Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "inliner.h"
     18 
     19 #include "art_method-inl.h"
     20 #include "base/enums.h"
     21 #include "builder.h"
     22 #include "class_linker.h"
     23 #include "constant_folding.h"
     24 #include "data_type-inl.h"
     25 #include "dead_code_elimination.h"
     26 #include "dex/inline_method_analyser.h"
     27 #include "dex/verification_results.h"
     28 #include "dex/verified_method.h"
     29 #include "driver/compiler_driver-inl.h"
     30 #include "driver/compiler_options.h"
     31 #include "driver/dex_compilation_unit.h"
     32 #include "instruction_simplifier.h"
     33 #include "intrinsics.h"
     34 #include "jit/jit.h"
     35 #include "jit/jit_code_cache.h"
     36 #include "mirror/class_loader.h"
     37 #include "mirror/dex_cache.h"
     38 #include "nodes.h"
     39 #include "optimizing_compiler.h"
     40 #include "reference_type_propagation.h"
     41 #include "register_allocator_linear_scan.h"
     42 #include "scoped_thread_state_change-inl.h"
     43 #include "sharpening.h"
     44 #include "ssa_builder.h"
     45 #include "ssa_phi_elimination.h"
     46 #include "thread.h"
     47 
     48 namespace art {
     49 
     50 // Instruction limit to control memory.
     51 static constexpr size_t kMaximumNumberOfTotalInstructions = 1024;
     52 
     53 // Maximum number of instructions for considering a method small,
     54 // which we will always try to inline if the other non-instruction limits
     55 // are not reached.
     56 static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3;
     57 
     58 // Limit the number of dex registers that we accumulate while inlining
     59 // to avoid creating large amount of nested environments.
     60 static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32;
     61 
     62 // Limit recursive call inlining, which do not benefit from too
     63 // much inlining compared to code locality.
     64 static constexpr size_t kMaximumNumberOfRecursiveCalls = 4;
     65 
     66 // Controls the use of inline caches in AOT mode.
     67 static constexpr bool kUseAOTInlineCaches = true;
     68 
     69 // We check for line numbers to make sure the DepthString implementation
     70 // aligns the output nicely.
     71 #define LOG_INTERNAL(msg) \
     72   static_assert(__LINE__ > 10, "Unhandled line number"); \
     73   static_assert(__LINE__ < 10000, "Unhandled line number"); \
     74   VLOG(compiler) << DepthString(__LINE__) << msg
     75 
     76 #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ")
     77 #define LOG_NOTE() LOG_INTERNAL("Note: ")
     78 #define LOG_SUCCESS() LOG_INTERNAL("Success: ")
     79 #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ")
     80 #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ")
     81 
     82 std::string HInliner::DepthString(int line) const {
     83   std::string value;
     84   // Indent according to the inlining depth.
     85   size_t count = depth_;
     86   // Line numbers get printed in the log, so add a space if the log's line is less
     87   // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright.
     88   if (!kIsTargetBuild) {
     89     if (line < 100) {
     90       value += " ";
     91     }
     92     if (line < 1000) {
     93       value += " ";
     94     }
     95     // Safeguard if this file reaches more than 10000 lines.
     96     DCHECK_LT(line, 10000);
     97   }
     98   for (size_t i = 0; i < count; ++i) {
     99     value += "  ";
    100   }
    101   return value;
    102 }
    103 
    104 static size_t CountNumberOfInstructions(HGraph* graph) {
    105   size_t number_of_instructions = 0;
    106   for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) {
    107     for (HInstructionIterator instr_it(block->GetInstructions());
    108          !instr_it.Done();
    109          instr_it.Advance()) {
    110       ++number_of_instructions;
    111     }
    112   }
    113   return number_of_instructions;
    114 }
    115 
    116 void HInliner::UpdateInliningBudget() {
    117   if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) {
    118     // Always try to inline small methods.
    119     inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod;
    120   } else {
    121     inlining_budget_ = std::max(
    122         kMaximumNumberOfInstructionsForSmallMethod,
    123         kMaximumNumberOfTotalInstructions - total_number_of_instructions_);
    124   }
    125 }
    126 
    127 void HInliner::Run() {
    128   if (graph_->IsDebuggable()) {
    129     // For simplicity, we currently never inline when the graph is debuggable. This avoids
    130     // doing some logic in the runtime to discover if a method could have been inlined.
    131     return;
    132   }
    133 
    134   // Initialize the number of instructions for the method being compiled. Recursive calls
    135   // to HInliner::Run have already updated the instruction count.
    136   if (outermost_graph_ == graph_) {
    137     total_number_of_instructions_ = CountNumberOfInstructions(graph_);
    138   }
    139 
    140   UpdateInliningBudget();
    141   DCHECK_NE(total_number_of_instructions_, 0u);
    142   DCHECK_NE(inlining_budget_, 0u);
    143 
    144   // If we're compiling with a core image (which is only used for
    145   // test purposes), honor inlining directives in method names:
    146   // - if a method's name contains the substring "$inline$", ensure
    147   //   that this method is actually inlined;
    148   // - if a method's name contains the substring "$noinline$", do not
    149   //   inline that method.
    150   // We limit this to AOT compilation, as the JIT may or may not inline
    151   // depending on the state of classes at runtime.
    152   const bool honor_inlining_directives =
    153       IsCompilingWithCoreImage() && Runtime::Current()->IsAotCompiler();
    154 
    155   // Keep a copy of all blocks when starting the visit.
    156   ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder();
    157   DCHECK(!blocks.empty());
    158   // Because we are changing the graph when inlining,
    159   // we just iterate over the blocks of the outer method.
    160   // This avoids doing the inlining work again on the inlined blocks.
    161   for (HBasicBlock* block : blocks) {
    162     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
    163       HInstruction* next = instruction->GetNext();
    164       HInvoke* call = instruction->AsInvoke();
    165       // As long as the call is not intrinsified, it is worth trying to inline.
    166       if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) {
    167         if (honor_inlining_directives) {
    168           // Debugging case: directives in method names control or assert on inlining.
    169           std::string callee_name = outer_compilation_unit_.GetDexFile()->PrettyMethod(
    170               call->GetDexMethodIndex(), /* with_signature */ false);
    171           // Tests prevent inlining by having $noinline$ in their method names.
    172           if (callee_name.find("$noinline$") == std::string::npos) {
    173             if (!TryInline(call)) {
    174               bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos);
    175               CHECK(!should_have_inlined) << "Could not inline " << callee_name;
    176             }
    177           }
    178         } else {
    179           // Normal case: try to inline.
    180           TryInline(call);
    181         }
    182       }
    183       instruction = next;
    184     }
    185   }
    186 }
    187 
    188 static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
    189     REQUIRES_SHARED(Locks::mutator_lock_) {
    190   return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
    191 }
    192 
    193 /**
    194  * Given the `resolved_method` looked up in the dex cache, try to find
    195  * the actual runtime target of an interface or virtual call.
    196  * Return nullptr if the runtime target cannot be proven.
    197  */
    198 static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method)
    199     REQUIRES_SHARED(Locks::mutator_lock_) {
    200   if (IsMethodOrDeclaringClassFinal(resolved_method)) {
    201     // No need to lookup further, the resolved method will be the target.
    202     return resolved_method;
    203   }
    204 
    205   HInstruction* receiver = invoke->InputAt(0);
    206   if (receiver->IsNullCheck()) {
    207     // Due to multiple levels of inlining within the same pass, it might be that
    208     // null check does not have the reference type of the actual receiver.
    209     receiver = receiver->InputAt(0);
    210   }
    211   ReferenceTypeInfo info = receiver->GetReferenceTypeInfo();
    212   DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
    213   if (!info.IsExact()) {
    214     // We currently only support inlining with known receivers.
    215     // TODO: Remove this check, we should be able to inline final methods
    216     // on unknown receivers.
    217     return nullptr;
    218   } else if (info.GetTypeHandle()->IsInterface()) {
    219     // Statically knowing that the receiver has an interface type cannot
    220     // help us find what is the target method.
    221     return nullptr;
    222   } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
    223     // The method that we're trying to call is not in the receiver's class or super classes.
    224     return nullptr;
    225   } else if (info.GetTypeHandle()->IsErroneous()) {
    226     // If the type is erroneous, do not go further, as we are going to query the vtable or
    227     // imt table, that we can only safely do on non-erroneous classes.
    228     return nullptr;
    229   }
    230 
    231   ClassLinker* cl = Runtime::Current()->GetClassLinker();
    232   PointerSize pointer_size = cl->GetImagePointerSize();
    233   if (invoke->IsInvokeInterface()) {
    234     resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
    235         resolved_method, pointer_size);
    236   } else {
    237     DCHECK(invoke->IsInvokeVirtual());
    238     resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
    239         resolved_method, pointer_size);
    240   }
    241 
    242   if (resolved_method == nullptr) {
    243     // The information we had on the receiver was not enough to find
    244     // the target method. Since we check above the exact type of the receiver,
    245     // the only reason this can happen is an IncompatibleClassChangeError.
    246     return nullptr;
    247   } else if (!resolved_method->IsInvokable()) {
    248     // The information we had on the receiver was not enough to find
    249     // the target method. Since we check above the exact type of the receiver,
    250     // the only reason this can happen is an IncompatibleClassChangeError.
    251     return nullptr;
    252   } else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
    253     // A final method has to be the target method.
    254     return resolved_method;
    255   } else if (info.IsExact()) {
    256     // If we found a method and the receiver's concrete type is statically
    257     // known, we know for sure the target.
    258     return resolved_method;
    259   } else {
    260     // Even if we did find a method, the receiver type was not enough to
    261     // statically find the runtime target.
    262     return nullptr;
    263   }
    264 }
    265 
    266 static uint32_t FindMethodIndexIn(ArtMethod* method,
    267                                   const DexFile& dex_file,
    268                                   uint32_t name_and_signature_index)
    269     REQUIRES_SHARED(Locks::mutator_lock_) {
    270   if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
    271     return method->GetDexMethodIndex();
    272   } else {
    273     return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
    274   }
    275 }
    276 
    277 static dex::TypeIndex FindClassIndexIn(mirror::Class* cls,
    278                                        const DexCompilationUnit& compilation_unit)
    279     REQUIRES_SHARED(Locks::mutator_lock_) {
    280   const DexFile& dex_file = *compilation_unit.GetDexFile();
    281   dex::TypeIndex index;
    282   if (cls->GetDexCache() == nullptr) {
    283     DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
    284     index = cls->FindTypeIndexInOtherDexFile(dex_file);
    285   } else if (!cls->GetDexTypeIndex().IsValid()) {
    286     DCHECK(cls->IsProxyClass()) << cls->PrettyClass();
    287     // TODO: deal with proxy classes.
    288   } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
    289     DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get());
    290     index = cls->GetDexTypeIndex();
    291   } else {
    292     index = cls->FindTypeIndexInOtherDexFile(dex_file);
    293     // We cannot guarantee the entry will resolve to the same class,
    294     // as there may be different class loaders. So only return the index if it's
    295     // the right class already resolved with the class loader.
    296     if (index.IsValid()) {
    297       ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType(
    298           index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
    299       if (resolved != cls) {
    300         index = dex::TypeIndex::Invalid();
    301       }
    302     }
    303   }
    304 
    305   return index;
    306 }
    307 
    308 class ScopedProfilingInfoInlineUse {
    309  public:
    310   explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self)
    311       : method_(method),
    312         self_(self),
    313         // Fetch the profiling info ahead of using it. If it's null when fetching,
    314         // we should not call JitCodeCache::DoneInlining.
    315         profiling_info_(
    316             Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) {
    317   }
    318 
    319   ~ScopedProfilingInfoInlineUse() {
    320     if (profiling_info_ != nullptr) {
    321       PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
    322       DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size));
    323       Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_);
    324     }
    325   }
    326 
    327   ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
    328 
    329  private:
    330   ArtMethod* const method_;
    331   Thread* const self_;
    332   ProfilingInfo* const profiling_info_;
    333 };
    334 
    335 HInliner::InlineCacheType HInliner::GetInlineCacheType(
    336     const Handle<mirror::ObjectArray<mirror::Class>>& classes)
    337   REQUIRES_SHARED(Locks::mutator_lock_) {
    338   uint8_t number_of_types = 0;
    339   for (; number_of_types < InlineCache::kIndividualCacheSize; ++number_of_types) {
    340     if (classes->Get(number_of_types) == nullptr) {
    341       break;
    342     }
    343   }
    344 
    345   if (number_of_types == 0) {
    346     return kInlineCacheUninitialized;
    347   } else if (number_of_types == 1) {
    348     return kInlineCacheMonomorphic;
    349   } else if (number_of_types == InlineCache::kIndividualCacheSize) {
    350     return kInlineCacheMegamorphic;
    351   } else {
    352     return kInlineCachePolymorphic;
    353   }
    354 }
    355 
    356 static mirror::Class* GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes)
    357     REQUIRES_SHARED(Locks::mutator_lock_) {
    358   DCHECK(classes->Get(0) != nullptr);
    359   return classes->Get(0);
    360 }
    361 
    362 ArtMethod* HInliner::TryCHADevirtualization(ArtMethod* resolved_method) {
    363   if (!resolved_method->HasSingleImplementation()) {
    364     return nullptr;
    365   }
    366   if (Runtime::Current()->IsAotCompiler()) {
    367     // No CHA-based devirtulization for AOT compiler (yet).
    368     return nullptr;
    369   }
    370   if (outermost_graph_->IsCompilingOsr()) {
    371     // We do not support HDeoptimize in OSR methods.
    372     return nullptr;
    373   }
    374   PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize();
    375   ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size);
    376   if (single_impl == nullptr) {
    377     return nullptr;
    378   }
    379   if (single_impl->IsProxyMethod()) {
    380     // Proxy method is a generic invoker that's not worth
    381     // devirtualizing/inlining. It also causes issues when the proxy
    382     // method is in another dex file if we try to rewrite invoke-interface to
    383     // invoke-virtual because a proxy method doesn't have a real dex file.
    384     return nullptr;
    385   }
    386   if (!single_impl->GetDeclaringClass()->IsResolved()) {
    387     // There's a race with the class loading, which updates the CHA info
    388     // before setting the class to resolved. So we just bail for this
    389     // rare occurence.
    390     return nullptr;
    391   }
    392   return single_impl;
    393 }
    394 
    395 static bool IsMethodUnverified(CompilerDriver* const compiler_driver, ArtMethod* method)
    396     REQUIRES_SHARED(Locks::mutator_lock_) {
    397   if (!method->GetDeclaringClass()->IsVerified()) {
    398     if (Runtime::Current()->UseJitCompilation()) {
    399       // We're at runtime, we know this is cold code if the class
    400       // is not verified, so don't bother analyzing.
    401       return true;
    402     }
    403     uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex();
    404     if (!compiler_driver->IsMethodVerifiedWithoutFailures(
    405         method->GetDexMethodIndex(), class_def_idx, *method->GetDexFile())) {
    406       // Method has soft or hard failures, don't analyze.
    407       return true;
    408     }
    409   }
    410   return false;
    411 }
    412 
    413 static bool AlwaysThrows(CompilerDriver* const compiler_driver, ArtMethod* method)
    414     REQUIRES_SHARED(Locks::mutator_lock_) {
    415   DCHECK(method != nullptr);
    416   // Skip non-compilable and unverified methods.
    417   if (!method->IsCompilable() || IsMethodUnverified(compiler_driver, method)) {
    418     return false;
    419   }
    420   // Skip native methods, methods with try blocks, and methods that are too large.
    421   CodeItemDataAccessor accessor(method->DexInstructionData());
    422   if (!accessor.HasCodeItem() ||
    423       accessor.TriesSize() != 0 ||
    424       accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) {
    425     return false;
    426   }
    427   // Scan for exits.
    428   bool throw_seen = false;
    429   for (const DexInstructionPcPair& pair : accessor) {
    430     switch (pair.Inst().Opcode()) {
    431       case Instruction::RETURN:
    432       case Instruction::RETURN_VOID:
    433       case Instruction::RETURN_WIDE:
    434       case Instruction::RETURN_OBJECT:
    435       case Instruction::RETURN_VOID_NO_BARRIER:
    436         return false;  // found regular control flow back
    437       case Instruction::THROW:
    438         throw_seen = true;
    439         break;
    440       default:
    441         break;
    442     }
    443   }
    444   return throw_seen;
    445 }
    446 
    447 bool HInliner::TryInline(HInvoke* invoke_instruction) {
    448   if (invoke_instruction->IsInvokeUnresolved() ||
    449       invoke_instruction->IsInvokePolymorphic()) {
    450     return false;  // Don't bother to move further if we know the method is unresolved or an
    451                    // invoke-polymorphic.
    452   }
    453 
    454   ScopedObjectAccess soa(Thread::Current());
    455   uint32_t method_index = invoke_instruction->GetDexMethodIndex();
    456   const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
    457   LOG_TRY() << caller_dex_file.PrettyMethod(method_index);
    458 
    459   ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
    460   if (resolved_method == nullptr) {
    461     DCHECK(invoke_instruction->IsInvokeStaticOrDirect());
    462     DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit());
    463     LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method";
    464     return false;
    465   }
    466   ArtMethod* actual_method = nullptr;
    467 
    468   if (invoke_instruction->IsInvokeStaticOrDirect()) {
    469     actual_method = resolved_method;
    470   } else {
    471     // Check if we can statically find the method.
    472     actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method);
    473   }
    474 
    475   bool cha_devirtualize = false;
    476   if (actual_method == nullptr) {
    477     ArtMethod* method = TryCHADevirtualization(resolved_method);
    478     if (method != nullptr) {
    479       cha_devirtualize = true;
    480       actual_method = method;
    481       LOG_NOTE() << "Try CHA-based inlining of " << actual_method->PrettyMethod();
    482     }
    483   }
    484 
    485   if (actual_method != nullptr) {
    486     // Single target.
    487     bool result = TryInlineAndReplace(invoke_instruction,
    488                                       actual_method,
    489                                       ReferenceTypeInfo::CreateInvalid(),
    490                                       /* do_rtp */ true,
    491                                       cha_devirtualize);
    492     if (result) {
    493       // Successfully inlined.
    494       if (!invoke_instruction->IsInvokeStaticOrDirect()) {
    495         if (cha_devirtualize) {
    496           // Add dependency due to devirtualization. We've assumed resolved_method
    497           // has single implementation.
    498           outermost_graph_->AddCHASingleImplementationDependency(resolved_method);
    499           MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline);
    500         } else {
    501           MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface);
    502         }
    503       }
    504     } else if (!cha_devirtualize && AlwaysThrows(compiler_driver_, actual_method)) {
    505       // Set always throws property for non-inlined method call with single target
    506       // (unless it was obtained through CHA, because that would imply we have
    507       // to add the CHA dependency, which seems not worth it).
    508       invoke_instruction->SetAlwaysThrows(true);
    509     }
    510     return result;
    511   }
    512   DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
    513 
    514   // Try using inline caches.
    515   return TryInlineFromInlineCache(caller_dex_file, invoke_instruction, resolved_method);
    516 }
    517 
    518 static Handle<mirror::ObjectArray<mirror::Class>> AllocateInlineCacheHolder(
    519     const DexCompilationUnit& compilation_unit,
    520     StackHandleScope<1>* hs)
    521     REQUIRES_SHARED(Locks::mutator_lock_) {
    522   Thread* self = Thread::Current();
    523   ClassLinker* class_linker = compilation_unit.GetClassLinker();
    524   Handle<mirror::ObjectArray<mirror::Class>> inline_cache = hs->NewHandle(
    525       mirror::ObjectArray<mirror::Class>::Alloc(
    526           self,
    527           class_linker->GetClassRoot(ClassLinker::kClassArrayClass),
    528           InlineCache::kIndividualCacheSize));
    529   if (inline_cache == nullptr) {
    530     // We got an OOME. Just clear the exception, and don't inline.
    531     DCHECK(self->IsExceptionPending());
    532     self->ClearException();
    533     VLOG(compiler) << "Out of memory in the compiler when trying to inline";
    534   }
    535   return inline_cache;
    536 }
    537 
    538 bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() {
    539   // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and
    540   // do not generate a deopt.
    541   //
    542   // For AOT:
    543   //    Generating a deopt does not ensure that we will actually capture the new types;
    544   //    and the danger is that we could be stuck in a loop with "forever" deoptimizations.
    545   //    Take for example the following scenario:
    546   //      - we capture the inline cache in one run
    547   //      - the next run, we deoptimize because we miss a type check, but the method
    548   //        never becomes hot again
    549   //    In this case, the inline cache will not be updated in the profile and the AOT code
    550   //    will keep deoptimizing.
    551   //    Another scenario is if we use profile compilation for a process which is not allowed
    552   //    to JIT (e.g. system server). If we deoptimize we will run interpreted code for the
    553   //    rest of the lifetime.
    554   // TODO(calin):
    555   //    This is a compromise because we will most likely never update the inline cache
    556   //    in the profile (unless there's another reason to deopt). So we might be stuck with
    557   //    a sub-optimal inline cache.
    558   //    We could be smarter when capturing inline caches to mitigate this.
    559   //    (e.g. by having different thresholds for new and old methods).
    560   //
    561   // For OSR:
    562   //     We may come from the interpreter and it may have seen different receiver types.
    563   return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr();
    564 }
    565 bool HInliner::TryInlineFromInlineCache(const DexFile& caller_dex_file,
    566                                         HInvoke* invoke_instruction,
    567                                         ArtMethod* resolved_method)
    568     REQUIRES_SHARED(Locks::mutator_lock_) {
    569   if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) {
    570     return false;
    571   }
    572 
    573   StackHandleScope<1> hs(Thread::Current());
    574   Handle<mirror::ObjectArray<mirror::Class>> inline_cache;
    575   InlineCacheType inline_cache_type = Runtime::Current()->IsAotCompiler()
    576       ? GetInlineCacheAOT(caller_dex_file, invoke_instruction, &hs, &inline_cache)
    577       : GetInlineCacheJIT(invoke_instruction, &hs, &inline_cache);
    578 
    579   switch (inline_cache_type) {
    580     case kInlineCacheNoData: {
    581       LOG_FAIL_NO_STAT()
    582           << "Interface or virtual call to "
    583           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    584           << " could not be statically determined";
    585       return false;
    586     }
    587 
    588     case kInlineCacheUninitialized: {
    589       LOG_FAIL_NO_STAT()
    590           << "Interface or virtual call to "
    591           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    592           << " is not hit and not inlined";
    593       return false;
    594     }
    595 
    596     case kInlineCacheMonomorphic: {
    597       MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall);
    598       if (UseOnlyPolymorphicInliningWithNoDeopt()) {
    599         return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
    600       } else {
    601         return TryInlineMonomorphicCall(invoke_instruction, resolved_method, inline_cache);
    602       }
    603     }
    604 
    605     case kInlineCachePolymorphic: {
    606       MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall);
    607       return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
    608     }
    609 
    610     case kInlineCacheMegamorphic: {
    611       LOG_FAIL_NO_STAT()
    612           << "Interface or virtual call to "
    613           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    614           << " is megamorphic and not inlined";
    615       MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall);
    616       return false;
    617     }
    618 
    619     case kInlineCacheMissingTypes: {
    620       LOG_FAIL_NO_STAT()
    621           << "Interface or virtual call to "
    622           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    623           << " is missing types and not inlined";
    624       return false;
    625     }
    626   }
    627   UNREACHABLE();
    628 }
    629 
    630 HInliner::InlineCacheType HInliner::GetInlineCacheJIT(
    631     HInvoke* invoke_instruction,
    632     StackHandleScope<1>* hs,
    633     /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
    634     REQUIRES_SHARED(Locks::mutator_lock_) {
    635   DCHECK(Runtime::Current()->UseJitCompilation());
    636 
    637   ArtMethod* caller = graph_->GetArtMethod();
    638   // Under JIT, we should always know the caller.
    639   DCHECK(caller != nullptr);
    640   ScopedProfilingInfoInlineUse spiis(caller, Thread::Current());
    641   ProfilingInfo* profiling_info = spiis.GetProfilingInfo();
    642 
    643   if (profiling_info == nullptr) {
    644     return kInlineCacheNoData;
    645   }
    646 
    647   *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
    648   if (inline_cache->Get() == nullptr) {
    649     // We can't extract any data if we failed to allocate;
    650     return kInlineCacheNoData;
    651   } else {
    652     Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto(
    653         *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()),
    654         *inline_cache);
    655     return GetInlineCacheType(*inline_cache);
    656   }
    657 }
    658 
    659 HInliner::InlineCacheType HInliner::GetInlineCacheAOT(
    660     const DexFile& caller_dex_file,
    661     HInvoke* invoke_instruction,
    662     StackHandleScope<1>* hs,
    663     /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
    664     REQUIRES_SHARED(Locks::mutator_lock_) {
    665   DCHECK(Runtime::Current()->IsAotCompiler());
    666   const ProfileCompilationInfo* pci = compiler_driver_->GetProfileCompilationInfo();
    667   if (pci == nullptr) {
    668     return kInlineCacheNoData;
    669   }
    670 
    671   std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> offline_profile =
    672       pci->GetMethod(caller_dex_file.GetLocation(),
    673                      caller_dex_file.GetLocationChecksum(),
    674                      caller_compilation_unit_.GetDexMethodIndex());
    675   if (offline_profile == nullptr) {
    676     return kInlineCacheNoData;  // no profile information for this invocation.
    677   }
    678 
    679   *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
    680   if (inline_cache == nullptr) {
    681     // We can't extract any data if we failed to allocate;
    682     return kInlineCacheNoData;
    683   } else {
    684     return ExtractClassesFromOfflineProfile(invoke_instruction,
    685                                             *(offline_profile.get()),
    686                                             *inline_cache);
    687   }
    688 }
    689 
    690 HInliner::InlineCacheType HInliner::ExtractClassesFromOfflineProfile(
    691     const HInvoke* invoke_instruction,
    692     const ProfileCompilationInfo::OfflineProfileMethodInfo& offline_profile,
    693     /*out*/Handle<mirror::ObjectArray<mirror::Class>> inline_cache)
    694     REQUIRES_SHARED(Locks::mutator_lock_) {
    695   const auto it = offline_profile.inline_caches->find(invoke_instruction->GetDexPc());
    696   if (it == offline_profile.inline_caches->end()) {
    697     return kInlineCacheUninitialized;
    698   }
    699 
    700   const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second;
    701 
    702   if (dex_pc_data.is_missing_types) {
    703     return kInlineCacheMissingTypes;
    704   }
    705   if (dex_pc_data.is_megamorphic) {
    706     return kInlineCacheMegamorphic;
    707   }
    708 
    709   DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize);
    710   Thread* self = Thread::Current();
    711   // We need to resolve the class relative to the containing dex file.
    712   // So first, build a mapping from the index of dex file in the profile to
    713   // its dex cache. This will avoid repeating the lookup when walking over
    714   // the inline cache types.
    715   std::vector<ObjPtr<mirror::DexCache>> dex_profile_index_to_dex_cache(
    716         offline_profile.dex_references.size());
    717   for (size_t i = 0; i < offline_profile.dex_references.size(); i++) {
    718     bool found = false;
    719     for (const DexFile* dex_file : compiler_driver_->GetDexFilesForOatFile()) {
    720       if (offline_profile.dex_references[i].MatchesDex(dex_file)) {
    721         dex_profile_index_to_dex_cache[i] =
    722             caller_compilation_unit_.GetClassLinker()->FindDexCache(self, *dex_file);
    723         found = true;
    724       }
    725     }
    726     if (!found) {
    727       VLOG(compiler) << "Could not find profiled dex file: "
    728           << offline_profile.dex_references[i].dex_location;
    729       return kInlineCacheMissingTypes;
    730     }
    731   }
    732 
    733   // Walk over the classes and resolve them. If we cannot find a type we return
    734   // kInlineCacheMissingTypes.
    735   int ic_index = 0;
    736   for (const ProfileCompilationInfo::ClassReference& class_ref : dex_pc_data.classes) {
    737     ObjPtr<mirror::DexCache> dex_cache =
    738         dex_profile_index_to_dex_cache[class_ref.dex_profile_index];
    739     DCHECK(dex_cache != nullptr);
    740 
    741     if (!dex_cache->GetDexFile()->IsTypeIndexValid(class_ref.type_index)) {
    742       VLOG(compiler) << "Profile data corrupt: type index " << class_ref.type_index
    743             << "is invalid in location" << dex_cache->GetDexFile()->GetLocation();
    744       return kInlineCacheNoData;
    745     }
    746     ObjPtr<mirror::Class> clazz = caller_compilation_unit_.GetClassLinker()->LookupResolvedType(
    747           class_ref.type_index,
    748           dex_cache,
    749           caller_compilation_unit_.GetClassLoader().Get());
    750     if (clazz != nullptr) {
    751       inline_cache->Set(ic_index++, clazz);
    752     } else {
    753       VLOG(compiler) << "Could not resolve class from inline cache in AOT mode "
    754           << caller_compilation_unit_.GetDexFile()->PrettyMethod(
    755               invoke_instruction->GetDexMethodIndex()) << " : "
    756           << caller_compilation_unit_
    757               .GetDexFile()->StringByTypeIdx(class_ref.type_index);
    758       return kInlineCacheMissingTypes;
    759     }
    760   }
    761   return GetInlineCacheType(inline_cache);
    762 }
    763 
    764 HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
    765                                                    HInstruction* receiver,
    766                                                    uint32_t dex_pc) const {
    767   ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
    768   DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
    769   HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet(
    770       receiver,
    771       field,
    772       DataType::Type::kReference,
    773       field->GetOffset(),
    774       field->IsVolatile(),
    775       field->GetDexFieldIndex(),
    776       field->GetDeclaringClass()->GetDexClassDefIndex(),
    777       *field->GetDexFile(),
    778       dex_pc);
    779   // The class of a field is effectively final, and does not have any memory dependencies.
    780   result->SetSideEffects(SideEffects::None());
    781   return result;
    782 }
    783 
    784 static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass,
    785                                                ArtMethod* resolved_method,
    786                                                HInstruction* invoke_instruction,
    787                                                PointerSize pointer_size)
    788     REQUIRES_SHARED(Locks::mutator_lock_) {
    789   if (Runtime::Current()->IsAotCompiler()) {
    790     // We can get unrelated types when working with profiles (corruption,
    791     // systme updates, or anyone can write to it). So first check if the class
    792     // actually implements the declaring class of the method that is being
    793     // called in bytecode.
    794     // Note: the lookup methods used below require to have assignable types.
    795     if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) {
    796       return nullptr;
    797     }
    798   }
    799 
    800   if (invoke_instruction->IsInvokeInterface()) {
    801     resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size);
    802   } else {
    803     DCHECK(invoke_instruction->IsInvokeVirtual());
    804     resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size);
    805   }
    806   DCHECK(resolved_method != nullptr);
    807   return resolved_method;
    808 }
    809 
    810 bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction,
    811                                         ArtMethod* resolved_method,
    812                                         Handle<mirror::ObjectArray<mirror::Class>> classes) {
    813   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
    814       << invoke_instruction->DebugName();
    815 
    816   dex::TypeIndex class_index = FindClassIndexIn(
    817       GetMonomorphicType(classes), caller_compilation_unit_);
    818   if (!class_index.IsValid()) {
    819     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
    820         << "Call to " << ArtMethod::PrettyMethod(resolved_method)
    821         << " from inline cache is not inlined because its class is not"
    822         << " accessible to the caller";
    823     return false;
    824   }
    825 
    826   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
    827   PointerSize pointer_size = class_linker->GetImagePointerSize();
    828   Handle<mirror::Class> monomorphic_type = handles_->NewHandle(GetMonomorphicType(classes));
    829   resolved_method = ResolveMethodFromInlineCache(
    830       monomorphic_type, resolved_method, invoke_instruction, pointer_size);
    831 
    832   LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod();
    833   if (resolved_method == nullptr) {
    834     // Bogus AOT profile, bail.
    835     DCHECK(Runtime::Current()->IsAotCompiler());
    836     return false;
    837   }
    838 
    839   HInstruction* receiver = invoke_instruction->InputAt(0);
    840   HInstruction* cursor = invoke_instruction->GetPrevious();
    841   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
    842   if (!TryInlineAndReplace(invoke_instruction,
    843                            resolved_method,
    844                            ReferenceTypeInfo::Create(monomorphic_type, /* is_exact */ true),
    845                            /* do_rtp */ false,
    846                            /* cha_devirtualize */ false)) {
    847     return false;
    848   }
    849 
    850   // We successfully inlined, now add a guard.
    851   AddTypeGuard(receiver,
    852                cursor,
    853                bb_cursor,
    854                class_index,
    855                monomorphic_type,
    856                invoke_instruction,
    857                /* with_deoptimization */ true);
    858 
    859   // Run type propagation to get the guard typed, and eventually propagate the
    860   // type of the receiver.
    861   ReferenceTypePropagation rtp_fixup(graph_,
    862                                      outer_compilation_unit_.GetClassLoader(),
    863                                      outer_compilation_unit_.GetDexCache(),
    864                                      handles_,
    865                                      /* is_first_run */ false);
    866   rtp_fixup.Run();
    867 
    868   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall);
    869   return true;
    870 }
    871 
    872 void HInliner::AddCHAGuard(HInstruction* invoke_instruction,
    873                            uint32_t dex_pc,
    874                            HInstruction* cursor,
    875                            HBasicBlock* bb_cursor) {
    876   HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator())
    877       HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc);
    878   HInstruction* compare = new (graph_->GetAllocator()) HNotEqual(
    879       deopt_flag, graph_->GetIntConstant(0, dex_pc));
    880   HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize(
    881       graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc);
    882 
    883   if (cursor != nullptr) {
    884     bb_cursor->InsertInstructionAfter(deopt_flag, cursor);
    885   } else {
    886     bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction());
    887   }
    888   bb_cursor->InsertInstructionAfter(compare, deopt_flag);
    889   bb_cursor->InsertInstructionAfter(deopt, compare);
    890 
    891   // Add receiver as input to aid CHA guard optimization later.
    892   deopt_flag->AddInput(invoke_instruction->InputAt(0));
    893   DCHECK_EQ(deopt_flag->InputCount(), 1u);
    894   deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    895   outermost_graph_->IncrementNumberOfCHAGuards();
    896 }
    897 
    898 HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
    899                                      HInstruction* cursor,
    900                                      HBasicBlock* bb_cursor,
    901                                      dex::TypeIndex class_index,
    902                                      Handle<mirror::Class> klass,
    903                                      HInstruction* invoke_instruction,
    904                                      bool with_deoptimization) {
    905   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
    906   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
    907       class_linker, receiver, invoke_instruction->GetDexPc());
    908   if (cursor != nullptr) {
    909     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
    910   } else {
    911     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
    912   }
    913 
    914   const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
    915   bool is_referrer;
    916   ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod();
    917   if (outermost_art_method == nullptr) {
    918     DCHECK(Runtime::Current()->IsAotCompiler());
    919     // We are in AOT mode and we don't have an ART method to determine
    920     // if the inlined method belongs to the referrer. Assume it doesn't.
    921     is_referrer = false;
    922   } else {
    923     is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass();
    924   }
    925 
    926   // Note that we will just compare the classes, so we don't need Java semantics access checks.
    927   // Note that the type index and the dex file are relative to the method this type guard is
    928   // inlined into.
    929   HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
    930                                                                    class_index,
    931                                                                    caller_dex_file,
    932                                                                    klass,
    933                                                                    is_referrer,
    934                                                                    invoke_instruction->GetDexPc(),
    935                                                                    /* needs_access_check */ false);
    936   HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind(
    937       load_class, codegen_, compiler_driver_, caller_compilation_unit_);
    938   DCHECK(kind != HLoadClass::LoadKind::kInvalid)
    939       << "We should always be able to reference a class for inline caches";
    940   // Load kind must be set before inserting the instruction into the graph.
    941   load_class->SetLoadKind(kind);
    942   bb_cursor->InsertInstructionAfter(load_class, receiver_class);
    943   // In AOT mode, we will most likely load the class from BSS, which will involve a call
    944   // to the runtime. In this case, the load instruction will need an environment so copy
    945   // it from the invoke instruction.
    946   if (load_class->NeedsEnvironment()) {
    947     DCHECK(Runtime::Current()->IsAotCompiler());
    948     load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    949   }
    950 
    951   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class);
    952   bb_cursor->InsertInstructionAfter(compare, load_class);
    953   if (with_deoptimization) {
    954     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
    955         graph_->GetAllocator(),
    956         compare,
    957         receiver,
    958         Runtime::Current()->IsAotCompiler()
    959             ? DeoptimizationKind::kAotInlineCache
    960             : DeoptimizationKind::kJitInlineCache,
    961         invoke_instruction->GetDexPc());
    962     bb_cursor->InsertInstructionAfter(deoptimize, compare);
    963     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    964     DCHECK_EQ(invoke_instruction->InputAt(0), receiver);
    965     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
    966     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
    967   }
    968   return compare;
    969 }
    970 
    971 bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction,
    972                                         ArtMethod* resolved_method,
    973                                         Handle<mirror::ObjectArray<mirror::Class>> classes) {
    974   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
    975       << invoke_instruction->DebugName();
    976 
    977   if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, classes)) {
    978     return true;
    979   }
    980 
    981   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
    982   PointerSize pointer_size = class_linker->GetImagePointerSize();
    983 
    984   bool all_targets_inlined = true;
    985   bool one_target_inlined = false;
    986   for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
    987     if (classes->Get(i) == nullptr) {
    988       break;
    989     }
    990     ArtMethod* method = nullptr;
    991 
    992     Handle<mirror::Class> handle = handles_->NewHandle(classes->Get(i));
    993     method = ResolveMethodFromInlineCache(
    994         handle, resolved_method, invoke_instruction, pointer_size);
    995     if (method == nullptr) {
    996       DCHECK(Runtime::Current()->IsAotCompiler());
    997       // AOT profile is bogus. This loop expects to iterate over all entries,
    998       // so just just continue.
    999       all_targets_inlined = false;
   1000       continue;
   1001     }
   1002 
   1003     HInstruction* receiver = invoke_instruction->InputAt(0);
   1004     HInstruction* cursor = invoke_instruction->GetPrevious();
   1005     HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
   1006 
   1007     dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_);
   1008     HInstruction* return_replacement = nullptr;
   1009     LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod();
   1010     if (!class_index.IsValid() ||
   1011         !TryBuildAndInline(invoke_instruction,
   1012                            method,
   1013                            ReferenceTypeInfo::Create(handle, /* is_exact */ true),
   1014                            &return_replacement)) {
   1015       all_targets_inlined = false;
   1016     } else {
   1017       one_target_inlined = true;
   1018 
   1019       LOG_SUCCESS() << "Polymorphic call to " << ArtMethod::PrettyMethod(resolved_method)
   1020                     << " has inlined " << ArtMethod::PrettyMethod(method);
   1021 
   1022       // If we have inlined all targets before, and this receiver is the last seen,
   1023       // we deoptimize instead of keeping the original invoke instruction.
   1024       bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() &&
   1025           all_targets_inlined &&
   1026           (i != InlineCache::kIndividualCacheSize - 1) &&
   1027           (classes->Get(i + 1) == nullptr);
   1028 
   1029       HInstruction* compare = AddTypeGuard(receiver,
   1030                                            cursor,
   1031                                            bb_cursor,
   1032                                            class_index,
   1033                                            handle,
   1034                                            invoke_instruction,
   1035                                            deoptimize);
   1036       if (deoptimize) {
   1037         if (return_replacement != nullptr) {
   1038           invoke_instruction->ReplaceWith(return_replacement);
   1039         }
   1040         invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
   1041         // Because the inline cache data can be populated concurrently, we force the end of the
   1042         // iteration. Otherwise, we could see a new receiver type.
   1043         break;
   1044       } else {
   1045         CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
   1046       }
   1047     }
   1048   }
   1049 
   1050   if (!one_target_inlined) {
   1051     LOG_FAIL_NO_STAT()
   1052         << "Call to " << ArtMethod::PrettyMethod(resolved_method)
   1053         << " from inline cache is not inlined because none"
   1054         << " of its targets could be inlined";
   1055     return false;
   1056   }
   1057 
   1058   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
   1059 
   1060   // Run type propagation to get the guards typed.
   1061   ReferenceTypePropagation rtp_fixup(graph_,
   1062                                      outer_compilation_unit_.GetClassLoader(),
   1063                                      outer_compilation_unit_.GetDexCache(),
   1064                                      handles_,
   1065                                      /* is_first_run */ false);
   1066   rtp_fixup.Run();
   1067   return true;
   1068 }
   1069 
   1070 void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
   1071                                                         HInstruction* return_replacement,
   1072                                                         HInstruction* invoke_instruction) {
   1073   uint32_t dex_pc = invoke_instruction->GetDexPc();
   1074   HBasicBlock* cursor_block = compare->GetBlock();
   1075   HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
   1076   ArenaAllocator* allocator = graph_->GetAllocator();
   1077 
   1078   // Spit the block after the compare: `cursor_block` will now be the start of the diamond,
   1079   // and the returned block is the start of the then branch (that could contain multiple blocks).
   1080   HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
   1081 
   1082   // Split the block containing the invoke before and after the invoke. The returned block
   1083   // of the split before will contain the invoke and will be the otherwise branch of
   1084   // the diamond. The returned block of the split after will be the merge block
   1085   // of the diamond.
   1086   HBasicBlock* end_then = invoke_instruction->GetBlock();
   1087   HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
   1088   HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
   1089 
   1090   // If the methods we are inlining return a value, we create a phi in the merge block
   1091   // that will have the `invoke_instruction and the `return_replacement` as inputs.
   1092   if (return_replacement != nullptr) {
   1093     HPhi* phi = new (allocator) HPhi(
   1094         allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
   1095     merge->AddPhi(phi);
   1096     invoke_instruction->ReplaceWith(phi);
   1097     phi->AddInput(return_replacement);
   1098     phi->AddInput(invoke_instruction);
   1099   }
   1100 
   1101   // Add the control flow instructions.
   1102   otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
   1103   end_then->AddInstruction(new (allocator) HGoto(dex_pc));
   1104   cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
   1105 
   1106   // Add the newly created blocks to the graph.
   1107   graph_->AddBlock(then);
   1108   graph_->AddBlock(otherwise);
   1109   graph_->AddBlock(merge);
   1110 
   1111   // Set up successor (and implictly predecessor) relations.
   1112   cursor_block->AddSuccessor(otherwise);
   1113   cursor_block->AddSuccessor(then);
   1114   end_then->AddSuccessor(merge);
   1115   otherwise->AddSuccessor(merge);
   1116 
   1117   // Set up dominance information.
   1118   then->SetDominator(cursor_block);
   1119   cursor_block->AddDominatedBlock(then);
   1120   otherwise->SetDominator(cursor_block);
   1121   cursor_block->AddDominatedBlock(otherwise);
   1122   merge->SetDominator(cursor_block);
   1123   cursor_block->AddDominatedBlock(merge);
   1124 
   1125   // Update the revert post order.
   1126   size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
   1127   MakeRoomFor(&graph_->reverse_post_order_, 1, index);
   1128   graph_->reverse_post_order_[++index] = then;
   1129   index = IndexOfElement(graph_->reverse_post_order_, end_then);
   1130   MakeRoomFor(&graph_->reverse_post_order_, 2, index);
   1131   graph_->reverse_post_order_[++index] = otherwise;
   1132   graph_->reverse_post_order_[++index] = merge;
   1133 
   1134 
   1135   graph_->UpdateLoopAndTryInformationOfNewBlock(
   1136       then, original_invoke_block, /* replace_if_back_edge */ false);
   1137   graph_->UpdateLoopAndTryInformationOfNewBlock(
   1138       otherwise, original_invoke_block, /* replace_if_back_edge */ false);
   1139 
   1140   // In case the original invoke location was a back edge, we need to update
   1141   // the loop to now have the merge block as a back edge.
   1142   graph_->UpdateLoopAndTryInformationOfNewBlock(
   1143       merge, original_invoke_block, /* replace_if_back_edge */ true);
   1144 }
   1145 
   1146 bool HInliner::TryInlinePolymorphicCallToSameTarget(
   1147     HInvoke* invoke_instruction,
   1148     ArtMethod* resolved_method,
   1149     Handle<mirror::ObjectArray<mirror::Class>> classes) {
   1150   // This optimization only works under JIT for now.
   1151   if (!Runtime::Current()->UseJitCompilation()) {
   1152     return false;
   1153   }
   1154 
   1155   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
   1156   PointerSize pointer_size = class_linker->GetImagePointerSize();
   1157 
   1158   DCHECK(resolved_method != nullptr);
   1159   ArtMethod* actual_method = nullptr;
   1160   size_t method_index = invoke_instruction->IsInvokeVirtual()
   1161       ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
   1162       : invoke_instruction->AsInvokeInterface()->GetImtIndex();
   1163 
   1164   // Check whether we are actually calling the same method among
   1165   // the different types seen.
   1166   for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
   1167     if (classes->Get(i) == nullptr) {
   1168       break;
   1169     }
   1170     ArtMethod* new_method = nullptr;
   1171     if (invoke_instruction->IsInvokeInterface()) {
   1172       new_method = classes->Get(i)->GetImt(pointer_size)->Get(
   1173           method_index, pointer_size);
   1174       if (new_method->IsRuntimeMethod()) {
   1175         // Bail out as soon as we see a conflict trampoline in one of the target's
   1176         // interface table.
   1177         return false;
   1178       }
   1179     } else {
   1180       DCHECK(invoke_instruction->IsInvokeVirtual());
   1181       new_method = classes->Get(i)->GetEmbeddedVTableEntry(method_index, pointer_size);
   1182     }
   1183     DCHECK(new_method != nullptr);
   1184     if (actual_method == nullptr) {
   1185       actual_method = new_method;
   1186     } else if (actual_method != new_method) {
   1187       // Different methods, bailout.
   1188       return false;
   1189     }
   1190   }
   1191 
   1192   HInstruction* receiver = invoke_instruction->InputAt(0);
   1193   HInstruction* cursor = invoke_instruction->GetPrevious();
   1194   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
   1195 
   1196   HInstruction* return_replacement = nullptr;
   1197   if (!TryBuildAndInline(invoke_instruction,
   1198                          actual_method,
   1199                          ReferenceTypeInfo::CreateInvalid(),
   1200                          &return_replacement)) {
   1201     return false;
   1202   }
   1203 
   1204   // We successfully inlined, now add a guard.
   1205   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
   1206       class_linker, receiver, invoke_instruction->GetDexPc());
   1207 
   1208   DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
   1209       ? DataType::Type::kInt64
   1210       : DataType::Type::kInt32;
   1211   HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet(
   1212       receiver_class,
   1213       type,
   1214       invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
   1215                                             : HClassTableGet::TableKind::kIMTable,
   1216       method_index,
   1217       invoke_instruction->GetDexPc());
   1218 
   1219   HConstant* constant;
   1220   if (type == DataType::Type::kInt64) {
   1221     constant = graph_->GetLongConstant(
   1222         reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
   1223   } else {
   1224     constant = graph_->GetIntConstant(
   1225         reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
   1226   }
   1227 
   1228   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant);
   1229   if (cursor != nullptr) {
   1230     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
   1231   } else {
   1232     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
   1233   }
   1234   bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
   1235   bb_cursor->InsertInstructionAfter(compare, class_table_get);
   1236 
   1237   if (outermost_graph_->IsCompilingOsr()) {
   1238     CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
   1239   } else {
   1240     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
   1241         graph_->GetAllocator(),
   1242         compare,
   1243         receiver,
   1244         DeoptimizationKind::kJitSameTarget,
   1245         invoke_instruction->GetDexPc());
   1246     bb_cursor->InsertInstructionAfter(deoptimize, compare);
   1247     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
   1248     if (return_replacement != nullptr) {
   1249       invoke_instruction->ReplaceWith(return_replacement);
   1250     }
   1251     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
   1252     invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
   1253     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
   1254   }
   1255 
   1256   // Run type propagation to get the guard typed.
   1257   ReferenceTypePropagation rtp_fixup(graph_,
   1258                                      outer_compilation_unit_.GetClassLoader(),
   1259                                      outer_compilation_unit_.GetDexCache(),
   1260                                      handles_,
   1261                                      /* is_first_run */ false);
   1262   rtp_fixup.Run();
   1263 
   1264   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
   1265 
   1266   LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod();
   1267   return true;
   1268 }
   1269 
   1270 bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction,
   1271                                    ArtMethod* method,
   1272                                    ReferenceTypeInfo receiver_type,
   1273                                    bool do_rtp,
   1274                                    bool cha_devirtualize) {
   1275   DCHECK(!invoke_instruction->IsIntrinsic());
   1276   HInstruction* return_replacement = nullptr;
   1277   uint32_t dex_pc = invoke_instruction->GetDexPc();
   1278   HInstruction* cursor = invoke_instruction->GetPrevious();
   1279   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
   1280   bool should_remove_invoke_instruction = false;
   1281 
   1282   // If invoke_instruction is devirtualized to a different method, give intrinsics
   1283   // another chance before we try to inline it.
   1284   bool wrong_invoke_type = false;
   1285   if (invoke_instruction->GetResolvedMethod() != method &&
   1286       IntrinsicsRecognizer::Recognize(invoke_instruction, method, &wrong_invoke_type)) {
   1287     MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized);
   1288     if (invoke_instruction->IsInvokeInterface()) {
   1289       // We don't intrinsify an invoke-interface directly.
   1290       // Replace the invoke-interface with an invoke-virtual.
   1291       HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
   1292           graph_->GetAllocator(),
   1293           invoke_instruction->GetNumberOfArguments(),
   1294           invoke_instruction->GetType(),
   1295           invoke_instruction->GetDexPc(),
   1296           invoke_instruction->GetDexMethodIndex(),  // Use interface method's dex method index.
   1297           method,
   1298           method->GetMethodIndex());
   1299       HInputsRef inputs = invoke_instruction->GetInputs();
   1300       for (size_t index = 0; index != inputs.size(); ++index) {
   1301         new_invoke->SetArgumentAt(index, inputs[index]);
   1302       }
   1303       invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
   1304       new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
   1305       if (invoke_instruction->GetType() == DataType::Type::kReference) {
   1306         new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
   1307       }
   1308       // Run intrinsic recognizer again to set new_invoke's intrinsic.
   1309       IntrinsicsRecognizer::Recognize(new_invoke, method, &wrong_invoke_type);
   1310       DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone);
   1311       return_replacement = new_invoke;
   1312       // invoke_instruction is replaced with new_invoke.
   1313       should_remove_invoke_instruction = true;
   1314     } else {
   1315       // invoke_instruction is intrinsified and stays.
   1316     }
   1317   } else if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) {
   1318     if (invoke_instruction->IsInvokeInterface()) {
   1319       DCHECK(!method->IsProxyMethod());
   1320       // Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always
   1321       // better than an invoke-interface because:
   1322       // 1) In the best case, the interface call has one more indirection (to fetch the IMT).
   1323       // 2) We will not go to the conflict trampoline with an invoke-virtual.
   1324       // TODO: Consider sharpening once it is not dependent on the compiler driver.
   1325 
   1326       if (method->IsDefault() && !method->IsCopied()) {
   1327         // Changing to invoke-virtual cannot be done on an original default method
   1328         // since it's not in any vtable. Devirtualization by exact type/inline-cache
   1329         // always uses a method in the iftable which is never an original default
   1330         // method.
   1331         // On the other hand, inlining an original default method by CHA is fine.
   1332         DCHECK(cha_devirtualize);
   1333         return false;
   1334       }
   1335 
   1336       const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
   1337       uint32_t dex_method_index = FindMethodIndexIn(
   1338           method, caller_dex_file, invoke_instruction->GetDexMethodIndex());
   1339       if (dex_method_index == dex::kDexNoIndex) {
   1340         return false;
   1341       }
   1342       HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
   1343           graph_->GetAllocator(),
   1344           invoke_instruction->GetNumberOfArguments(),
   1345           invoke_instruction->GetType(),
   1346           invoke_instruction->GetDexPc(),
   1347           dex_method_index,
   1348           method,
   1349           method->GetMethodIndex());
   1350       HInputsRef inputs = invoke_instruction->GetInputs();
   1351       for (size_t index = 0; index != inputs.size(); ++index) {
   1352         new_invoke->SetArgumentAt(index, inputs[index]);
   1353       }
   1354       invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
   1355       new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
   1356       if (invoke_instruction->GetType() == DataType::Type::kReference) {
   1357         new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
   1358       }
   1359       return_replacement = new_invoke;
   1360       // invoke_instruction is replaced with new_invoke.
   1361       should_remove_invoke_instruction = true;
   1362     } else {
   1363       // TODO: Consider sharpening an invoke virtual once it is not dependent on the
   1364       // compiler driver.
   1365       return false;
   1366     }
   1367   } else {
   1368     // invoke_instruction is inlined.
   1369     should_remove_invoke_instruction = true;
   1370   }
   1371 
   1372   if (cha_devirtualize) {
   1373     AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor);
   1374   }
   1375   if (return_replacement != nullptr) {
   1376     invoke_instruction->ReplaceWith(return_replacement);
   1377   }
   1378   if (should_remove_invoke_instruction) {
   1379     invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
   1380   }
   1381   FixUpReturnReferenceType(method, return_replacement);
   1382   if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) {
   1383     // Actual return value has a more specific type than the method's declared
   1384     // return type. Run RTP again on the outer graph to propagate it.
   1385     ReferenceTypePropagation(graph_,
   1386                              outer_compilation_unit_.GetClassLoader(),
   1387                              outer_compilation_unit_.GetDexCache(),
   1388                              handles_,
   1389                              /* is_first_run */ false).Run();
   1390   }
   1391   return true;
   1392 }
   1393 
   1394 size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const {
   1395   const HInliner* current = this;
   1396   size_t count = 0;
   1397   do {
   1398     if (current->graph_->GetArtMethod() == method) {
   1399       ++count;
   1400     }
   1401     current = current->parent_;
   1402   } while (current != nullptr);
   1403   return count;
   1404 }
   1405 
   1406 bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
   1407                                  ArtMethod* method,
   1408                                  ReferenceTypeInfo receiver_type,
   1409                                  HInstruction** return_replacement) {
   1410   if (method->IsProxyMethod()) {
   1411     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy)
   1412         << "Method " << method->PrettyMethod()
   1413         << " is not inlined because of unimplemented inline support for proxy methods.";
   1414     return false;
   1415   }
   1416 
   1417   if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) {
   1418     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget)
   1419         << "Method "
   1420         << method->PrettyMethod()
   1421         << " is not inlined because it has reached its recursive call budget.";
   1422     return false;
   1423   }
   1424 
   1425   // Check whether we're allowed to inline. The outermost compilation unit is the relevant
   1426   // dex file here (though the transitivity of an inline chain would allow checking the calller).
   1427   if (!compiler_driver_->MayInline(method->GetDexFile(),
   1428                                    outer_compilation_unit_.GetDexFile())) {
   1429     if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) {
   1430       LOG_SUCCESS() << "Successfully replaced pattern of invoke "
   1431                     << method->PrettyMethod();
   1432       MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern);
   1433       return true;
   1434     }
   1435     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont)
   1436         << "Won't inline " << method->PrettyMethod() << " in "
   1437         << outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
   1438         << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
   1439         << method->GetDexFile()->GetLocation();
   1440     return false;
   1441   }
   1442 
   1443   bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile());
   1444 
   1445   CodeItemDataAccessor accessor(method->DexInstructionData());
   1446 
   1447   if (!accessor.HasCodeItem()) {
   1448     LOG_FAIL_NO_STAT()
   1449         << "Method " << method->PrettyMethod() << " is not inlined because it is native";
   1450     return false;
   1451   }
   1452 
   1453   size_t inline_max_code_units = compiler_driver_->GetCompilerOptions().GetInlineMaxCodeUnits();
   1454   if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) {
   1455     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem)
   1456         << "Method " << method->PrettyMethod()
   1457         << " is not inlined because its code item is too big: "
   1458         << accessor.InsnsSizeInCodeUnits()
   1459         << " > "
   1460         << inline_max_code_units;
   1461     return false;
   1462   }
   1463 
   1464   if (accessor.TriesSize() != 0) {
   1465     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
   1466         << "Method " << method->PrettyMethod() << " is not inlined because of try block";
   1467     return false;
   1468   }
   1469 
   1470   if (!method->IsCompilable()) {
   1471     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
   1472         << "Method " << method->PrettyMethod()
   1473         << " has soft failures un-handled by the compiler, so it cannot be inlined";
   1474     return false;
   1475   }
   1476 
   1477   if (IsMethodUnverified(compiler_driver_, method)) {
   1478     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
   1479         << "Method " << method->PrettyMethod()
   1480         << " couldn't be verified, so it cannot be inlined";
   1481     return false;
   1482   }
   1483 
   1484   if (invoke_instruction->IsInvokeStaticOrDirect() &&
   1485       invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
   1486     // Case of a static method that cannot be inlined because it implicitly
   1487     // requires an initialization check of its declaring class.
   1488     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
   1489         << "Method " << method->PrettyMethod()
   1490         << " is not inlined because it is static and requires a clinit"
   1491         << " check that cannot be emitted due to Dex cache limitations";
   1492     return false;
   1493   }
   1494 
   1495   if (!TryBuildAndInlineHelper(
   1496           invoke_instruction, method, receiver_type, same_dex_file, return_replacement)) {
   1497     return false;
   1498   }
   1499 
   1500   LOG_SUCCESS() << method->PrettyMethod();
   1501   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke);
   1502   return true;
   1503 }
   1504 
   1505 static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
   1506                                                    size_t arg_vreg_index)
   1507     REQUIRES_SHARED(Locks::mutator_lock_) {
   1508   size_t input_index = 0;
   1509   for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
   1510     DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
   1511     if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
   1512       ++i;
   1513       DCHECK_NE(i, arg_vreg_index);
   1514     }
   1515   }
   1516   DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
   1517   return invoke_instruction->InputAt(input_index);
   1518 }
   1519 
   1520 // Try to recognize known simple patterns and replace invoke call with appropriate instructions.
   1521 bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
   1522                                       ArtMethod* resolved_method,
   1523                                       HInstruction** return_replacement) {
   1524   InlineMethod inline_method;
   1525   if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) {
   1526     return false;
   1527   }
   1528 
   1529   switch (inline_method.opcode) {
   1530     case kInlineOpNop:
   1531       DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid);
   1532       *return_replacement = nullptr;
   1533       break;
   1534     case kInlineOpReturnArg:
   1535       *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
   1536                                                           inline_method.d.return_data.arg);
   1537       break;
   1538     case kInlineOpNonWideConst:
   1539       if (resolved_method->GetShorty()[0] == 'L') {
   1540         DCHECK_EQ(inline_method.d.data, 0u);
   1541         *return_replacement = graph_->GetNullConstant();
   1542       } else {
   1543         *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
   1544       }
   1545       break;
   1546     case kInlineOpIGet: {
   1547       const InlineIGetIPutData& data = inline_method.d.ifield_data;
   1548       if (data.method_is_static || data.object_arg != 0u) {
   1549         // TODO: Needs null check.
   1550         return false;
   1551       }
   1552       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
   1553       HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, resolved_method, obj);
   1554       DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
   1555       DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
   1556       invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
   1557       *return_replacement = iget;
   1558       break;
   1559     }
   1560     case kInlineOpIPut: {
   1561       const InlineIGetIPutData& data = inline_method.d.ifield_data;
   1562       if (data.method_is_static || data.object_arg != 0u) {
   1563         // TODO: Needs null check.
   1564         return false;
   1565       }
   1566       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
   1567       HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
   1568       HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, resolved_method, obj, value);
   1569       DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
   1570       DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
   1571       invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
   1572       if (data.return_arg_plus1 != 0u) {
   1573         size_t return_arg = data.return_arg_plus1 - 1u;
   1574         *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
   1575       }
   1576       break;
   1577     }
   1578     case kInlineOpConstructor: {
   1579       const InlineConstructorData& data = inline_method.d.constructor_data;
   1580       // Get the indexes to arrays for easier processing.
   1581       uint16_t iput_field_indexes[] = {
   1582           data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
   1583       };
   1584       uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
   1585       static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
   1586       // Count valid field indexes.
   1587       size_t number_of_iputs = 0u;
   1588       while (number_of_iputs != arraysize(iput_field_indexes) &&
   1589           iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) {
   1590         // Check that there are no duplicate valid field indexes.
   1591         DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1,
   1592                                 iput_field_indexes + arraysize(iput_field_indexes),
   1593                                 iput_field_indexes[number_of_iputs]));
   1594         ++number_of_iputs;
   1595       }
   1596       // Check that there are no valid field indexes in the rest of the array.
   1597       DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs,
   1598                                  iput_field_indexes + arraysize(iput_field_indexes),
   1599                                  [](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
   1600 
   1601       // Create HInstanceFieldSet for each IPUT that stores non-zero data.
   1602       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, /* this */ 0u);
   1603       bool needs_constructor_barrier = false;
   1604       for (size_t i = 0; i != number_of_iputs; ++i) {
   1605         HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
   1606         if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) {
   1607           uint16_t field_index = iput_field_indexes[i];
   1608           bool is_final;
   1609           HInstanceFieldSet* iput =
   1610               CreateInstanceFieldSet(field_index, resolved_method, obj, value, &is_final);
   1611           invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
   1612 
   1613           // Check whether the field is final. If it is, we need to add a barrier.
   1614           if (is_final) {
   1615             needs_constructor_barrier = true;
   1616           }
   1617         }
   1618       }
   1619       if (needs_constructor_barrier) {
   1620         // See CompilerDriver::RequiresConstructorBarrier for more details.
   1621         DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence";
   1622 
   1623         HConstructorFence* constructor_fence =
   1624             new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator());
   1625         invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence,
   1626                                                                 invoke_instruction);
   1627       }
   1628       *return_replacement = nullptr;
   1629       break;
   1630     }
   1631     default:
   1632       LOG(FATAL) << "UNREACHABLE";
   1633       UNREACHABLE();
   1634   }
   1635   return true;
   1636 }
   1637 
   1638 HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index,
   1639                                                     ArtMethod* referrer,
   1640                                                     HInstruction* obj)
   1641     REQUIRES_SHARED(Locks::mutator_lock_) {
   1642   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1643   ArtField* resolved_field =
   1644       class_linker->LookupResolvedField(field_index, referrer, /* is_static */ false);
   1645   DCHECK(resolved_field != nullptr);
   1646   HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet(
   1647       obj,
   1648       resolved_field,
   1649       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
   1650       resolved_field->GetOffset(),
   1651       resolved_field->IsVolatile(),
   1652       field_index,
   1653       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
   1654       *referrer->GetDexFile(),
   1655       // Read barrier generates a runtime call in slow path and we need a valid
   1656       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
   1657       /* dex_pc */ 0);
   1658   if (iget->GetType() == DataType::Type::kReference) {
   1659     // Use the same dex_cache that we used for field lookup as the hint_dex_cache.
   1660     Handle<mirror::DexCache> dex_cache = handles_->NewHandle(referrer->GetDexCache());
   1661     ReferenceTypePropagation rtp(graph_,
   1662                                  outer_compilation_unit_.GetClassLoader(),
   1663                                  dex_cache,
   1664                                  handles_,
   1665                                  /* is_first_run */ false);
   1666     rtp.Visit(iget);
   1667   }
   1668   return iget;
   1669 }
   1670 
   1671 HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index,
   1672                                                     ArtMethod* referrer,
   1673                                                     HInstruction* obj,
   1674                                                     HInstruction* value,
   1675                                                     bool* is_final)
   1676     REQUIRES_SHARED(Locks::mutator_lock_) {
   1677   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1678   ArtField* resolved_field =
   1679       class_linker->LookupResolvedField(field_index, referrer, /* is_static */ false);
   1680   DCHECK(resolved_field != nullptr);
   1681   if (is_final != nullptr) {
   1682     // This information is needed only for constructors.
   1683     DCHECK(referrer->IsConstructor());
   1684     *is_final = resolved_field->IsFinal();
   1685   }
   1686   HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet(
   1687       obj,
   1688       value,
   1689       resolved_field,
   1690       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
   1691       resolved_field->GetOffset(),
   1692       resolved_field->IsVolatile(),
   1693       field_index,
   1694       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
   1695       *referrer->GetDexFile(),
   1696       // Read barrier generates a runtime call in slow path and we need a valid
   1697       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
   1698       /* dex_pc */ 0);
   1699   return iput;
   1700 }
   1701 
   1702 template <typename T>
   1703 static inline Handle<T> NewHandleIfDifferent(T* object,
   1704                                              Handle<T> hint,
   1705                                              VariableSizedHandleScope* handles)
   1706     REQUIRES_SHARED(Locks::mutator_lock_) {
   1707   return (object != hint.Get()) ? handles->NewHandle(object) : hint;
   1708 }
   1709 
   1710 bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
   1711                                        ArtMethod* resolved_method,
   1712                                        ReferenceTypeInfo receiver_type,
   1713                                        bool same_dex_file,
   1714                                        HInstruction** return_replacement) {
   1715   DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid()));
   1716   ScopedObjectAccess soa(Thread::Current());
   1717   const DexFile::CodeItem* code_item = resolved_method->GetCodeItem();
   1718   const DexFile& callee_dex_file = *resolved_method->GetDexFile();
   1719   uint32_t method_index = resolved_method->GetDexMethodIndex();
   1720   CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo());
   1721   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
   1722   Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(),
   1723                                                             caller_compilation_unit_.GetDexCache(),
   1724                                                             handles_);
   1725   Handle<mirror::ClassLoader> class_loader =
   1726       NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(),
   1727                            caller_compilation_unit_.GetClassLoader(),
   1728                            handles_);
   1729 
   1730   DexCompilationUnit dex_compilation_unit(
   1731       class_loader,
   1732       class_linker,
   1733       callee_dex_file,
   1734       code_item,
   1735       resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
   1736       method_index,
   1737       resolved_method->GetAccessFlags(),
   1738       /* verified_method */ nullptr,
   1739       dex_cache);
   1740 
   1741   InvokeType invoke_type = invoke_instruction->GetInvokeType();
   1742   if (invoke_type == kInterface) {
   1743     // We have statically resolved the dispatch. To please the class linker
   1744     // at runtime, we change this call as if it was a virtual call.
   1745     invoke_type = kVirtual;
   1746   }
   1747 
   1748   const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
   1749   HGraph* callee_graph = new (graph_->GetAllocator()) HGraph(
   1750       graph_->GetAllocator(),
   1751       graph_->GetArenaStack(),
   1752       callee_dex_file,
   1753       method_index,
   1754       compiler_driver_->GetInstructionSet(),
   1755       invoke_type,
   1756       graph_->IsDebuggable(),
   1757       /* osr */ false,
   1758       caller_instruction_counter);
   1759   callee_graph->SetArtMethod(resolved_method);
   1760 
   1761   // When they are needed, allocate `inline_stats_` on the Arena instead
   1762   // of on the stack, as Clang might produce a stack frame too large
   1763   // for this function, that would not fit the requirements of the
   1764   // `-Wframe-larger-than` option.
   1765   if (stats_ != nullptr) {
   1766     // Reuse one object for all inline attempts from this caller to keep Arena memory usage low.
   1767     if (inline_stats_ == nullptr) {
   1768       void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc);
   1769       inline_stats_ = new (storage) OptimizingCompilerStats;
   1770     } else {
   1771       inline_stats_->Reset();
   1772     }
   1773   }
   1774   HGraphBuilder builder(callee_graph,
   1775                         code_item_accessor,
   1776                         &dex_compilation_unit,
   1777                         &outer_compilation_unit_,
   1778                         compiler_driver_,
   1779                         codegen_,
   1780                         inline_stats_,
   1781                         resolved_method->GetQuickenedInfo(),
   1782                         handles_);
   1783 
   1784   if (builder.BuildGraph() != kAnalysisSuccess) {
   1785     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild)
   1786         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1787         << " could not be built, so cannot be inlined";
   1788     return false;
   1789   }
   1790 
   1791   if (!RegisterAllocator::CanAllocateRegistersFor(*callee_graph,
   1792                                                   compiler_driver_->GetInstructionSet())) {
   1793     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRegisterAllocator)
   1794         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1795         << " cannot be inlined because of the register allocator";
   1796     return false;
   1797   }
   1798 
   1799   size_t parameter_index = 0;
   1800   bool run_rtp = false;
   1801   for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
   1802        !instructions.Done();
   1803        instructions.Advance()) {
   1804     HInstruction* current = instructions.Current();
   1805     if (current->IsParameterValue()) {
   1806       HInstruction* argument = invoke_instruction->InputAt(parameter_index);
   1807       if (argument->IsNullConstant()) {
   1808         current->ReplaceWith(callee_graph->GetNullConstant());
   1809       } else if (argument->IsIntConstant()) {
   1810         current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
   1811       } else if (argument->IsLongConstant()) {
   1812         current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
   1813       } else if (argument->IsFloatConstant()) {
   1814         current->ReplaceWith(
   1815             callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
   1816       } else if (argument->IsDoubleConstant()) {
   1817         current->ReplaceWith(
   1818             callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
   1819       } else if (argument->GetType() == DataType::Type::kReference) {
   1820         if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) {
   1821           run_rtp = true;
   1822           current->SetReferenceTypeInfo(receiver_type);
   1823         } else {
   1824           current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo());
   1825         }
   1826         current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
   1827       }
   1828       ++parameter_index;
   1829     }
   1830   }
   1831 
   1832   // We have replaced formal arguments with actual arguments. If actual types
   1833   // are more specific than the declared ones, run RTP again on the inner graph.
   1834   if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
   1835     ReferenceTypePropagation(callee_graph,
   1836                              outer_compilation_unit_.GetClassLoader(),
   1837                              dex_compilation_unit.GetDexCache(),
   1838                              handles_,
   1839                              /* is_first_run */ false).Run();
   1840   }
   1841 
   1842   RunOptimizations(callee_graph, code_item, dex_compilation_unit);
   1843 
   1844   HBasicBlock* exit_block = callee_graph->GetExitBlock();
   1845   if (exit_block == nullptr) {
   1846     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
   1847         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1848         << " could not be inlined because it has an infinite loop";
   1849     return false;
   1850   }
   1851 
   1852   bool has_one_return = false;
   1853   for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
   1854     if (predecessor->GetLastInstruction()->IsThrow()) {
   1855       if (invoke_instruction->GetBlock()->IsTryBlock()) {
   1856         // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto.
   1857         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
   1858             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1859             << " could not be inlined because one branch always throws and"
   1860             << " caller is in a try/catch block";
   1861         return false;
   1862       } else if (graph_->GetExitBlock() == nullptr) {
   1863         // TODO(ngeoffray): Support adding HExit in the caller graph.
   1864         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
   1865             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1866             << " could not be inlined because one branch always throws and"
   1867             << " caller does not have an exit block";
   1868         return false;
   1869       } else if (graph_->HasIrreducibleLoops()) {
   1870         // TODO(ngeoffray): Support re-computing loop information to graphs with
   1871         // irreducible loops?
   1872         VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index)
   1873                        << " could not be inlined because one branch always throws and"
   1874                        << " caller has irreducible loops";
   1875         return false;
   1876       }
   1877     } else {
   1878       has_one_return = true;
   1879     }
   1880   }
   1881 
   1882   if (!has_one_return) {
   1883     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows)
   1884         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1885         << " could not be inlined because it always throws";
   1886     return false;
   1887   }
   1888 
   1889   size_t number_of_instructions = 0;
   1890   // Skip the entry block, it does not contain instructions that prevent inlining.
   1891   for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) {
   1892     if (block->IsLoopHeader()) {
   1893       if (block->GetLoopInformation()->IsIrreducible()) {
   1894         // Don't inline methods with irreducible loops, they could prevent some
   1895         // optimizations to run.
   1896         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoop)
   1897             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1898             << " could not be inlined because it contains an irreducible loop";
   1899         return false;
   1900       }
   1901       if (!block->GetLoopInformation()->HasExitEdge()) {
   1902         // Don't inline methods with loops without exit, since they cause the
   1903         // loop information to be computed incorrectly when updating after
   1904         // inlining.
   1905         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit)
   1906             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1907             << " could not be inlined because it contains a loop with no exit";
   1908         return false;
   1909       }
   1910     }
   1911 
   1912     for (HInstructionIterator instr_it(block->GetInstructions());
   1913          !instr_it.Done();
   1914          instr_it.Advance()) {
   1915       if (++number_of_instructions >= inlining_budget_) {
   1916         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget)
   1917             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1918             << " is not inlined because the outer method has reached"
   1919             << " its instruction budget limit.";
   1920         return false;
   1921       }
   1922       HInstruction* current = instr_it.Current();
   1923       if (current->NeedsEnvironment() &&
   1924           (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters)) {
   1925         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget)
   1926             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1927             << " is not inlined because its caller has reached"
   1928             << " its environment budget limit.";
   1929         return false;
   1930       }
   1931 
   1932       if (current->NeedsEnvironment() &&
   1933           !CanEncodeInlinedMethodInStackMap(*caller_compilation_unit_.GetDexFile(),
   1934                                             resolved_method)) {
   1935         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps)
   1936             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1937             << " could not be inlined because " << current->DebugName()
   1938             << " needs an environment, is in a different dex file"
   1939             << ", and cannot be encoded in the stack maps.";
   1940         return false;
   1941       }
   1942 
   1943       if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) {
   1944         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
   1945             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1946             << " could not be inlined because " << current->DebugName()
   1947             << " it is in a different dex file and requires access to the dex cache";
   1948         return false;
   1949       }
   1950 
   1951       if (current->IsUnresolvedStaticFieldGet() ||
   1952           current->IsUnresolvedInstanceFieldGet() ||
   1953           current->IsUnresolvedStaticFieldSet() ||
   1954           current->IsUnresolvedInstanceFieldSet()) {
   1955         // Entrypoint for unresolved fields does not handle inlined frames.
   1956         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint)
   1957             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1958             << " could not be inlined because it is using an unresolved"
   1959             << " entrypoint";
   1960         return false;
   1961       }
   1962     }
   1963   }
   1964   DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
   1965       << "No instructions can be added to the outer graph while inner graph is being built";
   1966 
   1967   // Inline the callee graph inside the caller graph.
   1968   const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
   1969   graph_->SetCurrentInstructionId(callee_instruction_counter);
   1970   *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
   1971   // Update our budget for other inlining attempts in `caller_graph`.
   1972   total_number_of_instructions_ += number_of_instructions;
   1973   UpdateInliningBudget();
   1974 
   1975   DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
   1976       << "No instructions can be added to the inner graph during inlining into the outer graph";
   1977 
   1978   if (stats_ != nullptr) {
   1979     DCHECK(inline_stats_ != nullptr);
   1980     inline_stats_->AddTo(stats_);
   1981   }
   1982 
   1983   return true;
   1984 }
   1985 
   1986 void HInliner::RunOptimizations(HGraph* callee_graph,
   1987                                 const DexFile::CodeItem* code_item,
   1988                                 const DexCompilationUnit& dex_compilation_unit) {
   1989   // Note: if the outermost_graph_ is being compiled OSR, we should not run any
   1990   // optimization that could lead to a HDeoptimize. The following optimizations do not.
   1991   HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner");
   1992   HConstantFolding fold(callee_graph, "constant_folding$inliner");
   1993   HSharpening sharpening(callee_graph, codegen_, compiler_driver_);
   1994   InstructionSimplifier simplify(callee_graph, codegen_, compiler_driver_, inline_stats_);
   1995   IntrinsicsRecognizer intrinsics(callee_graph, inline_stats_);
   1996 
   1997   HOptimization* optimizations[] = {
   1998     &intrinsics,
   1999     &sharpening,
   2000     &simplify,
   2001     &fold,
   2002     &dce,
   2003   };
   2004 
   2005   for (size_t i = 0; i < arraysize(optimizations); ++i) {
   2006     HOptimization* optimization = optimizations[i];
   2007     optimization->Run();
   2008   }
   2009 
   2010   // Bail early for pathological cases on the environment (for example recursive calls,
   2011   // or too large environment).
   2012   if (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters) {
   2013     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
   2014              << " will not be inlined because the outer method has reached"
   2015              << " its environment budget limit.";
   2016     return;
   2017   }
   2018 
   2019   // Bail early if we know we already are over the limit.
   2020   size_t number_of_instructions = CountNumberOfInstructions(callee_graph);
   2021   if (number_of_instructions > inlining_budget_) {
   2022     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
   2023              << " will not be inlined because the outer method has reached"
   2024              << " its instruction budget limit. " << number_of_instructions;
   2025     return;
   2026   }
   2027 
   2028   CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item);
   2029   HInliner inliner(callee_graph,
   2030                    outermost_graph_,
   2031                    codegen_,
   2032                    outer_compilation_unit_,
   2033                    dex_compilation_unit,
   2034                    compiler_driver_,
   2035                    handles_,
   2036                    inline_stats_,
   2037                    total_number_of_dex_registers_ + accessor.RegistersSize(),
   2038                    total_number_of_instructions_ + number_of_instructions,
   2039                    this,
   2040                    depth_ + 1);
   2041   inliner.Run();
   2042 }
   2043 
   2044 static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti,
   2045                                       bool declared_can_be_null,
   2046                                       HInstruction* actual_obj)
   2047     REQUIRES_SHARED(Locks::mutator_lock_) {
   2048   if (declared_can_be_null && !actual_obj->CanBeNull()) {
   2049     return true;
   2050   }
   2051 
   2052   ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
   2053   return (actual_rti.IsExact() && !declared_rti.IsExact()) ||
   2054           declared_rti.IsStrictSupertypeOf(actual_rti);
   2055 }
   2056 
   2057 ReferenceTypeInfo HInliner::GetClassRTI(ObjPtr<mirror::Class> klass) {
   2058   return ReferenceTypePropagation::IsAdmissible(klass)
   2059       ? ReferenceTypeInfo::Create(handles_->NewHandle(klass))
   2060       : graph_->GetInexactObjectRti();
   2061 }
   2062 
   2063 bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
   2064   // If this is an instance call, test whether the type of the `this` argument
   2065   // is more specific than the class which declares the method.
   2066   if (!resolved_method->IsStatic()) {
   2067     if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()),
   2068                                   /* declared_can_be_null */ false,
   2069                                   invoke_instruction->InputAt(0u))) {
   2070       return true;
   2071     }
   2072   }
   2073 
   2074   // Iterate over the list of parameter types and test whether any of the
   2075   // actual inputs has a more specific reference type than the type declared in
   2076   // the signature.
   2077   const DexFile::TypeList* param_list = resolved_method->GetParameterTypeList();
   2078   for (size_t param_idx = 0,
   2079               input_idx = resolved_method->IsStatic() ? 0 : 1,
   2080               e = (param_list == nullptr ? 0 : param_list->Size());
   2081        param_idx < e;
   2082        ++param_idx, ++input_idx) {
   2083     HInstruction* input = invoke_instruction->InputAt(input_idx);
   2084     if (input->GetType() == DataType::Type::kReference) {
   2085       ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex(
   2086           param_list->GetTypeItem(param_idx).type_idx_);
   2087       if (IsReferenceTypeRefinement(GetClassRTI(param_cls),
   2088                                     /* declared_can_be_null */ true,
   2089                                     input)) {
   2090         return true;
   2091       }
   2092     }
   2093   }
   2094 
   2095   return false;
   2096 }
   2097 
   2098 bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction,
   2099                                       HInstruction* return_replacement) {
   2100   // Check the integrity of reference types and run another type propagation if needed.
   2101   if (return_replacement != nullptr) {
   2102     if (return_replacement->GetType() == DataType::Type::kReference) {
   2103       // Test if the return type is a refinement of the declared return type.
   2104       if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(),
   2105                                     /* declared_can_be_null */ true,
   2106                                     return_replacement)) {
   2107         return true;
   2108       } else if (return_replacement->IsInstanceFieldGet()) {
   2109         HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet();
   2110         ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2111         if (field_get->GetFieldInfo().GetField() ==
   2112               class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0)) {
   2113           return true;
   2114         }
   2115       }
   2116     } else if (return_replacement->IsInstanceOf()) {
   2117       // Inlining InstanceOf into an If may put a tighter bound on reference types.
   2118       return true;
   2119     }
   2120   }
   2121 
   2122   return false;
   2123 }
   2124 
   2125 void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
   2126                                         HInstruction* return_replacement) {
   2127   if (return_replacement != nullptr) {
   2128     if (return_replacement->GetType() == DataType::Type::kReference) {
   2129       if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
   2130         // Make sure that we have a valid type for the return. We may get an invalid one when
   2131         // we inline invokes with multiple branches and create a Phi for the result.
   2132         // TODO: we could be more precise by merging the phi inputs but that requires
   2133         // some functionality from the reference type propagation.
   2134         DCHECK(return_replacement->IsPhi());
   2135         ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType();
   2136         return_replacement->SetReferenceTypeInfo(GetClassRTI(cls));
   2137       }
   2138     }
   2139   }
   2140 }
   2141 
   2142 }  // namespace art
   2143