Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "instruction_simplifier_shared.h"
     18 
     19 #include "mirror/array-inl.h"
     20 
     21 namespace art {
     22 
     23 namespace {
     24 
     25 bool TrySimpleMultiplyAccumulatePatterns(HMul* mul,
     26                                          HBinaryOperation* input_binop,
     27                                          HInstruction* input_other) {
     28   DCHECK(DataType::IsIntOrLongType(mul->GetType()));
     29   DCHECK(input_binop->IsAdd() || input_binop->IsSub());
     30   DCHECK_NE(input_binop, input_other);
     31   if (!input_binop->HasOnlyOneNonEnvironmentUse()) {
     32     return false;
     33   }
     34 
     35   // Try to interpret patterns like
     36   //    a * (b <+/-> 1)
     37   // as
     38   //    (a * b) <+/-> a
     39   HInstruction* input_a = input_other;
     40   HInstruction* input_b = nullptr;  // Set to a non-null value if we found a pattern to optimize.
     41   HInstruction::InstructionKind op_kind;
     42 
     43   if (input_binop->IsAdd()) {
     44     if ((input_binop->GetConstantRight() != nullptr) && input_binop->GetConstantRight()->IsOne()) {
     45       // Interpret
     46       //    a * (b + 1)
     47       // as
     48       //    (a * b) + a
     49       input_b = input_binop->GetLeastConstantLeft();
     50       op_kind = HInstruction::kAdd;
     51     }
     52   } else {
     53     DCHECK(input_binop->IsSub());
     54     if (input_binop->GetRight()->IsConstant() &&
     55         input_binop->GetRight()->AsConstant()->IsMinusOne()) {
     56       // Interpret
     57       //    a * (b - (-1))
     58       // as
     59       //    a + (a * b)
     60       input_b = input_binop->GetLeft();
     61       op_kind = HInstruction::kAdd;
     62     } else if (input_binop->GetLeft()->IsConstant() &&
     63                input_binop->GetLeft()->AsConstant()->IsOne()) {
     64       // Interpret
     65       //    a * (1 - b)
     66       // as
     67       //    a - (a * b)
     68       input_b = input_binop->GetRight();
     69       op_kind = HInstruction::kSub;
     70     }
     71   }
     72 
     73   if (input_b == nullptr) {
     74     // We did not find a pattern we can optimize.
     75     return false;
     76   }
     77 
     78   ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
     79   HMultiplyAccumulate* mulacc = new (allocator) HMultiplyAccumulate(
     80       mul->GetType(), op_kind, input_a, input_a, input_b, mul->GetDexPc());
     81 
     82   mul->GetBlock()->ReplaceAndRemoveInstructionWith(mul, mulacc);
     83   input_binop->GetBlock()->RemoveInstruction(input_binop);
     84 
     85   return true;
     86 }
     87 
     88 }  // namespace
     89 
     90 bool TryCombineMultiplyAccumulate(HMul* mul, InstructionSet isa) {
     91   DataType::Type type = mul->GetType();
     92   switch (isa) {
     93     case InstructionSet::kArm:
     94     case InstructionSet::kThumb2:
     95       if (type != DataType::Type::kInt32) {
     96         return false;
     97       }
     98       break;
     99     case InstructionSet::kArm64:
    100       if (!DataType::IsIntOrLongType(type)) {
    101         return false;
    102       }
    103       break;
    104     default:
    105       return false;
    106   }
    107 
    108   ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
    109 
    110   if (mul->HasOnlyOneNonEnvironmentUse()) {
    111     HInstruction* use = mul->GetUses().front().GetUser();
    112     if (use->IsAdd() || use->IsSub()) {
    113       // Replace code looking like
    114       //    MUL tmp, x, y
    115       //    SUB dst, acc, tmp
    116       // with
    117       //    MULSUB dst, acc, x, y
    118       // Note that we do not want to (unconditionally) perform the merge when the
    119       // multiplication has multiple uses and it can be merged in all of them.
    120       // Multiple uses could happen on the same control-flow path, and we would
    121       // then increase the amount of work. In the future we could try to evaluate
    122       // whether all uses are on different control-flow paths (using dominance and
    123       // reverse-dominance information) and only perform the merge when they are.
    124       HInstruction* accumulator = nullptr;
    125       HBinaryOperation* binop = use->AsBinaryOperation();
    126       HInstruction* binop_left = binop->GetLeft();
    127       HInstruction* binop_right = binop->GetRight();
    128       // Be careful after GVN. This should not happen since the `HMul` has only
    129       // one use.
    130       DCHECK_NE(binop_left, binop_right);
    131       if (binop_right == mul) {
    132         accumulator = binop_left;
    133       } else if (use->IsAdd()) {
    134         DCHECK_EQ(binop_left, mul);
    135         accumulator = binop_right;
    136       }
    137 
    138       if (accumulator != nullptr) {
    139         HMultiplyAccumulate* mulacc =
    140             new (allocator) HMultiplyAccumulate(type,
    141                                                 binop->GetKind(),
    142                                                 accumulator,
    143                                                 mul->GetLeft(),
    144                                                 mul->GetRight());
    145 
    146         binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
    147         DCHECK(!mul->HasUses());
    148         mul->GetBlock()->RemoveInstruction(mul);
    149         return true;
    150       }
    151     } else if (use->IsNeg() && isa != InstructionSet::kArm) {
    152       HMultiplyAccumulate* mulacc =
    153           new (allocator) HMultiplyAccumulate(type,
    154                                               HInstruction::kSub,
    155                                               mul->GetBlock()->GetGraph()->GetConstant(type, 0),
    156                                               mul->GetLeft(),
    157                                               mul->GetRight());
    158 
    159       use->GetBlock()->ReplaceAndRemoveInstructionWith(use, mulacc);
    160       DCHECK(!mul->HasUses());
    161       mul->GetBlock()->RemoveInstruction(mul);
    162       return true;
    163     }
    164   }
    165 
    166   // Use multiply accumulate instruction for a few simple patterns.
    167   // We prefer not applying the following transformations if the left and
    168   // right inputs perform the same operation.
    169   // We rely on GVN having squashed the inputs if appropriate. However the
    170   // results are still correct even if that did not happen.
    171   if (mul->GetLeft() == mul->GetRight()) {
    172     return false;
    173   }
    174 
    175   HInstruction* left = mul->GetLeft();
    176   HInstruction* right = mul->GetRight();
    177   if ((right->IsAdd() || right->IsSub()) &&
    178       TrySimpleMultiplyAccumulatePatterns(mul, right->AsBinaryOperation(), left)) {
    179     return true;
    180   }
    181   if ((left->IsAdd() || left->IsSub()) &&
    182       TrySimpleMultiplyAccumulatePatterns(mul, left->AsBinaryOperation(), right)) {
    183     return true;
    184   }
    185   return false;
    186 }
    187 
    188 
    189 bool TryMergeNegatedInput(HBinaryOperation* op) {
    190   DCHECK(op->IsAnd() || op->IsOr() || op->IsXor()) << op->DebugName();
    191   HInstruction* left = op->GetLeft();
    192   HInstruction* right = op->GetRight();
    193 
    194   // Only consider the case where there is exactly one Not, with 2 Not's De
    195   // Morgan's laws should be applied instead.
    196   if (left->IsNot() ^ right->IsNot()) {
    197     HInstruction* hnot = (left->IsNot() ? left : right);
    198     HInstruction* hother = (left->IsNot() ? right : left);
    199 
    200     // Only do the simplification if the Not has only one use and can thus be
    201     // safely removed. Even though ARM64 negated bitwise operations do not have
    202     // an immediate variant (only register), we still do the simplification when
    203     // `hother` is a constant, because it removes an instruction if the constant
    204     // cannot be encoded as an immediate:
    205     //   mov r0, #large_constant
    206     //   neg r2, r1
    207     //   and r0, r0, r2
    208     // becomes:
    209     //   mov r0, #large_constant
    210     //   bic r0, r0, r1
    211     if (hnot->HasOnlyOneNonEnvironmentUse()) {
    212       // Replace code looking like
    213       //    NOT tmp, mask
    214       //    AND dst, src, tmp   (respectively ORR, EOR)
    215       // with
    216       //    BIC dst, src, mask  (respectively ORN, EON)
    217       HInstruction* src = hnot->AsNot()->GetInput();
    218 
    219       HBitwiseNegatedRight* neg_op = new (hnot->GetBlock()->GetGraph()->GetAllocator())
    220           HBitwiseNegatedRight(op->GetType(), op->GetKind(), hother, src, op->GetDexPc());
    221 
    222       op->GetBlock()->ReplaceAndRemoveInstructionWith(op, neg_op);
    223       hnot->GetBlock()->RemoveInstruction(hnot);
    224       return true;
    225     }
    226   }
    227 
    228   return false;
    229 }
    230 
    231 
    232 bool TryExtractArrayAccessAddress(HInstruction* access,
    233                                   HInstruction* array,
    234                                   HInstruction* index,
    235                                   size_t data_offset) {
    236   if (index->IsConstant() ||
    237       (index->IsBoundsCheck() && index->AsBoundsCheck()->GetIndex()->IsConstant())) {
    238     // When the index is a constant all the addressing can be fitted in the
    239     // memory access instruction, so do not split the access.
    240     return false;
    241   }
    242   if (access->IsArraySet() &&
    243       access->AsArraySet()->GetValue()->GetType() == DataType::Type::kReference) {
    244     // The access may require a runtime call or the original array pointer.
    245     return false;
    246   }
    247   if (kEmitCompilerReadBarrier &&
    248       access->IsArrayGet() &&
    249       access->GetType() == DataType::Type::kReference) {
    250     // For object arrays, the read barrier instrumentation requires
    251     // the original array pointer.
    252     // TODO: This can be relaxed for Baker CC.
    253     return false;
    254   }
    255 
    256   // Proceed to extract the base address computation.
    257   HGraph* graph = access->GetBlock()->GetGraph();
    258   ArenaAllocator* allocator = graph->GetAllocator();
    259 
    260   HIntConstant* offset = graph->GetIntConstant(data_offset);
    261   HIntermediateAddress* address = new (allocator) HIntermediateAddress(array, offset, kNoDexPc);
    262   // TODO: Is it ok to not have this on the intermediate address?
    263   // address->SetReferenceTypeInfo(array->GetReferenceTypeInfo());
    264   access->GetBlock()->InsertInstructionBefore(address, access);
    265   access->ReplaceInput(address, 0);
    266   // Both instructions must depend on GC to prevent any instruction that can
    267   // trigger GC to be inserted between the two.
    268   access->AddSideEffects(SideEffects::DependsOnGC());
    269   DCHECK(address->GetSideEffects().Includes(SideEffects::DependsOnGC()));
    270   DCHECK(access->GetSideEffects().Includes(SideEffects::DependsOnGC()));
    271   // TODO: Code generation for HArrayGet and HArraySet will check whether the input address
    272   // is an HIntermediateAddress and generate appropriate code.
    273   // We would like to replace the `HArrayGet` and `HArraySet` with custom instructions (maybe
    274   // `HArm64Load` and `HArm64Store`,`HArmLoad` and `HArmStore`). We defer these changes
    275   // because these new instructions would not bring any advantages yet.
    276   // Also see the comments in
    277   // `InstructionCodeGeneratorARMVIXL::VisitArrayGet()`
    278   // `InstructionCodeGeneratorARMVIXL::VisitArraySet()`
    279   // `InstructionCodeGeneratorARM64::VisitArrayGet()`
    280   // `InstructionCodeGeneratorARM64::VisitArraySet()`.
    281   return true;
    282 }
    283 
    284 bool TryExtractVecArrayAccessAddress(HVecMemoryOperation* access, HInstruction* index) {
    285   if (index->IsConstant()) {
    286     // If index is constant the whole address calculation often can be done by LDR/STR themselves.
    287     // TODO: Treat the case with not-embedable constant.
    288     return false;
    289   }
    290 
    291   HGraph* graph = access->GetBlock()->GetGraph();
    292   ArenaAllocator* allocator = graph->GetAllocator();
    293   DataType::Type packed_type = access->GetPackedType();
    294   uint32_t data_offset = mirror::Array::DataOffset(
    295       DataType::Size(packed_type)).Uint32Value();
    296   size_t component_shift = DataType::SizeShift(packed_type);
    297 
    298   bool is_extracting_beneficial = false;
    299   // It is beneficial to extract index intermediate address only if there are at least 2 users.
    300   for (const HUseListNode<HInstruction*>& use : index->GetUses()) {
    301     HInstruction* user = use.GetUser();
    302     if (user->IsVecMemoryOperation() && user != access) {
    303       HVecMemoryOperation* another_access = user->AsVecMemoryOperation();
    304       DataType::Type another_packed_type = another_access->GetPackedType();
    305       uint32_t another_data_offset = mirror::Array::DataOffset(
    306           DataType::Size(another_packed_type)).Uint32Value();
    307       size_t another_component_shift = DataType::SizeShift(another_packed_type);
    308       if (another_data_offset == data_offset && another_component_shift == component_shift) {
    309         is_extracting_beneficial = true;
    310         break;
    311       }
    312     } else if (user->IsIntermediateAddressIndex()) {
    313       HIntermediateAddressIndex* another_access = user->AsIntermediateAddressIndex();
    314       uint32_t another_data_offset = another_access->GetOffset()->AsIntConstant()->GetValue();
    315       size_t another_component_shift = another_access->GetShift()->AsIntConstant()->GetValue();
    316       if (another_data_offset == data_offset && another_component_shift == component_shift) {
    317         is_extracting_beneficial = true;
    318         break;
    319       }
    320     }
    321   }
    322 
    323   if (!is_extracting_beneficial) {
    324     return false;
    325   }
    326 
    327   // Proceed to extract the index + data_offset address computation.
    328   HIntConstant* offset = graph->GetIntConstant(data_offset);
    329   HIntConstant* shift = graph->GetIntConstant(component_shift);
    330   HIntermediateAddressIndex* address =
    331       new (allocator) HIntermediateAddressIndex(index, offset, shift, kNoDexPc);
    332 
    333   access->GetBlock()->InsertInstructionBefore(address, access);
    334   access->ReplaceInput(address, 1);
    335 
    336   return true;
    337 }
    338 
    339 }  // namespace art
    340