -= frag_bszB; 2542 2543 vg_assert(unsplittableBlockSane(a, sb, b)); 2544 } 2545 } else { 2546 req_bszB = pszB_to_bszB(a, req_pszB); 2547 b_bszB = get_bszB(b); 2548 frag_bszB = b_bszB - req_bszB; 2549 if (frag_bszB < min_useful_bszB(a)) 2550 return; 2551 2552 a->stats__bytes_on_loan -= old_pszB; 2553 shrinkInuseBlock(a, b, req_bszB); 2554 INNER_REQUEST 2555 (VALGRIND_RESIZEINPLACE_BLOCK(ptr, 2556 old_pszB, 2557 VG_(arena_malloc_usable_size)(aid, ptr), 2558 a->rz_szB)); 2559 /* Have the minimum admin headers needed accessibility. */ 2560 INNER_REQUEST(mkBhdrSzAccess(a, b)); 2561 2562 mkFreeBlock(a, &b[req_bszB], frag_bszB, 2563 pszB_to_listNo(bszB_to_pszB(a, frag_bszB))); 2564 /* Mark the admin headers as accessible. */ 2565 INNER_REQUEST(mkBhdrAccess(a, &b[req_bszB])); 2566 if (VG_(clo_profile_heap)) 2567 set_cc(&b[req_bszB], "admin.fragmentation-2"); 2568 /* Possibly merge &b[req_bszB] with its free neighbours. */ 2569 mergeWithFreeNeighbours(a, sb, &b[req_bszB], frag_bszB); 2570 2571 b_bszB = get_bszB(b); 2572 a->stats__bytes_on_loan += bszB_to_pszB(a, b_bszB); 2573 } 2574 2575 vg_assert (blockSane(a, b)); 2576 # ifdef DEBUG_MALLOC 2577 sanity_check_malloc_arena(aid); 2578 # endif 2579 } 2580 2581 /* Inline just for the wrapper VG_(strdup) below */ 2582 __inline__ HChar* VG_(arena_strdup) ( ArenaId aid, const HChar* cc, 2583 const HChar* s ) 2584 { 2585 Int i; 2586 Int len; 2587 HChar* res; 2588 2589 if (s == NULL) 2590 return NULL; 2591 2592 len = VG_(strlen)(s) + 1; 2593 res = VG_(arena_malloc) (aid, cc, len); 2594 2595 for (i = 0; i < len; i++) 2596 res[i] = s[i]; 2597 return res; 2598 } 2599 2600 void* VG_(arena_perm_malloc) ( ArenaId aid, SizeT size, Int align ) 2601 { 2602 Arena* a; 2603 2604 ensure_mm_init(aid); 2605 a = arenaId_to_ArenaP(aid); 2606 2607 align = align - 1; 2608 size = (size + align) & ~align; 2609 2610 if (UNLIKELY(a->perm_malloc_current + size > a->perm_malloc_limit)) { 2611 // Get a superblock, but we will not insert it into the superblock list. 2612 // The superblock structure is not needed, so we will use the full 2613 // memory range of it. This superblock is however counted in the 2614 // mmaped statistics. 2615 Superblock* new_sb = newSuperblock (a, size); 2616 a->perm_malloc_limit = (Addr)&new_sb->payload_bytes[new_sb->n_payload_bytes - 1]; 2617 2618 // We do not mind starting allocating from the beginning of the superblock 2619 // as afterwards, we "lose" it as a superblock. 2620 a->perm_malloc_current = (Addr)new_sb; 2621 } 2622 2623 a->stats__perm_blocks += 1; 2624 a->stats__perm_bytes_on_loan += size; 2625 add_one_block_to_stats (a, size); 2626 2627 a->perm_malloc_current += size; 2628 return (void*)(a->perm_malloc_current - size); 2629 } 2630 2631 /*------------------------------------------------------------*/ 2632 /*--- Tool-visible functions. ---*/ 2633 /*------------------------------------------------------------*/ 2634 2635 // All just wrappers to avoid exposing arenas to tools. 2636 2637 // This function never returns NULL. 2638 void* VG_(malloc) ( const HChar* cc, SizeT nbytes ) 2639 { 2640 return VG_(arena_malloc) ( VG_AR_CORE, cc, nbytes ); 2641 } 2642 2643 void VG_(free) ( void* ptr ) 2644 { 2645 VG_(arena_free) ( VG_AR_CORE, ptr ); 2646 } 2647 2648 void* VG_(calloc) ( const HChar* cc, SizeT nmemb, SizeT bytes_per_memb ) 2649 { 2650 return VG_(arena_calloc) ( VG_AR_CORE, cc, nmemb, bytes_per_memb ); 2651 } 2652 2653 void* VG_(realloc) ( const HChar* cc, void* ptr, SizeT size ) 2654 { 2655 return VG_(arena_realloc) ( VG_AR_CORE, cc, ptr, size ); 2656 } 2657 2658 void VG_(realloc_shrink) ( void* ptr, SizeT size ) 2659 { 2660 VG_(arena_realloc_shrink) ( VG_AR_CORE, ptr, size ); 2661 } 2662 2663 HChar* VG_(strdup) ( const HChar* cc, const HChar* s ) 2664 { 2665 return VG_(arena_strdup) ( VG_AR_CORE, cc, s ); 2666 } 2667 2668 void* VG_(perm_malloc) ( SizeT size, Int align ) 2669 { 2670 return VG_(arena_perm_malloc) ( VG_AR_CORE, size, align ); 2671 } 2672 2673 2674 /*--------------------------------------------------------------------*/ 2675 /*--- end ---*/ 2676 /*--------------------------------------------------------------------*/ 2677