Home | History | Annotate | Download | only in opteed
      1 /*
      2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 
      7 
      8 /*******************************************************************************
      9  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
     10  * plug-in component to the Secure Monitor, registered as a runtime service. The
     11  * SPD is expected to be a functional extension of the Secure Payload (SP) that
     12  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
     13  * the Trusted OS/Applications range to the dispatcher. The SPD will either
     14  * handle the request locally or delegate it to the Secure Payload. It is also
     15  * responsible for initialising and maintaining communication with the SP.
     16  ******************************************************************************/
     17 #include <arch_helpers.h>
     18 #include <assert.h>
     19 #include <bl31.h>
     20 #include <bl_common.h>
     21 #include <context_mgmt.h>
     22 #include <debug.h>
     23 #include <errno.h>
     24 #include <platform.h>
     25 #include <runtime_svc.h>
     26 #include <stddef.h>
     27 #include <uuid.h>
     28 #include "opteed_private.h"
     29 #include "teesmc_opteed.h"
     30 #include "teesmc_opteed_macros.h"
     31 
     32 
     33 /*******************************************************************************
     34  * Address of the entrypoint vector table in OPTEE. It is
     35  * initialised once on the primary core after a cold boot.
     36  ******************************************************************************/
     37 optee_vectors_t *optee_vectors;
     38 
     39 /*******************************************************************************
     40  * Array to keep track of per-cpu OPTEE state
     41  ******************************************************************************/
     42 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
     43 uint32_t opteed_rw;
     44 
     45 static int32_t opteed_init(void);
     46 
     47 /*******************************************************************************
     48  * This function is the handler registered for S-EL1 interrupts by the
     49  * OPTEED. It validates the interrupt and upon success arranges entry into
     50  * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
     51  ******************************************************************************/
     52 static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
     53 					    uint32_t flags,
     54 					    void *handle,
     55 					    void *cookie)
     56 {
     57 	uint32_t linear_id;
     58 	optee_context_t *optee_ctx;
     59 
     60 	/* Check the security state when the exception was generated */
     61 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
     62 
     63 	/* Sanity check the pointer to this cpu's context */
     64 	assert(handle == cm_get_context(NON_SECURE));
     65 
     66 	/* Save the non-secure context before entering the OPTEE */
     67 	cm_el1_sysregs_context_save(NON_SECURE);
     68 
     69 	/* Get a reference to this cpu's OPTEE context */
     70 	linear_id = plat_my_core_pos();
     71 	optee_ctx = &opteed_sp_context[linear_id];
     72 	assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
     73 
     74 	cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
     75 	cm_el1_sysregs_context_restore(SECURE);
     76 	cm_set_next_eret_context(SECURE);
     77 
     78 	/*
     79 	 * Tell the OPTEE that it has to handle an FIQ (synchronously).
     80 	 * Also the instruction in normal world where the interrupt was
     81 	 * generated is passed for debugging purposes. It is safe to
     82 	 * retrieve this address from ELR_EL3 as the secure context will
     83 	 * not take effect until el3_exit().
     84 	 */
     85 	SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
     86 }
     87 
     88 /*******************************************************************************
     89  * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
     90  * (aarch32/aarch64) if not already known and initialises the context for entry
     91  * into OPTEE for its initialization.
     92  ******************************************************************************/
     93 int32_t opteed_setup(void)
     94 {
     95 	entry_point_info_t *optee_ep_info;
     96 	uint32_t linear_id;
     97 	uint64_t opteed_pageable_part;
     98 	uint64_t opteed_mem_limit;
     99 	uint64_t dt_addr;
    100 
    101 	linear_id = plat_my_core_pos();
    102 
    103 	/*
    104 	 * Get information about the Secure Payload (BL32) image. Its
    105 	 * absence is a critical failure.  TODO: Add support to
    106 	 * conditionally include the SPD service
    107 	 */
    108 	optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
    109 	if (!optee_ep_info) {
    110 		WARN("No OPTEE provided by BL2 boot loader, Booting device"
    111 			" without OPTEE initialization. SMC`s destined for OPTEE"
    112 			" will return SMC_UNK\n");
    113 		return 1;
    114 	}
    115 
    116 	/*
    117 	 * If there's no valid entry point for SP, we return a non-zero value
    118 	 * signalling failure initializing the service. We bail out without
    119 	 * registering any handlers
    120 	 */
    121 	if (!optee_ep_info->pc)
    122 		return 1;
    123 
    124 	opteed_rw = optee_ep_info->args.arg0;
    125 	opteed_pageable_part = optee_ep_info->args.arg1;
    126 	opteed_mem_limit = optee_ep_info->args.arg2;
    127 	dt_addr = optee_ep_info->args.arg3;
    128 
    129 	opteed_init_optee_ep_state(optee_ep_info,
    130 				opteed_rw,
    131 				optee_ep_info->pc,
    132 				opteed_pageable_part,
    133 				opteed_mem_limit,
    134 				dt_addr,
    135 				&opteed_sp_context[linear_id]);
    136 
    137 	/*
    138 	 * All OPTEED initialization done. Now register our init function with
    139 	 * BL31 for deferred invocation
    140 	 */
    141 	bl31_register_bl32_init(&opteed_init);
    142 
    143 	return 0;
    144 }
    145 
    146 /*******************************************************************************
    147  * This function passes control to the OPTEE image (BL32) for the first time
    148  * on the primary cpu after a cold boot. It assumes that a valid secure
    149  * context has already been created by opteed_setup() which can be directly
    150  * used.  It also assumes that a valid non-secure context has been
    151  * initialised by PSCI so it does not need to save and restore any
    152  * non-secure state. This function performs a synchronous entry into
    153  * OPTEE. OPTEE passes control back to this routine through a SMC.
    154  ******************************************************************************/
    155 static int32_t opteed_init(void)
    156 {
    157 	uint32_t linear_id = plat_my_core_pos();
    158 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
    159 	entry_point_info_t *optee_entry_point;
    160 	uint64_t rc;
    161 
    162 	/*
    163 	 * Get information about the OPTEE (BL32) image. Its
    164 	 * absence is a critical failure.
    165 	 */
    166 	optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
    167 	assert(optee_entry_point);
    168 
    169 	cm_init_my_context(optee_entry_point);
    170 
    171 	/*
    172 	 * Arrange for an entry into OPTEE. It will be returned via
    173 	 * OPTEE_ENTRY_DONE case
    174 	 */
    175 	rc = opteed_synchronous_sp_entry(optee_ctx);
    176 	assert(rc != 0);
    177 
    178 	return rc;
    179 }
    180 
    181 
    182 /*******************************************************************************
    183  * This function is responsible for handling all SMCs in the Trusted OS/App
    184  * range from the non-secure state as defined in the SMC Calling Convention
    185  * Document. It is also responsible for communicating with the Secure
    186  * payload to delegate work and return results back to the non-secure
    187  * state. Lastly it will also return any information that OPTEE needs to do
    188  * the work assigned to it.
    189  ******************************************************************************/
    190 uint64_t opteed_smc_handler(uint32_t smc_fid,
    191 			 uint64_t x1,
    192 			 uint64_t x2,
    193 			 uint64_t x3,
    194 			 uint64_t x4,
    195 			 void *cookie,
    196 			 void *handle,
    197 			 uint64_t flags)
    198 {
    199 	cpu_context_t *ns_cpu_context;
    200 	uint32_t linear_id = plat_my_core_pos();
    201 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
    202 	uint64_t rc;
    203 
    204 	/*
    205 	 * Determine which security state this SMC originated from
    206 	 */
    207 
    208 	if (is_caller_non_secure(flags)) {
    209 		/*
    210 		 * This is a fresh request from the non-secure client.
    211 		 * The parameters are in x1 and x2. Figure out which
    212 		 * registers need to be preserved, save the non-secure
    213 		 * state and send the request to the secure payload.
    214 		 */
    215 		assert(handle == cm_get_context(NON_SECURE));
    216 
    217 		cm_el1_sysregs_context_save(NON_SECURE);
    218 
    219 		/*
    220 		 * We are done stashing the non-secure context. Ask the
    221 		 * OPTEE to do the work now.
    222 		 */
    223 
    224 		/*
    225 		 * Verify if there is a valid context to use, copy the
    226 		 * operation type and parameters to the secure context
    227 		 * and jump to the fast smc entry point in the secure
    228 		 * payload. Entry into S-EL1 will take place upon exit
    229 		 * from this function.
    230 		 */
    231 		assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
    232 
    233 		/* Set appropriate entry for SMC.
    234 		 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
    235 		 * flags as appropriate.
    236 		 */
    237 		if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
    238 			cm_set_elr_el3(SECURE, (uint64_t)
    239 					&optee_vectors->fast_smc_entry);
    240 		} else {
    241 			cm_set_elr_el3(SECURE, (uint64_t)
    242 					&optee_vectors->yield_smc_entry);
    243 		}
    244 
    245 		cm_el1_sysregs_context_restore(SECURE);
    246 		cm_set_next_eret_context(SECURE);
    247 
    248 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
    249 			      CTX_GPREG_X4,
    250 			      read_ctx_reg(get_gpregs_ctx(handle),
    251 					   CTX_GPREG_X4));
    252 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
    253 			      CTX_GPREG_X5,
    254 			      read_ctx_reg(get_gpregs_ctx(handle),
    255 					   CTX_GPREG_X5));
    256 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
    257 			      CTX_GPREG_X6,
    258 			      read_ctx_reg(get_gpregs_ctx(handle),
    259 					   CTX_GPREG_X6));
    260 		/* Propagate hypervisor client ID */
    261 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
    262 			      CTX_GPREG_X7,
    263 			      read_ctx_reg(get_gpregs_ctx(handle),
    264 					   CTX_GPREG_X7));
    265 
    266 		SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
    267 	}
    268 
    269 	/*
    270 	 * Returning from OPTEE
    271 	 */
    272 
    273 	switch (smc_fid) {
    274 	/*
    275 	 * OPTEE has finished initialising itself after a cold boot
    276 	 */
    277 	case TEESMC_OPTEED_RETURN_ENTRY_DONE:
    278 		/*
    279 		 * Stash the OPTEE entry points information. This is done
    280 		 * only once on the primary cpu
    281 		 */
    282 		assert(optee_vectors == NULL);
    283 		optee_vectors = (optee_vectors_t *) x1;
    284 
    285 		if (optee_vectors) {
    286 			set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
    287 
    288 			/*
    289 			 * OPTEE has been successfully initialized.
    290 			 * Register power management hooks with PSCI
    291 			 */
    292 			psci_register_spd_pm_hook(&opteed_pm);
    293 
    294 			/*
    295 			 * Register an interrupt handler for S-EL1 interrupts
    296 			 * when generated during code executing in the
    297 			 * non-secure state.
    298 			 */
    299 			flags = 0;
    300 			set_interrupt_rm_flag(flags, NON_SECURE);
    301 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
    302 						opteed_sel1_interrupt_handler,
    303 						flags);
    304 			if (rc)
    305 				panic();
    306 		}
    307 
    308 		/*
    309 		 * OPTEE reports completion. The OPTEED must have initiated
    310 		 * the original request through a synchronous entry into
    311 		 * OPTEE. Jump back to the original C runtime context.
    312 		 */
    313 		opteed_synchronous_sp_exit(optee_ctx, x1);
    314 
    315 
    316 	/*
    317 	 * These function IDs is used only by OP-TEE to indicate it has
    318 	 * finished:
    319 	 * 1. turning itself on in response to an earlier psci
    320 	 *    cpu_on request
    321 	 * 2. resuming itself after an earlier psci cpu_suspend
    322 	 *    request.
    323 	 */
    324 	case TEESMC_OPTEED_RETURN_ON_DONE:
    325 	case TEESMC_OPTEED_RETURN_RESUME_DONE:
    326 
    327 
    328 	/*
    329 	 * These function IDs is used only by the SP to indicate it has
    330 	 * finished:
    331 	 * 1. suspending itself after an earlier psci cpu_suspend
    332 	 *    request.
    333 	 * 2. turning itself off in response to an earlier psci
    334 	 *    cpu_off request.
    335 	 */
    336 	case TEESMC_OPTEED_RETURN_OFF_DONE:
    337 	case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
    338 	case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
    339 	case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
    340 
    341 		/*
    342 		 * OPTEE reports completion. The OPTEED must have initiated the
    343 		 * original request through a synchronous entry into OPTEE.
    344 		 * Jump back to the original C runtime context, and pass x1 as
    345 		 * return value to the caller
    346 		 */
    347 		opteed_synchronous_sp_exit(optee_ctx, x1);
    348 
    349 	/*
    350 	 * OPTEE is returning from a call or being preempted from a call, in
    351 	 * either case execution should resume in the normal world.
    352 	 */
    353 	case TEESMC_OPTEED_RETURN_CALL_DONE:
    354 		/*
    355 		 * This is the result from the secure client of an
    356 		 * earlier request. The results are in x0-x3. Copy it
    357 		 * into the non-secure context, save the secure state
    358 		 * and return to the non-secure state.
    359 		 */
    360 		assert(handle == cm_get_context(SECURE));
    361 		cm_el1_sysregs_context_save(SECURE);
    362 
    363 		/* Get a reference to the non-secure context */
    364 		ns_cpu_context = cm_get_context(NON_SECURE);
    365 		assert(ns_cpu_context);
    366 
    367 		/* Restore non-secure state */
    368 		cm_el1_sysregs_context_restore(NON_SECURE);
    369 		cm_set_next_eret_context(NON_SECURE);
    370 
    371 		SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
    372 
    373 	/*
    374 	 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
    375 	 * should resume in the normal world.
    376 	 */
    377 	case TEESMC_OPTEED_RETURN_FIQ_DONE:
    378 		/* Get a reference to the non-secure context */
    379 		ns_cpu_context = cm_get_context(NON_SECURE);
    380 		assert(ns_cpu_context);
    381 
    382 		/*
    383 		 * Restore non-secure state. There is no need to save the
    384 		 * secure system register context since OPTEE was supposed
    385 		 * to preserve it during S-EL1 interrupt handling.
    386 		 */
    387 		cm_el1_sysregs_context_restore(NON_SECURE);
    388 		cm_set_next_eret_context(NON_SECURE);
    389 
    390 		SMC_RET0((uint64_t) ns_cpu_context);
    391 
    392 	default:
    393 		panic();
    394 	}
    395 }
    396 
    397 /* Define an OPTEED runtime service descriptor for fast SMC calls */
    398 DECLARE_RT_SVC(
    399 	opteed_fast,
    400 
    401 	OEN_TOS_START,
    402 	OEN_TOS_END,
    403 	SMC_TYPE_FAST,
    404 	opteed_setup,
    405 	opteed_smc_handler
    406 );
    407 
    408 /* Define an OPTEED runtime service descriptor for yielding SMC calls */
    409 DECLARE_RT_SVC(
    410 	opteed_std,
    411 
    412 	OEN_TOS_START,
    413 	OEN_TOS_END,
    414 	SMC_TYPE_YIELD,
    415 	NULL,
    416 	opteed_smc_handler
    417 );
    418