1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "concurrent_copying.h" 18 19 #include "art_field-inl.h" 20 #include "base/enums.h" 21 #include "base/file_utils.h" 22 #include "base/histogram-inl.h" 23 #include "base/quasi_atomic.h" 24 #include "base/stl_util.h" 25 #include "base/systrace.h" 26 #include "debugger.h" 27 #include "gc/accounting/atomic_stack.h" 28 #include "gc/accounting/heap_bitmap-inl.h" 29 #include "gc/accounting/mod_union_table-inl.h" 30 #include "gc/accounting/read_barrier_table.h" 31 #include "gc/accounting/space_bitmap-inl.h" 32 #include "gc/gc_pause_listener.h" 33 #include "gc/reference_processor.h" 34 #include "gc/space/image_space.h" 35 #include "gc/space/space-inl.h" 36 #include "gc/verification.h" 37 #include "image-inl.h" 38 #include "intern_table.h" 39 #include "mirror/class-inl.h" 40 #include "mirror/object-inl.h" 41 #include "mirror/object-refvisitor-inl.h" 42 #include "scoped_thread_state_change-inl.h" 43 #include "thread-inl.h" 44 #include "thread_list.h" 45 #include "well_known_classes.h" 46 47 namespace art { 48 namespace gc { 49 namespace collector { 50 51 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB; 52 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod 53 // union table. Disabled since it does not seem to help the pause much. 54 static constexpr bool kFilterModUnionCards = kIsDebugBuild; 55 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any that occur during 56 // ConcurrentCopying::Scan. May be used to diagnose possibly unnecessary read barriers. 57 // Only enabled for kIsDebugBuild to avoid performance hit. 58 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild; 59 // Slow path mark stack size, increase this if the stack is getting full and it is causing 60 // performance problems. 61 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB; 62 // Verify that there are no missing card marks. 63 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild; 64 65 ConcurrentCopying::ConcurrentCopying(Heap* heap, 66 const std::string& name_prefix, 67 bool measure_read_barrier_slow_path) 68 : GarbageCollector(heap, 69 name_prefix + (name_prefix.empty() ? "" : " ") + 70 "concurrent copying"), 71 region_space_(nullptr), gc_barrier_(new Barrier(0)), 72 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack", 73 kDefaultGcMarkStackSize, 74 kDefaultGcMarkStackSize)), 75 rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack", 76 kReadBarrierMarkStackSize, 77 kReadBarrierMarkStackSize)), 78 rb_mark_bit_stack_full_(false), 79 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock), 80 thread_running_gc_(nullptr), 81 is_marking_(false), 82 is_using_read_barrier_entrypoints_(false), 83 is_active_(false), 84 is_asserting_to_space_invariant_(false), 85 region_space_bitmap_(nullptr), 86 heap_mark_bitmap_(nullptr), 87 live_stack_freeze_size_(0), 88 from_space_num_objects_at_first_pause_(0), 89 from_space_num_bytes_at_first_pause_(0), 90 mark_stack_mode_(kMarkStackModeOff), 91 weak_ref_access_enabled_(true), 92 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock), 93 measure_read_barrier_slow_path_(measure_read_barrier_slow_path), 94 mark_from_read_barrier_measurements_(false), 95 rb_slow_path_ns_(0), 96 rb_slow_path_count_(0), 97 rb_slow_path_count_gc_(0), 98 rb_slow_path_histogram_lock_("Read barrier histogram lock"), 99 rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32), 100 rb_slow_path_count_total_(0), 101 rb_slow_path_count_gc_total_(0), 102 rb_table_(heap_->GetReadBarrierTable()), 103 force_evacuate_all_(false), 104 gc_grays_immune_objects_(false), 105 immune_gray_stack_lock_("concurrent copying immune gray stack lock", 106 kMarkSweepMarkStackLock) { 107 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize, 108 "The region space size and the read barrier table region size must match"); 109 Thread* self = Thread::Current(); 110 { 111 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 112 // Cache this so that we won't have to lock heap_bitmap_lock_ in 113 // Mark() which could cause a nested lock on heap_bitmap_lock_ 114 // when GC causes a RB while doing GC or a lock order violation 115 // (class_linker_lock_ and heap_bitmap_lock_). 116 heap_mark_bitmap_ = heap->GetMarkBitmap(); 117 } 118 { 119 MutexLock mu(self, mark_stack_lock_); 120 for (size_t i = 0; i < kMarkStackPoolSize; ++i) { 121 accounting::AtomicStack<mirror::Object>* mark_stack = 122 accounting::AtomicStack<mirror::Object>::Create( 123 "thread local mark stack", kMarkStackSize, kMarkStackSize); 124 pooled_mark_stacks_.push_back(mark_stack); 125 } 126 } 127 } 128 129 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field, 130 bool do_atomic_update) { 131 if (UNLIKELY(do_atomic_update)) { 132 // Used to mark the referent in DelayReferenceReferent in transaction mode. 133 mirror::Object* from_ref = field->AsMirrorPtr(); 134 if (from_ref == nullptr) { 135 return; 136 } 137 mirror::Object* to_ref = Mark(from_ref); 138 if (from_ref != to_ref) { 139 do { 140 if (field->AsMirrorPtr() != from_ref) { 141 // Concurrently overwritten by a mutator. 142 break; 143 } 144 } while (!field->CasWeakRelaxed(from_ref, to_ref)); 145 } 146 } else { 147 // Used for preserving soft references, should be OK to not have a CAS here since there should be 148 // no other threads which can trigger read barriers on the same referent during reference 149 // processing. 150 field->Assign(Mark(field->AsMirrorPtr())); 151 } 152 } 153 154 ConcurrentCopying::~ConcurrentCopying() { 155 STLDeleteElements(&pooled_mark_stacks_); 156 } 157 158 void ConcurrentCopying::RunPhases() { 159 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier); 160 CHECK(!is_active_); 161 is_active_ = true; 162 Thread* self = Thread::Current(); 163 thread_running_gc_ = self; 164 Locks::mutator_lock_->AssertNotHeld(self); 165 { 166 ReaderMutexLock mu(self, *Locks::mutator_lock_); 167 InitializePhase(); 168 } 169 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { 170 // Switch to read barrier mark entrypoints before we gray the objects. This is required in case 171 // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887). 172 ActivateReadBarrierEntrypoints(); 173 // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in 174 // the pause. 175 ReaderMutexLock mu(self, *Locks::mutator_lock_); 176 GrayAllDirtyImmuneObjects(); 177 } 178 FlipThreadRoots(); 179 { 180 ReaderMutexLock mu(self, *Locks::mutator_lock_); 181 MarkingPhase(); 182 } 183 // Verify no from space refs. This causes a pause. 184 if (kEnableNoFromSpaceRefsVerification) { 185 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings()); 186 ScopedPause pause(this, false); 187 CheckEmptyMarkStack(); 188 if (kVerboseMode) { 189 LOG(INFO) << "Verifying no from-space refs"; 190 } 191 VerifyNoFromSpaceReferences(); 192 if (kVerboseMode) { 193 LOG(INFO) << "Done verifying no from-space refs"; 194 } 195 CheckEmptyMarkStack(); 196 } 197 { 198 ReaderMutexLock mu(self, *Locks::mutator_lock_); 199 ReclaimPhase(); 200 } 201 FinishPhase(); 202 CHECK(is_active_); 203 is_active_ = false; 204 thread_running_gc_ = nullptr; 205 } 206 207 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure { 208 public: 209 explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying) 210 : concurrent_copying_(concurrent_copying) {} 211 212 void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 213 // Note: self is not necessarily equal to thread since thread may be suspended. 214 Thread* self = Thread::Current(); 215 DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 216 << thread->GetState() << " thread " << thread << " self " << self; 217 // Switch to the read barrier entrypoints. 218 thread->SetReadBarrierEntrypoints(); 219 // If thread is a running mutator, then act on behalf of the garbage collector. 220 // See the code in ThreadList::RunCheckpoint. 221 concurrent_copying_->GetBarrier().Pass(self); 222 } 223 224 private: 225 ConcurrentCopying* const concurrent_copying_; 226 }; 227 228 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure { 229 public: 230 explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying) 231 : concurrent_copying_(concurrent_copying) {} 232 233 void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) { 234 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint() 235 // to avoid a race with ThreadList::Register(). 236 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_); 237 concurrent_copying_->is_using_read_barrier_entrypoints_ = true; 238 } 239 240 private: 241 ConcurrentCopying* const concurrent_copying_; 242 }; 243 244 void ConcurrentCopying::ActivateReadBarrierEntrypoints() { 245 Thread* const self = Thread::Current(); 246 ActivateReadBarrierEntrypointsCheckpoint checkpoint(this); 247 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 248 gc_barrier_->Init(self, 0); 249 ActivateReadBarrierEntrypointsCallback callback(this); 250 const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback); 251 // If there are no threads to wait which implies that all the checkpoint functions are finished, 252 // then no need to release the mutator lock. 253 if (barrier_count == 0) { 254 return; 255 } 256 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 257 gc_barrier_->Increment(self, barrier_count); 258 } 259 260 void ConcurrentCopying::BindBitmaps() { 261 Thread* self = Thread::Current(); 262 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 263 // Mark all of the spaces we never collect as immune. 264 for (const auto& space : heap_->GetContinuousSpaces()) { 265 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect || 266 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) { 267 CHECK(space->IsZygoteSpace() || space->IsImageSpace()); 268 immune_spaces_.AddSpace(space); 269 } else if (space == region_space_) { 270 // It is OK to clear the bitmap with mutators running since the only place it is read is 271 // VisitObjects which has exclusion with CC. 272 region_space_bitmap_ = region_space_->GetMarkBitmap(); 273 region_space_bitmap_->Clear(); 274 } 275 } 276 } 277 278 void ConcurrentCopying::InitializePhase() { 279 TimingLogger::ScopedTiming split("InitializePhase", GetTimings()); 280 if (kVerboseMode) { 281 LOG(INFO) << "GC InitializePhase"; 282 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-" 283 << reinterpret_cast<void*>(region_space_->Limit()); 284 } 285 CheckEmptyMarkStack(); 286 if (kIsDebugBuild) { 287 MutexLock mu(Thread::Current(), mark_stack_lock_); 288 CHECK(false_gray_stack_.empty()); 289 } 290 291 rb_mark_bit_stack_full_ = false; 292 mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_; 293 if (measure_read_barrier_slow_path_) { 294 rb_slow_path_ns_.StoreRelaxed(0); 295 rb_slow_path_count_.StoreRelaxed(0); 296 rb_slow_path_count_gc_.StoreRelaxed(0); 297 } 298 299 immune_spaces_.Reset(); 300 bytes_moved_.StoreRelaxed(0); 301 objects_moved_.StoreRelaxed(0); 302 GcCause gc_cause = GetCurrentIteration()->GetGcCause(); 303 if (gc_cause == kGcCauseExplicit || 304 gc_cause == kGcCauseCollectorTransition || 305 GetCurrentIteration()->GetClearSoftReferences()) { 306 force_evacuate_all_ = true; 307 } else { 308 force_evacuate_all_ = false; 309 } 310 if (kUseBakerReadBarrier) { 311 updated_all_immune_objects_.StoreRelaxed(false); 312 // GC may gray immune objects in the thread flip. 313 gc_grays_immune_objects_ = true; 314 if (kIsDebugBuild) { 315 MutexLock mu(Thread::Current(), immune_gray_stack_lock_); 316 DCHECK(immune_gray_stack_.empty()); 317 } 318 } 319 BindBitmaps(); 320 if (kVerboseMode) { 321 LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_; 322 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin() 323 << "-" << immune_spaces_.GetLargestImmuneRegion().End(); 324 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { 325 LOG(INFO) << "Immune space: " << *space; 326 } 327 LOG(INFO) << "GC end of InitializePhase"; 328 } 329 // Mark all of the zygote large objects without graying them. 330 MarkZygoteLargeObjects(); 331 } 332 333 // Used to switch the thread roots of a thread from from-space refs to to-space refs. 334 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor { 335 public: 336 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab) 337 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) { 338 } 339 340 virtual void Run(Thread* thread) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 341 // Note: self is not necessarily equal to thread since thread may be suspended. 342 Thread* self = Thread::Current(); 343 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 344 << thread->GetState() << " thread " << thread << " self " << self; 345 thread->SetIsGcMarkingAndUpdateEntrypoints(true); 346 if (use_tlab_ && thread->HasTlab()) { 347 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) { 348 // This must come before the revoke. 349 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated(); 350 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread); 351 reinterpret_cast<Atomic<size_t>*>( 352 &concurrent_copying_->from_space_num_objects_at_first_pause_)-> 353 FetchAndAddSequentiallyConsistent(thread_local_objects); 354 } else { 355 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread); 356 } 357 } 358 if (kUseThreadLocalAllocationStack) { 359 thread->RevokeThreadLocalAllocationStack(); 360 } 361 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 362 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots 363 // only. 364 thread->VisitRoots(this, kVisitRootFlagAllRoots); 365 concurrent_copying_->GetBarrier().Pass(self); 366 } 367 368 void VisitRoots(mirror::Object*** roots, 369 size_t count, 370 const RootInfo& info ATTRIBUTE_UNUSED) 371 REQUIRES_SHARED(Locks::mutator_lock_) { 372 for (size_t i = 0; i < count; ++i) { 373 mirror::Object** root = roots[i]; 374 mirror::Object* ref = *root; 375 if (ref != nullptr) { 376 mirror::Object* to_ref = concurrent_copying_->Mark(ref); 377 if (to_ref != ref) { 378 *root = to_ref; 379 } 380 } 381 } 382 } 383 384 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, 385 size_t count, 386 const RootInfo& info ATTRIBUTE_UNUSED) 387 REQUIRES_SHARED(Locks::mutator_lock_) { 388 for (size_t i = 0; i < count; ++i) { 389 mirror::CompressedReference<mirror::Object>* const root = roots[i]; 390 if (!root->IsNull()) { 391 mirror::Object* ref = root->AsMirrorPtr(); 392 mirror::Object* to_ref = concurrent_copying_->Mark(ref); 393 if (to_ref != ref) { 394 root->Assign(to_ref); 395 } 396 } 397 } 398 } 399 400 private: 401 ConcurrentCopying* const concurrent_copying_; 402 const bool use_tlab_; 403 }; 404 405 // Called back from Runtime::FlipThreadRoots() during a pause. 406 class ConcurrentCopying::FlipCallback : public Closure { 407 public: 408 explicit FlipCallback(ConcurrentCopying* concurrent_copying) 409 : concurrent_copying_(concurrent_copying) { 410 } 411 412 virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) { 413 ConcurrentCopying* cc = concurrent_copying_; 414 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings()); 415 // Note: self is not necessarily equal to thread since thread may be suspended. 416 Thread* self = Thread::Current(); 417 if (kVerifyNoMissingCardMarks) { 418 cc->VerifyNoMissingCardMarks(); 419 } 420 CHECK_EQ(thread, self); 421 Locks::mutator_lock_->AssertExclusiveHeld(self); 422 { 423 TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings()); 424 cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_); 425 } 426 cc->SwapStacks(); 427 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) { 428 cc->RecordLiveStackFreezeSize(self); 429 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated(); 430 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated(); 431 } 432 cc->is_marking_ = true; 433 cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal); 434 if (kIsDebugBuild) { 435 cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared(); 436 } 437 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) { 438 CHECK(Runtime::Current()->IsAotCompiler()); 439 TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings()); 440 Runtime::Current()->VisitTransactionRoots(cc); 441 } 442 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { 443 cc->GrayAllNewlyDirtyImmuneObjects(); 444 if (kIsDebugBuild) { 445 // Check that all non-gray immune objects only reference immune objects. 446 cc->VerifyGrayImmuneObjects(); 447 } 448 } 449 // May be null during runtime creation, in this case leave java_lang_Object null. 450 // This is safe since single threaded behavior should mean FillDummyObject does not 451 // happen when java_lang_Object_ is null. 452 if (WellKnownClasses::java_lang_Object != nullptr) { 453 cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark( 454 WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr())); 455 } else { 456 cc->java_lang_Object_ = nullptr; 457 } 458 } 459 460 private: 461 ConcurrentCopying* const concurrent_copying_; 462 }; 463 464 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor { 465 public: 466 explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector) 467 : collector_(collector) {} 468 469 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */) 470 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) 471 REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 472 CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset), 473 obj, offset); 474 } 475 476 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const 477 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 478 CHECK(klass->IsTypeOfReferenceClass()); 479 CheckReference(ref->GetReferent<kWithoutReadBarrier>(), 480 ref, 481 mirror::Reference::ReferentOffset()); 482 } 483 484 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 485 ALWAYS_INLINE 486 REQUIRES_SHARED(Locks::mutator_lock_) { 487 if (!root->IsNull()) { 488 VisitRoot(root); 489 } 490 } 491 492 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 493 ALWAYS_INLINE 494 REQUIRES_SHARED(Locks::mutator_lock_) { 495 CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0)); 496 } 497 498 private: 499 ConcurrentCopying* const collector_; 500 501 void CheckReference(ObjPtr<mirror::Object> ref, 502 ObjPtr<mirror::Object> holder, 503 MemberOffset offset) const 504 REQUIRES_SHARED(Locks::mutator_lock_) { 505 if (ref != nullptr) { 506 if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) { 507 // Not immune, must be a zygote large object. 508 CHECK(Runtime::Current()->GetHeap()->GetLargeObjectsSpace()->IsZygoteLargeObject( 509 Thread::Current(), ref.Ptr())) 510 << "Non gray object references non immune, non zygote large object "<< ref << " " 511 << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " " 512 << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value(); 513 } else { 514 // Make sure the large object class is immune since we will never scan the large object. 515 CHECK(collector_->immune_spaces_.ContainsObject( 516 ref->GetClass<kVerifyNone, kWithoutReadBarrier>())); 517 } 518 } 519 } 520 }; 521 522 void ConcurrentCopying::VerifyGrayImmuneObjects() { 523 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); 524 for (auto& space : immune_spaces_.GetSpaces()) { 525 DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); 526 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 527 VerifyGrayImmuneObjectsVisitor visitor(this); 528 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()), 529 reinterpret_cast<uintptr_t>(space->Limit()), 530 [&visitor](mirror::Object* obj) 531 REQUIRES_SHARED(Locks::mutator_lock_) { 532 // If an object is not gray, it should only have references to things in the immune spaces. 533 if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) { 534 obj->VisitReferences</*kVisitNativeRoots*/true, 535 kDefaultVerifyFlags, 536 kWithoutReadBarrier>(visitor, visitor); 537 } 538 }); 539 } 540 } 541 542 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor { 543 public: 544 VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder) 545 : cc_(cc), 546 holder_(holder) {} 547 548 void operator()(ObjPtr<mirror::Object> obj, 549 MemberOffset offset, 550 bool is_static ATTRIBUTE_UNUSED) const 551 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 552 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) { 553 CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>( 554 offset), offset.Uint32Value()); 555 } 556 } 557 void operator()(ObjPtr<mirror::Class> klass, 558 ObjPtr<mirror::Reference> ref) const 559 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 560 CHECK(klass->IsTypeOfReferenceClass()); 561 this->operator()(ref, mirror::Reference::ReferentOffset(), false); 562 } 563 564 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 565 REQUIRES_SHARED(Locks::mutator_lock_) { 566 if (!root->IsNull()) { 567 VisitRoot(root); 568 } 569 } 570 571 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 572 REQUIRES_SHARED(Locks::mutator_lock_) { 573 CheckReference(root->AsMirrorPtr()); 574 } 575 576 void CheckReference(mirror::Object* ref, int32_t offset = -1) const 577 REQUIRES_SHARED(Locks::mutator_lock_) { 578 CHECK(ref == nullptr || !cc_->region_space_->IsInNewlyAllocatedRegion(ref)) 579 << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object " 580 << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset; 581 } 582 583 private: 584 ConcurrentCopying* const cc_; 585 ObjPtr<mirror::Object> const holder_; 586 }; 587 588 void ConcurrentCopying::VerifyNoMissingCardMarks() { 589 auto visitor = [&](mirror::Object* obj) 590 REQUIRES(Locks::mutator_lock_) 591 REQUIRES(!mark_stack_lock_) { 592 // Objects not on dirty or aged cards should never have references to newly allocated regions. 593 if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) { 594 VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder*/ obj); 595 obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>( 596 internal_visitor, internal_visitor); 597 } 598 }; 599 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); 600 region_space_->Walk(visitor); 601 { 602 ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_); 603 heap_->GetLiveBitmap()->Visit(visitor); 604 } 605 } 606 607 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots. 608 void ConcurrentCopying::FlipThreadRoots() { 609 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings()); 610 if (kVerboseMode) { 611 LOG(INFO) << "time=" << region_space_->Time(); 612 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO)); 613 } 614 Thread* self = Thread::Current(); 615 Locks::mutator_lock_->AssertNotHeld(self); 616 gc_barrier_->Init(self, 0); 617 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_); 618 FlipCallback flip_callback(this); 619 620 size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots( 621 &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener()); 622 623 { 624 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 625 gc_barrier_->Increment(self, barrier_count); 626 } 627 is_asserting_to_space_invariant_ = true; 628 QuasiAtomic::ThreadFenceForConstructor(); 629 if (kVerboseMode) { 630 LOG(INFO) << "time=" << region_space_->Time(); 631 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO)); 632 LOG(INFO) << "GC end of FlipThreadRoots"; 633 } 634 } 635 636 template <bool kConcurrent> 637 class ConcurrentCopying::GrayImmuneObjectVisitor { 638 public: 639 explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {} 640 641 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) { 642 if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::WhiteState()) { 643 if (kConcurrent) { 644 Locks::mutator_lock_->AssertSharedHeld(self_); 645 obj->AtomicSetReadBarrierState(ReadBarrier::WhiteState(), ReadBarrier::GrayState()); 646 // Mod union table VisitObjects may visit the same object multiple times so we can't check 647 // the result of the atomic set. 648 } else { 649 Locks::mutator_lock_->AssertExclusiveHeld(self_); 650 obj->SetReadBarrierState(ReadBarrier::GrayState()); 651 } 652 } 653 } 654 655 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { 656 reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj); 657 } 658 659 private: 660 Thread* const self_; 661 }; 662 663 void ConcurrentCopying::GrayAllDirtyImmuneObjects() { 664 TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings()); 665 accounting::CardTable* const card_table = heap_->GetCardTable(); 666 Thread* const self = Thread::Current(); 667 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent */ true>; 668 VisitorType visitor(self); 669 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 670 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { 671 DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); 672 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); 673 // Mark all the objects on dirty cards since these may point to objects in other space. 674 // Once these are marked, the GC will eventually clear them later. 675 // Table is non null for boot image and zygote spaces. It is only null for application image 676 // spaces. 677 if (table != nullptr) { 678 table->ProcessCards(); 679 table->VisitObjects(&VisitorType::Callback, &visitor); 680 // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here, 681 // there would be races with the mutator marking new cards. 682 } else { 683 // Keep cards aged if we don't have a mod-union table since we may need to scan them in future 684 // GCs. This case is for app images. 685 card_table->ModifyCardsAtomic( 686 space->Begin(), 687 space->End(), 688 [](uint8_t card) { 689 return (card != gc::accounting::CardTable::kCardClean) 690 ? gc::accounting::CardTable::kCardAged 691 : card; 692 }, 693 /* card modified visitor */ VoidFunctor()); 694 card_table->Scan</* kClearCard */ false>(space->GetMarkBitmap(), 695 space->Begin(), 696 space->End(), 697 visitor, 698 gc::accounting::CardTable::kCardAged); 699 } 700 } 701 } 702 703 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() { 704 TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings()); 705 accounting::CardTable* const card_table = heap_->GetCardTable(); 706 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent */ false>; 707 Thread* const self = Thread::Current(); 708 VisitorType visitor(self); 709 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 710 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { 711 DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); 712 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); 713 714 // Don't need to scan aged cards since we did these before the pause. Note that scanning cards 715 // also handles the mod-union table cards. 716 card_table->Scan</* kClearCard */ false>(space->GetMarkBitmap(), 717 space->Begin(), 718 space->End(), 719 visitor, 720 gc::accounting::CardTable::kCardDirty); 721 if (table != nullptr) { 722 // Add the cards to the mod-union table so that we can clear cards to save RAM. 723 table->ProcessCards(); 724 TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings()); 725 card_table->ClearCardRange(space->Begin(), 726 AlignDown(space->End(), accounting::CardTable::kCardSize)); 727 } 728 } 729 // Since all of the objects that may point to other spaces are gray, we can avoid all the read 730 // barriers in the immune spaces. 731 updated_all_immune_objects_.StoreRelaxed(true); 732 } 733 734 void ConcurrentCopying::SwapStacks() { 735 heap_->SwapStacks(); 736 } 737 738 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) { 739 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 740 live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); 741 } 742 743 // Used to visit objects in the immune spaces. 744 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) { 745 DCHECK(obj != nullptr); 746 DCHECK(immune_spaces_.ContainsObject(obj)); 747 // Update the fields without graying it or pushing it onto the mark stack. 748 Scan(obj); 749 } 750 751 class ConcurrentCopying::ImmuneSpaceScanObjVisitor { 752 public: 753 explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc) 754 : collector_(cc) {} 755 756 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) { 757 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { 758 // Only need to scan gray objects. 759 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) { 760 collector_->ScanImmuneObject(obj); 761 // Done scanning the object, go back to white. 762 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(), 763 ReadBarrier::WhiteState()); 764 CHECK(success) 765 << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS"); 766 } 767 } else { 768 collector_->ScanImmuneObject(obj); 769 } 770 } 771 772 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { 773 reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj); 774 } 775 776 private: 777 ConcurrentCopying* const collector_; 778 }; 779 780 // Concurrently mark roots that are guarded by read barriers and process the mark stack. 781 void ConcurrentCopying::MarkingPhase() { 782 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings()); 783 if (kVerboseMode) { 784 LOG(INFO) << "GC MarkingPhase"; 785 } 786 Thread* self = Thread::Current(); 787 if (kIsDebugBuild) { 788 MutexLock mu(self, *Locks::thread_list_lock_); 789 CHECK(weak_ref_access_enabled_); 790 } 791 792 // Scan immune spaces. 793 // Update all the fields in the immune spaces first without graying the objects so that we 794 // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some 795 // of the objects. 796 if (kUseBakerReadBarrier) { 797 gc_grays_immune_objects_ = false; 798 } 799 { 800 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings()); 801 for (auto& space : immune_spaces_.GetSpaces()) { 802 DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); 803 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 804 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); 805 ImmuneSpaceScanObjVisitor visitor(this); 806 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) { 807 table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor); 808 } else { 809 // TODO: Scan only the aged cards. 810 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()), 811 reinterpret_cast<uintptr_t>(space->Limit()), 812 visitor); 813 } 814 } 815 } 816 if (kUseBakerReadBarrier) { 817 // This release fence makes the field updates in the above loop visible before allowing mutator 818 // getting access to immune objects without graying it first. 819 updated_all_immune_objects_.StoreRelease(true); 820 // Now whiten immune objects concurrently accessed and grayed by mutators. We can't do this in 821 // the above loop because we would incorrectly disable the read barrier by whitening an object 822 // which may point to an unscanned, white object, breaking the to-space invariant. 823 // 824 // Make sure no mutators are in the middle of marking an immune object before whitening immune 825 // objects. 826 IssueEmptyCheckpoint(); 827 MutexLock mu(Thread::Current(), immune_gray_stack_lock_); 828 if (kVerboseMode) { 829 LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size(); 830 } 831 for (mirror::Object* obj : immune_gray_stack_) { 832 DCHECK(obj->GetReadBarrierState() == ReadBarrier::GrayState()); 833 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(), 834 ReadBarrier::WhiteState()); 835 DCHECK(success); 836 } 837 immune_gray_stack_.clear(); 838 } 839 840 { 841 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings()); 842 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots); 843 } 844 { 845 // TODO: don't visit the transaction roots if it's not active. 846 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings()); 847 Runtime::Current()->VisitNonThreadRoots(this); 848 } 849 850 { 851 TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings()); 852 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The 853 // primary reasons are the fact that we need to use a checkpoint to process thread-local mark 854 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock 855 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we 856 // reach the point where we process weak references, we can avoid using a lock when accessing 857 // the GC mark stack, which makes mark stack processing more efficient. 858 859 // Process the mark stack once in the thread local stack mode. This marks most of the live 860 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system 861 // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray 862 // objects and push refs on the mark stack. 863 ProcessMarkStack(); 864 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks 865 // for the last time before transitioning to the shared mark stack mode, which would process new 866 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack() 867 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's 868 // important to do these together in a single checkpoint so that we can ensure that mutators 869 // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and 870 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on 871 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref 872 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones. 873 SwitchToSharedMarkStackMode(); 874 CHECK(!self->GetWeakRefAccessEnabled()); 875 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here 876 // (which may be non-empty if there were refs found on thread-local mark stacks during the above 877 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators 878 // (via read barriers) have no way to produce any more refs to process. Marking converges once 879 // before we process weak refs below. 880 ProcessMarkStack(); 881 CheckEmptyMarkStack(); 882 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a 883 // lock from this point on. 884 SwitchToGcExclusiveMarkStackMode(); 885 CheckEmptyMarkStack(); 886 if (kVerboseMode) { 887 LOG(INFO) << "ProcessReferences"; 888 } 889 // Process weak references. This may produce new refs to process and have them processed via 890 // ProcessMarkStack (in the GC exclusive mark stack mode). 891 ProcessReferences(self); 892 CheckEmptyMarkStack(); 893 if (kVerboseMode) { 894 LOG(INFO) << "SweepSystemWeaks"; 895 } 896 SweepSystemWeaks(self); 897 if (kVerboseMode) { 898 LOG(INFO) << "SweepSystemWeaks done"; 899 } 900 // Process the mark stack here one last time because the above SweepSystemWeaks() call may have 901 // marked some objects (strings alive) as hash_set::Erase() can call the hash function for 902 // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks(). 903 ProcessMarkStack(); 904 CheckEmptyMarkStack(); 905 // Re-enable weak ref accesses. 906 ReenableWeakRefAccess(self); 907 // Free data for class loaders that we unloaded. 908 Runtime::Current()->GetClassLinker()->CleanupClassLoaders(); 909 // Marking is done. Disable marking. 910 DisableMarking(); 911 if (kUseBakerReadBarrier) { 912 ProcessFalseGrayStack(); 913 } 914 CheckEmptyMarkStack(); 915 } 916 917 if (kIsDebugBuild) { 918 MutexLock mu(self, *Locks::thread_list_lock_); 919 CHECK(weak_ref_access_enabled_); 920 } 921 if (kVerboseMode) { 922 LOG(INFO) << "GC end of MarkingPhase"; 923 } 924 } 925 926 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) { 927 if (kVerboseMode) { 928 LOG(INFO) << "ReenableWeakRefAccess"; 929 } 930 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access. 931 { 932 MutexLock mu(self, *Locks::thread_list_lock_); 933 weak_ref_access_enabled_ = true; // This is for new threads. 934 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); 935 for (Thread* thread : thread_list) { 936 thread->SetWeakRefAccessEnabled(true); 937 } 938 } 939 // Unblock blocking threads. 940 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self); 941 Runtime::Current()->BroadcastForNewSystemWeaks(); 942 } 943 944 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure { 945 public: 946 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying) 947 : concurrent_copying_(concurrent_copying) { 948 } 949 950 void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 951 // Note: self is not necessarily equal to thread since thread may be suspended. 952 Thread* self = Thread::Current(); 953 DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 954 << thread->GetState() << " thread " << thread << " self " << self; 955 // Disable the thread-local is_gc_marking flag. 956 // Note a thread that has just started right before this checkpoint may have already this flag 957 // set to false, which is ok. 958 thread->SetIsGcMarkingAndUpdateEntrypoints(false); 959 // If thread is a running mutator, then act on behalf of the garbage collector. 960 // See the code in ThreadList::RunCheckpoint. 961 concurrent_copying_->GetBarrier().Pass(self); 962 } 963 964 private: 965 ConcurrentCopying* const concurrent_copying_; 966 }; 967 968 class ConcurrentCopying::DisableMarkingCallback : public Closure { 969 public: 970 explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying) 971 : concurrent_copying_(concurrent_copying) { 972 } 973 974 void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) { 975 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint() 976 // to avoid a race with ThreadList::Register(). 977 CHECK(concurrent_copying_->is_marking_); 978 concurrent_copying_->is_marking_ = false; 979 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { 980 CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_); 981 concurrent_copying_->is_using_read_barrier_entrypoints_ = false; 982 } else { 983 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_); 984 } 985 } 986 987 private: 988 ConcurrentCopying* const concurrent_copying_; 989 }; 990 991 void ConcurrentCopying::IssueDisableMarkingCheckpoint() { 992 Thread* self = Thread::Current(); 993 DisableMarkingCheckpoint check_point(this); 994 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 995 gc_barrier_->Init(self, 0); 996 DisableMarkingCallback dmc(this); 997 size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc); 998 // If there are no threads to wait which implies that all the checkpoint functions are finished, 999 // then no need to release the mutator lock. 1000 if (barrier_count == 0) { 1001 return; 1002 } 1003 // Release locks then wait for all mutator threads to pass the barrier. 1004 Locks::mutator_lock_->SharedUnlock(self); 1005 { 1006 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 1007 gc_barrier_->Increment(self, barrier_count); 1008 } 1009 Locks::mutator_lock_->SharedLock(self); 1010 } 1011 1012 void ConcurrentCopying::DisableMarking() { 1013 // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and 1014 // to ensure no threads are still in the middle of a read barrier which may have a from-space ref 1015 // cached in a local variable. 1016 IssueDisableMarkingCheckpoint(); 1017 if (kUseTableLookupReadBarrier) { 1018 heap_->rb_table_->ClearAll(); 1019 DCHECK(heap_->rb_table_->IsAllCleared()); 1020 } 1021 is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1); 1022 mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff); 1023 } 1024 1025 void ConcurrentCopying::PushOntoFalseGrayStack(mirror::Object* ref) { 1026 CHECK(kUseBakerReadBarrier); 1027 DCHECK(ref != nullptr); 1028 MutexLock mu(Thread::Current(), mark_stack_lock_); 1029 false_gray_stack_.push_back(ref); 1030 } 1031 1032 void ConcurrentCopying::ProcessFalseGrayStack() { 1033 CHECK(kUseBakerReadBarrier); 1034 // Change the objects on the false gray stack from gray to white. 1035 MutexLock mu(Thread::Current(), mark_stack_lock_); 1036 for (mirror::Object* obj : false_gray_stack_) { 1037 DCHECK(IsMarked(obj)); 1038 // The object could be white here if a thread got preempted after a success at the 1039 // AtomicSetReadBarrierState in Mark(), GC started marking through it (but not finished so 1040 // still gray), and the thread ran to register it onto the false gray stack. 1041 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) { 1042 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(), 1043 ReadBarrier::WhiteState()); 1044 DCHECK(success); 1045 } 1046 } 1047 false_gray_stack_.clear(); 1048 } 1049 1050 void ConcurrentCopying::IssueEmptyCheckpoint() { 1051 Thread* self = Thread::Current(); 1052 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 1053 // Release locks then wait for all mutator threads to pass the barrier. 1054 Locks::mutator_lock_->SharedUnlock(self); 1055 thread_list->RunEmptyCheckpoint(); 1056 Locks::mutator_lock_->SharedLock(self); 1057 } 1058 1059 void ConcurrentCopying::ExpandGcMarkStack() { 1060 DCHECK(gc_mark_stack_->IsFull()); 1061 const size_t new_size = gc_mark_stack_->Capacity() * 2; 1062 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(), 1063 gc_mark_stack_->End()); 1064 gc_mark_stack_->Resize(new_size); 1065 for (auto& ref : temp) { 1066 gc_mark_stack_->PushBack(ref.AsMirrorPtr()); 1067 } 1068 DCHECK(!gc_mark_stack_->IsFull()); 1069 } 1070 1071 void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) { 1072 CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0) 1073 << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref); 1074 Thread* self = Thread::Current(); // TODO: pass self as an argument from call sites? 1075 CHECK(thread_running_gc_ != nullptr); 1076 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed(); 1077 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) { 1078 if (LIKELY(self == thread_running_gc_)) { 1079 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack. 1080 CHECK(self->GetThreadLocalMarkStack() == nullptr); 1081 if (UNLIKELY(gc_mark_stack_->IsFull())) { 1082 ExpandGcMarkStack(); 1083 } 1084 gc_mark_stack_->PushBack(to_ref); 1085 } else { 1086 // Otherwise, use a thread-local mark stack. 1087 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack(); 1088 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) { 1089 MutexLock mu(self, mark_stack_lock_); 1090 // Get a new thread local mark stack. 1091 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack; 1092 if (!pooled_mark_stacks_.empty()) { 1093 // Use a pooled mark stack. 1094 new_tl_mark_stack = pooled_mark_stacks_.back(); 1095 pooled_mark_stacks_.pop_back(); 1096 } else { 1097 // None pooled. Create a new one. 1098 new_tl_mark_stack = 1099 accounting::AtomicStack<mirror::Object>::Create( 1100 "thread local mark stack", 4 * KB, 4 * KB); 1101 } 1102 DCHECK(new_tl_mark_stack != nullptr); 1103 DCHECK(new_tl_mark_stack->IsEmpty()); 1104 new_tl_mark_stack->PushBack(to_ref); 1105 self->SetThreadLocalMarkStack(new_tl_mark_stack); 1106 if (tl_mark_stack != nullptr) { 1107 // Store the old full stack into a vector. 1108 revoked_mark_stacks_.push_back(tl_mark_stack); 1109 } 1110 } else { 1111 tl_mark_stack->PushBack(to_ref); 1112 } 1113 } 1114 } else if (mark_stack_mode == kMarkStackModeShared) { 1115 // Access the shared GC mark stack with a lock. 1116 MutexLock mu(self, mark_stack_lock_); 1117 if (UNLIKELY(gc_mark_stack_->IsFull())) { 1118 ExpandGcMarkStack(); 1119 } 1120 gc_mark_stack_->PushBack(to_ref); 1121 } else { 1122 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode), 1123 static_cast<uint32_t>(kMarkStackModeGcExclusive)) 1124 << "ref=" << to_ref 1125 << " self->gc_marking=" << self->GetIsGcMarking() 1126 << " cc->is_marking=" << is_marking_; 1127 CHECK(self == thread_running_gc_) 1128 << "Only GC-running thread should access the mark stack " 1129 << "in the GC exclusive mark stack mode"; 1130 // Access the GC mark stack without a lock. 1131 if (UNLIKELY(gc_mark_stack_->IsFull())) { 1132 ExpandGcMarkStack(); 1133 } 1134 gc_mark_stack_->PushBack(to_ref); 1135 } 1136 } 1137 1138 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() { 1139 return heap_->allocation_stack_.get(); 1140 } 1141 1142 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() { 1143 return heap_->live_stack_.get(); 1144 } 1145 1146 // The following visitors are used to verify that there's no references to the from-space left after 1147 // marking. 1148 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor { 1149 public: 1150 explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector) 1151 : collector_(collector) {} 1152 1153 void operator()(mirror::Object* ref, 1154 MemberOffset offset = MemberOffset(0), 1155 mirror::Object* holder = nullptr) const 1156 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 1157 if (ref == nullptr) { 1158 // OK. 1159 return; 1160 } 1161 collector_->AssertToSpaceInvariant(holder, offset, ref); 1162 if (kUseBakerReadBarrier) { 1163 CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState()) 1164 << "Ref " << ref << " " << ref->PrettyTypeOf() 1165 << " has non-white rb_state "; 1166 } 1167 } 1168 1169 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED) 1170 OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 1171 DCHECK(root != nullptr); 1172 operator()(root); 1173 } 1174 1175 private: 1176 ConcurrentCopying* const collector_; 1177 }; 1178 1179 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor { 1180 public: 1181 explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector) 1182 : collector_(collector) {} 1183 1184 void operator()(ObjPtr<mirror::Object> obj, 1185 MemberOffset offset, 1186 bool is_static ATTRIBUTE_UNUSED) const 1187 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 1188 mirror::Object* ref = 1189 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset); 1190 VerifyNoFromSpaceRefsVisitor visitor(collector_); 1191 visitor(ref, offset, obj.Ptr()); 1192 } 1193 void operator()(ObjPtr<mirror::Class> klass, 1194 ObjPtr<mirror::Reference> ref) const 1195 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 1196 CHECK(klass->IsTypeOfReferenceClass()); 1197 this->operator()(ref, mirror::Reference::ReferentOffset(), false); 1198 } 1199 1200 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 1201 REQUIRES_SHARED(Locks::mutator_lock_) { 1202 if (!root->IsNull()) { 1203 VisitRoot(root); 1204 } 1205 } 1206 1207 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 1208 REQUIRES_SHARED(Locks::mutator_lock_) { 1209 VerifyNoFromSpaceRefsVisitor visitor(collector_); 1210 visitor(root->AsMirrorPtr()); 1211 } 1212 1213 private: 1214 ConcurrentCopying* const collector_; 1215 }; 1216 1217 // Verify there's no from-space references left after the marking phase. 1218 void ConcurrentCopying::VerifyNoFromSpaceReferences() { 1219 Thread* self = Thread::Current(); 1220 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self)); 1221 // Verify all threads have is_gc_marking to be false 1222 { 1223 MutexLock mu(self, *Locks::thread_list_lock_); 1224 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); 1225 for (Thread* thread : thread_list) { 1226 CHECK(!thread->GetIsGcMarking()); 1227 } 1228 } 1229 1230 auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj) 1231 REQUIRES_SHARED(Locks::mutator_lock_) { 1232 CHECK(obj != nullptr); 1233 space::RegionSpace* region_space = RegionSpace(); 1234 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space"; 1235 VerifyNoFromSpaceRefsFieldVisitor visitor(this); 1236 obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>( 1237 visitor, 1238 visitor); 1239 if (kUseBakerReadBarrier) { 1240 CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::WhiteState()) 1241 << "obj=" << obj << " non-white rb_state " << obj->GetReadBarrierState(); 1242 } 1243 }; 1244 // Roots. 1245 { 1246 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 1247 VerifyNoFromSpaceRefsVisitor ref_visitor(this); 1248 Runtime::Current()->VisitRoots(&ref_visitor); 1249 } 1250 // The to-space. 1251 region_space_->WalkToSpace(verify_no_from_space_refs_visitor); 1252 // Non-moving spaces. 1253 { 1254 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 1255 heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor); 1256 } 1257 // The alloc stack. 1258 { 1259 VerifyNoFromSpaceRefsVisitor ref_visitor(this); 1260 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End(); 1261 it < end; ++it) { 1262 mirror::Object* const obj = it->AsMirrorPtr(); 1263 if (obj != nullptr && obj->GetClass() != nullptr) { 1264 // TODO: need to call this only if obj is alive? 1265 ref_visitor(obj); 1266 verify_no_from_space_refs_visitor(obj); 1267 } 1268 } 1269 } 1270 // TODO: LOS. But only refs in LOS are classes. 1271 } 1272 1273 // The following visitors are used to assert the to-space invariant. 1274 class ConcurrentCopying::AssertToSpaceInvariantRefsVisitor { 1275 public: 1276 explicit AssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector) 1277 : collector_(collector) {} 1278 1279 void operator()(mirror::Object* ref) const 1280 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 1281 if (ref == nullptr) { 1282 // OK. 1283 return; 1284 } 1285 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref); 1286 } 1287 1288 private: 1289 ConcurrentCopying* const collector_; 1290 }; 1291 1292 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor { 1293 public: 1294 explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector) 1295 : collector_(collector) {} 1296 1297 void operator()(ObjPtr<mirror::Object> obj, 1298 MemberOffset offset, 1299 bool is_static ATTRIBUTE_UNUSED) const 1300 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 1301 mirror::Object* ref = 1302 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset); 1303 AssertToSpaceInvariantRefsVisitor visitor(collector_); 1304 visitor(ref); 1305 } 1306 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const 1307 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 1308 CHECK(klass->IsTypeOfReferenceClass()); 1309 } 1310 1311 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 1312 REQUIRES_SHARED(Locks::mutator_lock_) { 1313 if (!root->IsNull()) { 1314 VisitRoot(root); 1315 } 1316 } 1317 1318 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 1319 REQUIRES_SHARED(Locks::mutator_lock_) { 1320 AssertToSpaceInvariantRefsVisitor visitor(collector_); 1321 visitor(root->AsMirrorPtr()); 1322 } 1323 1324 private: 1325 ConcurrentCopying* const collector_; 1326 }; 1327 1328 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure { 1329 public: 1330 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying, 1331 bool disable_weak_ref_access) 1332 : concurrent_copying_(concurrent_copying), 1333 disable_weak_ref_access_(disable_weak_ref_access) { 1334 } 1335 1336 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 1337 // Note: self is not necessarily equal to thread since thread may be suspended. 1338 Thread* self = Thread::Current(); 1339 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 1340 << thread->GetState() << " thread " << thread << " self " << self; 1341 // Revoke thread local mark stacks. 1342 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack(); 1343 if (tl_mark_stack != nullptr) { 1344 MutexLock mu(self, concurrent_copying_->mark_stack_lock_); 1345 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack); 1346 thread->SetThreadLocalMarkStack(nullptr); 1347 } 1348 // Disable weak ref access. 1349 if (disable_weak_ref_access_) { 1350 thread->SetWeakRefAccessEnabled(false); 1351 } 1352 // If thread is a running mutator, then act on behalf of the garbage collector. 1353 // See the code in ThreadList::RunCheckpoint. 1354 concurrent_copying_->GetBarrier().Pass(self); 1355 } 1356 1357 private: 1358 ConcurrentCopying* const concurrent_copying_; 1359 const bool disable_weak_ref_access_; 1360 }; 1361 1362 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access, 1363 Closure* checkpoint_callback) { 1364 Thread* self = Thread::Current(); 1365 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access); 1366 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 1367 gc_barrier_->Init(self, 0); 1368 size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback); 1369 // If there are no threads to wait which implys that all the checkpoint functions are finished, 1370 // then no need to release the mutator lock. 1371 if (barrier_count == 0) { 1372 return; 1373 } 1374 Locks::mutator_lock_->SharedUnlock(self); 1375 { 1376 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 1377 gc_barrier_->Increment(self, barrier_count); 1378 } 1379 Locks::mutator_lock_->SharedLock(self); 1380 } 1381 1382 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) { 1383 Thread* self = Thread::Current(); 1384 CHECK_EQ(self, thread); 1385 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack(); 1386 if (tl_mark_stack != nullptr) { 1387 CHECK(is_marking_); 1388 MutexLock mu(self, mark_stack_lock_); 1389 revoked_mark_stacks_.push_back(tl_mark_stack); 1390 thread->SetThreadLocalMarkStack(nullptr); 1391 } 1392 } 1393 1394 void ConcurrentCopying::ProcessMarkStack() { 1395 if (kVerboseMode) { 1396 LOG(INFO) << "ProcessMarkStack. "; 1397 } 1398 bool empty_prev = false; 1399 while (true) { 1400 bool empty = ProcessMarkStackOnce(); 1401 if (empty_prev && empty) { 1402 // Saw empty mark stack for a second time, done. 1403 break; 1404 } 1405 empty_prev = empty; 1406 } 1407 } 1408 1409 bool ConcurrentCopying::ProcessMarkStackOnce() { 1410 Thread* self = Thread::Current(); 1411 CHECK(thread_running_gc_ != nullptr); 1412 CHECK(self == thread_running_gc_); 1413 CHECK(self->GetThreadLocalMarkStack() == nullptr); 1414 size_t count = 0; 1415 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed(); 1416 if (mark_stack_mode == kMarkStackModeThreadLocal) { 1417 // Process the thread-local mark stacks and the GC mark stack. 1418 count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false, 1419 /* checkpoint_callback */ nullptr); 1420 while (!gc_mark_stack_->IsEmpty()) { 1421 mirror::Object* to_ref = gc_mark_stack_->PopBack(); 1422 ProcessMarkStackRef(to_ref); 1423 ++count; 1424 } 1425 gc_mark_stack_->Reset(); 1426 } else if (mark_stack_mode == kMarkStackModeShared) { 1427 // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read 1428 // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is 1429 // disabled at this point. 1430 IssueEmptyCheckpoint(); 1431 // Process the shared GC mark stack with a lock. 1432 { 1433 MutexLock mu(self, mark_stack_lock_); 1434 CHECK(revoked_mark_stacks_.empty()); 1435 } 1436 while (true) { 1437 std::vector<mirror::Object*> refs; 1438 { 1439 // Copy refs with lock. Note the number of refs should be small. 1440 MutexLock mu(self, mark_stack_lock_); 1441 if (gc_mark_stack_->IsEmpty()) { 1442 break; 1443 } 1444 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin(); 1445 p != gc_mark_stack_->End(); ++p) { 1446 refs.push_back(p->AsMirrorPtr()); 1447 } 1448 gc_mark_stack_->Reset(); 1449 } 1450 for (mirror::Object* ref : refs) { 1451 ProcessMarkStackRef(ref); 1452 ++count; 1453 } 1454 } 1455 } else { 1456 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode), 1457 static_cast<uint32_t>(kMarkStackModeGcExclusive)); 1458 { 1459 MutexLock mu(self, mark_stack_lock_); 1460 CHECK(revoked_mark_stacks_.empty()); 1461 } 1462 // Process the GC mark stack in the exclusive mode. No need to take the lock. 1463 while (!gc_mark_stack_->IsEmpty()) { 1464 mirror::Object* to_ref = gc_mark_stack_->PopBack(); 1465 ProcessMarkStackRef(to_ref); 1466 ++count; 1467 } 1468 gc_mark_stack_->Reset(); 1469 } 1470 1471 // Return true if the stack was empty. 1472 return count == 0; 1473 } 1474 1475 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access, 1476 Closure* checkpoint_callback) { 1477 // Run a checkpoint to collect all thread local mark stacks and iterate over them all. 1478 RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback); 1479 size_t count = 0; 1480 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks; 1481 { 1482 MutexLock mu(Thread::Current(), mark_stack_lock_); 1483 // Make a copy of the mark stack vector. 1484 mark_stacks = revoked_mark_stacks_; 1485 revoked_mark_stacks_.clear(); 1486 } 1487 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) { 1488 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) { 1489 mirror::Object* to_ref = p->AsMirrorPtr(); 1490 ProcessMarkStackRef(to_ref); 1491 ++count; 1492 } 1493 { 1494 MutexLock mu(Thread::Current(), mark_stack_lock_); 1495 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) { 1496 // The pool has enough. Delete it. 1497 delete mark_stack; 1498 } else { 1499 // Otherwise, put it into the pool for later reuse. 1500 mark_stack->Reset(); 1501 pooled_mark_stacks_.push_back(mark_stack); 1502 } 1503 } 1504 } 1505 return count; 1506 } 1507 1508 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) { 1509 DCHECK(!region_space_->IsInFromSpace(to_ref)); 1510 if (kUseBakerReadBarrier) { 1511 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState()) 1512 << " " << to_ref << " " << to_ref->GetReadBarrierState() 1513 << " is_marked=" << IsMarked(to_ref); 1514 } 1515 bool add_to_live_bytes = false; 1516 if (region_space_->IsInUnevacFromSpace(to_ref)) { 1517 // Mark the bitmap only in the GC thread here so that we don't need a CAS. 1518 if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) { 1519 // It may be already marked if we accidentally pushed the same object twice due to the racy 1520 // bitmap read in MarkUnevacFromSpaceRegion. 1521 Scan(to_ref); 1522 // Only add to the live bytes if the object was not already marked. 1523 add_to_live_bytes = true; 1524 } 1525 } else { 1526 Scan(to_ref); 1527 } 1528 if (kUseBakerReadBarrier) { 1529 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState()) 1530 << " " << to_ref << " " << to_ref->GetReadBarrierState() 1531 << " is_marked=" << IsMarked(to_ref); 1532 } 1533 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER 1534 mirror::Object* referent = nullptr; 1535 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() && 1536 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr && 1537 !IsInToSpace(referent)))) { 1538 // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We 1539 // will change it to white later in ReferenceQueue::DequeuePendingReference(). 1540 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr) 1541 << "Left unenqueued ref gray " << to_ref; 1542 } else { 1543 // We may occasionally leave a reference white in the queue if its referent happens to be 1544 // concurrently marked after the Scan() call above has enqueued the Reference, in which case the 1545 // above IsInToSpace() evaluates to true and we change the color from gray to white here in this 1546 // else block. 1547 if (kUseBakerReadBarrier) { 1548 bool success = to_ref->AtomicSetReadBarrierState</*kCasRelease*/true>( 1549 ReadBarrier::GrayState(), 1550 ReadBarrier::WhiteState()); 1551 DCHECK(success) << "Must succeed as we won the race."; 1552 } 1553 } 1554 #else 1555 DCHECK(!kUseBakerReadBarrier); 1556 #endif 1557 1558 if (add_to_live_bytes) { 1559 // Add to the live bytes per unevacuated from-space. Note this code is always run by the 1560 // GC-running thread (no synchronization required). 1561 DCHECK(region_space_bitmap_->Test(to_ref)); 1562 size_t obj_size = to_ref->SizeOf<kDefaultVerifyFlags>(); 1563 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment); 1564 region_space_->AddLiveBytes(to_ref, alloc_size); 1565 } 1566 if (ReadBarrier::kEnableToSpaceInvariantChecks) { 1567 CHECK(to_ref != nullptr); 1568 space::RegionSpace* region_space = RegionSpace(); 1569 CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space"; 1570 AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref); 1571 AssertToSpaceInvariantFieldVisitor visitor(this); 1572 to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>( 1573 visitor, 1574 visitor); 1575 } 1576 } 1577 1578 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure { 1579 public: 1580 explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying) 1581 : concurrent_copying_(concurrent_copying) { 1582 } 1583 1584 void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) { 1585 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint() 1586 // to avoid a deadlock b/31500969. 1587 CHECK(concurrent_copying_->weak_ref_access_enabled_); 1588 concurrent_copying_->weak_ref_access_enabled_ = false; 1589 } 1590 1591 private: 1592 ConcurrentCopying* const concurrent_copying_; 1593 }; 1594 1595 void ConcurrentCopying::SwitchToSharedMarkStackMode() { 1596 Thread* self = Thread::Current(); 1597 CHECK(thread_running_gc_ != nullptr); 1598 CHECK_EQ(self, thread_running_gc_); 1599 CHECK(self->GetThreadLocalMarkStack() == nullptr); 1600 MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed(); 1601 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode), 1602 static_cast<uint32_t>(kMarkStackModeThreadLocal)); 1603 mark_stack_mode_.StoreRelaxed(kMarkStackModeShared); 1604 DisableWeakRefAccessCallback dwrac(this); 1605 // Process the thread local mark stacks one last time after switching to the shared mark stack 1606 // mode and disable weak ref accesses. 1607 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ true, &dwrac); 1608 if (kVerboseMode) { 1609 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access"; 1610 } 1611 } 1612 1613 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() { 1614 Thread* self = Thread::Current(); 1615 CHECK(thread_running_gc_ != nullptr); 1616 CHECK_EQ(self, thread_running_gc_); 1617 CHECK(self->GetThreadLocalMarkStack() == nullptr); 1618 MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed(); 1619 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode), 1620 static_cast<uint32_t>(kMarkStackModeShared)); 1621 mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive); 1622 QuasiAtomic::ThreadFenceForConstructor(); 1623 if (kVerboseMode) { 1624 LOG(INFO) << "Switched to GC exclusive mark stack mode"; 1625 } 1626 } 1627 1628 void ConcurrentCopying::CheckEmptyMarkStack() { 1629 Thread* self = Thread::Current(); 1630 CHECK(thread_running_gc_ != nullptr); 1631 CHECK_EQ(self, thread_running_gc_); 1632 CHECK(self->GetThreadLocalMarkStack() == nullptr); 1633 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed(); 1634 if (mark_stack_mode == kMarkStackModeThreadLocal) { 1635 // Thread-local mark stack mode. 1636 RevokeThreadLocalMarkStacks(false, nullptr); 1637 MutexLock mu(Thread::Current(), mark_stack_lock_); 1638 if (!revoked_mark_stacks_.empty()) { 1639 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) { 1640 while (!mark_stack->IsEmpty()) { 1641 mirror::Object* obj = mark_stack->PopBack(); 1642 if (kUseBakerReadBarrier) { 1643 uint32_t rb_state = obj->GetReadBarrierState(); 1644 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state=" 1645 << rb_state << " is_marked=" << IsMarked(obj); 1646 } else { 1647 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() 1648 << " is_marked=" << IsMarked(obj); 1649 } 1650 } 1651 } 1652 LOG(FATAL) << "mark stack is not empty"; 1653 } 1654 } else { 1655 // Shared, GC-exclusive, or off. 1656 MutexLock mu(Thread::Current(), mark_stack_lock_); 1657 CHECK(gc_mark_stack_->IsEmpty()); 1658 CHECK(revoked_mark_stacks_.empty()); 1659 } 1660 } 1661 1662 void ConcurrentCopying::SweepSystemWeaks(Thread* self) { 1663 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings()); 1664 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 1665 Runtime::Current()->SweepSystemWeaks(this); 1666 } 1667 1668 void ConcurrentCopying::Sweep(bool swap_bitmaps) { 1669 { 1670 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings()); 1671 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 1672 if (kEnableFromSpaceAccountingCheck) { 1673 CHECK_GE(live_stack_freeze_size_, live_stack->Size()); 1674 } 1675 heap_->MarkAllocStackAsLive(live_stack); 1676 live_stack->Reset(); 1677 } 1678 CheckEmptyMarkStack(); 1679 TimingLogger::ScopedTiming split("Sweep", GetTimings()); 1680 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1681 if (space->IsContinuousMemMapAllocSpace()) { 1682 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); 1683 if (space == region_space_ || immune_spaces_.ContainsSpace(space)) { 1684 continue; 1685 } 1686 TimingLogger::ScopedTiming split2( 1687 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings()); 1688 RecordFree(alloc_space->Sweep(swap_bitmaps)); 1689 } 1690 } 1691 SweepLargeObjects(swap_bitmaps); 1692 } 1693 1694 void ConcurrentCopying::MarkZygoteLargeObjects() { 1695 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); 1696 Thread* const self = Thread::Current(); 1697 WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_); 1698 space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace(); 1699 if (los != nullptr) { 1700 // Pick the current live bitmap (mark bitmap if swapped). 1701 accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap(); 1702 accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap(); 1703 // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept. 1704 std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic(); 1705 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first), 1706 reinterpret_cast<uintptr_t>(range.second), 1707 [mark_bitmap, los, self](mirror::Object* obj) 1708 REQUIRES(Locks::heap_bitmap_lock_) 1709 REQUIRES_SHARED(Locks::mutator_lock_) { 1710 if (los->IsZygoteLargeObject(self, obj)) { 1711 mark_bitmap->Set(obj); 1712 } 1713 }); 1714 } 1715 } 1716 1717 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) { 1718 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings()); 1719 if (heap_->GetLargeObjectsSpace() != nullptr) { 1720 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps)); 1721 } 1722 } 1723 1724 void ConcurrentCopying::ReclaimPhase() { 1725 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings()); 1726 if (kVerboseMode) { 1727 LOG(INFO) << "GC ReclaimPhase"; 1728 } 1729 Thread* self = Thread::Current(); 1730 1731 { 1732 // Double-check that the mark stack is empty. 1733 // Note: need to set this after VerifyNoFromSpaceRef(). 1734 is_asserting_to_space_invariant_ = false; 1735 QuasiAtomic::ThreadFenceForConstructor(); 1736 if (kVerboseMode) { 1737 LOG(INFO) << "Issue an empty check point. "; 1738 } 1739 IssueEmptyCheckpoint(); 1740 // Disable the check. 1741 is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0); 1742 if (kUseBakerReadBarrier) { 1743 updated_all_immune_objects_.StoreSequentiallyConsistent(false); 1744 } 1745 CheckEmptyMarkStack(); 1746 } 1747 1748 { 1749 // Record freed objects. 1750 TimingLogger::ScopedTiming split2("RecordFree", GetTimings()); 1751 // Don't include thread-locals that are in the to-space. 1752 const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace(); 1753 const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace(); 1754 const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace(); 1755 const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace(); 1756 uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent(); 1757 cumulative_bytes_moved_.FetchAndAddRelaxed(to_bytes); 1758 uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent(); 1759 cumulative_objects_moved_.FetchAndAddRelaxed(to_objects); 1760 if (kEnableFromSpaceAccountingCheck) { 1761 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects); 1762 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes); 1763 } 1764 CHECK_LE(to_objects, from_objects); 1765 CHECK_LE(to_bytes, from_bytes); 1766 // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below. 1767 uint64_t cleared_bytes; 1768 uint64_t cleared_objects; 1769 { 1770 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings()); 1771 region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects); 1772 // `cleared_bytes` and `cleared_objects` may be greater than the from space equivalents since 1773 // RegionSpace::ClearFromSpace may clear empty unevac regions. 1774 CHECK_GE(cleared_bytes, from_bytes); 1775 CHECK_GE(cleared_objects, from_objects); 1776 } 1777 int64_t freed_bytes = cleared_bytes - to_bytes; 1778 int64_t freed_objects = cleared_objects - to_objects; 1779 if (kVerboseMode) { 1780 LOG(INFO) << "RecordFree:" 1781 << " from_bytes=" << from_bytes << " from_objects=" << from_objects 1782 << " unevac_from_bytes=" << unevac_from_bytes 1783 << " unevac_from_objects=" << unevac_from_objects 1784 << " to_bytes=" << to_bytes << " to_objects=" << to_objects 1785 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects 1786 << " from_space size=" << region_space_->FromSpaceSize() 1787 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize() 1788 << " to_space size=" << region_space_->ToSpaceSize(); 1789 LOG(INFO) << "(before) num_bytes_allocated=" 1790 << heap_->num_bytes_allocated_.LoadSequentiallyConsistent(); 1791 } 1792 RecordFree(ObjectBytePair(freed_objects, freed_bytes)); 1793 if (kVerboseMode) { 1794 LOG(INFO) << "(after) num_bytes_allocated=" 1795 << heap_->num_bytes_allocated_.LoadSequentiallyConsistent(); 1796 } 1797 } 1798 1799 { 1800 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 1801 Sweep(false); 1802 SwapBitmaps(); 1803 heap_->UnBindBitmaps(); 1804 1805 // The bitmap was cleared at the start of the GC, there is nothing we need to do here. 1806 DCHECK(region_space_bitmap_ != nullptr); 1807 region_space_bitmap_ = nullptr; 1808 } 1809 1810 CheckEmptyMarkStack(); 1811 1812 if (kVerboseMode) { 1813 LOG(INFO) << "GC end of ReclaimPhase"; 1814 } 1815 } 1816 1817 std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref, 1818 const char* ref_name, 1819 std::string indent) { 1820 std::ostringstream oss; 1821 oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n'; 1822 if (ref != nullptr) { 1823 if (kUseBakerReadBarrier) { 1824 oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n'; 1825 oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n'; 1826 } 1827 } 1828 if (region_space_->HasAddress(ref)) { 1829 oss << indent << "Region containing " << ref_name << ":" << '\n'; 1830 region_space_->DumpRegionForObject(oss, ref); 1831 if (region_space_bitmap_ != nullptr) { 1832 oss << indent << "region_space_bitmap_->Test(" << ref_name << ")=" 1833 << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha; 1834 } 1835 } 1836 return oss.str(); 1837 } 1838 1839 std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj, 1840 MemberOffset offset, 1841 mirror::Object* ref) { 1842 std::ostringstream oss; 1843 std::string indent = " "; 1844 oss << indent << "Invalid reference: ref=" << ref 1845 << " referenced from: object=" << obj << " offset= " << offset << '\n'; 1846 // Information about `obj`. 1847 oss << DumpReferenceInfo(obj, "obj", indent) << '\n'; 1848 // Information about `ref`. 1849 oss << DumpReferenceInfo(ref, "ref", indent); 1850 return oss.str(); 1851 } 1852 1853 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, 1854 MemberOffset offset, 1855 mirror::Object* ref) { 1856 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_); 1857 if (is_asserting_to_space_invariant_) { 1858 if (region_space_->HasAddress(ref)) { 1859 // Check to-space invariant in region space (moving space). 1860 using RegionType = space::RegionSpace::RegionType; 1861 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref); 1862 if (type == RegionType::kRegionTypeToSpace) { 1863 // OK. 1864 return; 1865 } else if (type == RegionType::kRegionTypeUnevacFromSpace) { 1866 if (!IsMarkedInUnevacFromSpace(ref)) { 1867 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:"; 1868 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref); 1869 } 1870 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref; 1871 } else { 1872 // Not OK: either a from-space ref or a reference in an unused region. 1873 // Do extra logging. 1874 if (type == RegionType::kRegionTypeFromSpace) { 1875 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:"; 1876 } else { 1877 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":"; 1878 } 1879 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref); 1880 if (obj != nullptr) { 1881 LogFromSpaceRefHolder(obj, offset); 1882 } 1883 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); 1884 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:"; 1885 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT)); 1886 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT); 1887 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), true); 1888 LOG(FATAL) << "Invalid reference " << ref 1889 << " referenced from object " << obj << " at offset " << offset; 1890 } 1891 } else { 1892 // Check to-space invariant in non-moving space. 1893 AssertToSpaceInvariantInNonMovingSpace(obj, ref); 1894 } 1895 } 1896 } 1897 1898 class RootPrinter { 1899 public: 1900 RootPrinter() { } 1901 1902 template <class MirrorType> 1903 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root) 1904 REQUIRES_SHARED(Locks::mutator_lock_) { 1905 if (!root->IsNull()) { 1906 VisitRoot(root); 1907 } 1908 } 1909 1910 template <class MirrorType> 1911 void VisitRoot(mirror::Object** root) 1912 REQUIRES_SHARED(Locks::mutator_lock_) { 1913 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root; 1914 } 1915 1916 template <class MirrorType> 1917 void VisitRoot(mirror::CompressedReference<MirrorType>* root) 1918 REQUIRES_SHARED(Locks::mutator_lock_) { 1919 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr(); 1920 } 1921 }; 1922 1923 std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) { 1924 std::ostringstream oss; 1925 std::string indent = " "; 1926 oss << indent << "Invalid GC root: ref=" << ref << '\n'; 1927 // Information about `ref`. 1928 oss << DumpReferenceInfo(ref, "ref", indent); 1929 return oss.str(); 1930 } 1931 1932 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source, 1933 mirror::Object* ref) { 1934 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_); 1935 if (is_asserting_to_space_invariant_) { 1936 if (region_space_->HasAddress(ref)) { 1937 // Check to-space invariant in region space (moving space). 1938 using RegionType = space::RegionSpace::RegionType; 1939 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref); 1940 if (type == RegionType::kRegionTypeToSpace) { 1941 // OK. 1942 return; 1943 } else if (type == RegionType::kRegionTypeUnevacFromSpace) { 1944 if (!IsMarkedInUnevacFromSpace(ref)) { 1945 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:"; 1946 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref); 1947 } 1948 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref; 1949 } else { 1950 // Not OK: either a from-space ref or a reference in an unused region. 1951 // Do extra logging. 1952 if (type == RegionType::kRegionTypeFromSpace) { 1953 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:"; 1954 } else { 1955 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":"; 1956 } 1957 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref); 1958 if (gc_root_source == nullptr) { 1959 // No info. 1960 } else if (gc_root_source->HasArtField()) { 1961 ArtField* field = gc_root_source->GetArtField(); 1962 LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " " 1963 << ArtField::PrettyField(field); 1964 RootPrinter root_printer; 1965 field->VisitRoots(root_printer); 1966 } else if (gc_root_source->HasArtMethod()) { 1967 ArtMethod* method = gc_root_source->GetArtMethod(); 1968 LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " " 1969 << ArtMethod::PrettyMethod(method); 1970 RootPrinter root_printer; 1971 method->VisitRoots(root_printer, kRuntimePointerSize); 1972 } 1973 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); 1974 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:"; 1975 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT)); 1976 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT); 1977 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), true); 1978 LOG(FATAL) << "Invalid reference " << ref; 1979 } 1980 } else { 1981 // Check to-space invariant in non-moving space. 1982 AssertToSpaceInvariantInNonMovingSpace(/* obj */ nullptr, ref); 1983 } 1984 } 1985 } 1986 1987 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) { 1988 if (kUseBakerReadBarrier) { 1989 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf() 1990 << " holder rb_state=" << obj->GetReadBarrierState(); 1991 } else { 1992 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf(); 1993 } 1994 if (region_space_->IsInFromSpace(obj)) { 1995 LOG(INFO) << "holder is in the from-space."; 1996 } else if (region_space_->IsInToSpace(obj)) { 1997 LOG(INFO) << "holder is in the to-space."; 1998 } else if (region_space_->IsInUnevacFromSpace(obj)) { 1999 LOG(INFO) << "holder is in the unevac from-space."; 2000 if (IsMarkedInUnevacFromSpace(obj)) { 2001 LOG(INFO) << "holder is marked in the region space bitmap."; 2002 } else { 2003 LOG(INFO) << "holder is not marked in the region space bitmap."; 2004 } 2005 } else { 2006 // In a non-moving space. 2007 if (immune_spaces_.ContainsObject(obj)) { 2008 LOG(INFO) << "holder is in an immune image or the zygote space."; 2009 } else { 2010 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space."; 2011 accounting::ContinuousSpaceBitmap* mark_bitmap = 2012 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj); 2013 accounting::LargeObjectBitmap* los_bitmap = 2014 heap_mark_bitmap_->GetLargeObjectBitmap(obj); 2015 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range"; 2016 bool is_los = mark_bitmap == nullptr; 2017 if (!is_los && mark_bitmap->Test(obj)) { 2018 LOG(INFO) << "holder is marked in the mark bit map."; 2019 } else if (is_los && los_bitmap->Test(obj)) { 2020 LOG(INFO) << "holder is marked in the los bit map."; 2021 } else { 2022 // If ref is on the allocation stack, then it is considered 2023 // mark/alive (but not necessarily on the live stack.) 2024 if (IsOnAllocStack(obj)) { 2025 LOG(INFO) << "holder is on the alloc stack."; 2026 } else { 2027 LOG(INFO) << "holder is not marked or on the alloc stack."; 2028 } 2029 } 2030 } 2031 } 2032 LOG(INFO) << "offset=" << offset.SizeValue(); 2033 } 2034 2035 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj, 2036 mirror::Object* ref) { 2037 CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref; 2038 // In a non-moving space. Check that the ref is marked. 2039 if (immune_spaces_.ContainsObject(ref)) { 2040 if (kUseBakerReadBarrier) { 2041 // Immune object may not be gray if called from the GC. 2042 if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) { 2043 return; 2044 } 2045 bool updated_all_immune_objects = updated_all_immune_objects_.LoadSequentiallyConsistent(); 2046 CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState()) 2047 << "Unmarked immune space ref. obj=" << obj << " rb_state=" 2048 << (obj != nullptr ? obj->GetReadBarrierState() : 0U) 2049 << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState() 2050 << " updated_all_immune_objects=" << updated_all_immune_objects; 2051 } 2052 } else { 2053 accounting::ContinuousSpaceBitmap* mark_bitmap = 2054 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref); 2055 accounting::LargeObjectBitmap* los_bitmap = 2056 heap_mark_bitmap_->GetLargeObjectBitmap(ref); 2057 bool is_los = mark_bitmap == nullptr; 2058 if ((!is_los && mark_bitmap->Test(ref)) || 2059 (is_los && los_bitmap->Test(ref))) { 2060 // OK. 2061 } else { 2062 // If `ref` is on the allocation stack, then it may not be 2063 // marked live, but considered marked/alive (but not 2064 // necessarily on the live stack). 2065 CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack." 2066 << " obj=" << obj 2067 << " ref=" << ref 2068 << " is_los=" << std::boolalpha << is_los << std::noboolalpha; 2069 } 2070 } 2071 } 2072 2073 // Used to scan ref fields of an object. 2074 class ConcurrentCopying::RefFieldsVisitor { 2075 public: 2076 explicit RefFieldsVisitor(ConcurrentCopying* collector) 2077 : collector_(collector) {} 2078 2079 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) 2080 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) 2081 REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 2082 collector_->Process(obj, offset); 2083 } 2084 2085 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const 2086 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { 2087 CHECK(klass->IsTypeOfReferenceClass()); 2088 collector_->DelayReferenceReferent(klass, ref); 2089 } 2090 2091 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 2092 ALWAYS_INLINE 2093 REQUIRES_SHARED(Locks::mutator_lock_) { 2094 if (!root->IsNull()) { 2095 VisitRoot(root); 2096 } 2097 } 2098 2099 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 2100 ALWAYS_INLINE 2101 REQUIRES_SHARED(Locks::mutator_lock_) { 2102 collector_->MarkRoot</*kGrayImmuneObject*/false>(root); 2103 } 2104 2105 private: 2106 ConcurrentCopying* const collector_; 2107 }; 2108 2109 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) { 2110 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) { 2111 // Avoid all read barriers during visit references to help performance. 2112 // Don't do this in transaction mode because we may read the old value of an field which may 2113 // trigger read barriers. 2114 Thread::Current()->ModifyDebugDisallowReadBarrier(1); 2115 } 2116 DCHECK(!region_space_->IsInFromSpace(to_ref)); 2117 DCHECK_EQ(Thread::Current(), thread_running_gc_); 2118 RefFieldsVisitor visitor(this); 2119 // Disable the read barrier for a performance reason. 2120 to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>( 2121 visitor, visitor); 2122 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) { 2123 Thread::Current()->ModifyDebugDisallowReadBarrier(-1); 2124 } 2125 } 2126 2127 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) { 2128 DCHECK_EQ(Thread::Current(), thread_running_gc_); 2129 mirror::Object* ref = obj->GetFieldObject< 2130 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset); 2131 mirror::Object* to_ref = Mark</*kGrayImmuneObject*/false, /*kFromGCThread*/true>( 2132 ref, 2133 /*holder*/ obj, 2134 offset); 2135 if (to_ref == ref) { 2136 return; 2137 } 2138 // This may fail if the mutator writes to the field at the same time. But it's ok. 2139 mirror::Object* expected_ref = ref; 2140 mirror::Object* new_ref = to_ref; 2141 do { 2142 if (expected_ref != 2143 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) { 2144 // It was updated by the mutator. 2145 break; 2146 } 2147 // Use release CAS to make sure threads reading the reference see contents of copied objects. 2148 } while (!obj->CasFieldWeakReleaseObjectWithoutWriteBarrier<false, false, kVerifyNone>( 2149 offset, 2150 expected_ref, 2151 new_ref)); 2152 } 2153 2154 // Process some roots. 2155 inline void ConcurrentCopying::VisitRoots( 2156 mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) { 2157 for (size_t i = 0; i < count; ++i) { 2158 mirror::Object** root = roots[i]; 2159 mirror::Object* ref = *root; 2160 mirror::Object* to_ref = Mark(ref); 2161 if (to_ref == ref) { 2162 continue; 2163 } 2164 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root); 2165 mirror::Object* expected_ref = ref; 2166 mirror::Object* new_ref = to_ref; 2167 do { 2168 if (expected_ref != addr->LoadRelaxed()) { 2169 // It was updated by the mutator. 2170 break; 2171 } 2172 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref)); 2173 } 2174 } 2175 2176 template<bool kGrayImmuneObject> 2177 inline void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) { 2178 DCHECK(!root->IsNull()); 2179 mirror::Object* const ref = root->AsMirrorPtr(); 2180 mirror::Object* to_ref = Mark<kGrayImmuneObject>(ref); 2181 if (to_ref != ref) { 2182 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root); 2183 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref); 2184 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref); 2185 // If the cas fails, then it was updated by the mutator. 2186 do { 2187 if (ref != addr->LoadRelaxed().AsMirrorPtr()) { 2188 // It was updated by the mutator. 2189 break; 2190 } 2191 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref)); 2192 } 2193 } 2194 2195 inline void ConcurrentCopying::VisitRoots( 2196 mirror::CompressedReference<mirror::Object>** roots, size_t count, 2197 const RootInfo& info ATTRIBUTE_UNUSED) { 2198 for (size_t i = 0; i < count; ++i) { 2199 mirror::CompressedReference<mirror::Object>* const root = roots[i]; 2200 if (!root->IsNull()) { 2201 // kGrayImmuneObject is true because this is used for the thread flip. 2202 MarkRoot</*kGrayImmuneObject*/true>(root); 2203 } 2204 } 2205 } 2206 2207 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC. 2208 class ConcurrentCopying::ScopedGcGraysImmuneObjects { 2209 public: 2210 explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector) 2211 : collector_(collector), enabled_(false) { 2212 if (kUseBakerReadBarrier && 2213 collector_->thread_running_gc_ == Thread::Current() && 2214 !collector_->gc_grays_immune_objects_) { 2215 collector_->gc_grays_immune_objects_ = true; 2216 enabled_ = true; 2217 } 2218 } 2219 2220 ~ScopedGcGraysImmuneObjects() { 2221 if (kUseBakerReadBarrier && 2222 collector_->thread_running_gc_ == Thread::Current() && 2223 enabled_) { 2224 DCHECK(collector_->gc_grays_immune_objects_); 2225 collector_->gc_grays_immune_objects_ = false; 2226 } 2227 } 2228 2229 private: 2230 ConcurrentCopying* const collector_; 2231 bool enabled_; 2232 }; 2233 2234 // Fill the given memory block with a dummy object. Used to fill in a 2235 // copy of objects that was lost in race. 2236 void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) { 2237 // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read 2238 // barriers here because we need the updated reference to the int array class, etc. Temporary set 2239 // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace(). 2240 ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this); 2241 CHECK_ALIGNED(byte_size, kObjectAlignment); 2242 memset(dummy_obj, 0, byte_size); 2243 // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled. 2244 // Explicitly mark to make sure to get an object in the to-space. 2245 mirror::Class* int_array_class = down_cast<mirror::Class*>( 2246 Mark(mirror::IntArray::GetArrayClass<kWithoutReadBarrier>())); 2247 CHECK(int_array_class != nullptr); 2248 if (ReadBarrier::kEnableToSpaceInvariantChecks) { 2249 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class); 2250 } 2251 size_t component_size = int_array_class->GetComponentSize<kWithoutReadBarrier>(); 2252 CHECK_EQ(component_size, sizeof(int32_t)); 2253 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue(); 2254 if (data_offset > byte_size) { 2255 // An int array is too big. Use java.lang.Object. 2256 CHECK(java_lang_Object_ != nullptr); 2257 if (ReadBarrier::kEnableToSpaceInvariantChecks) { 2258 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_); 2259 } 2260 CHECK_EQ(byte_size, (java_lang_Object_->GetObjectSize<kVerifyNone, kWithoutReadBarrier>())); 2261 dummy_obj->SetClass(java_lang_Object_); 2262 CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>())); 2263 } else { 2264 // Use an int array. 2265 dummy_obj->SetClass(int_array_class); 2266 CHECK((dummy_obj->IsArrayInstance<kVerifyNone, kWithoutReadBarrier>())); 2267 int32_t length = (byte_size - data_offset) / component_size; 2268 mirror::Array* dummy_arr = dummy_obj->AsArray<kVerifyNone, kWithoutReadBarrier>(); 2269 dummy_arr->SetLength(length); 2270 CHECK_EQ(dummy_arr->GetLength(), length) 2271 << "byte_size=" << byte_size << " length=" << length 2272 << " component_size=" << component_size << " data_offset=" << data_offset; 2273 CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>())) 2274 << "byte_size=" << byte_size << " length=" << length 2275 << " component_size=" << component_size << " data_offset=" << data_offset; 2276 } 2277 } 2278 2279 // Reuse the memory blocks that were copy of objects that were lost in race. 2280 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) { 2281 // Try to reuse the blocks that were unused due to CAS failures. 2282 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment); 2283 Thread* self = Thread::Current(); 2284 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment); 2285 size_t byte_size; 2286 uint8_t* addr; 2287 { 2288 MutexLock mu(self, skipped_blocks_lock_); 2289 auto it = skipped_blocks_map_.lower_bound(alloc_size); 2290 if (it == skipped_blocks_map_.end()) { 2291 // Not found. 2292 return nullptr; 2293 } 2294 byte_size = it->first; 2295 CHECK_GE(byte_size, alloc_size); 2296 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) { 2297 // If remainder would be too small for a dummy object, retry with a larger request size. 2298 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size); 2299 if (it == skipped_blocks_map_.end()) { 2300 // Not found. 2301 return nullptr; 2302 } 2303 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment); 2304 CHECK_GE(it->first - alloc_size, min_object_size) 2305 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size; 2306 } 2307 // Found a block. 2308 CHECK(it != skipped_blocks_map_.end()); 2309 byte_size = it->first; 2310 addr = it->second; 2311 CHECK_GE(byte_size, alloc_size); 2312 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr))); 2313 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment); 2314 if (kVerboseMode) { 2315 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size; 2316 } 2317 skipped_blocks_map_.erase(it); 2318 } 2319 memset(addr, 0, byte_size); 2320 if (byte_size > alloc_size) { 2321 // Return the remainder to the map. 2322 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment); 2323 CHECK_GE(byte_size - alloc_size, min_object_size); 2324 // FillWithDummyObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock 2325 // violation and possible deadlock. The deadlock case is a recursive case: 2326 // FillWithDummyObject -> IntArray::GetArrayClass -> Mark -> Copy -> AllocateInSkippedBlock. 2327 FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size), 2328 byte_size - alloc_size); 2329 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size))); 2330 { 2331 MutexLock mu(self, skipped_blocks_lock_); 2332 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size)); 2333 } 2334 } 2335 return reinterpret_cast<mirror::Object*>(addr); 2336 } 2337 2338 mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref, 2339 mirror::Object* holder, 2340 MemberOffset offset) { 2341 DCHECK(region_space_->IsInFromSpace(from_ref)); 2342 // If the class pointer is null, the object is invalid. This could occur for a dangling pointer 2343 // from a previous GC that is either inside or outside the allocated region. 2344 mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>(); 2345 if (UNLIKELY(klass == nullptr)) { 2346 heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal */ true); 2347 } 2348 // There must not be a read barrier to avoid nested RB that might violate the to-space invariant. 2349 // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta 2350 // objects, but it's ok and necessary. 2351 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>(); 2352 size_t region_space_alloc_size = (obj_size <= space::RegionSpace::kRegionSize) 2353 ? RoundUp(obj_size, space::RegionSpace::kAlignment) 2354 : RoundUp(obj_size, space::RegionSpace::kRegionSize); 2355 size_t region_space_bytes_allocated = 0U; 2356 size_t non_moving_space_bytes_allocated = 0U; 2357 size_t bytes_allocated = 0U; 2358 size_t dummy; 2359 bool fall_back_to_non_moving = false; 2360 mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac*/ true>( 2361 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &dummy); 2362 bytes_allocated = region_space_bytes_allocated; 2363 if (LIKELY(to_ref != nullptr)) { 2364 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated); 2365 } else { 2366 // Failed to allocate in the region space. Try the skipped blocks. 2367 to_ref = AllocateInSkippedBlock(region_space_alloc_size); 2368 if (to_ref != nullptr) { 2369 // Succeeded to allocate in a skipped block. 2370 if (heap_->use_tlab_) { 2371 // This is necessary for the tlab case as it's not accounted in the space. 2372 region_space_->RecordAlloc(to_ref); 2373 } 2374 bytes_allocated = region_space_alloc_size; 2375 heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_seq_cst); 2376 to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_seq_cst); 2377 to_space_objects_skipped_.fetch_sub(1, std::memory_order_seq_cst); 2378 } else { 2379 // Fall back to the non-moving space. 2380 fall_back_to_non_moving = true; 2381 if (kVerboseMode) { 2382 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes=" 2383 << to_space_bytes_skipped_.LoadSequentiallyConsistent() 2384 << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent(); 2385 } 2386 to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size, 2387 &non_moving_space_bytes_allocated, nullptr, &dummy); 2388 if (UNLIKELY(to_ref == nullptr)) { 2389 LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a " 2390 << obj_size << " byte object in region type " 2391 << region_space_->GetRegionType(from_ref); 2392 LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf(); 2393 } 2394 bytes_allocated = non_moving_space_bytes_allocated; 2395 // Mark it in the mark bitmap. 2396 accounting::ContinuousSpaceBitmap* mark_bitmap = 2397 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref); 2398 CHECK(mark_bitmap != nullptr); 2399 CHECK(!mark_bitmap->AtomicTestAndSet(to_ref)); 2400 } 2401 } 2402 DCHECK(to_ref != nullptr); 2403 2404 // Copy the object excluding the lock word since that is handled in the loop. 2405 to_ref->SetClass(klass); 2406 const size_t kObjectHeaderSize = sizeof(mirror::Object); 2407 DCHECK_GE(obj_size, kObjectHeaderSize); 2408 static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) + 2409 sizeof(LockWord), 2410 "Object header size does not match"); 2411 // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the 2412 // object in the from space is immutable other than the lock word. b/31423258 2413 memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize, 2414 reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize, 2415 obj_size - kObjectHeaderSize); 2416 2417 // Attempt to install the forward pointer. This is in a loop as the 2418 // lock word atomic write can fail. 2419 while (true) { 2420 LockWord old_lock_word = from_ref->GetLockWord(false); 2421 2422 if (old_lock_word.GetState() == LockWord::kForwardingAddress) { 2423 // Lost the race. Another thread (either GC or mutator) stored 2424 // the forwarding pointer first. Make the lost copy (to_ref) 2425 // look like a valid but dead (dummy) object and keep it for 2426 // future reuse. 2427 FillWithDummyObject(to_ref, bytes_allocated); 2428 if (!fall_back_to_non_moving) { 2429 DCHECK(region_space_->IsInToSpace(to_ref)); 2430 if (bytes_allocated > space::RegionSpace::kRegionSize) { 2431 // Free the large alloc. 2432 region_space_->FreeLarge</*kForEvac*/ true>(to_ref, bytes_allocated); 2433 } else { 2434 // Record the lost copy for later reuse. 2435 heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated); 2436 to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated); 2437 to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1); 2438 MutexLock mu(Thread::Current(), skipped_blocks_lock_); 2439 skipped_blocks_map_.insert(std::make_pair(bytes_allocated, 2440 reinterpret_cast<uint8_t*>(to_ref))); 2441 } 2442 } else { 2443 DCHECK(heap_->non_moving_space_->HasAddress(to_ref)); 2444 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated); 2445 // Free the non-moving-space chunk. 2446 accounting::ContinuousSpaceBitmap* mark_bitmap = 2447 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref); 2448 CHECK(mark_bitmap != nullptr); 2449 CHECK(mark_bitmap->Clear(to_ref)); 2450 heap_->non_moving_space_->Free(Thread::Current(), to_ref); 2451 } 2452 2453 // Get the winner's forward ptr. 2454 mirror::Object* lost_fwd_ptr = to_ref; 2455 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress()); 2456 CHECK(to_ref != nullptr); 2457 CHECK_NE(to_ref, lost_fwd_ptr); 2458 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref)) 2459 << "to_ref=" << to_ref << " " << heap_->DumpSpaces(); 2460 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress); 2461 return to_ref; 2462 } 2463 2464 // Copy the old lock word over since we did not copy it yet. 2465 to_ref->SetLockWord(old_lock_word, false); 2466 // Set the gray ptr. 2467 if (kUseBakerReadBarrier) { 2468 to_ref->SetReadBarrierState(ReadBarrier::GrayState()); 2469 } 2470 2471 // Do a fence to prevent the field CAS in ConcurrentCopying::Process from possibly reordering 2472 // before the object copy. 2473 QuasiAtomic::ThreadFenceRelease(); 2474 2475 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref)); 2476 2477 // Try to atomically write the fwd ptr. 2478 bool success = from_ref->CasLockWordWeakRelaxed(old_lock_word, new_lock_word); 2479 if (LIKELY(success)) { 2480 // The CAS succeeded. 2481 objects_moved_.FetchAndAddRelaxed(1); 2482 bytes_moved_.FetchAndAddRelaxed(region_space_alloc_size); 2483 if (LIKELY(!fall_back_to_non_moving)) { 2484 DCHECK(region_space_->IsInToSpace(to_ref)); 2485 } else { 2486 DCHECK(heap_->non_moving_space_->HasAddress(to_ref)); 2487 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated); 2488 } 2489 if (kUseBakerReadBarrier) { 2490 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState()); 2491 } 2492 DCHECK(GetFwdPtr(from_ref) == to_ref); 2493 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress); 2494 PushOntoMarkStack(to_ref); 2495 return to_ref; 2496 } else { 2497 // The CAS failed. It may have lost the race or may have failed 2498 // due to monitor/hashcode ops. Either way, retry. 2499 } 2500 } 2501 } 2502 2503 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) { 2504 DCHECK(from_ref != nullptr); 2505 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref); 2506 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) { 2507 // It's already marked. 2508 return from_ref; 2509 } 2510 mirror::Object* to_ref; 2511 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) { 2512 to_ref = GetFwdPtr(from_ref); 2513 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) || 2514 heap_->non_moving_space_->HasAddress(to_ref)) 2515 << "from_ref=" << from_ref << " to_ref=" << to_ref; 2516 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) { 2517 if (IsMarkedInUnevacFromSpace(from_ref)) { 2518 to_ref = from_ref; 2519 } else { 2520 to_ref = nullptr; 2521 } 2522 } else { 2523 // At this point, `from_ref` should not be in the region space 2524 // (i.e. within an "unused" region). 2525 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref; 2526 // from_ref is in a non-moving space. 2527 if (immune_spaces_.ContainsObject(from_ref)) { 2528 // An immune object is alive. 2529 to_ref = from_ref; 2530 } else { 2531 // Non-immune non-moving space. Use the mark bitmap. 2532 accounting::ContinuousSpaceBitmap* mark_bitmap = 2533 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref); 2534 bool is_los = mark_bitmap == nullptr; 2535 if (!is_los && mark_bitmap->Test(from_ref)) { 2536 // Already marked. 2537 to_ref = from_ref; 2538 } else { 2539 accounting::LargeObjectBitmap* los_bitmap = 2540 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref); 2541 // We may not have a large object space for dex2oat, don't assume it exists. 2542 if (los_bitmap == nullptr) { 2543 CHECK(heap_->GetLargeObjectsSpace() == nullptr) 2544 << "LOS bitmap covers the entire address range " << from_ref 2545 << " " << heap_->DumpSpaces(); 2546 } 2547 if (los_bitmap != nullptr && is_los && los_bitmap->Test(from_ref)) { 2548 // Already marked in LOS. 2549 to_ref = from_ref; 2550 } else { 2551 // Not marked. 2552 if (IsOnAllocStack(from_ref)) { 2553 // If on the allocation stack, it's considered marked. 2554 to_ref = from_ref; 2555 } else { 2556 // Not marked. 2557 to_ref = nullptr; 2558 } 2559 } 2560 } 2561 } 2562 } 2563 return to_ref; 2564 } 2565 2566 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) { 2567 // TODO: Explain why this is here. What release operation does it pair with? 2568 QuasiAtomic::ThreadFenceAcquire(); 2569 accounting::ObjectStack* alloc_stack = GetAllocationStack(); 2570 return alloc_stack->Contains(ref); 2571 } 2572 2573 mirror::Object* ConcurrentCopying::MarkNonMoving(mirror::Object* ref, 2574 mirror::Object* holder, 2575 MemberOffset offset) { 2576 // ref is in a non-moving space (from_ref == to_ref). 2577 DCHECK(!region_space_->HasAddress(ref)) << ref; 2578 DCHECK(!immune_spaces_.ContainsObject(ref)); 2579 // Use the mark bitmap. 2580 accounting::ContinuousSpaceBitmap* mark_bitmap = 2581 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref); 2582 accounting::LargeObjectBitmap* los_bitmap = 2583 heap_mark_bitmap_->GetLargeObjectBitmap(ref); 2584 bool is_los = mark_bitmap == nullptr; 2585 if (!is_los && mark_bitmap->Test(ref)) { 2586 // Already marked. 2587 if (kUseBakerReadBarrier) { 2588 DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() || 2589 ref->GetReadBarrierState() == ReadBarrier::WhiteState()); 2590 } 2591 } else if (is_los && los_bitmap->Test(ref)) { 2592 // Already marked in LOS. 2593 if (kUseBakerReadBarrier) { 2594 DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() || 2595 ref->GetReadBarrierState() == ReadBarrier::WhiteState()); 2596 } 2597 } else { 2598 // Not marked. 2599 if (IsOnAllocStack(ref)) { 2600 // If it's on the allocation stack, it's considered marked. Keep it white. 2601 // Objects on the allocation stack need not be marked. 2602 if (!is_los) { 2603 DCHECK(!mark_bitmap->Test(ref)); 2604 } else { 2605 DCHECK(!los_bitmap->Test(ref)); 2606 } 2607 if (kUseBakerReadBarrier) { 2608 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState()); 2609 } 2610 } else { 2611 // For the baker-style RB, we need to handle 'false-gray' cases. See the 2612 // kRegionTypeUnevacFromSpace-case comment in Mark(). 2613 if (kUseBakerReadBarrier) { 2614 // Test the bitmap first to reduce the chance of false gray cases. 2615 if ((!is_los && mark_bitmap->Test(ref)) || 2616 (is_los && los_bitmap->Test(ref))) { 2617 return ref; 2618 } 2619 } 2620 if (is_los && !IsAligned<kPageSize>(ref)) { 2621 // Ref is a large object that is not aligned, it must be heap corruption. Dump data before 2622 // AtomicSetReadBarrierState since it will fault if the address is not valid. 2623 heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal */ true); 2624 } 2625 // Not marked or on the allocation stack. Try to mark it. 2626 // This may or may not succeed, which is ok. 2627 bool cas_success = false; 2628 if (kUseBakerReadBarrier) { 2629 cas_success = ref->AtomicSetReadBarrierState(ReadBarrier::WhiteState(), 2630 ReadBarrier::GrayState()); 2631 } 2632 if (!is_los && mark_bitmap->AtomicTestAndSet(ref)) { 2633 // Already marked. 2634 if (kUseBakerReadBarrier && cas_success && 2635 ref->GetReadBarrierState() == ReadBarrier::GrayState()) { 2636 PushOntoFalseGrayStack(ref); 2637 } 2638 } else if (is_los && los_bitmap->AtomicTestAndSet(ref)) { 2639 // Already marked in LOS. 2640 if (kUseBakerReadBarrier && cas_success && 2641 ref->GetReadBarrierState() == ReadBarrier::GrayState()) { 2642 PushOntoFalseGrayStack(ref); 2643 } 2644 } else { 2645 // Newly marked. 2646 if (kUseBakerReadBarrier) { 2647 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState()); 2648 } 2649 PushOntoMarkStack(ref); 2650 } 2651 } 2652 } 2653 return ref; 2654 } 2655 2656 void ConcurrentCopying::FinishPhase() { 2657 Thread* const self = Thread::Current(); 2658 { 2659 MutexLock mu(self, mark_stack_lock_); 2660 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize); 2661 } 2662 // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false 2663 // positives. 2664 if (!kVerifyNoMissingCardMarks) { 2665 TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings()); 2666 // We do not currently use the region space cards at all, madvise them away to save ram. 2667 heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit()); 2668 } 2669 { 2670 MutexLock mu(self, skipped_blocks_lock_); 2671 skipped_blocks_map_.clear(); 2672 } 2673 { 2674 ReaderMutexLock mu(self, *Locks::mutator_lock_); 2675 { 2676 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_); 2677 heap_->ClearMarkedObjects(); 2678 } 2679 if (kUseBakerReadBarrier && kFilterModUnionCards) { 2680 TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings()); 2681 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_); 2682 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { 2683 DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); 2684 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); 2685 // Filter out cards that don't need to be set. 2686 if (table != nullptr) { 2687 table->FilterCards(); 2688 } 2689 } 2690 } 2691 if (kUseBakerReadBarrier) { 2692 TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings()); 2693 DCHECK(rb_mark_bit_stack_ != nullptr); 2694 const auto* limit = rb_mark_bit_stack_->End(); 2695 for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) { 2696 CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0)) 2697 << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n' 2698 << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n' 2699 << "rb_mark_bit_stack_->IsFull()" 2700 << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n' 2701 << DumpReferenceInfo(it->AsMirrorPtr(), "*it"); 2702 } 2703 rb_mark_bit_stack_->Reset(); 2704 } 2705 } 2706 if (measure_read_barrier_slow_path_) { 2707 MutexLock mu(self, rb_slow_path_histogram_lock_); 2708 rb_slow_path_time_histogram_.AdjustAndAddValue(rb_slow_path_ns_.LoadRelaxed()); 2709 rb_slow_path_count_total_ += rb_slow_path_count_.LoadRelaxed(); 2710 rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.LoadRelaxed(); 2711 } 2712 } 2713 2714 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field, 2715 bool do_atomic_update) { 2716 mirror::Object* from_ref = field->AsMirrorPtr(); 2717 if (from_ref == nullptr) { 2718 return true; 2719 } 2720 mirror::Object* to_ref = IsMarked(from_ref); 2721 if (to_ref == nullptr) { 2722 return false; 2723 } 2724 if (from_ref != to_ref) { 2725 if (do_atomic_update) { 2726 do { 2727 if (field->AsMirrorPtr() != from_ref) { 2728 // Concurrently overwritten by a mutator. 2729 break; 2730 } 2731 } while (!field->CasWeakRelaxed(from_ref, to_ref)); 2732 } else { 2733 // TODO: Why is this seq_cst when the above is relaxed? Document memory ordering. 2734 field->Assign</* kIsVolatile */ true>(to_ref); 2735 } 2736 } 2737 return true; 2738 } 2739 2740 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) { 2741 return Mark(from_ref); 2742 } 2743 2744 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass, 2745 ObjPtr<mirror::Reference> reference) { 2746 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this); 2747 } 2748 2749 void ConcurrentCopying::ProcessReferences(Thread* self) { 2750 TimingLogger::ScopedTiming split("ProcessReferences", GetTimings()); 2751 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps. 2752 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 2753 GetHeap()->GetReferenceProcessor()->ProcessReferences( 2754 true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this); 2755 } 2756 2757 void ConcurrentCopying::RevokeAllThreadLocalBuffers() { 2758 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 2759 region_space_->RevokeAllThreadLocalBuffers(); 2760 } 2761 2762 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(mirror::Object* from_ref) { 2763 if (Thread::Current() != thread_running_gc_) { 2764 rb_slow_path_count_.FetchAndAddRelaxed(1u); 2765 } else { 2766 rb_slow_path_count_gc_.FetchAndAddRelaxed(1u); 2767 } 2768 ScopedTrace tr(__FUNCTION__); 2769 const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u; 2770 mirror::Object* ret = Mark(from_ref); 2771 if (measure_read_barrier_slow_path_) { 2772 rb_slow_path_ns_.FetchAndAddRelaxed(NanoTime() - start_time); 2773 } 2774 return ret; 2775 } 2776 2777 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) { 2778 GarbageCollector::DumpPerformanceInfo(os); 2779 MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_); 2780 if (rb_slow_path_time_histogram_.SampleSize() > 0) { 2781 Histogram<uint64_t>::CumulativeData cumulative_data; 2782 rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data); 2783 rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data); 2784 } 2785 if (rb_slow_path_count_total_ > 0) { 2786 os << "Slow path count " << rb_slow_path_count_total_ << "\n"; 2787 } 2788 if (rb_slow_path_count_gc_total_ > 0) { 2789 os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n"; 2790 } 2791 os << "Cumulative bytes moved " << cumulative_bytes_moved_.LoadRelaxed() << "\n"; 2792 os << "Cumulative objects moved " << cumulative_objects_moved_.LoadRelaxed() << "\n"; 2793 2794 os << "Peak regions allocated " 2795 << region_space_->GetMaxPeakNumNonFreeRegions() << " (" 2796 << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize) 2797 << ") / " << region_space_->GetNumRegions() / 2 << " (" 2798 << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2) 2799 << ")\n"; 2800 } 2801 2802 } // namespace collector 2803 } // namespace gc 2804 } // namespace art 2805