Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "block_builder.h"
     18 
     19 #include "base/logging.h"  // FOR VLOG.
     20 #include "dex/bytecode_utils.h"
     21 #include "dex/code_item_accessors-inl.h"
     22 #include "dex/dex_file_exception_helpers.h"
     23 #include "quicken_info.h"
     24 
     25 namespace art {
     26 
     27 HBasicBlockBuilder::HBasicBlockBuilder(HGraph* graph,
     28                                        const DexFile* const dex_file,
     29                                        const CodeItemDebugInfoAccessor& accessor,
     30                                        ScopedArenaAllocator* local_allocator)
     31     : allocator_(graph->GetAllocator()),
     32       graph_(graph),
     33       dex_file_(dex_file),
     34       code_item_accessor_(accessor),
     35       local_allocator_(local_allocator),
     36       branch_targets_(code_item_accessor_.HasCodeItem()
     37                           ? code_item_accessor_.InsnsSizeInCodeUnits()
     38                           : /* fake dex_pc=0 for intrinsic graph */ 1u,
     39                       nullptr,
     40                       local_allocator->Adapter(kArenaAllocGraphBuilder)),
     41       throwing_blocks_(kDefaultNumberOfThrowingBlocks,
     42                        local_allocator->Adapter(kArenaAllocGraphBuilder)),
     43       number_of_branches_(0u),
     44       quicken_index_for_dex_pc_(std::less<uint32_t>(),
     45                                 local_allocator->Adapter(kArenaAllocGraphBuilder)) {}
     46 
     47 HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t dex_pc) {
     48   return MaybeCreateBlockAt(dex_pc, dex_pc);
     49 }
     50 
     51 HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t semantic_dex_pc,
     52                                                     uint32_t store_dex_pc) {
     53   HBasicBlock* block = branch_targets_[store_dex_pc];
     54   if (block == nullptr) {
     55     block = new (allocator_) HBasicBlock(graph_, semantic_dex_pc);
     56     branch_targets_[store_dex_pc] = block;
     57   }
     58   DCHECK_EQ(block->GetDexPc(), semantic_dex_pc);
     59   return block;
     60 }
     61 
     62 bool HBasicBlockBuilder::CreateBranchTargets() {
     63   // Create the first block for the dex instructions, single successor of the entry block.
     64   MaybeCreateBlockAt(0u);
     65 
     66   if (code_item_accessor_.TriesSize() != 0) {
     67     // Create branch targets at the start/end of the TryItem range. These are
     68     // places where the program might fall through into/out of the a block and
     69     // where TryBoundary instructions will be inserted later. Other edges which
     70     // enter/exit the try blocks are a result of branches/switches.
     71     for (const DexFile::TryItem& try_item : code_item_accessor_.TryItems()) {
     72       uint32_t dex_pc_start = try_item.start_addr_;
     73       uint32_t dex_pc_end = dex_pc_start + try_item.insn_count_;
     74       MaybeCreateBlockAt(dex_pc_start);
     75       if (dex_pc_end < code_item_accessor_.InsnsSizeInCodeUnits()) {
     76         // TODO: Do not create block if the last instruction cannot fall through.
     77         MaybeCreateBlockAt(dex_pc_end);
     78       } else if (dex_pc_end == code_item_accessor_.InsnsSizeInCodeUnits()) {
     79         // The TryItem spans until the very end of the CodeItem and therefore
     80         // cannot have any code afterwards.
     81       } else {
     82         // The TryItem spans beyond the end of the CodeItem. This is invalid code.
     83         VLOG(compiler) << "Not compiled: TryItem spans beyond the end of the CodeItem";
     84         return false;
     85       }
     86     }
     87 
     88     // Create branch targets for exception handlers.
     89     const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
     90     uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
     91     for (uint32_t idx = 0; idx < handlers_size; ++idx) {
     92       CatchHandlerIterator iterator(handlers_ptr);
     93       for (; iterator.HasNext(); iterator.Next()) {
     94         MaybeCreateBlockAt(iterator.GetHandlerAddress());
     95       }
     96       handlers_ptr = iterator.EndDataPointer();
     97     }
     98   }
     99 
    100   // Iterate over all instructions and find branching instructions. Create blocks for
    101   // the locations these instructions branch to.
    102   for (const DexInstructionPcPair& pair : code_item_accessor_) {
    103     const uint32_t dex_pc = pair.DexPc();
    104     const Instruction& instruction = pair.Inst();
    105 
    106     if (instruction.IsBranch()) {
    107       number_of_branches_++;
    108       MaybeCreateBlockAt(dex_pc + instruction.GetTargetOffset());
    109     } else if (instruction.IsSwitch()) {
    110       number_of_branches_++;  // count as at least one branch (b/77652521)
    111       DexSwitchTable table(instruction, dex_pc);
    112       for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
    113         MaybeCreateBlockAt(dex_pc + s_it.CurrentTargetOffset());
    114 
    115         // Create N-1 blocks where we will insert comparisons of the input value
    116         // against the Switch's case keys.
    117         if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
    118           // Store the block under dex_pc of the current key at the switch data
    119           // instruction for uniqueness but give it the dex_pc of the SWITCH
    120           // instruction which it semantically belongs to.
    121           MaybeCreateBlockAt(dex_pc, s_it.GetDexPcForCurrentIndex());
    122         }
    123       }
    124     } else if (instruction.Opcode() == Instruction::MOVE_EXCEPTION) {
    125       // End the basic block after MOVE_EXCEPTION. This simplifies the later
    126       // stage of TryBoundary-block insertion.
    127     } else {
    128       continue;
    129     }
    130 
    131     if (instruction.CanFlowThrough()) {
    132       DexInstructionIterator next(std::next(DexInstructionIterator(pair)));
    133       if (next == code_item_accessor_.end()) {
    134         // In the normal case we should never hit this but someone can artificially forge a dex
    135         // file to fall-through out the method code. In this case we bail out compilation.
    136         VLOG(compiler) << "Not compiled: Fall-through beyond the CodeItem";
    137         return false;
    138       }
    139       MaybeCreateBlockAt(next.DexPc());
    140     }
    141   }
    142 
    143   return true;
    144 }
    145 
    146 void HBasicBlockBuilder::ConnectBasicBlocks() {
    147   HBasicBlock* block = graph_->GetEntryBlock();
    148   graph_->AddBlock(block);
    149 
    150   size_t quicken_index = 0;
    151   bool is_throwing_block = false;
    152   // Calculate the qucikening index here instead of CreateBranchTargets since it's easier to
    153   // calculate in dex_pc order.
    154   for (const DexInstructionPcPair& pair : code_item_accessor_) {
    155     const uint32_t dex_pc = pair.DexPc();
    156     const Instruction& instruction = pair.Inst();
    157 
    158     // Check if this dex_pc address starts a new basic block.
    159     HBasicBlock* next_block = GetBlockAt(dex_pc);
    160     if (next_block != nullptr) {
    161       // We only need quicken index entries for basic block boundaries.
    162       quicken_index_for_dex_pc_.Put(dex_pc, quicken_index);
    163       if (block != nullptr) {
    164         // Last instruction did not end its basic block but a new one starts here.
    165         // It must have been a block falling through into the next one.
    166         block->AddSuccessor(next_block);
    167       }
    168       block = next_block;
    169       is_throwing_block = false;
    170       graph_->AddBlock(block);
    171     }
    172     // Make sure to increment this before the continues.
    173     if (QuickenInfoTable::NeedsIndexForInstruction(&instruction)) {
    174       ++quicken_index;
    175     }
    176 
    177     if (block == nullptr) {
    178       // Ignore dead code.
    179       continue;
    180     }
    181 
    182     if (!is_throwing_block && IsThrowingDexInstruction(instruction)) {
    183       DCHECK(!ContainsElement(throwing_blocks_, block));
    184       is_throwing_block = true;
    185       throwing_blocks_.push_back(block);
    186     }
    187 
    188     if (instruction.IsBranch()) {
    189       uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset();
    190       block->AddSuccessor(GetBlockAt(target_dex_pc));
    191     } else if (instruction.IsReturn() || (instruction.Opcode() == Instruction::THROW)) {
    192       block->AddSuccessor(graph_->GetExitBlock());
    193     } else if (instruction.IsSwitch()) {
    194       DexSwitchTable table(instruction, dex_pc);
    195       for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
    196         uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset();
    197         block->AddSuccessor(GetBlockAt(target_dex_pc));
    198 
    199         if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
    200           uint32_t next_case_dex_pc = s_it.GetDexPcForCurrentIndex();
    201           HBasicBlock* next_case_block = GetBlockAt(next_case_dex_pc);
    202           block->AddSuccessor(next_case_block);
    203           block = next_case_block;
    204           graph_->AddBlock(block);
    205         }
    206       }
    207     } else {
    208       // Remaining code only applies to instructions which end their basic block.
    209       continue;
    210     }
    211 
    212     // Go to the next instruction in case we read dex PC below.
    213     if (instruction.CanFlowThrough()) {
    214       block->AddSuccessor(GetBlockAt(std::next(DexInstructionIterator(pair)).DexPc()));
    215     }
    216 
    217     // The basic block ends here. Do not add any more instructions.
    218     block = nullptr;
    219   }
    220 
    221   graph_->AddBlock(graph_->GetExitBlock());
    222 }
    223 
    224 // Returns the TryItem stored for `block` or nullptr if there is no info for it.
    225 static const DexFile::TryItem* GetTryItem(
    226     HBasicBlock* block,
    227     const ScopedArenaSafeMap<uint32_t, const DexFile::TryItem*>& try_block_info) {
    228   auto iterator = try_block_info.find(block->GetBlockId());
    229   return (iterator == try_block_info.end()) ? nullptr : iterator->second;
    230 }
    231 
    232 // Iterates over the exception handlers of `try_item`, finds the corresponding
    233 // catch blocks and makes them successors of `try_boundary`. The order of
    234 // successors matches the order in which runtime exception delivery searches
    235 // for a handler.
    236 static void LinkToCatchBlocks(HTryBoundary* try_boundary,
    237                               const CodeItemDataAccessor& accessor,
    238                               const DexFile::TryItem* try_item,
    239                               const ScopedArenaSafeMap<uint32_t, HBasicBlock*>& catch_blocks) {
    240   for (CatchHandlerIterator it(accessor.GetCatchHandlerData(try_item->handler_off_));
    241       it.HasNext();
    242       it.Next()) {
    243     try_boundary->AddExceptionHandler(catch_blocks.Get(it.GetHandlerAddress()));
    244   }
    245 }
    246 
    247 bool HBasicBlockBuilder::MightHaveLiveNormalPredecessors(HBasicBlock* catch_block) {
    248   if (kIsDebugBuild) {
    249     DCHECK_NE(catch_block->GetDexPc(), kNoDexPc) << "Should not be called on synthetic blocks";
    250     DCHECK(!graph_->GetEntryBlock()->GetSuccessors().empty())
    251         << "Basic blocks must have been created and connected";
    252     for (HBasicBlock* predecessor : catch_block->GetPredecessors()) {
    253       DCHECK(!predecessor->IsSingleTryBoundary())
    254           << "TryBoundary blocks must not have not been created yet";
    255     }
    256   }
    257 
    258   const Instruction& first = code_item_accessor_.InstructionAt(catch_block->GetDexPc());
    259   if (first.Opcode() == Instruction::MOVE_EXCEPTION) {
    260     // Verifier guarantees that if a catch block begins with MOVE_EXCEPTION then
    261     // it has no live normal predecessors.
    262     return false;
    263   } else if (catch_block->GetPredecessors().empty()) {
    264     // Normal control-flow edges have already been created. Since block's list of
    265     // predecessors is empty, it cannot have any live or dead normal predecessors.
    266     return false;
    267   }
    268 
    269   // The catch block has normal predecessors but we do not know which are live
    270   // and which will be removed during the initial DCE. Return `true` to signal
    271   // that it may have live normal predecessors.
    272   return true;
    273 }
    274 
    275 void HBasicBlockBuilder::InsertTryBoundaryBlocks() {
    276   if (code_item_accessor_.TriesSize() == 0) {
    277     return;
    278   }
    279 
    280   // Keep a map of all try blocks and their respective TryItems. We do not use
    281   // the block's pointer but rather its id to ensure deterministic iteration.
    282   ScopedArenaSafeMap<uint32_t, const DexFile::TryItem*> try_block_info(
    283       std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder));
    284 
    285   // Obtain TryItem information for blocks with throwing instructions, and split
    286   // blocks which are both try & catch to simplify the graph.
    287   for (HBasicBlock* block : graph_->GetBlocks()) {
    288     if (block->GetDexPc() == kNoDexPc) {
    289       continue;
    290     }
    291 
    292     // Do not bother creating exceptional edges for try blocks which have no
    293     // throwing instructions. In that case we simply assume that the block is
    294     // not covered by a TryItem. This prevents us from creating a throw-catch
    295     // loop for synchronized blocks.
    296     if (ContainsElement(throwing_blocks_, block)) {
    297       // Try to find a TryItem covering the block.
    298       const DexFile::TryItem* try_item = code_item_accessor_.FindTryItem(block->GetDexPc());
    299       if (try_item != nullptr) {
    300         // Block throwing and in a TryItem. Store the try block information.
    301         try_block_info.Put(block->GetBlockId(), try_item);
    302       }
    303     }
    304   }
    305 
    306   // Map from a handler dex_pc to the corresponding catch block.
    307   ScopedArenaSafeMap<uint32_t, HBasicBlock*> catch_blocks(
    308       std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder));
    309 
    310   // Iterate over catch blocks, create artifical landing pads if necessary to
    311   // simplify the CFG, and set metadata.
    312   const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
    313   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
    314   for (uint32_t idx = 0; idx < handlers_size; ++idx) {
    315     CatchHandlerIterator iterator(handlers_ptr);
    316     for (; iterator.HasNext(); iterator.Next()) {
    317       uint32_t address = iterator.GetHandlerAddress();
    318       if (catch_blocks.find(address) != catch_blocks.end()) {
    319         // Catch block already processed.
    320         continue;
    321       }
    322 
    323       // Check if we should create an artifical landing pad for the catch block.
    324       // We create one if the catch block is also a try block because we do not
    325       // have a strategy for inserting TryBoundaries on exceptional edges.
    326       // We also create one if the block might have normal predecessors so as to
    327       // simplify register allocation.
    328       HBasicBlock* catch_block = GetBlockAt(address);
    329       bool is_try_block = (try_block_info.find(catch_block->GetBlockId()) != try_block_info.end());
    330       if (is_try_block || MightHaveLiveNormalPredecessors(catch_block)) {
    331         HBasicBlock* new_catch_block = new (allocator_) HBasicBlock(graph_, address);
    332         new_catch_block->AddInstruction(new (allocator_) HGoto(address));
    333         new_catch_block->AddSuccessor(catch_block);
    334         graph_->AddBlock(new_catch_block);
    335         catch_block = new_catch_block;
    336       }
    337 
    338       catch_blocks.Put(address, catch_block);
    339       catch_block->SetTryCatchInformation(
    340         new (allocator_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_));
    341     }
    342     handlers_ptr = iterator.EndDataPointer();
    343   }
    344 
    345   // Do a pass over the try blocks and insert entering TryBoundaries where at
    346   // least one predecessor is not covered by the same TryItem as the try block.
    347   // We do not split each edge separately, but rather create one boundary block
    348   // that all predecessors are relinked to. This preserves loop headers (b/23895756).
    349   for (const auto& entry : try_block_info) {
    350     uint32_t block_id = entry.first;
    351     const DexFile::TryItem* try_item = entry.second;
    352     HBasicBlock* try_block = graph_->GetBlocks()[block_id];
    353     for (HBasicBlock* predecessor : try_block->GetPredecessors()) {
    354       if (GetTryItem(predecessor, try_block_info) != try_item) {
    355         // Found a predecessor not covered by the same TryItem. Insert entering
    356         // boundary block.
    357         HTryBoundary* try_entry = new (allocator_) HTryBoundary(
    358             HTryBoundary::BoundaryKind::kEntry, try_block->GetDexPc());
    359         try_block->CreateImmediateDominator()->AddInstruction(try_entry);
    360         LinkToCatchBlocks(try_entry, code_item_accessor_, try_item, catch_blocks);
    361         break;
    362       }
    363     }
    364   }
    365 
    366   // Do a second pass over the try blocks and insert exit TryBoundaries where
    367   // the successor is not in the same TryItem.
    368   for (const auto& entry : try_block_info) {
    369     uint32_t block_id = entry.first;
    370     const DexFile::TryItem* try_item = entry.second;
    371     HBasicBlock* try_block = graph_->GetBlocks()[block_id];
    372     // NOTE: Do not use iterators because SplitEdge would invalidate them.
    373     for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) {
    374       HBasicBlock* successor = try_block->GetSuccessors()[i];
    375 
    376       // If the successor is a try block, all of its predecessors must be
    377       // covered by the same TryItem. Otherwise the previous pass would have
    378       // created a non-throwing boundary block.
    379       if (GetTryItem(successor, try_block_info) != nullptr) {
    380         DCHECK_EQ(try_item, GetTryItem(successor, try_block_info));
    381         continue;
    382       }
    383 
    384       // Insert TryBoundary and link to catch blocks.
    385       HTryBoundary* try_exit =
    386           new (allocator_) HTryBoundary(HTryBoundary::BoundaryKind::kExit, successor->GetDexPc());
    387       graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit);
    388       LinkToCatchBlocks(try_exit, code_item_accessor_, try_item, catch_blocks);
    389     }
    390   }
    391 }
    392 
    393 bool HBasicBlockBuilder::Build() {
    394   DCHECK(code_item_accessor_.HasCodeItem());
    395   DCHECK(graph_->GetBlocks().empty());
    396 
    397   graph_->SetEntryBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc));
    398   graph_->SetExitBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc));
    399 
    400   // TODO(dbrazdil): Do CreateBranchTargets and ConnectBasicBlocks in one pass.
    401   if (!CreateBranchTargets()) {
    402     return false;
    403   }
    404 
    405   ConnectBasicBlocks();
    406   InsertTryBoundaryBlocks();
    407 
    408   return true;
    409 }
    410 
    411 void HBasicBlockBuilder::BuildIntrinsic() {
    412   DCHECK(!code_item_accessor_.HasCodeItem());
    413   DCHECK(graph_->GetBlocks().empty());
    414 
    415   // Create blocks.
    416   HBasicBlock* entry_block = new (allocator_) HBasicBlock(graph_, kNoDexPc);
    417   HBasicBlock* exit_block = new (allocator_) HBasicBlock(graph_, kNoDexPc);
    418   HBasicBlock* body = MaybeCreateBlockAt(/* semantic_dex_pc */ kNoDexPc, /* store_dex_pc */ 0u);
    419 
    420   // Add blocks to the graph.
    421   graph_->AddBlock(entry_block);
    422   graph_->AddBlock(body);
    423   graph_->AddBlock(exit_block);
    424   graph_->SetEntryBlock(entry_block);
    425   graph_->SetExitBlock(exit_block);
    426 
    427   // Connect blocks.
    428   entry_block->AddSuccessor(body);
    429   body->AddSuccessor(exit_block);
    430 }
    431 
    432 size_t HBasicBlockBuilder::GetQuickenIndex(uint32_t dex_pc) const {
    433   return quicken_index_for_dex_pc_.Get(dex_pc);
    434 }
    435 
    436 }  // namespace art
    437