Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "bounds_check_elimination.h"
     18 
     19 #include <limits>
     20 
     21 #include "base/scoped_arena_allocator.h"
     22 #include "base/scoped_arena_containers.h"
     23 #include "induction_var_range.h"
     24 #include "nodes.h"
     25 #include "side_effects_analysis.h"
     26 
     27 namespace art {
     28 
     29 class MonotonicValueRange;
     30 
     31 /**
     32  * A value bound is represented as a pair of value and constant,
     33  * e.g. array.length - 1.
     34  */
     35 class ValueBound : public ValueObject {
     36  public:
     37   ValueBound(HInstruction* instruction, int32_t constant) {
     38     if (instruction != nullptr && instruction->IsIntConstant()) {
     39       // Normalize ValueBound with constant instruction.
     40       int32_t instr_const = instruction->AsIntConstant()->GetValue();
     41       if (!WouldAddOverflowOrUnderflow(instr_const, constant)) {
     42         instruction_ = nullptr;
     43         constant_ = instr_const + constant;
     44         return;
     45       }
     46     }
     47     instruction_ = instruction;
     48     constant_ = constant;
     49   }
     50 
     51   // Return whether (left + right) overflows or underflows.
     52   static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) {
     53     if (right == 0) {
     54       return false;
     55     }
     56     if ((right > 0) && (left <= (std::numeric_limits<int32_t>::max() - right))) {
     57       // No overflow.
     58       return false;
     59     }
     60     if ((right < 0) && (left >= (std::numeric_limits<int32_t>::min() - right))) {
     61       // No underflow.
     62       return false;
     63     }
     64     return true;
     65   }
     66 
     67   // Return true if instruction can be expressed as "left_instruction + right_constant".
     68   static bool IsAddOrSubAConstant(HInstruction* instruction,
     69                                   /* out */ HInstruction** left_instruction,
     70                                   /* out */ int32_t* right_constant) {
     71     HInstruction* left_so_far = nullptr;
     72     int32_t right_so_far = 0;
     73     while (instruction->IsAdd() || instruction->IsSub()) {
     74       HBinaryOperation* bin_op = instruction->AsBinaryOperation();
     75       HInstruction* left = bin_op->GetLeft();
     76       HInstruction* right = bin_op->GetRight();
     77       if (right->IsIntConstant()) {
     78         int32_t v = right->AsIntConstant()->GetValue();
     79         int32_t c = instruction->IsAdd() ? v : -v;
     80         if (!WouldAddOverflowOrUnderflow(right_so_far, c)) {
     81           instruction = left;
     82           left_so_far = left;
     83           right_so_far += c;
     84           continue;
     85         }
     86       }
     87       break;
     88     }
     89     // Return result: either false and "null+0" or true and "instr+constant".
     90     *left_instruction = left_so_far;
     91     *right_constant = right_so_far;
     92     return left_so_far != nullptr;
     93   }
     94 
     95   // Expresses any instruction as a value bound.
     96   static ValueBound AsValueBound(HInstruction* instruction) {
     97     if (instruction->IsIntConstant()) {
     98       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
     99     }
    100     HInstruction *left;
    101     int32_t right;
    102     if (IsAddOrSubAConstant(instruction, &left, &right)) {
    103       return ValueBound(left, right);
    104     }
    105     return ValueBound(instruction, 0);
    106   }
    107 
    108   // Try to detect useful value bound format from an instruction, e.g.
    109   // a constant or array length related value.
    110   static ValueBound DetectValueBoundFromValue(HInstruction* instruction, /* out */ bool* found) {
    111     DCHECK(instruction != nullptr);
    112     if (instruction->IsIntConstant()) {
    113       *found = true;
    114       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
    115     }
    116 
    117     if (instruction->IsArrayLength()) {
    118       *found = true;
    119       return ValueBound(instruction, 0);
    120     }
    121     // Try to detect (array.length + c) format.
    122     HInstruction *left;
    123     int32_t right;
    124     if (IsAddOrSubAConstant(instruction, &left, &right)) {
    125       if (left->IsArrayLength()) {
    126         *found = true;
    127         return ValueBound(left, right);
    128       }
    129     }
    130 
    131     // No useful bound detected.
    132     *found = false;
    133     return ValueBound::Max();
    134   }
    135 
    136   HInstruction* GetInstruction() const { return instruction_; }
    137   int32_t GetConstant() const { return constant_; }
    138 
    139   bool IsRelatedToArrayLength() const {
    140     // Some bounds are created with HNewArray* as the instruction instead
    141     // of HArrayLength*. They are treated the same.
    142     return (instruction_ != nullptr) &&
    143            (instruction_->IsArrayLength() || instruction_->IsNewArray());
    144   }
    145 
    146   bool IsConstant() const {
    147     return instruction_ == nullptr;
    148   }
    149 
    150   static ValueBound Min() { return ValueBound(nullptr, std::numeric_limits<int32_t>::min()); }
    151   static ValueBound Max() { return ValueBound(nullptr, std::numeric_limits<int32_t>::max()); }
    152 
    153   bool Equals(ValueBound bound) const {
    154     return instruction_ == bound.instruction_ && constant_ == bound.constant_;
    155   }
    156 
    157   static bool Equal(HInstruction* instruction1, HInstruction* instruction2) {
    158     if (instruction1 == instruction2) {
    159       return true;
    160     }
    161     if (instruction1 == nullptr || instruction2 == nullptr) {
    162       return false;
    163     }
    164     instruction1 = HuntForDeclaration(instruction1);
    165     instruction2 = HuntForDeclaration(instruction2);
    166     return instruction1 == instruction2;
    167   }
    168 
    169   // Returns if it's certain this->bound >= `bound`.
    170   bool GreaterThanOrEqualTo(ValueBound bound) const {
    171     if (Equal(instruction_, bound.instruction_)) {
    172       return constant_ >= bound.constant_;
    173     }
    174     // Not comparable. Just return false.
    175     return false;
    176   }
    177 
    178   // Returns if it's certain this->bound <= `bound`.
    179   bool LessThanOrEqualTo(ValueBound bound) const {
    180     if (Equal(instruction_, bound.instruction_)) {
    181       return constant_ <= bound.constant_;
    182     }
    183     // Not comparable. Just return false.
    184     return false;
    185   }
    186 
    187   // Returns if it's certain this->bound > `bound`.
    188   bool GreaterThan(ValueBound bound) const {
    189     if (Equal(instruction_, bound.instruction_)) {
    190       return constant_ > bound.constant_;
    191     }
    192     // Not comparable. Just return false.
    193     return false;
    194   }
    195 
    196   // Returns if it's certain this->bound < `bound`.
    197   bool LessThan(ValueBound bound) const {
    198     if (Equal(instruction_, bound.instruction_)) {
    199       return constant_ < bound.constant_;
    200     }
    201     // Not comparable. Just return false.
    202     return false;
    203   }
    204 
    205   // Try to narrow lower bound. Returns the greatest of the two if possible.
    206   // Pick one if they are not comparable.
    207   static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) {
    208     if (bound1.GreaterThanOrEqualTo(bound2)) {
    209       return bound1;
    210     }
    211     if (bound2.GreaterThanOrEqualTo(bound1)) {
    212       return bound2;
    213     }
    214 
    215     // Not comparable. Just pick one. We may lose some info, but that's ok.
    216     // Favor constant as lower bound.
    217     return bound1.IsConstant() ? bound1 : bound2;
    218   }
    219 
    220   // Try to narrow upper bound. Returns the lowest of the two if possible.
    221   // Pick one if they are not comparable.
    222   static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) {
    223     if (bound1.LessThanOrEqualTo(bound2)) {
    224       return bound1;
    225     }
    226     if (bound2.LessThanOrEqualTo(bound1)) {
    227       return bound2;
    228     }
    229 
    230     // Not comparable. Just pick one. We may lose some info, but that's ok.
    231     // Favor array length as upper bound.
    232     return bound1.IsRelatedToArrayLength() ? bound1 : bound2;
    233   }
    234 
    235   // Add a constant to a ValueBound.
    236   // `overflow` or `underflow` will return whether the resulting bound may
    237   // overflow or underflow an int.
    238   ValueBound Add(int32_t c, /* out */ bool* overflow, /* out */ bool* underflow) const {
    239     *overflow = *underflow = false;
    240     if (c == 0) {
    241       return *this;
    242     }
    243 
    244     int32_t new_constant;
    245     if (c > 0) {
    246       if (constant_ > (std::numeric_limits<int32_t>::max() - c)) {
    247         *overflow = true;
    248         return Max();
    249       }
    250 
    251       new_constant = constant_ + c;
    252       // (array.length + non-positive-constant) won't overflow an int.
    253       if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) {
    254         return ValueBound(instruction_, new_constant);
    255       }
    256       // Be conservative.
    257       *overflow = true;
    258       return Max();
    259     } else {
    260       if (constant_ < (std::numeric_limits<int32_t>::min() - c)) {
    261         *underflow = true;
    262         return Min();
    263       }
    264 
    265       new_constant = constant_ + c;
    266       // Regardless of the value new_constant, (array.length+new_constant) will
    267       // never underflow since array.length is no less than 0.
    268       if (IsConstant() || IsRelatedToArrayLength()) {
    269         return ValueBound(instruction_, new_constant);
    270       }
    271       // Be conservative.
    272       *underflow = true;
    273       return Min();
    274     }
    275   }
    276 
    277  private:
    278   HInstruction* instruction_;
    279   int32_t constant_;
    280 };
    281 
    282 /**
    283  * Represent a range of lower bound and upper bound, both being inclusive.
    284  * Currently a ValueRange may be generated as a result of the following:
    285  * comparisons related to array bounds, array bounds check, add/sub on top
    286  * of an existing value range, NewArray or a loop phi corresponding to an
    287  * incrementing/decrementing array index (MonotonicValueRange).
    288  */
    289 class ValueRange : public ArenaObject<kArenaAllocBoundsCheckElimination> {
    290  public:
    291   ValueRange(ScopedArenaAllocator* allocator, ValueBound lower, ValueBound upper)
    292       : allocator_(allocator), lower_(lower), upper_(upper) {}
    293 
    294   virtual ~ValueRange() {}
    295 
    296   virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; }
    297   bool IsMonotonicValueRange() {
    298     return AsMonotonicValueRange() != nullptr;
    299   }
    300 
    301   ScopedArenaAllocator* GetAllocator() const { return allocator_; }
    302   ValueBound GetLower() const { return lower_; }
    303   ValueBound GetUpper() const { return upper_; }
    304 
    305   bool IsConstantValueRange() const { return lower_.IsConstant() && upper_.IsConstant(); }
    306 
    307   // If it's certain that this value range fits in other_range.
    308   virtual bool FitsIn(ValueRange* other_range) const {
    309     if (other_range == nullptr) {
    310       return true;
    311     }
    312     DCHECK(!other_range->IsMonotonicValueRange());
    313     return lower_.GreaterThanOrEqualTo(other_range->lower_) &&
    314            upper_.LessThanOrEqualTo(other_range->upper_);
    315   }
    316 
    317   // Returns the intersection of this and range.
    318   // If it's not possible to do intersection because some
    319   // bounds are not comparable, it's ok to pick either bound.
    320   virtual ValueRange* Narrow(ValueRange* range) {
    321     if (range == nullptr) {
    322       return this;
    323     }
    324 
    325     if (range->IsMonotonicValueRange()) {
    326       return this;
    327     }
    328 
    329     return new (allocator_) ValueRange(
    330         allocator_,
    331         ValueBound::NarrowLowerBound(lower_, range->lower_),
    332         ValueBound::NarrowUpperBound(upper_, range->upper_));
    333   }
    334 
    335   // Shift a range by a constant.
    336   ValueRange* Add(int32_t constant) const {
    337     bool overflow, underflow;
    338     ValueBound lower = lower_.Add(constant, &overflow, &underflow);
    339     if (underflow) {
    340       // Lower bound underflow will wrap around to positive values
    341       // and invalidate the upper bound.
    342       return nullptr;
    343     }
    344     ValueBound upper = upper_.Add(constant, &overflow, &underflow);
    345     if (overflow) {
    346       // Upper bound overflow will wrap around to negative values
    347       // and invalidate the lower bound.
    348       return nullptr;
    349     }
    350     return new (allocator_) ValueRange(allocator_, lower, upper);
    351   }
    352 
    353  private:
    354   ScopedArenaAllocator* const allocator_;
    355   const ValueBound lower_;  // inclusive
    356   const ValueBound upper_;  // inclusive
    357 
    358   DISALLOW_COPY_AND_ASSIGN(ValueRange);
    359 };
    360 
    361 /**
    362  * A monotonically incrementing/decrementing value range, e.g.
    363  * the variable i in "for (int i=0; i<array.length; i++)".
    364  * Special care needs to be taken to account for overflow/underflow
    365  * of such value ranges.
    366  */
    367 class MonotonicValueRange : public ValueRange {
    368  public:
    369   MonotonicValueRange(ScopedArenaAllocator* allocator,
    370                       HPhi* induction_variable,
    371                       HInstruction* initial,
    372                       int32_t increment,
    373                       ValueBound bound)
    374       // To be conservative, give it full range [Min(), Max()] in case it's
    375       // used as a regular value range, due to possible overflow/underflow.
    376       : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()),
    377         induction_variable_(induction_variable),
    378         initial_(initial),
    379         increment_(increment),
    380         bound_(bound) {}
    381 
    382   virtual ~MonotonicValueRange() {}
    383 
    384   int32_t GetIncrement() const { return increment_; }
    385   ValueBound GetBound() const { return bound_; }
    386   HBasicBlock* GetLoopHeader() const {
    387     DCHECK(induction_variable_->GetBlock()->IsLoopHeader());
    388     return induction_variable_->GetBlock();
    389   }
    390 
    391   MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; }
    392 
    393   // If it's certain that this value range fits in other_range.
    394   bool FitsIn(ValueRange* other_range) const OVERRIDE {
    395     if (other_range == nullptr) {
    396       return true;
    397     }
    398     DCHECK(!other_range->IsMonotonicValueRange());
    399     return false;
    400   }
    401 
    402   // Try to narrow this MonotonicValueRange given another range.
    403   // Ideally it will return a normal ValueRange. But due to
    404   // possible overflow/underflow, that may not be possible.
    405   ValueRange* Narrow(ValueRange* range) OVERRIDE {
    406     if (range == nullptr) {
    407       return this;
    408     }
    409     DCHECK(!range->IsMonotonicValueRange());
    410 
    411     if (increment_ > 0) {
    412       // Monotonically increasing.
    413       ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower());
    414       if (!lower.IsConstant() || lower.GetConstant() == std::numeric_limits<int32_t>::min()) {
    415         // Lower bound isn't useful. Leave it to deoptimization.
    416         return this;
    417       }
    418 
    419       // We currently conservatively assume max array length is Max().
    420       // If we can make assumptions about the max array length, e.g. due to the max heap size,
    421       // divided by the element size (such as 4 bytes for each integer array), we can
    422       // lower this number and rule out some possible overflows.
    423       int32_t max_array_len = std::numeric_limits<int32_t>::max();
    424 
    425       // max possible integer value of range's upper value.
    426       int32_t upper = std::numeric_limits<int32_t>::max();
    427       // Try to lower upper.
    428       ValueBound upper_bound = range->GetUpper();
    429       if (upper_bound.IsConstant()) {
    430         upper = upper_bound.GetConstant();
    431       } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) {
    432         // Normal case. e.g. <= array.length - 1.
    433         upper = max_array_len + upper_bound.GetConstant();
    434       }
    435 
    436       // If we can prove for the last number in sequence of initial_,
    437       // initial_ + increment_, initial_ + 2 x increment_, ...
    438       // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow,
    439       // then this MonoticValueRange is narrowed to a normal value range.
    440 
    441       // Be conservative first, assume last number in the sequence hits upper.
    442       int32_t last_num_in_sequence = upper;
    443       if (initial_->IsIntConstant()) {
    444         int32_t initial_constant = initial_->AsIntConstant()->GetValue();
    445         if (upper <= initial_constant) {
    446           last_num_in_sequence = upper;
    447         } else {
    448           // Cast to int64_t for the substraction part to avoid int32_t overflow.
    449           last_num_in_sequence = initial_constant +
    450               ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_;
    451         }
    452       }
    453       if (last_num_in_sequence <= (std::numeric_limits<int32_t>::max() - increment_)) {
    454         // No overflow. The sequence will be stopped by the upper bound test as expected.
    455         return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper());
    456       }
    457 
    458       // There might be overflow. Give up narrowing.
    459       return this;
    460     } else {
    461       DCHECK_NE(increment_, 0);
    462       // Monotonically decreasing.
    463       ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper());
    464       if ((!upper.IsConstant() || upper.GetConstant() == std::numeric_limits<int32_t>::max()) &&
    465           !upper.IsRelatedToArrayLength()) {
    466         // Upper bound isn't useful. Leave it to deoptimization.
    467         return this;
    468       }
    469 
    470       // Need to take care of underflow. Try to prove underflow won't happen
    471       // for common cases.
    472       if (range->GetLower().IsConstant()) {
    473         int32_t constant = range->GetLower().GetConstant();
    474         if (constant >= (std::numeric_limits<int32_t>::min() - increment_)) {
    475           return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper);
    476         }
    477       }
    478 
    479       // For non-constant lower bound, just assume might be underflow. Give up narrowing.
    480       return this;
    481     }
    482   }
    483 
    484  private:
    485   HPhi* const induction_variable_;  // Induction variable for this monotonic value range.
    486   HInstruction* const initial_;     // Initial value.
    487   const int32_t increment_;         // Increment for each loop iteration.
    488   const ValueBound bound_;          // Additional value bound info for initial_.
    489 
    490   DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange);
    491 };
    492 
    493 class BCEVisitor : public HGraphVisitor {
    494  public:
    495   // The least number of bounds checks that should be eliminated by triggering
    496   // the deoptimization technique.
    497   static constexpr size_t kThresholdForAddingDeoptimize = 2;
    498 
    499   // Very large lengths are considered an anomaly. This is a threshold beyond which we don't
    500   // bother to apply the deoptimization technique since it's likely, or sometimes certain,
    501   // an AIOOBE will be thrown.
    502   static constexpr uint32_t kMaxLengthForAddingDeoptimize =
    503       std::numeric_limits<int32_t>::max() - 1024 * 1024;
    504 
    505   // Added blocks for loop body entry test.
    506   bool IsAddedBlock(HBasicBlock* block) const {
    507     return block->GetBlockId() >= initial_block_size_;
    508   }
    509 
    510   BCEVisitor(HGraph* graph,
    511              const SideEffectsAnalysis& side_effects,
    512              HInductionVarAnalysis* induction_analysis)
    513       : HGraphVisitor(graph),
    514         allocator_(graph->GetArenaStack()),
    515         maps_(graph->GetBlocks().size(),
    516               ScopedArenaSafeMap<int, ValueRange*>(
    517                   std::less<int>(),
    518                   allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
    519               allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
    520         first_index_bounds_check_map_(std::less<int>(),
    521                                       allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
    522         early_exit_loop_(std::less<uint32_t>(),
    523                          allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
    524         taken_test_loop_(std::less<uint32_t>(),
    525                          allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
    526         finite_loop_(allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
    527         has_dom_based_dynamic_bce_(false),
    528         initial_block_size_(graph->GetBlocks().size()),
    529         side_effects_(side_effects),
    530         induction_range_(induction_analysis),
    531         next_(nullptr) {}
    532 
    533   void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
    534     DCHECK(!IsAddedBlock(block));
    535     first_index_bounds_check_map_.clear();
    536     // Visit phis and instructions using a safe iterator. The iteration protects
    537     // against deleting the current instruction during iteration. However, it
    538     // must advance next_ if that instruction is deleted during iteration.
    539     for (HInstruction* instruction = block->GetFirstPhi(); instruction != nullptr;) {
    540       DCHECK(instruction->IsInBlock());
    541       next_ = instruction->GetNext();
    542       instruction->Accept(this);
    543       instruction = next_;
    544     }
    545     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
    546       DCHECK(instruction->IsInBlock());
    547       next_ = instruction->GetNext();
    548       instruction->Accept(this);
    549       instruction = next_;
    550     }
    551     // We should never deoptimize from an osr method, otherwise we might wrongly optimize
    552     // code dominated by the deoptimization.
    553     if (!GetGraph()->IsCompilingOsr()) {
    554       AddComparesWithDeoptimization(block);
    555     }
    556   }
    557 
    558   void Finish() {
    559     // Preserve SSA structure which may have been broken by adding one or more
    560     // new taken-test structures (see TransformLoopForDeoptimizationIfNeeded()).
    561     InsertPhiNodes();
    562 
    563     // Clear the loop data structures.
    564     early_exit_loop_.clear();
    565     taken_test_loop_.clear();
    566     finite_loop_.clear();
    567   }
    568 
    569  private:
    570   // Return the map of proven value ranges at the beginning of a basic block.
    571   ScopedArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) {
    572     if (IsAddedBlock(basic_block)) {
    573       // Added blocks don't keep value ranges.
    574       return nullptr;
    575     }
    576     return &maps_[basic_block->GetBlockId()];
    577   }
    578 
    579   // Traverse up the dominator tree to look for value range info.
    580   ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) {
    581     while (basic_block != nullptr) {
    582       ScopedArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block);
    583       if (map != nullptr) {
    584         if (map->find(instruction->GetId()) != map->end()) {
    585           return map->Get(instruction->GetId());
    586         }
    587       } else {
    588         DCHECK(IsAddedBlock(basic_block));
    589       }
    590       basic_block = basic_block->GetDominator();
    591     }
    592     // Didn't find any.
    593     return nullptr;
    594   }
    595 
    596   // Helper method to assign a new range to an instruction in given basic block.
    597   void AssignRange(HBasicBlock* basic_block, HInstruction* instruction, ValueRange* range) {
    598     DCHECK(!range->IsMonotonicValueRange() || instruction->IsLoopHeaderPhi());
    599     GetValueRangeMap(basic_block)->Overwrite(instruction->GetId(), range);
    600   }
    601 
    602   // Narrow the value range of `instruction` at the end of `basic_block` with `range`,
    603   // and push the narrowed value range to `successor`.
    604   void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block,
    605                                 HBasicBlock* successor, ValueRange* range) {
    606     ValueRange* existing_range = LookupValueRange(instruction, basic_block);
    607     if (existing_range == nullptr) {
    608       if (range != nullptr) {
    609         AssignRange(successor, instruction, range);
    610       }
    611       return;
    612     }
    613     if (existing_range->IsMonotonicValueRange()) {
    614       DCHECK(instruction->IsLoopHeaderPhi());
    615       // Make sure the comparison is in the loop header so each increment is
    616       // checked with a comparison.
    617       if (instruction->GetBlock() != basic_block) {
    618         return;
    619       }
    620     }
    621     AssignRange(successor, instruction, existing_range->Narrow(range));
    622   }
    623 
    624   // Special case that we may simultaneously narrow two MonotonicValueRange's to
    625   // regular value ranges.
    626   void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction,
    627                                               HInstruction* left,
    628                                               HInstruction* right,
    629                                               IfCondition cond,
    630                                               MonotonicValueRange* left_range,
    631                                               MonotonicValueRange* right_range) {
    632     DCHECK(left->IsLoopHeaderPhi());
    633     DCHECK(right->IsLoopHeaderPhi());
    634     if (instruction->GetBlock() != left->GetBlock()) {
    635       // Comparison needs to be in loop header to make sure it's done after each
    636       // increment/decrement.
    637       return;
    638     }
    639 
    640     // Handle common cases which also don't have overflow/underflow concerns.
    641     if (left_range->GetIncrement() == 1 &&
    642         left_range->GetBound().IsConstant() &&
    643         right_range->GetIncrement() == -1 &&
    644         right_range->GetBound().IsRelatedToArrayLength() &&
    645         right_range->GetBound().GetConstant() < 0) {
    646       HBasicBlock* successor = nullptr;
    647       int32_t left_compensation = 0;
    648       int32_t right_compensation = 0;
    649       if (cond == kCondLT) {
    650         left_compensation = -1;
    651         right_compensation = 1;
    652         successor = instruction->IfTrueSuccessor();
    653       } else if (cond == kCondLE) {
    654         successor = instruction->IfTrueSuccessor();
    655       } else if (cond == kCondGT) {
    656         successor = instruction->IfFalseSuccessor();
    657       } else if (cond == kCondGE) {
    658         left_compensation = -1;
    659         right_compensation = 1;
    660         successor = instruction->IfFalseSuccessor();
    661       } else {
    662         // We don't handle '=='/'!=' test in case left and right can cross and
    663         // miss each other.
    664         return;
    665       }
    666 
    667       if (successor != nullptr) {
    668         bool overflow;
    669         bool underflow;
    670         ValueRange* new_left_range = new (&allocator_) ValueRange(
    671             &allocator_,
    672             left_range->GetBound(),
    673             right_range->GetBound().Add(left_compensation, &overflow, &underflow));
    674         if (!overflow && !underflow) {
    675           ApplyRangeFromComparison(left, instruction->GetBlock(), successor,
    676                                    new_left_range);
    677         }
    678 
    679         ValueRange* new_right_range = new (&allocator_) ValueRange(
    680             &allocator_,
    681             left_range->GetBound().Add(right_compensation, &overflow, &underflow),
    682             right_range->GetBound());
    683         if (!overflow && !underflow) {
    684           ApplyRangeFromComparison(right, instruction->GetBlock(), successor,
    685                                    new_right_range);
    686         }
    687       }
    688     }
    689   }
    690 
    691   // Handle "if (left cmp_cond right)".
    692   void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) {
    693     HBasicBlock* block = instruction->GetBlock();
    694 
    695     HBasicBlock* true_successor = instruction->IfTrueSuccessor();
    696     // There should be no critical edge at this point.
    697     DCHECK_EQ(true_successor->GetPredecessors().size(), 1u);
    698 
    699     HBasicBlock* false_successor = instruction->IfFalseSuccessor();
    700     // There should be no critical edge at this point.
    701     DCHECK_EQ(false_successor->GetPredecessors().size(), 1u);
    702 
    703     ValueRange* left_range = LookupValueRange(left, block);
    704     MonotonicValueRange* left_monotonic_range = nullptr;
    705     if (left_range != nullptr) {
    706       left_monotonic_range = left_range->AsMonotonicValueRange();
    707       if (left_monotonic_range != nullptr) {
    708         HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader();
    709         if (instruction->GetBlock() != loop_head) {
    710           // For monotonic value range, don't handle `instruction`
    711           // if it's not defined in the loop header.
    712           return;
    713         }
    714       }
    715     }
    716 
    717     bool found;
    718     ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found);
    719     // Each comparison can establish a lower bound and an upper bound
    720     // for the left hand side.
    721     ValueBound lower = bound;
    722     ValueBound upper = bound;
    723     if (!found) {
    724       // No constant or array.length+c format bound found.
    725       // For i<j, we can still use j's upper bound as i's upper bound. Same for lower.
    726       ValueRange* right_range = LookupValueRange(right, block);
    727       if (right_range != nullptr) {
    728         if (right_range->IsMonotonicValueRange()) {
    729           if (left_range != nullptr && left_range->IsMonotonicValueRange()) {
    730             HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond,
    731                                                    left_range->AsMonotonicValueRange(),
    732                                                    right_range->AsMonotonicValueRange());
    733             return;
    734           }
    735         }
    736         lower = right_range->GetLower();
    737         upper = right_range->GetUpper();
    738       } else {
    739         lower = ValueBound::Min();
    740         upper = ValueBound::Max();
    741       }
    742     }
    743 
    744     bool overflow, underflow;
    745     if (cond == kCondLT || cond == kCondLE) {
    746       if (!upper.Equals(ValueBound::Max())) {
    747         int32_t compensation = (cond == kCondLT) ? -1 : 0;  // upper bound is inclusive
    748         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
    749         if (overflow || underflow) {
    750           return;
    751         }
    752         ValueRange* new_range = new (&allocator_) ValueRange(
    753             &allocator_, ValueBound::Min(), new_upper);
    754         ApplyRangeFromComparison(left, block, true_successor, new_range);
    755       }
    756 
    757       // array.length as a lower bound isn't considered useful.
    758       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
    759         int32_t compensation = (cond == kCondLE) ? 1 : 0;  // lower bound is inclusive
    760         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
    761         if (overflow || underflow) {
    762           return;
    763         }
    764         ValueRange* new_range = new (&allocator_) ValueRange(
    765             &allocator_, new_lower, ValueBound::Max());
    766         ApplyRangeFromComparison(left, block, false_successor, new_range);
    767       }
    768     } else if (cond == kCondGT || cond == kCondGE) {
    769       // array.length as a lower bound isn't considered useful.
    770       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
    771         int32_t compensation = (cond == kCondGT) ? 1 : 0;  // lower bound is inclusive
    772         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
    773         if (overflow || underflow) {
    774           return;
    775         }
    776         ValueRange* new_range = new (&allocator_) ValueRange(
    777             &allocator_, new_lower, ValueBound::Max());
    778         ApplyRangeFromComparison(left, block, true_successor, new_range);
    779       }
    780 
    781       if (!upper.Equals(ValueBound::Max())) {
    782         int32_t compensation = (cond == kCondGE) ? -1 : 0;  // upper bound is inclusive
    783         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
    784         if (overflow || underflow) {
    785           return;
    786         }
    787         ValueRange* new_range = new (&allocator_) ValueRange(
    788             &allocator_, ValueBound::Min(), new_upper);
    789         ApplyRangeFromComparison(left, block, false_successor, new_range);
    790       }
    791     } else if (cond == kCondNE || cond == kCondEQ) {
    792       if (left->IsArrayLength()) {
    793         if (lower.IsConstant() && upper.IsConstant()) {
    794           // Special case:
    795           //   length == [c,d] yields [c, d] along true
    796           //   length != [c,d] yields [c, d] along false
    797           if (!lower.Equals(ValueBound::Min()) || !upper.Equals(ValueBound::Max())) {
    798             ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper);
    799             ApplyRangeFromComparison(
    800                 left, block, cond == kCondEQ ? true_successor : false_successor, new_range);
    801           }
    802           // In addition:
    803           //   length == 0 yields [1, max] along false
    804           //   length != 0 yields [1, max] along true
    805           if (lower.GetConstant() == 0 && upper.GetConstant() == 0) {
    806             ValueRange* new_range = new (&allocator_) ValueRange(
    807                 &allocator_, ValueBound(nullptr, 1), ValueBound::Max());
    808             ApplyRangeFromComparison(
    809                 left, block, cond == kCondEQ ? false_successor : true_successor, new_range);
    810           }
    811         }
    812       } else if (lower.IsRelatedToArrayLength() && lower.Equals(upper)) {
    813         // Special aliasing case, with x not array length itself:
    814         //   x == [length,length] yields x == length along true
    815         //   x != [length,length] yields x == length along false
    816         ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper);
    817         ApplyRangeFromComparison(
    818             left, block, cond == kCondEQ ? true_successor : false_successor, new_range);
    819       }
    820     }
    821   }
    822 
    823   void VisitBoundsCheck(HBoundsCheck* bounds_check) OVERRIDE {
    824     HBasicBlock* block = bounds_check->GetBlock();
    825     HInstruction* index = bounds_check->InputAt(0);
    826     HInstruction* array_length = bounds_check->InputAt(1);
    827     DCHECK(array_length->IsIntConstant() ||
    828            array_length->IsArrayLength() ||
    829            array_length->IsPhi());
    830     bool try_dynamic_bce = true;
    831     // Analyze index range.
    832     if (!index->IsIntConstant()) {
    833       // Non-constant index.
    834       ValueBound lower = ValueBound(nullptr, 0);        // constant 0
    835       ValueBound upper = ValueBound(array_length, -1);  // array_length - 1
    836       ValueRange array_range(&allocator_, lower, upper);
    837       // Try index range obtained by dominator-based analysis.
    838       ValueRange* index_range = LookupValueRange(index, block);
    839       if (index_range != nullptr) {
    840         if (index_range->FitsIn(&array_range)) {
    841           ReplaceInstruction(bounds_check, index);
    842           return;
    843         } else if (index_range->IsConstantValueRange()) {
    844           // If the non-constant index turns out to have a constant range,
    845           // make one more attempt to get a constant in the array range.
    846           ValueRange* existing_range = LookupValueRange(array_length, block);
    847           if (existing_range != nullptr &&
    848               existing_range->IsConstantValueRange()) {
    849             ValueRange constant_array_range(&allocator_, lower, existing_range->GetLower());
    850             if (index_range->FitsIn(&constant_array_range)) {
    851               ReplaceInstruction(bounds_check, index);
    852               return;
    853             }
    854           }
    855         }
    856       }
    857       // Try index range obtained by induction variable analysis.
    858       // Disables dynamic bce if OOB is certain.
    859       if (InductionRangeFitsIn(&array_range, bounds_check, &try_dynamic_bce)) {
    860         ReplaceInstruction(bounds_check, index);
    861         return;
    862       }
    863     } else {
    864       // Constant index.
    865       int32_t constant = index->AsIntConstant()->GetValue();
    866       if (constant < 0) {
    867         // Will always throw exception.
    868         return;
    869       } else if (array_length->IsIntConstant()) {
    870         if (constant < array_length->AsIntConstant()->GetValue()) {
    871           ReplaceInstruction(bounds_check, index);
    872         }
    873         return;
    874       }
    875       // Analyze array length range.
    876       DCHECK(array_length->IsArrayLength());
    877       ValueRange* existing_range = LookupValueRange(array_length, block);
    878       if (existing_range != nullptr) {
    879         ValueBound lower = existing_range->GetLower();
    880         DCHECK(lower.IsConstant());
    881         if (constant < lower.GetConstant()) {
    882           ReplaceInstruction(bounds_check, index);
    883           return;
    884         } else {
    885           // Existing range isn't strong enough to eliminate the bounds check.
    886           // Fall through to update the array_length range with info from this
    887           // bounds check.
    888         }
    889       }
    890       // Once we have an array access like 'array[5] = 1', we record array.length >= 6.
    891       // We currently don't do it for non-constant index since a valid array[i] can't prove
    892       // a valid array[i-1] yet due to the lower bound side.
    893       if (constant == std::numeric_limits<int32_t>::max()) {
    894         // Max() as an index will definitely throw AIOOBE.
    895         return;
    896       } else {
    897         ValueBound lower = ValueBound(nullptr, constant + 1);
    898         ValueBound upper = ValueBound::Max();
    899         ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper);
    900         AssignRange(block, array_length, range);
    901       }
    902     }
    903 
    904     // If static analysis fails, and OOB is not certain, try dynamic elimination.
    905     if (try_dynamic_bce) {
    906       // Try loop-based dynamic elimination.
    907       HLoopInformation* loop = bounds_check->GetBlock()->GetLoopInformation();
    908       bool needs_finite_test = false;
    909       bool needs_taken_test = false;
    910       if (DynamicBCESeemsProfitable(loop, bounds_check->GetBlock()) &&
    911           induction_range_.CanGenerateRange(
    912               bounds_check, index, &needs_finite_test, &needs_taken_test) &&
    913           CanHandleInfiniteLoop(loop, index, needs_finite_test) &&
    914           // Do this test last, since it may generate code.
    915           CanHandleLength(loop, array_length, needs_taken_test)) {
    916         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
    917         TransformLoopForDynamicBCE(loop, bounds_check);
    918         return;
    919       }
    920       // Otherwise, prepare dominator-based dynamic elimination.
    921       if (first_index_bounds_check_map_.find(array_length->GetId()) ==
    922           first_index_bounds_check_map_.end()) {
    923         // Remember the first bounds check against each array_length. That bounds check
    924         // instruction has an associated HEnvironment where we may add an HDeoptimize
    925         // to eliminate subsequent bounds checks against the same array_length.
    926         first_index_bounds_check_map_.Put(array_length->GetId(), bounds_check);
    927       }
    928     }
    929   }
    930 
    931   static bool HasSameInputAtBackEdges(HPhi* phi) {
    932     DCHECK(phi->IsLoopHeaderPhi());
    933     HConstInputsRef inputs = phi->GetInputs();
    934     // Start with input 1. Input 0 is from the incoming block.
    935     const HInstruction* input1 = inputs[1];
    936     DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
    937         *phi->GetBlock()->GetPredecessors()[1]));
    938     for (size_t i = 2; i < inputs.size(); ++i) {
    939       DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
    940           *phi->GetBlock()->GetPredecessors()[i]));
    941       if (input1 != inputs[i]) {
    942         return false;
    943       }
    944     }
    945     return true;
    946   }
    947 
    948   void VisitPhi(HPhi* phi) OVERRIDE {
    949     if (phi->IsLoopHeaderPhi()
    950         && (phi->GetType() == DataType::Type::kInt32)
    951         && HasSameInputAtBackEdges(phi)) {
    952       HInstruction* instruction = phi->InputAt(1);
    953       HInstruction *left;
    954       int32_t increment;
    955       if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) {
    956         if (left == phi) {
    957           HInstruction* initial_value = phi->InputAt(0);
    958           ValueRange* range = nullptr;
    959           if (increment == 0) {
    960             // Add constant 0. It's really a fixed value.
    961             range = new (&allocator_) ValueRange(
    962                 &allocator_,
    963                 ValueBound(initial_value, 0),
    964                 ValueBound(initial_value, 0));
    965           } else {
    966             // Monotonically increasing/decreasing.
    967             bool found;
    968             ValueBound bound = ValueBound::DetectValueBoundFromValue(
    969                 initial_value, &found);
    970             if (!found) {
    971               // No constant or array.length+c bound found.
    972               // For i=j, we can still use j's upper bound as i's upper bound.
    973               // Same for lower.
    974               ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock());
    975               if (initial_range != nullptr) {
    976                 bound = increment > 0 ? initial_range->GetLower() :
    977                                         initial_range->GetUpper();
    978               } else {
    979                 bound = increment > 0 ? ValueBound::Min() : ValueBound::Max();
    980               }
    981             }
    982             range = new (&allocator_) MonotonicValueRange(
    983                 &allocator_,
    984                 phi,
    985                 initial_value,
    986                 increment,
    987                 bound);
    988           }
    989           AssignRange(phi->GetBlock(), phi, range);
    990         }
    991       }
    992     }
    993   }
    994 
    995   void VisitIf(HIf* instruction) OVERRIDE {
    996     if (instruction->InputAt(0)->IsCondition()) {
    997       HCondition* cond = instruction->InputAt(0)->AsCondition();
    998       HandleIf(instruction, cond->GetLeft(), cond->GetRight(), cond->GetCondition());
    999     }
   1000   }
   1001 
   1002   void VisitAdd(HAdd* add) OVERRIDE {
   1003     HInstruction* right = add->GetRight();
   1004     if (right->IsIntConstant()) {
   1005       ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock());
   1006       if (left_range == nullptr) {
   1007         return;
   1008       }
   1009       ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue());
   1010       if (range != nullptr) {
   1011         AssignRange(add->GetBlock(), add, range);
   1012       }
   1013     }
   1014   }
   1015 
   1016   void VisitSub(HSub* sub) OVERRIDE {
   1017     HInstruction* left = sub->GetLeft();
   1018     HInstruction* right = sub->GetRight();
   1019     if (right->IsIntConstant()) {
   1020       ValueRange* left_range = LookupValueRange(left, sub->GetBlock());
   1021       if (left_range == nullptr) {
   1022         return;
   1023       }
   1024       ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue());
   1025       if (range != nullptr) {
   1026         AssignRange(sub->GetBlock(), sub, range);
   1027         return;
   1028       }
   1029     }
   1030 
   1031     // Here we are interested in the typical triangular case of nested loops,
   1032     // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i
   1033     // is the index for outer loop. In this case, we know j is bounded by array.length-1.
   1034 
   1035     // Try to handle (array.length - i) or (array.length + c - i) format.
   1036     HInstruction* left_of_left;  // left input of left.
   1037     int32_t right_const = 0;
   1038     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) {
   1039       left = left_of_left;
   1040     }
   1041     // The value of left input of the sub equals (left + right_const).
   1042 
   1043     if (left->IsArrayLength()) {
   1044       HInstruction* array_length = left->AsArrayLength();
   1045       ValueRange* right_range = LookupValueRange(right, sub->GetBlock());
   1046       if (right_range != nullptr) {
   1047         ValueBound lower = right_range->GetLower();
   1048         ValueBound upper = right_range->GetUpper();
   1049         if (lower.IsConstant() && upper.IsRelatedToArrayLength()) {
   1050           HInstruction* upper_inst = upper.GetInstruction();
   1051           // Make sure it's the same array.
   1052           if (ValueBound::Equal(array_length, upper_inst)) {
   1053             int32_t c0 = right_const;
   1054             int32_t c1 = lower.GetConstant();
   1055             int32_t c2 = upper.GetConstant();
   1056             // (array.length + c0 - v) where v is in [c1, array.length + c2]
   1057             // gets [c0 - c2, array.length + c0 - c1] as its value range.
   1058             if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) &&
   1059                 !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) {
   1060               if ((c0 - c1) <= 0) {
   1061                 // array.length + (c0 - c1) won't overflow/underflow.
   1062                 ValueRange* range = new (&allocator_) ValueRange(
   1063                     &allocator_,
   1064                     ValueBound(nullptr, right_const - upper.GetConstant()),
   1065                     ValueBound(array_length, right_const - lower.GetConstant()));
   1066                 AssignRange(sub->GetBlock(), sub, range);
   1067               }
   1068             }
   1069           }
   1070         }
   1071       }
   1072     }
   1073   }
   1074 
   1075   void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) {
   1076     DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr());
   1077     HInstruction* right = instruction->GetRight();
   1078     int32_t right_const;
   1079     if (right->IsIntConstant()) {
   1080       right_const = right->AsIntConstant()->GetValue();
   1081       // Detect division by two or more.
   1082       if ((instruction->IsDiv() && right_const <= 1) ||
   1083           (instruction->IsShr() && right_const < 1) ||
   1084           (instruction->IsUShr() && right_const < 1)) {
   1085         return;
   1086       }
   1087     } else {
   1088       return;
   1089     }
   1090 
   1091     // Try to handle array.length/2 or (array.length-1)/2 format.
   1092     HInstruction* left = instruction->GetLeft();
   1093     HInstruction* left_of_left;  // left input of left.
   1094     int32_t c = 0;
   1095     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) {
   1096       left = left_of_left;
   1097     }
   1098     // The value of left input of instruction equals (left + c).
   1099 
   1100     // (array_length + 1) or smaller divided by two or more
   1101     // always generate a value in [Min(), array_length].
   1102     // This is true even if array_length is Max().
   1103     if (left->IsArrayLength() && c <= 1) {
   1104       if (instruction->IsUShr() && c < 0) {
   1105         // Make sure for unsigned shift, left side is not negative.
   1106         // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger
   1107         // than array_length.
   1108         return;
   1109       }
   1110       ValueRange* range = new (&allocator_) ValueRange(
   1111           &allocator_,
   1112           ValueBound(nullptr, std::numeric_limits<int32_t>::min()),
   1113           ValueBound(left, 0));
   1114       AssignRange(instruction->GetBlock(), instruction, range);
   1115     }
   1116   }
   1117 
   1118   void VisitDiv(HDiv* div) OVERRIDE {
   1119     FindAndHandlePartialArrayLength(div);
   1120   }
   1121 
   1122   void VisitShr(HShr* shr) OVERRIDE {
   1123     FindAndHandlePartialArrayLength(shr);
   1124   }
   1125 
   1126   void VisitUShr(HUShr* ushr) OVERRIDE {
   1127     FindAndHandlePartialArrayLength(ushr);
   1128   }
   1129 
   1130   void VisitAnd(HAnd* instruction) OVERRIDE {
   1131     if (instruction->GetRight()->IsIntConstant()) {
   1132       int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue();
   1133       if (constant > 0) {
   1134         // constant serves as a mask so any number masked with it
   1135         // gets a [0, constant] value range.
   1136         ValueRange* range = new (&allocator_) ValueRange(
   1137             &allocator_,
   1138             ValueBound(nullptr, 0),
   1139             ValueBound(nullptr, constant));
   1140         AssignRange(instruction->GetBlock(), instruction, range);
   1141       }
   1142     }
   1143   }
   1144 
   1145   void VisitRem(HRem* instruction) OVERRIDE {
   1146     HInstruction* left = instruction->GetLeft();
   1147     HInstruction* right = instruction->GetRight();
   1148 
   1149     // Handle 'i % CONST' format expression in array index, e.g:
   1150     //   array[i % 20];
   1151     if (right->IsIntConstant()) {
   1152       int32_t right_const = std::abs(right->AsIntConstant()->GetValue());
   1153       if (right_const == 0) {
   1154         return;
   1155       }
   1156       // The sign of divisor CONST doesn't affect the sign final value range.
   1157       // For example:
   1158       // if (i > 0) {
   1159       //   array[i % 10];  // index value range [0, 9]
   1160       //   array[i % -10]; // index value range [0, 9]
   1161       // }
   1162       ValueRange* right_range = new (&allocator_) ValueRange(
   1163           &allocator_,
   1164           ValueBound(nullptr, 1 - right_const),
   1165           ValueBound(nullptr, right_const - 1));
   1166 
   1167       ValueRange* left_range = LookupValueRange(left, instruction->GetBlock());
   1168       if (left_range != nullptr) {
   1169         right_range = right_range->Narrow(left_range);
   1170       }
   1171       AssignRange(instruction->GetBlock(), instruction, right_range);
   1172       return;
   1173     }
   1174 
   1175     // Handle following pattern:
   1176     // i0 NullCheck
   1177     // i1 ArrayLength[i0]
   1178     // i2 DivByZeroCheck [i1]  <-- right
   1179     // i3 Rem [i5, i2]         <-- we are here.
   1180     // i4 BoundsCheck [i3,i1]
   1181     if (right->IsDivZeroCheck()) {
   1182       // if array_length can pass div-by-zero check,
   1183       // array_length must be > 0.
   1184       right = right->AsDivZeroCheck()->InputAt(0);
   1185     }
   1186 
   1187     // Handle 'i % array.length' format expression in array index, e.g:
   1188     //   array[(i+7) % array.length];
   1189     if (right->IsArrayLength()) {
   1190       ValueBound lower = ValueBound::Min();  // ideally, lower should be '1-array_length'.
   1191       ValueBound upper = ValueBound(right, -1);  // array_length - 1
   1192       ValueRange* right_range = new (&allocator_) ValueRange(
   1193           &allocator_,
   1194           lower,
   1195           upper);
   1196       ValueRange* left_range = LookupValueRange(left, instruction->GetBlock());
   1197       if (left_range != nullptr) {
   1198         right_range = right_range->Narrow(left_range);
   1199       }
   1200       AssignRange(instruction->GetBlock(), instruction, right_range);
   1201       return;
   1202     }
   1203   }
   1204 
   1205   void VisitNewArray(HNewArray* new_array) OVERRIDE {
   1206     HInstruction* len = new_array->GetLength();
   1207     if (!len->IsIntConstant()) {
   1208       HInstruction *left;
   1209       int32_t right_const;
   1210       if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) {
   1211         // (left + right_const) is used as size to new the array.
   1212         // We record "-right_const <= left <= new_array - right_const";
   1213         ValueBound lower = ValueBound(nullptr, -right_const);
   1214         // We use new_array for the bound instead of new_array.length,
   1215         // which isn't available as an instruction yet. new_array will
   1216         // be treated the same as new_array.length when it's used in a ValueBound.
   1217         ValueBound upper = ValueBound(new_array, -right_const);
   1218         ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper);
   1219         ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock());
   1220         if (existing_range != nullptr) {
   1221           range = existing_range->Narrow(range);
   1222         }
   1223         AssignRange(new_array->GetBlock(), left, range);
   1224       }
   1225     }
   1226   }
   1227 
   1228   /**
   1229     * After null/bounds checks are eliminated, some invariant array references
   1230     * may be exposed underneath which can be hoisted out of the loop to the
   1231     * preheader or, in combination with dynamic bce, the deoptimization block.
   1232     *
   1233     * for (int i = 0; i < n; i++) {
   1234     *                                <-------+
   1235     *   for (int j = 0; j < n; j++)          |
   1236     *     a[i][j] = 0;               --a[i]--+
   1237     * }
   1238     *
   1239     * Note: this optimization is no longer applied after dominator-based dynamic deoptimization
   1240     * has occurred (see AddCompareWithDeoptimization()), since in those cases it would be
   1241     * unsafe to hoist array references across their deoptimization instruction inside a loop.
   1242     */
   1243   void VisitArrayGet(HArrayGet* array_get) OVERRIDE {
   1244     if (!has_dom_based_dynamic_bce_ && array_get->IsInLoop()) {
   1245       HLoopInformation* loop = array_get->GetBlock()->GetLoopInformation();
   1246       if (loop->IsDefinedOutOfTheLoop(array_get->InputAt(0)) &&
   1247           loop->IsDefinedOutOfTheLoop(array_get->InputAt(1))) {
   1248         SideEffects loop_effects = side_effects_.GetLoopEffects(loop->GetHeader());
   1249         if (!array_get->GetSideEffects().MayDependOn(loop_effects)) {
   1250           // We can hoist ArrayGet only if its execution is guaranteed on every iteration.
   1251           // In other words only if array_get_bb dominates all back branches.
   1252           if (loop->DominatesAllBackEdges(array_get->GetBlock())) {
   1253             HoistToPreHeaderOrDeoptBlock(loop, array_get);
   1254           }
   1255         }
   1256       }
   1257     }
   1258   }
   1259 
   1260   /** Performs dominator-based dynamic elimination on suitable set of bounds checks. */
   1261   void AddCompareWithDeoptimization(HBasicBlock* block,
   1262                                     HInstruction* array_length,
   1263                                     HInstruction* base,
   1264                                     int32_t min_c, int32_t max_c) {
   1265     HBoundsCheck* bounds_check =
   1266         first_index_bounds_check_map_.Get(array_length->GetId())->AsBoundsCheck();
   1267     // Construct deoptimization on single or double bounds on range [base-min_c,base+max_c],
   1268     // for example either for a[0]..a[3] just 3 or for a[base-1]..a[base+3] both base-1
   1269     // and base+3, since we made the assumption any in between value may occur too.
   1270     // In code, using unsigned comparisons:
   1271     // (1) constants only
   1272     //       if (max_c >= a.length) deoptimize;
   1273     // (2) general case
   1274     //       if (base-min_c >  base+max_c) deoptimize;
   1275     //       if (base+max_c >= a.length  ) deoptimize;
   1276     static_assert(kMaxLengthForAddingDeoptimize < std::numeric_limits<int32_t>::max(),
   1277                   "Incorrect max length may be subject to arithmetic wrap-around");
   1278     HInstruction* upper = GetGraph()->GetIntConstant(max_c);
   1279     if (base == nullptr) {
   1280       DCHECK_GE(min_c, 0);
   1281     } else {
   1282       HInstruction* lower = new (GetGraph()->GetAllocator())
   1283           HAdd(DataType::Type::kInt32, base, GetGraph()->GetIntConstant(min_c));
   1284       upper = new (GetGraph()->GetAllocator()) HAdd(DataType::Type::kInt32, base, upper);
   1285       block->InsertInstructionBefore(lower, bounds_check);
   1286       block->InsertInstructionBefore(upper, bounds_check);
   1287       InsertDeoptInBlock(bounds_check, new (GetGraph()->GetAllocator()) HAbove(lower, upper));
   1288     }
   1289     InsertDeoptInBlock(
   1290         bounds_check, new (GetGraph()->GetAllocator()) HAboveOrEqual(upper, array_length));
   1291     // Flag that this kind of deoptimization has occurred.
   1292     has_dom_based_dynamic_bce_ = true;
   1293   }
   1294 
   1295   /** Attempts dominator-based dynamic elimination on remaining candidates. */
   1296   void AddComparesWithDeoptimization(HBasicBlock* block) {
   1297     for (const auto& entry : first_index_bounds_check_map_) {
   1298       HBoundsCheck* bounds_check = entry.second;
   1299       HInstruction* index = bounds_check->InputAt(0);
   1300       HInstruction* array_length = bounds_check->InputAt(1);
   1301       if (!array_length->IsArrayLength()) {
   1302         continue;  // disregard phis and constants
   1303       }
   1304       // Collect all bounds checks that are still there and that are related as "a[base + constant]"
   1305       // for a base instruction (possibly absent) and various constants. Note that no attempt
   1306       // is made to partition the set into matching subsets (viz. a[0], a[1] and a[base+1] and
   1307       // a[base+2] are considered as one set).
   1308       // TODO: would such a partitioning be worthwhile?
   1309       ValueBound value = ValueBound::AsValueBound(index);
   1310       HInstruction* base = value.GetInstruction();
   1311       int32_t min_c = base == nullptr ? 0 : value.GetConstant();
   1312       int32_t max_c = value.GetConstant();
   1313       ScopedArenaVector<HBoundsCheck*> candidates(
   1314           allocator_.Adapter(kArenaAllocBoundsCheckElimination));
   1315       ScopedArenaVector<HBoundsCheck*> standby(
   1316           allocator_.Adapter(kArenaAllocBoundsCheckElimination));
   1317       for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) {
   1318         // Another bounds check in same or dominated block?
   1319         HInstruction* user = use.GetUser();
   1320         HBasicBlock* other_block = user->GetBlock();
   1321         if (user->IsBoundsCheck() && block->Dominates(other_block)) {
   1322           HBoundsCheck* other_bounds_check = user->AsBoundsCheck();
   1323           HInstruction* other_index = other_bounds_check->InputAt(0);
   1324           HInstruction* other_array_length = other_bounds_check->InputAt(1);
   1325           ValueBound other_value = ValueBound::AsValueBound(other_index);
   1326           if (array_length == other_array_length && base == other_value.GetInstruction()) {
   1327             // Reject certain OOB if BoundsCheck(l, l) occurs on considered subset.
   1328             if (array_length == other_index) {
   1329               candidates.clear();
   1330               standby.clear();
   1331               break;
   1332             }
   1333             // Since a subsequent dominated block could be under a conditional, only accept
   1334             // the other bounds check if it is in same block or both blocks dominate the exit.
   1335             // TODO: we could improve this by testing proper post-dominance, or even if this
   1336             //       constant is seen along *all* conditional paths that follow.
   1337             HBasicBlock* exit = GetGraph()->GetExitBlock();
   1338             if (block == user->GetBlock() ||
   1339                 (block->Dominates(exit) && other_block->Dominates(exit))) {
   1340               int32_t other_c = other_value.GetConstant();
   1341               min_c = std::min(min_c, other_c);
   1342               max_c = std::max(max_c, other_c);
   1343               candidates.push_back(other_bounds_check);
   1344             } else {
   1345               // Add this candidate later only if it falls into the range.
   1346               standby.push_back(other_bounds_check);
   1347             }
   1348           }
   1349         }
   1350       }
   1351       // Add standby candidates that fall in selected range.
   1352       for (HBoundsCheck* other_bounds_check : standby) {
   1353         HInstruction* other_index = other_bounds_check->InputAt(0);
   1354         int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
   1355         if (min_c <= other_c && other_c <= max_c) {
   1356           candidates.push_back(other_bounds_check);
   1357         }
   1358       }
   1359       // Perform dominator-based deoptimization if it seems profitable, where we eliminate
   1360       // bounds checks and replace these with deopt checks that guard against any possible
   1361       // OOB. Note that we reject cases where the distance min_c:max_c range gets close to
   1362       // the maximum possible array length, since those cases are likely to always deopt
   1363       // (such situations do not necessarily go OOB, though, since the array could be really
   1364       // large, or the programmer could rely on arithmetic wrap-around from max to min).
   1365       size_t threshold = kThresholdForAddingDeoptimize + (base == nullptr ? 0 : 1);  // extra test?
   1366       uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c);
   1367       if (candidates.size() >= threshold &&
   1368           (base != nullptr || min_c >= 0) &&  // reject certain OOB
   1369            distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt
   1370         AddCompareWithDeoptimization(block, array_length, base, min_c, max_c);
   1371         for (HBoundsCheck* other_bounds_check : candidates) {
   1372           // Only replace if still in the graph. This avoids visiting the same
   1373           // bounds check twice if it occurred multiple times in the use list.
   1374           if (other_bounds_check->IsInBlock()) {
   1375             ReplaceInstruction(other_bounds_check, other_bounds_check->InputAt(0));
   1376           }
   1377         }
   1378       }
   1379     }
   1380   }
   1381 
   1382   /**
   1383    * Returns true if static range analysis based on induction variables can determine the bounds
   1384    * check on the given array range is always satisfied with the computed index range. The output
   1385    * parameter try_dynamic_bce is set to false if OOB is certain.
   1386    */
   1387   bool InductionRangeFitsIn(ValueRange* array_range,
   1388                             HBoundsCheck* context,
   1389                             bool* try_dynamic_bce) {
   1390     InductionVarRange::Value v1;
   1391     InductionVarRange::Value v2;
   1392     bool needs_finite_test = false;
   1393     HInstruction* index = context->InputAt(0);
   1394     HInstruction* hint = HuntForDeclaration(context->InputAt(1));
   1395     if (induction_range_.GetInductionRange(context, index, hint, &v1, &v2, &needs_finite_test)) {
   1396       if (v1.is_known && (v1.a_constant == 0 || v1.a_constant == 1) &&
   1397           v2.is_known && (v2.a_constant == 0 || v2.a_constant == 1)) {
   1398         DCHECK(v1.a_constant == 1 || v1.instruction == nullptr);
   1399         DCHECK(v2.a_constant == 1 || v2.instruction == nullptr);
   1400         ValueRange index_range(&allocator_,
   1401                                ValueBound(v1.instruction, v1.b_constant),
   1402                                ValueBound(v2.instruction, v2.b_constant));
   1403         // If analysis reveals a certain OOB, disable dynamic BCE. Otherwise,
   1404         // use analysis for static bce only if loop is finite.
   1405         if (index_range.GetLower().LessThan(array_range->GetLower()) ||
   1406             index_range.GetUpper().GreaterThan(array_range->GetUpper())) {
   1407           *try_dynamic_bce = false;
   1408         } else if (!needs_finite_test && index_range.FitsIn(array_range)) {
   1409           return true;
   1410         }
   1411       }
   1412     }
   1413     return false;
   1414   }
   1415 
   1416   /**
   1417    * Performs loop-based dynamic elimination on a bounds check. In order to minimize the
   1418    * number of eventually generated tests, related bounds checks with tests that can be
   1419    * combined with tests for the given bounds check are collected first.
   1420    */
   1421   void TransformLoopForDynamicBCE(HLoopInformation* loop, HBoundsCheck* bounds_check) {
   1422     HInstruction* index = bounds_check->InputAt(0);
   1423     HInstruction* array_length = bounds_check->InputAt(1);
   1424     DCHECK(loop->IsDefinedOutOfTheLoop(array_length));  // pre-checked
   1425     DCHECK(loop->DominatesAllBackEdges(bounds_check->GetBlock()));
   1426     // Collect all bounds checks in the same loop that are related as "a[base + constant]"
   1427     // for a base instruction (possibly absent) and various constants.
   1428     ValueBound value = ValueBound::AsValueBound(index);
   1429     HInstruction* base = value.GetInstruction();
   1430     int32_t min_c = base == nullptr ? 0 : value.GetConstant();
   1431     int32_t max_c = value.GetConstant();
   1432     ScopedArenaVector<HBoundsCheck*> candidates(
   1433         allocator_.Adapter(kArenaAllocBoundsCheckElimination));
   1434     ScopedArenaVector<HBoundsCheck*> standby(
   1435         allocator_.Adapter(kArenaAllocBoundsCheckElimination));
   1436     for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) {
   1437       HInstruction* user = use.GetUser();
   1438       if (user->IsBoundsCheck() && loop == user->GetBlock()->GetLoopInformation()) {
   1439         HBoundsCheck* other_bounds_check = user->AsBoundsCheck();
   1440         HInstruction* other_index = other_bounds_check->InputAt(0);
   1441         HInstruction* other_array_length = other_bounds_check->InputAt(1);
   1442         ValueBound other_value = ValueBound::AsValueBound(other_index);
   1443         int32_t other_c = other_value.GetConstant();
   1444         if (array_length == other_array_length && base == other_value.GetInstruction()) {
   1445           // Ensure every candidate could be picked for code generation.
   1446           bool b1 = false, b2 = false;
   1447           if (!induction_range_.CanGenerateRange(other_bounds_check, other_index, &b1, &b2)) {
   1448             continue;
   1449           }
   1450           // Does the current basic block dominate all back edges? If not,
   1451           // add this candidate later only if it falls into the range.
   1452           if (!loop->DominatesAllBackEdges(user->GetBlock())) {
   1453             standby.push_back(other_bounds_check);
   1454             continue;
   1455           }
   1456           min_c = std::min(min_c, other_c);
   1457           max_c = std::max(max_c, other_c);
   1458           candidates.push_back(other_bounds_check);
   1459         }
   1460       }
   1461     }
   1462     // Add standby candidates that fall in selected range.
   1463     for (HBoundsCheck* other_bounds_check : standby) {
   1464       HInstruction* other_index = other_bounds_check->InputAt(0);
   1465       int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
   1466       if (min_c <= other_c && other_c <= max_c) {
   1467         candidates.push_back(other_bounds_check);
   1468       }
   1469     }
   1470     // Perform loop-based deoptimization if it seems profitable, where we eliminate bounds
   1471     // checks and replace these with deopt checks that guard against any possible OOB.
   1472     DCHECK_LT(0u, candidates.size());
   1473     uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c);
   1474     if ((base != nullptr || min_c >= 0) &&  // reject certain OOB
   1475         distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt
   1476       HBasicBlock* block = GetPreHeader(loop, bounds_check);
   1477       HInstruction* min_lower = nullptr;
   1478       HInstruction* min_upper = nullptr;
   1479       HInstruction* max_lower = nullptr;
   1480       HInstruction* max_upper = nullptr;
   1481       // Iterate over all bounds checks.
   1482       for (HBoundsCheck* other_bounds_check : candidates) {
   1483         // Only handle if still in the graph. This avoids visiting the same
   1484         // bounds check twice if it occurred multiple times in the use list.
   1485         if (other_bounds_check->IsInBlock()) {
   1486           HInstruction* other_index = other_bounds_check->InputAt(0);
   1487           int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
   1488           // Generate code for either the maximum or minimum. Range analysis already was queried
   1489           // whether code generation on the original and, thus, related bounds check was possible.
   1490           // It handles either loop invariants (lower is not set) or unit strides.
   1491           if (other_c == max_c) {
   1492             induction_range_.GenerateRange(
   1493                 other_bounds_check, other_index, GetGraph(), block, &max_lower, &max_upper);
   1494           } else if (other_c == min_c && base != nullptr) {
   1495             induction_range_.GenerateRange(
   1496                 other_bounds_check, other_index, GetGraph(), block, &min_lower, &min_upper);
   1497           }
   1498           ReplaceInstruction(other_bounds_check, other_index);
   1499         }
   1500       }
   1501       // In code, using unsigned comparisons:
   1502       // (1) constants only
   1503       //       if (max_upper >= a.length ) deoptimize;
   1504       // (2) two symbolic invariants
   1505       //       if (min_upper >  max_upper) deoptimize;   unless min_c == max_c
   1506       //       if (max_upper >= a.length ) deoptimize;
   1507       // (3) general case, unit strides (where lower would exceed upper for arithmetic wrap-around)
   1508       //       if (min_lower >  max_lower) deoptimize;   unless min_c == max_c
   1509       //       if (max_lower >  max_upper) deoptimize;
   1510       //       if (max_upper >= a.length ) deoptimize;
   1511       if (base == nullptr) {
   1512         // Constants only.
   1513         DCHECK_GE(min_c, 0);
   1514         DCHECK(min_lower == nullptr && min_upper == nullptr &&
   1515                max_lower == nullptr && max_upper != nullptr);
   1516       } else if (max_lower == nullptr) {
   1517         // Two symbolic invariants.
   1518         if (min_c != max_c) {
   1519           DCHECK(min_lower == nullptr && min_upper != nullptr &&
   1520                  max_lower == nullptr && max_upper != nullptr);
   1521           InsertDeoptInLoop(
   1522               loop, block, new (GetGraph()->GetAllocator()) HAbove(min_upper, max_upper));
   1523         } else {
   1524           DCHECK(min_lower == nullptr && min_upper == nullptr &&
   1525                  max_lower == nullptr && max_upper != nullptr);
   1526         }
   1527       } else {
   1528         // General case, unit strides.
   1529         if (min_c != max_c) {
   1530           DCHECK(min_lower != nullptr && min_upper != nullptr &&
   1531                  max_lower != nullptr && max_upper != nullptr);
   1532           InsertDeoptInLoop(
   1533               loop, block, new (GetGraph()->GetAllocator()) HAbove(min_lower, max_lower));
   1534         } else {
   1535           DCHECK(min_lower == nullptr && min_upper == nullptr &&
   1536                  max_lower != nullptr && max_upper != nullptr);
   1537         }
   1538         InsertDeoptInLoop(
   1539             loop, block, new (GetGraph()->GetAllocator()) HAbove(max_lower, max_upper));
   1540       }
   1541       InsertDeoptInLoop(
   1542           loop, block, new (GetGraph()->GetAllocator()) HAboveOrEqual(max_upper, array_length));
   1543     } else {
   1544       // TODO: if rejected, avoid doing this again for subsequent instructions in this set?
   1545     }
   1546   }
   1547 
   1548   /**
   1549    * Returns true if heuristics indicate that dynamic bce may be profitable.
   1550    */
   1551   bool DynamicBCESeemsProfitable(HLoopInformation* loop, HBasicBlock* block) {
   1552     if (loop != nullptr) {
   1553       // The loop preheader of an irreducible loop does not dominate all the blocks in
   1554       // the loop. We would need to find the common dominator of all blocks in the loop.
   1555       if (loop->IsIrreducible()) {
   1556         return false;
   1557       }
   1558       // We should never deoptimize from an osr method, otherwise we might wrongly optimize
   1559       // code dominated by the deoptimization.
   1560       if (GetGraph()->IsCompilingOsr()) {
   1561         return false;
   1562       }
   1563       // A try boundary preheader is hard to handle.
   1564       // TODO: remove this restriction.
   1565       if (loop->GetPreHeader()->GetLastInstruction()->IsTryBoundary()) {
   1566         return false;
   1567       }
   1568       // Does loop have early-exits? If so, the full range may not be covered by the loop
   1569       // at runtime and testing the range may apply deoptimization unnecessarily.
   1570       if (IsEarlyExitLoop(loop)) {
   1571         return false;
   1572       }
   1573       // Does the current basic block dominate all back edges? If not,
   1574       // don't apply dynamic bce to something that may not be executed.
   1575       return loop->DominatesAllBackEdges(block);
   1576     }
   1577     return false;
   1578   }
   1579 
   1580   /**
   1581    * Returns true if the loop has early exits, which implies it may not cover
   1582    * the full range computed by range analysis based on induction variables.
   1583    */
   1584   bool IsEarlyExitLoop(HLoopInformation* loop) {
   1585     const uint32_t loop_id = loop->GetHeader()->GetBlockId();
   1586     // If loop has been analyzed earlier for early-exit, don't repeat the analysis.
   1587     auto it = early_exit_loop_.find(loop_id);
   1588     if (it != early_exit_loop_.end()) {
   1589       return it->second;
   1590     }
   1591     // First time early-exit analysis for this loop. Since analysis requires scanning
   1592     // the full loop-body, results of the analysis is stored for subsequent queries.
   1593     HBlocksInLoopReversePostOrderIterator it_loop(*loop);
   1594     for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
   1595       for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
   1596         if (!loop->Contains(*successor)) {
   1597           early_exit_loop_.Put(loop_id, true);
   1598           return true;
   1599         }
   1600       }
   1601     }
   1602     early_exit_loop_.Put(loop_id, false);
   1603     return false;
   1604   }
   1605 
   1606   /**
   1607    * Returns true if the array length is already loop invariant, or can be made so
   1608    * by handling the null check under the hood of the array length operation.
   1609    */
   1610   bool CanHandleLength(HLoopInformation* loop, HInstruction* length, bool needs_taken_test) {
   1611     if (loop->IsDefinedOutOfTheLoop(length)) {
   1612       return true;
   1613     } else if (length->IsArrayLength() && length->GetBlock()->GetLoopInformation() == loop) {
   1614       if (CanHandleNullCheck(loop, length->InputAt(0), needs_taken_test)) {
   1615         HoistToPreHeaderOrDeoptBlock(loop, length);
   1616         return true;
   1617       }
   1618     }
   1619     return false;
   1620   }
   1621 
   1622   /**
   1623    * Returns true if the null check is already loop invariant, or can be made so
   1624    * by generating a deoptimization test.
   1625    */
   1626   bool CanHandleNullCheck(HLoopInformation* loop, HInstruction* check, bool needs_taken_test) {
   1627     if (loop->IsDefinedOutOfTheLoop(check)) {
   1628       return true;
   1629     } else if (check->IsNullCheck() && check->GetBlock()->GetLoopInformation() == loop) {
   1630       HInstruction* array = check->InputAt(0);
   1631       if (loop->IsDefinedOutOfTheLoop(array)) {
   1632         // Generate: if (array == null) deoptimize;
   1633         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
   1634         HBasicBlock* block = GetPreHeader(loop, check);
   1635         HInstruction* cond =
   1636             new (GetGraph()->GetAllocator()) HEqual(array, GetGraph()->GetNullConstant());
   1637         InsertDeoptInLoop(loop, block, cond, /* is_null_check */ true);
   1638         ReplaceInstruction(check, array);
   1639         return true;
   1640       }
   1641     }
   1642     return false;
   1643   }
   1644 
   1645   /**
   1646    * Returns true if compiler can apply dynamic bce to loops that may be infinite
   1647    * (e.g. for (int i = 0; i <= U; i++) with U = MAX_INT), which would invalidate
   1648    * the range analysis evaluation code by "overshooting" the computed range.
   1649    * Since deoptimization would be a bad choice, and there is no other version
   1650    * of the loop to use, dynamic bce in such cases is only allowed if other tests
   1651    * ensure the loop is finite.
   1652    */
   1653   bool CanHandleInfiniteLoop(HLoopInformation* loop, HInstruction* index, bool needs_infinite_test) {
   1654     if (needs_infinite_test) {
   1655       // If we already forced the loop to be finite, allow directly.
   1656       const uint32_t loop_id = loop->GetHeader()->GetBlockId();
   1657       if (finite_loop_.find(loop_id) != finite_loop_.end()) {
   1658         return true;
   1659       }
   1660       // Otherwise, allow dynamic bce if the index (which is necessarily an induction at
   1661       // this point) is the direct loop index (viz. a[i]), since then the runtime tests
   1662       // ensure upper bound cannot cause an infinite loop.
   1663       HInstruction* control = loop->GetHeader()->GetLastInstruction();
   1664       if (control->IsIf()) {
   1665         HInstruction* if_expr = control->AsIf()->InputAt(0);
   1666         if (if_expr->IsCondition()) {
   1667           HCondition* condition = if_expr->AsCondition();
   1668           if (index == condition->InputAt(0) ||
   1669               index == condition->InputAt(1)) {
   1670             finite_loop_.insert(loop_id);
   1671             return true;
   1672           }
   1673         }
   1674       }
   1675       return false;
   1676     }
   1677     return true;
   1678   }
   1679 
   1680   /**
   1681    * Returns appropriate preheader for the loop, depending on whether the
   1682    * instruction appears in the loop header or proper loop-body.
   1683    */
   1684   HBasicBlock* GetPreHeader(HLoopInformation* loop, HInstruction* instruction) {
   1685     // Use preheader unless there is an earlier generated deoptimization block since
   1686     // hoisted expressions may depend on and/or used by the deoptimization tests.
   1687     HBasicBlock* header = loop->GetHeader();
   1688     const uint32_t loop_id = header->GetBlockId();
   1689     auto it = taken_test_loop_.find(loop_id);
   1690     if (it != taken_test_loop_.end()) {
   1691       HBasicBlock* block = it->second;
   1692       // If always taken, keep it that way by returning the original preheader,
   1693       // which can be found by following the predecessor of the true-block twice.
   1694       if (instruction->GetBlock() == header) {
   1695         return block->GetSinglePredecessor()->GetSinglePredecessor();
   1696       }
   1697       return block;
   1698     }
   1699     return loop->GetPreHeader();
   1700   }
   1701 
   1702   /** Inserts a deoptimization test in a loop preheader. */
   1703   void InsertDeoptInLoop(HLoopInformation* loop,
   1704                          HBasicBlock* block,
   1705                          HInstruction* condition,
   1706                          bool is_null_check = false) {
   1707     HInstruction* suspend = loop->GetSuspendCheck();
   1708     block->InsertInstructionBefore(condition, block->GetLastInstruction());
   1709     DeoptimizationKind kind =
   1710         is_null_check ? DeoptimizationKind::kLoopNullBCE : DeoptimizationKind::kLoopBoundsBCE;
   1711     HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize(
   1712         GetGraph()->GetAllocator(), condition, kind, suspend->GetDexPc());
   1713     block->InsertInstructionBefore(deoptimize, block->GetLastInstruction());
   1714     if (suspend->HasEnvironment()) {
   1715       deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment(
   1716           suspend->GetEnvironment(), loop->GetHeader());
   1717     }
   1718   }
   1719 
   1720   /** Inserts a deoptimization test right before a bounds check. */
   1721   void InsertDeoptInBlock(HBoundsCheck* bounds_check, HInstruction* condition) {
   1722     HBasicBlock* block = bounds_check->GetBlock();
   1723     block->InsertInstructionBefore(condition, bounds_check);
   1724     HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize(
   1725         GetGraph()->GetAllocator(),
   1726         condition,
   1727         DeoptimizationKind::kBlockBCE,
   1728         bounds_check->GetDexPc());
   1729     block->InsertInstructionBefore(deoptimize, bounds_check);
   1730     deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment());
   1731   }
   1732 
   1733   /** Hoists instruction out of the loop to preheader or deoptimization block. */
   1734   void HoistToPreHeaderOrDeoptBlock(HLoopInformation* loop, HInstruction* instruction) {
   1735     HBasicBlock* block = GetPreHeader(loop, instruction);
   1736     DCHECK(!instruction->HasEnvironment());
   1737     instruction->MoveBefore(block->GetLastInstruction());
   1738   }
   1739 
   1740   /**
   1741    * Adds a new taken-test structure to a loop if needed and not already done.
   1742    * The taken-test protects range analysis evaluation code to avoid any
   1743    * deoptimization caused by incorrect trip-count evaluation in non-taken loops.
   1744    *
   1745    *          old_preheader
   1746    *               |
   1747    *            if_block          <- taken-test protects deoptimization block
   1748    *            /      \
   1749    *     true_block  false_block  <- deoptimizations/invariants are placed in true_block
   1750    *            \       /
   1751    *          new_preheader       <- may require phi nodes to preserve SSA structure
   1752    *                |
   1753    *             header
   1754    *
   1755    * For example, this loop:
   1756    *
   1757    *   for (int i = lower; i < upper; i++) {
   1758    *     array[i] = 0;
   1759    *   }
   1760    *
   1761    * will be transformed to:
   1762    *
   1763    *   if (lower < upper) {
   1764    *     if (array == null) deoptimize;
   1765    *     array_length = array.length;
   1766    *     if (lower > upper)         deoptimize;  // unsigned
   1767    *     if (upper >= array_length) deoptimize;  // unsigned
   1768    *   } else {
   1769    *     array_length = 0;
   1770    *   }
   1771    *   for (int i = lower; i < upper; i++) {
   1772    *     // Loop without null check and bounds check, and any array.length replaced with array_length.
   1773    *     array[i] = 0;
   1774    *   }
   1775    */
   1776   void TransformLoopForDeoptimizationIfNeeded(HLoopInformation* loop, bool needs_taken_test) {
   1777     // Not needed (can use preheader) or already done (can reuse)?
   1778     const uint32_t loop_id = loop->GetHeader()->GetBlockId();
   1779     if (!needs_taken_test || taken_test_loop_.find(loop_id) != taken_test_loop_.end()) {
   1780       return;
   1781     }
   1782 
   1783     // Generate top test structure.
   1784     HBasicBlock* header = loop->GetHeader();
   1785     GetGraph()->TransformLoopHeaderForBCE(header);
   1786     HBasicBlock* new_preheader = loop->GetPreHeader();
   1787     HBasicBlock* if_block = new_preheader->GetDominator();
   1788     HBasicBlock* true_block = if_block->GetSuccessors()[0];  // True successor.
   1789     HBasicBlock* false_block = if_block->GetSuccessors()[1];  // False successor.
   1790 
   1791     // Goto instructions.
   1792     true_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
   1793     false_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
   1794     new_preheader->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
   1795 
   1796     // Insert the taken-test to see if the loop body is entered. If the
   1797     // loop isn't entered at all, it jumps around the deoptimization block.
   1798     if_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());  // placeholder
   1799     HInstruction* condition = induction_range_.GenerateTakenTest(
   1800         header->GetLastInstruction(), GetGraph(), if_block);
   1801     DCHECK(condition != nullptr);
   1802     if_block->RemoveInstruction(if_block->GetLastInstruction());
   1803     if_block->AddInstruction(new (GetGraph()->GetAllocator()) HIf(condition));
   1804 
   1805     taken_test_loop_.Put(loop_id, true_block);
   1806   }
   1807 
   1808   /**
   1809    * Inserts phi nodes that preserve SSA structure in generated top test structures.
   1810    * All uses of instructions in the deoptimization block that reach the loop need
   1811    * a phi node in the new loop preheader to fix the dominance relation.
   1812    *
   1813    * Example:
   1814    *           if_block
   1815    *            /      \
   1816    *         x_0 = ..  false_block
   1817    *            \       /
   1818    *           x_1 = phi(x_0, null)   <- synthetic phi
   1819    *               |
   1820    *          new_preheader
   1821    */
   1822   void InsertPhiNodes() {
   1823     // Scan all new deoptimization blocks.
   1824     for (const auto& entry : taken_test_loop_) {
   1825       HBasicBlock* true_block = entry.second;
   1826       HBasicBlock* new_preheader = true_block->GetSingleSuccessor();
   1827       // Scan all instructions in a new deoptimization block.
   1828       for (HInstructionIterator it(true_block->GetInstructions()); !it.Done(); it.Advance()) {
   1829         HInstruction* instruction = it.Current();
   1830         DataType::Type type = instruction->GetType();
   1831         HPhi* phi = nullptr;
   1832         // Scan all uses of an instruction and replace each later use with a phi node.
   1833         const HUseList<HInstruction*>& uses = instruction->GetUses();
   1834         for (auto it2 = uses.begin(), end2 = uses.end(); it2 != end2; /* ++it2 below */) {
   1835           HInstruction* user = it2->GetUser();
   1836           size_t index = it2->GetIndex();
   1837           // Increment `it2` now because `*it2` may disappear thanks to user->ReplaceInput().
   1838           ++it2;
   1839           if (user->GetBlock() != true_block) {
   1840             if (phi == nullptr) {
   1841               phi = NewPhi(new_preheader, instruction, type);
   1842             }
   1843             user->ReplaceInput(phi, index);  // Removes the use node from the list.
   1844             induction_range_.Replace(user, instruction, phi);  // update induction
   1845           }
   1846         }
   1847         // Scan all environment uses of an instruction and replace each later use with a phi node.
   1848         const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
   1849         for (auto it2 = env_uses.begin(), end2 = env_uses.end(); it2 != end2; /* ++it2 below */) {
   1850           HEnvironment* user = it2->GetUser();
   1851           size_t index = it2->GetIndex();
   1852           // Increment `it2` now because `*it2` may disappear thanks to user->RemoveAsUserOfInput().
   1853           ++it2;
   1854           if (user->GetHolder()->GetBlock() != true_block) {
   1855             if (phi == nullptr) {
   1856               phi = NewPhi(new_preheader, instruction, type);
   1857             }
   1858             user->RemoveAsUserOfInput(index);
   1859             user->SetRawEnvAt(index, phi);
   1860             phi->AddEnvUseAt(user, index);
   1861           }
   1862         }
   1863       }
   1864     }
   1865   }
   1866 
   1867   /**
   1868    * Construct a phi(instruction, 0) in the new preheader to fix the dominance relation.
   1869    * These are synthetic phi nodes without a virtual register.
   1870    */
   1871   HPhi* NewPhi(HBasicBlock* new_preheader,
   1872                HInstruction* instruction,
   1873                DataType::Type type) {
   1874     HGraph* graph = GetGraph();
   1875     HInstruction* zero;
   1876     switch (type) {
   1877       case DataType::Type::kReference: zero = graph->GetNullConstant(); break;
   1878       case DataType::Type::kFloat32: zero = graph->GetFloatConstant(0); break;
   1879       case DataType::Type::kFloat64: zero = graph->GetDoubleConstant(0); break;
   1880       default: zero = graph->GetConstant(type, 0); break;
   1881     }
   1882     HPhi* phi = new (graph->GetAllocator())
   1883         HPhi(graph->GetAllocator(), kNoRegNumber, /*number_of_inputs*/ 2, HPhi::ToPhiType(type));
   1884     phi->SetRawInputAt(0, instruction);
   1885     phi->SetRawInputAt(1, zero);
   1886     if (type == DataType::Type::kReference) {
   1887       phi->SetReferenceTypeInfo(instruction->GetReferenceTypeInfo());
   1888     }
   1889     new_preheader->AddPhi(phi);
   1890     return phi;
   1891   }
   1892 
   1893   /** Helper method to replace an instruction with another instruction. */
   1894   void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) {
   1895     // Safe iteration.
   1896     if (instruction == next_) {
   1897       next_ = next_->GetNext();
   1898     }
   1899     // Replace and remove.
   1900     instruction->ReplaceWith(replacement);
   1901     instruction->GetBlock()->RemoveInstruction(instruction);
   1902   }
   1903 
   1904   // Use local allocator for allocating memory.
   1905   ScopedArenaAllocator allocator_;
   1906 
   1907   // A set of maps, one per basic block, from instruction to range.
   1908   ScopedArenaVector<ScopedArenaSafeMap<int, ValueRange*>> maps_;
   1909 
   1910   // Map an HArrayLength instruction's id to the first HBoundsCheck instruction
   1911   // in a block that checks an index against that HArrayLength.
   1912   ScopedArenaSafeMap<int, HBoundsCheck*> first_index_bounds_check_map_;
   1913 
   1914   // Early-exit loop bookkeeping.
   1915   ScopedArenaSafeMap<uint32_t, bool> early_exit_loop_;
   1916 
   1917   // Taken-test loop bookkeeping.
   1918   ScopedArenaSafeMap<uint32_t, HBasicBlock*> taken_test_loop_;
   1919 
   1920   // Finite loop bookkeeping.
   1921   ScopedArenaSet<uint32_t> finite_loop_;
   1922 
   1923   // Flag that denotes whether dominator-based dynamic elimination has occurred.
   1924   bool has_dom_based_dynamic_bce_;
   1925 
   1926   // Initial number of blocks.
   1927   uint32_t initial_block_size_;
   1928 
   1929   // Side effects.
   1930   const SideEffectsAnalysis& side_effects_;
   1931 
   1932   // Range analysis based on induction variables.
   1933   InductionVarRange induction_range_;
   1934 
   1935   // Safe iteration.
   1936   HInstruction* next_;
   1937 
   1938   DISALLOW_COPY_AND_ASSIGN(BCEVisitor);
   1939 };
   1940 
   1941 void BoundsCheckElimination::Run() {
   1942   if (!graph_->HasBoundsChecks()) {
   1943     return;
   1944   }
   1945 
   1946   // Reverse post order guarantees a node's dominators are visited first.
   1947   // We want to visit in the dominator-based order since if a value is known to
   1948   // be bounded by a range at one instruction, it must be true that all uses of
   1949   // that value dominated by that instruction fits in that range. Range of that
   1950   // value can be narrowed further down in the dominator tree.
   1951   BCEVisitor visitor(graph_, side_effects_, induction_analysis_);
   1952   for (size_t i = 0, size = graph_->GetReversePostOrder().size(); i != size; ++i) {
   1953     HBasicBlock* current = graph_->GetReversePostOrder()[i];
   1954     if (visitor.IsAddedBlock(current)) {
   1955       // Skip added blocks. Their effects are already taken care of.
   1956       continue;
   1957     }
   1958     visitor.VisitBasicBlock(current);
   1959     // Skip forward to the current block in case new basic blocks were inserted
   1960     // (which always appear earlier in reverse post order) to avoid visiting the
   1961     // same basic block twice.
   1962     size_t new_size = graph_->GetReversePostOrder().size();
   1963     DCHECK_GE(new_size, size);
   1964     i += new_size - size;
   1965     DCHECK_EQ(current, graph_->GetReversePostOrder()[i]);
   1966     size = new_size;
   1967   }
   1968 
   1969   // Perform cleanup.
   1970   visitor.Finish();
   1971 }
   1972 
   1973 }  // namespace art
   1974