Home | History | Annotate | Download | only in AST
      1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/Mangle.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/Attr.h"
     17 #include "clang/AST/CXXInheritance.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/AST/Decl.h"
     20 #include "clang/AST/DeclCXX.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclOpenMP.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/VTableBuilder.h"
     27 #include "clang/Basic/ABI.h"
     28 #include "clang/Basic/DiagnosticOptions.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "llvm/ADT/StringExtras.h"
     31 #include "llvm/Support/JamCRC.h"
     32 #include "llvm/Support/MD5.h"
     33 #include "llvm/Support/MathExtras.h"
     34 
     35 using namespace clang;
     36 
     37 namespace {
     38 
     39 struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
     40   raw_ostream &OS;
     41   llvm::SmallString<64> Buffer;
     42 
     43   msvc_hashing_ostream(raw_ostream &OS)
     44       : llvm::raw_svector_ostream(Buffer), OS(OS) {}
     45   ~msvc_hashing_ostream() override {
     46     StringRef MangledName = str();
     47     bool StartsWithEscape = MangledName.startswith("\01");
     48     if (StartsWithEscape)
     49       MangledName = MangledName.drop_front(1);
     50     if (MangledName.size() <= 4096) {
     51       OS << str();
     52       return;
     53     }
     54 
     55     llvm::MD5 Hasher;
     56     llvm::MD5::MD5Result Hash;
     57     Hasher.update(MangledName);
     58     Hasher.final(Hash);
     59 
     60     SmallString<32> HexString;
     61     llvm::MD5::stringifyResult(Hash, HexString);
     62 
     63     if (StartsWithEscape)
     64       OS << '\01';
     65     OS << "??@" << HexString << '@';
     66   }
     67 };
     68 
     69 /// \brief Retrieve the declaration context that should be used when mangling
     70 /// the given declaration.
     71 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
     72   // The ABI assumes that lambda closure types that occur within
     73   // default arguments live in the context of the function. However, due to
     74   // the way in which Clang parses and creates function declarations, this is
     75   // not the case: the lambda closure type ends up living in the context
     76   // where the function itself resides, because the function declaration itself
     77   // had not yet been created. Fix the context here.
     78   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
     79     if (RD->isLambda())
     80       if (ParmVarDecl *ContextParam =
     81               dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
     82         return ContextParam->getDeclContext();
     83   }
     84 
     85   // Perform the same check for block literals.
     86   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
     87     if (ParmVarDecl *ContextParam =
     88             dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
     89       return ContextParam->getDeclContext();
     90   }
     91 
     92   const DeclContext *DC = D->getDeclContext();
     93   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
     94     return getEffectiveDeclContext(cast<Decl>(DC));
     95   }
     96 
     97   return DC->getRedeclContext();
     98 }
     99 
    100 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
    101   return getEffectiveDeclContext(cast<Decl>(DC));
    102 }
    103 
    104 static const FunctionDecl *getStructor(const NamedDecl *ND) {
    105   if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
    106     return FTD->getTemplatedDecl();
    107 
    108   const auto *FD = cast<FunctionDecl>(ND);
    109   if (const auto *FTD = FD->getPrimaryTemplate())
    110     return FTD->getTemplatedDecl();
    111 
    112   return FD;
    113 }
    114 
    115 static bool isLambda(const NamedDecl *ND) {
    116   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
    117   if (!Record)
    118     return false;
    119 
    120   return Record->isLambda();
    121 }
    122 
    123 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
    124 /// Microsoft Visual C++ ABI.
    125 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
    126   typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
    127   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
    128   llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
    129   llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
    130   llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
    131   llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
    132 
    133 public:
    134   MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
    135       : MicrosoftMangleContext(Context, Diags) {}
    136   bool shouldMangleCXXName(const NamedDecl *D) override;
    137   bool shouldMangleStringLiteral(const StringLiteral *SL) override;
    138   void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
    139   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
    140                                 raw_ostream &) override;
    141   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
    142                    raw_ostream &) override;
    143   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
    144                           const ThisAdjustment &ThisAdjustment,
    145                           raw_ostream &) override;
    146   void mangleCXXVFTable(const CXXRecordDecl *Derived,
    147                         ArrayRef<const CXXRecordDecl *> BasePath,
    148                         raw_ostream &Out) override;
    149   void mangleCXXVBTable(const CXXRecordDecl *Derived,
    150                         ArrayRef<const CXXRecordDecl *> BasePath,
    151                         raw_ostream &Out) override;
    152   void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
    153                                        const CXXRecordDecl *DstRD,
    154                                        raw_ostream &Out) override;
    155   void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
    156                           bool IsUnaligned, uint32_t NumEntries,
    157                           raw_ostream &Out) override;
    158   void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
    159                                    raw_ostream &Out) override;
    160   void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
    161                               CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
    162                               int32_t VBPtrOffset, uint32_t VBIndex,
    163                               raw_ostream &Out) override;
    164   void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
    165   void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
    166   void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
    167                                         uint32_t NVOffset, int32_t VBPtrOffset,
    168                                         uint32_t VBTableOffset, uint32_t Flags,
    169                                         raw_ostream &Out) override;
    170   void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
    171                                    raw_ostream &Out) override;
    172   void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
    173                                              raw_ostream &Out) override;
    174   void
    175   mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
    176                                      ArrayRef<const CXXRecordDecl *> BasePath,
    177                                      raw_ostream &Out) override;
    178   void mangleTypeName(QualType T, raw_ostream &) override;
    179   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
    180                      raw_ostream &) override;
    181   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
    182                      raw_ostream &) override;
    183   void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
    184                                 raw_ostream &) override;
    185   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
    186   void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
    187                                            raw_ostream &Out) override;
    188   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
    189   void mangleDynamicAtExitDestructor(const VarDecl *D,
    190                                      raw_ostream &Out) override;
    191   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
    192                                  raw_ostream &Out) override;
    193   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
    194                              raw_ostream &Out) override;
    195   void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
    196   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
    197     const DeclContext *DC = getEffectiveDeclContext(ND);
    198     if (!DC->isFunctionOrMethod())
    199       return false;
    200 
    201     // Lambda closure types are already numbered, give out a phony number so
    202     // that they demangle nicely.
    203     if (isLambda(ND)) {
    204       disc = 1;
    205       return true;
    206     }
    207 
    208     // Use the canonical number for externally visible decls.
    209     if (ND->isExternallyVisible()) {
    210       disc = getASTContext().getManglingNumber(ND);
    211       return true;
    212     }
    213 
    214     // Anonymous tags are already numbered.
    215     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
    216       if (!Tag->hasNameForLinkage() &&
    217           !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
    218           !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
    219         return false;
    220     }
    221 
    222     // Make up a reasonable number for internal decls.
    223     unsigned &discriminator = Uniquifier[ND];
    224     if (!discriminator)
    225       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
    226     disc = discriminator + 1;
    227     return true;
    228   }
    229 
    230   unsigned getLambdaId(const CXXRecordDecl *RD) {
    231     assert(RD->isLambda() && "RD must be a lambda!");
    232     assert(!RD->isExternallyVisible() && "RD must not be visible!");
    233     assert(RD->getLambdaManglingNumber() == 0 &&
    234            "RD must not have a mangling number!");
    235     std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
    236         Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
    237     return Result.first->second;
    238   }
    239 
    240 private:
    241   void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
    242 };
    243 
    244 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
    245 /// Microsoft Visual C++ ABI.
    246 class MicrosoftCXXNameMangler {
    247   MicrosoftMangleContextImpl &Context;
    248   raw_ostream &Out;
    249 
    250   /// The "structor" is the top-level declaration being mangled, if
    251   /// that's not a template specialization; otherwise it's the pattern
    252   /// for that specialization.
    253   const NamedDecl *Structor;
    254   unsigned StructorType;
    255 
    256   typedef llvm::SmallVector<std::string, 10> BackRefVec;
    257   BackRefVec NameBackReferences;
    258 
    259   typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
    260   ArgBackRefMap TypeBackReferences;
    261 
    262   typedef std::set<int> PassObjectSizeArgsSet;
    263   PassObjectSizeArgsSet PassObjectSizeArgs;
    264 
    265   ASTContext &getASTContext() const { return Context.getASTContext(); }
    266 
    267   // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
    268   // this check into mangleQualifiers().
    269   const bool PointersAre64Bit;
    270 
    271 public:
    272   enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
    273 
    274   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
    275       : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
    276         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
    277                          64) {}
    278 
    279   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
    280                           const CXXConstructorDecl *D, CXXCtorType Type)
    281       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
    282         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
    283                          64) {}
    284 
    285   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
    286                           const CXXDestructorDecl *D, CXXDtorType Type)
    287       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
    288         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
    289                          64) {}
    290 
    291   raw_ostream &getStream() const { return Out; }
    292 
    293   void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
    294   void mangleName(const NamedDecl *ND);
    295   void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
    296   void mangleVariableEncoding(const VarDecl *VD);
    297   void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
    298   void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
    299                                    const CXXMethodDecl *MD);
    300   void mangleVirtualMemPtrThunk(
    301       const CXXMethodDecl *MD,
    302       const MicrosoftVTableContext::MethodVFTableLocation &ML);
    303   void mangleNumber(int64_t Number);
    304   void mangleTagTypeKind(TagTypeKind TK);
    305   void mangleArtificalTagType(TagTypeKind TK, StringRef UnqualifiedName,
    306                               ArrayRef<StringRef> NestedNames = None);
    307   void mangleType(QualType T, SourceRange Range,
    308                   QualifierMangleMode QMM = QMM_Mangle);
    309   void mangleFunctionType(const FunctionType *T,
    310                           const FunctionDecl *D = nullptr,
    311                           bool ForceThisQuals = false);
    312   void mangleNestedName(const NamedDecl *ND);
    313 
    314 private:
    315   void mangleUnqualifiedName(const NamedDecl *ND) {
    316     mangleUnqualifiedName(ND, ND->getDeclName());
    317   }
    318   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
    319   void mangleSourceName(StringRef Name);
    320   void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
    321   void mangleCXXDtorType(CXXDtorType T);
    322   void mangleQualifiers(Qualifiers Quals, bool IsMember);
    323   void mangleRefQualifier(RefQualifierKind RefQualifier);
    324   void manglePointerCVQualifiers(Qualifiers Quals);
    325   void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
    326 
    327   void mangleUnscopedTemplateName(const TemplateDecl *ND);
    328   void
    329   mangleTemplateInstantiationName(const TemplateDecl *TD,
    330                                   const TemplateArgumentList &TemplateArgs);
    331   void mangleObjCMethodName(const ObjCMethodDecl *MD);
    332 
    333   void mangleArgumentType(QualType T, SourceRange Range);
    334   void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
    335 
    336   // Declare manglers for every type class.
    337 #define ABSTRACT_TYPE(CLASS, PARENT)
    338 #define NON_CANONICAL_TYPE(CLASS, PARENT)
    339 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
    340                                             Qualifiers Quals, \
    341                                             SourceRange Range);
    342 #include "clang/AST/TypeNodes.def"
    343 #undef ABSTRACT_TYPE
    344 #undef NON_CANONICAL_TYPE
    345 #undef TYPE
    346 
    347   void mangleType(const TagDecl *TD);
    348   void mangleDecayedArrayType(const ArrayType *T);
    349   void mangleArrayType(const ArrayType *T);
    350   void mangleFunctionClass(const FunctionDecl *FD);
    351   void mangleCallingConvention(CallingConv CC);
    352   void mangleCallingConvention(const FunctionType *T);
    353   void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
    354   void mangleExpression(const Expr *E);
    355   void mangleThrowSpecification(const FunctionProtoType *T);
    356 
    357   void mangleTemplateArgs(const TemplateDecl *TD,
    358                           const TemplateArgumentList &TemplateArgs);
    359   void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
    360                          const NamedDecl *Parm);
    361 };
    362 }
    363 
    364 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
    365   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    366     LanguageLinkage L = FD->getLanguageLinkage();
    367     // Overloadable functions need mangling.
    368     if (FD->hasAttr<OverloadableAttr>())
    369       return true;
    370 
    371     // The ABI expects that we would never mangle "typical" user-defined entry
    372     // points regardless of visibility or freestanding-ness.
    373     //
    374     // N.B. This is distinct from asking about "main".  "main" has a lot of
    375     // special rules associated with it in the standard while these
    376     // user-defined entry points are outside of the purview of the standard.
    377     // For example, there can be only one definition for "main" in a standards
    378     // compliant program; however nothing forbids the existence of wmain and
    379     // WinMain in the same translation unit.
    380     if (FD->isMSVCRTEntryPoint())
    381       return false;
    382 
    383     // C++ functions and those whose names are not a simple identifier need
    384     // mangling.
    385     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
    386       return true;
    387 
    388     // C functions are not mangled.
    389     if (L == CLanguageLinkage)
    390       return false;
    391   }
    392 
    393   // Otherwise, no mangling is done outside C++ mode.
    394   if (!getASTContext().getLangOpts().CPlusPlus)
    395     return false;
    396 
    397   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    398     // C variables are not mangled.
    399     if (VD->isExternC())
    400       return false;
    401 
    402     // Variables at global scope with non-internal linkage are not mangled.
    403     const DeclContext *DC = getEffectiveDeclContext(D);
    404     // Check for extern variable declared locally.
    405     if (DC->isFunctionOrMethod() && D->hasLinkage())
    406       while (!DC->isNamespace() && !DC->isTranslationUnit())
    407         DC = getEffectiveParentContext(DC);
    408 
    409     if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
    410         !isa<VarTemplateSpecializationDecl>(D) &&
    411         D->getIdentifier() != nullptr)
    412       return false;
    413   }
    414 
    415   return true;
    416 }
    417 
    418 bool
    419 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
    420   return true;
    421 }
    422 
    423 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
    424   // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
    425   // Therefore it's really important that we don't decorate the
    426   // name with leading underscores or leading/trailing at signs. So, by
    427   // default, we emit an asm marker at the start so we get the name right.
    428   // Callers can override this with a custom prefix.
    429 
    430   // <mangled-name> ::= ? <name> <type-encoding>
    431   Out << Prefix;
    432   mangleName(D);
    433   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    434     mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
    435   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    436     mangleVariableEncoding(VD);
    437   else
    438     llvm_unreachable("Tried to mangle unexpected NamedDecl!");
    439 }
    440 
    441 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
    442                                                      bool ShouldMangle) {
    443   // <type-encoding> ::= <function-class> <function-type>
    444 
    445   // Since MSVC operates on the type as written and not the canonical type, it
    446   // actually matters which decl we have here.  MSVC appears to choose the
    447   // first, since it is most likely to be the declaration in a header file.
    448   FD = FD->getFirstDecl();
    449 
    450   // We should never ever see a FunctionNoProtoType at this point.
    451   // We don't even know how to mangle their types anyway :).
    452   const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
    453 
    454   // extern "C" functions can hold entities that must be mangled.
    455   // As it stands, these functions still need to get expressed in the full
    456   // external name.  They have their class and type omitted, replaced with '9'.
    457   if (ShouldMangle) {
    458     // We would like to mangle all extern "C" functions using this additional
    459     // component but this would break compatibility with MSVC's behavior.
    460     // Instead, do this when we know that compatibility isn't important (in
    461     // other words, when it is an overloaded extern "C" function).
    462     if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
    463       Out << "$$J0";
    464 
    465     mangleFunctionClass(FD);
    466 
    467     mangleFunctionType(FT, FD);
    468   } else {
    469     Out << '9';
    470   }
    471 }
    472 
    473 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
    474   // <type-encoding> ::= <storage-class> <variable-type>
    475   // <storage-class> ::= 0  # private static member
    476   //                 ::= 1  # protected static member
    477   //                 ::= 2  # public static member
    478   //                 ::= 3  # global
    479   //                 ::= 4  # static local
    480 
    481   // The first character in the encoding (after the name) is the storage class.
    482   if (VD->isStaticDataMember()) {
    483     // If it's a static member, it also encodes the access level.
    484     switch (VD->getAccess()) {
    485       default:
    486       case AS_private: Out << '0'; break;
    487       case AS_protected: Out << '1'; break;
    488       case AS_public: Out << '2'; break;
    489     }
    490   }
    491   else if (!VD->isStaticLocal())
    492     Out << '3';
    493   else
    494     Out << '4';
    495   // Now mangle the type.
    496   // <variable-type> ::= <type> <cvr-qualifiers>
    497   //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references
    498   // Pointers and references are odd. The type of 'int * const foo;' gets
    499   // mangled as 'QAHA' instead of 'PAHB', for example.
    500   SourceRange SR = VD->getSourceRange();
    501   QualType Ty = VD->getType();
    502   if (Ty->isPointerType() || Ty->isReferenceType() ||
    503       Ty->isMemberPointerType()) {
    504     mangleType(Ty, SR, QMM_Drop);
    505     manglePointerExtQualifiers(
    506         Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
    507     if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
    508       mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
    509       // Member pointers are suffixed with a back reference to the member
    510       // pointer's class name.
    511       mangleName(MPT->getClass()->getAsCXXRecordDecl());
    512     } else
    513       mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
    514   } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
    515     // Global arrays are funny, too.
    516     mangleDecayedArrayType(AT);
    517     if (AT->getElementType()->isArrayType())
    518       Out << 'A';
    519     else
    520       mangleQualifiers(Ty.getQualifiers(), false);
    521   } else {
    522     mangleType(Ty, SR, QMM_Drop);
    523     mangleQualifiers(Ty.getQualifiers(), false);
    524   }
    525 }
    526 
    527 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
    528                                                       const ValueDecl *VD) {
    529   // <member-data-pointer> ::= <integer-literal>
    530   //                       ::= $F <number> <number>
    531   //                       ::= $G <number> <number> <number>
    532 
    533   int64_t FieldOffset;
    534   int64_t VBTableOffset;
    535   MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
    536   if (VD) {
    537     FieldOffset = getASTContext().getFieldOffset(VD);
    538     assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
    539            "cannot take address of bitfield");
    540     FieldOffset /= getASTContext().getCharWidth();
    541 
    542     VBTableOffset = 0;
    543 
    544     if (IM == MSInheritanceAttr::Keyword_virtual_inheritance)
    545       FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
    546   } else {
    547     FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
    548 
    549     VBTableOffset = -1;
    550   }
    551 
    552   char Code = '\0';
    553   switch (IM) {
    554   case MSInheritanceAttr::Keyword_single_inheritance:      Code = '0'; break;
    555   case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = '0'; break;
    556   case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'F'; break;
    557   case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
    558   }
    559 
    560   Out << '$' << Code;
    561 
    562   mangleNumber(FieldOffset);
    563 
    564   // The C++ standard doesn't allow base-to-derived member pointer conversions
    565   // in template parameter contexts, so the vbptr offset of data member pointers
    566   // is always zero.
    567   if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
    568     mangleNumber(0);
    569   if (MSInheritanceAttr::hasVBTableOffsetField(IM))
    570     mangleNumber(VBTableOffset);
    571 }
    572 
    573 void
    574 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
    575                                                      const CXXMethodDecl *MD) {
    576   // <member-function-pointer> ::= $1? <name>
    577   //                           ::= $H? <name> <number>
    578   //                           ::= $I? <name> <number> <number>
    579   //                           ::= $J? <name> <number> <number> <number>
    580 
    581   MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
    582 
    583   char Code = '\0';
    584   switch (IM) {
    585   case MSInheritanceAttr::Keyword_single_inheritance:      Code = '1'; break;
    586   case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = 'H'; break;
    587   case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'I'; break;
    588   case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
    589   }
    590 
    591   // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr
    592   // thunk.
    593   uint64_t NVOffset = 0;
    594   uint64_t VBTableOffset = 0;
    595   uint64_t VBPtrOffset = 0;
    596   if (MD) {
    597     Out << '$' << Code << '?';
    598     if (MD->isVirtual()) {
    599       MicrosoftVTableContext *VTContext =
    600           cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
    601       const MicrosoftVTableContext::MethodVFTableLocation &ML =
    602           VTContext->getMethodVFTableLocation(GlobalDecl(MD));
    603       mangleVirtualMemPtrThunk(MD, ML);
    604       NVOffset = ML.VFPtrOffset.getQuantity();
    605       VBTableOffset = ML.VBTableIndex * 4;
    606       if (ML.VBase) {
    607         const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
    608         VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
    609       }
    610     } else {
    611       mangleName(MD);
    612       mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
    613     }
    614 
    615     if (VBTableOffset == 0 &&
    616         IM == MSInheritanceAttr::Keyword_virtual_inheritance)
    617       NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
    618   } else {
    619     // Null single inheritance member functions are encoded as a simple nullptr.
    620     if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
    621       Out << "$0A@";
    622       return;
    623     }
    624     if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
    625       VBTableOffset = -1;
    626     Out << '$' << Code;
    627   }
    628 
    629   if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
    630     mangleNumber(static_cast<uint32_t>(NVOffset));
    631   if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
    632     mangleNumber(VBPtrOffset);
    633   if (MSInheritanceAttr::hasVBTableOffsetField(IM))
    634     mangleNumber(VBTableOffset);
    635 }
    636 
    637 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
    638     const CXXMethodDecl *MD,
    639     const MicrosoftVTableContext::MethodVFTableLocation &ML) {
    640   // Get the vftable offset.
    641   CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
    642       getASTContext().getTargetInfo().getPointerWidth(0));
    643   uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
    644 
    645   Out << "?_9";
    646   mangleName(MD->getParent());
    647   Out << "$B";
    648   mangleNumber(OffsetInVFTable);
    649   Out << 'A';
    650   mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
    651 }
    652 
    653 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
    654   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
    655 
    656   // Always start with the unqualified name.
    657   mangleUnqualifiedName(ND);
    658 
    659   mangleNestedName(ND);
    660 
    661   // Terminate the whole name with an '@'.
    662   Out << '@';
    663 }
    664 
    665 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
    666   // <non-negative integer> ::= A@              # when Number == 0
    667   //                        ::= <decimal digit> # when 1 <= Number <= 10
    668   //                        ::= <hex digit>+ @  # when Number >= 10
    669   //
    670   // <number>               ::= [?] <non-negative integer>
    671 
    672   uint64_t Value = static_cast<uint64_t>(Number);
    673   if (Number < 0) {
    674     Value = -Value;
    675     Out << '?';
    676   }
    677 
    678   if (Value == 0)
    679     Out << "A@";
    680   else if (Value >= 1 && Value <= 10)
    681     Out << (Value - 1);
    682   else {
    683     // Numbers that are not encoded as decimal digits are represented as nibbles
    684     // in the range of ASCII characters 'A' to 'P'.
    685     // The number 0x123450 would be encoded as 'BCDEFA'
    686     char EncodedNumberBuffer[sizeof(uint64_t) * 2];
    687     MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
    688     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
    689     for (; Value != 0; Value >>= 4)
    690       *I++ = 'A' + (Value & 0xf);
    691     Out.write(I.base(), I - BufferRef.rbegin());
    692     Out << '@';
    693   }
    694 }
    695 
    696 static const TemplateDecl *
    697 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
    698   // Check if we have a function template.
    699   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
    700     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
    701       TemplateArgs = FD->getTemplateSpecializationArgs();
    702       return TD;
    703     }
    704   }
    705 
    706   // Check if we have a class template.
    707   if (const ClassTemplateSpecializationDecl *Spec =
    708           dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
    709     TemplateArgs = &Spec->getTemplateArgs();
    710     return Spec->getSpecializedTemplate();
    711   }
    712 
    713   // Check if we have a variable template.
    714   if (const VarTemplateSpecializationDecl *Spec =
    715           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
    716     TemplateArgs = &Spec->getTemplateArgs();
    717     return Spec->getSpecializedTemplate();
    718   }
    719 
    720   return nullptr;
    721 }
    722 
    723 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
    724                                                     DeclarationName Name) {
    725   //  <unqualified-name> ::= <operator-name>
    726   //                     ::= <ctor-dtor-name>
    727   //                     ::= <source-name>
    728   //                     ::= <template-name>
    729 
    730   // Check if we have a template.
    731   const TemplateArgumentList *TemplateArgs = nullptr;
    732   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
    733     // Function templates aren't considered for name back referencing.  This
    734     // makes sense since function templates aren't likely to occur multiple
    735     // times in a symbol.
    736     if (isa<FunctionTemplateDecl>(TD)) {
    737       mangleTemplateInstantiationName(TD, *TemplateArgs);
    738       Out << '@';
    739       return;
    740     }
    741 
    742     // Here comes the tricky thing: if we need to mangle something like
    743     //   void foo(A::X<Y>, B::X<Y>),
    744     // the X<Y> part is aliased. However, if you need to mangle
    745     //   void foo(A::X<A::Y>, A::X<B::Y>),
    746     // the A::X<> part is not aliased.
    747     // That said, from the mangler's perspective we have a structure like this:
    748     //   namespace[s] -> type[ -> template-parameters]
    749     // but from the Clang perspective we have
    750     //   type [ -> template-parameters]
    751     //      \-> namespace[s]
    752     // What we do is we create a new mangler, mangle the same type (without
    753     // a namespace suffix) to a string using the extra mangler and then use
    754     // the mangled type name as a key to check the mangling of different types
    755     // for aliasing.
    756 
    757     llvm::SmallString<64> TemplateMangling;
    758     llvm::raw_svector_ostream Stream(TemplateMangling);
    759     MicrosoftCXXNameMangler Extra(Context, Stream);
    760     Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
    761 
    762     mangleSourceName(TemplateMangling);
    763     return;
    764   }
    765 
    766   switch (Name.getNameKind()) {
    767     case DeclarationName::Identifier: {
    768       if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
    769         mangleSourceName(II->getName());
    770         break;
    771       }
    772 
    773       // Otherwise, an anonymous entity.  We must have a declaration.
    774       assert(ND && "mangling empty name without declaration");
    775 
    776       if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
    777         if (NS->isAnonymousNamespace()) {
    778           Out << "?A@";
    779           break;
    780         }
    781       }
    782 
    783       if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
    784         // We must have an anonymous union or struct declaration.
    785         const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
    786         assert(RD && "expected variable decl to have a record type");
    787         // Anonymous types with no tag or typedef get the name of their
    788         // declarator mangled in.  If they have no declarator, number them with
    789         // a $S prefix.
    790         llvm::SmallString<64> Name("$S");
    791         // Get a unique id for the anonymous struct.
    792         Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
    793         mangleSourceName(Name.str());
    794         break;
    795       }
    796 
    797       // We must have an anonymous struct.
    798       const TagDecl *TD = cast<TagDecl>(ND);
    799       if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
    800         assert(TD->getDeclContext() == D->getDeclContext() &&
    801                "Typedef should not be in another decl context!");
    802         assert(D->getDeclName().getAsIdentifierInfo() &&
    803                "Typedef was not named!");
    804         mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
    805         break;
    806       }
    807 
    808       if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
    809         if (Record->isLambda()) {
    810           llvm::SmallString<10> Name("<lambda_");
    811           unsigned LambdaId;
    812           if (Record->getLambdaManglingNumber())
    813             LambdaId = Record->getLambdaManglingNumber();
    814           else
    815             LambdaId = Context.getLambdaId(Record);
    816 
    817           Name += llvm::utostr(LambdaId);
    818           Name += ">";
    819 
    820           mangleSourceName(Name);
    821           break;
    822         }
    823       }
    824 
    825       llvm::SmallString<64> Name("<unnamed-type-");
    826       if (DeclaratorDecl *DD =
    827               Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
    828         // Anonymous types without a name for linkage purposes have their
    829         // declarator mangled in if they have one.
    830         Name += DD->getName();
    831       } else if (TypedefNameDecl *TND =
    832                      Context.getASTContext().getTypedefNameForUnnamedTagDecl(
    833                          TD)) {
    834         // Anonymous types without a name for linkage purposes have their
    835         // associate typedef mangled in if they have one.
    836         Name += TND->getName();
    837       } else {
    838         // Otherwise, number the types using a $S prefix.
    839         Name += "$S";
    840         Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
    841       }
    842       Name += ">";
    843       mangleSourceName(Name.str());
    844       break;
    845     }
    846 
    847     case DeclarationName::ObjCZeroArgSelector:
    848     case DeclarationName::ObjCOneArgSelector:
    849     case DeclarationName::ObjCMultiArgSelector:
    850       llvm_unreachable("Can't mangle Objective-C selector names here!");
    851 
    852     case DeclarationName::CXXConstructorName:
    853       if (Structor == getStructor(ND)) {
    854         if (StructorType == Ctor_CopyingClosure) {
    855           Out << "?_O";
    856           return;
    857         }
    858         if (StructorType == Ctor_DefaultClosure) {
    859           Out << "?_F";
    860           return;
    861         }
    862       }
    863       Out << "?0";
    864       return;
    865 
    866     case DeclarationName::CXXDestructorName:
    867       if (ND == Structor)
    868         // If the named decl is the C++ destructor we're mangling,
    869         // use the type we were given.
    870         mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
    871       else
    872         // Otherwise, use the base destructor name. This is relevant if a
    873         // class with a destructor is declared within a destructor.
    874         mangleCXXDtorType(Dtor_Base);
    875       break;
    876 
    877     case DeclarationName::CXXConversionFunctionName:
    878       // <operator-name> ::= ?B # (cast)
    879       // The target type is encoded as the return type.
    880       Out << "?B";
    881       break;
    882 
    883     case DeclarationName::CXXOperatorName:
    884       mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
    885       break;
    886 
    887     case DeclarationName::CXXLiteralOperatorName: {
    888       Out << "?__K";
    889       mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
    890       break;
    891     }
    892 
    893     case DeclarationName::CXXUsingDirective:
    894       llvm_unreachable("Can't mangle a using directive name!");
    895   }
    896 }
    897 
    898 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
    899   // <postfix> ::= <unqualified-name> [<postfix>]
    900   //           ::= <substitution> [<postfix>]
    901   const DeclContext *DC = getEffectiveDeclContext(ND);
    902 
    903   while (!DC->isTranslationUnit()) {
    904     if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
    905       unsigned Disc;
    906       if (Context.getNextDiscriminator(ND, Disc)) {
    907         Out << '?';
    908         mangleNumber(Disc);
    909         Out << '?';
    910       }
    911     }
    912 
    913     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
    914       DiagnosticsEngine &Diags = Context.getDiags();
    915       unsigned DiagID =
    916           Diags.getCustomDiagID(DiagnosticsEngine::Error,
    917                                 "cannot mangle a local inside this block yet");
    918       Diags.Report(BD->getLocation(), DiagID);
    919 
    920       // FIXME: This is completely, utterly, wrong; see ItaniumMangle
    921       // for how this should be done.
    922       Out << "__block_invoke" << Context.getBlockId(BD, false);
    923       Out << '@';
    924       continue;
    925     } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
    926       mangleObjCMethodName(Method);
    927     } else if (isa<NamedDecl>(DC)) {
    928       ND = cast<NamedDecl>(DC);
    929       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
    930         mangle(FD, "?");
    931         break;
    932       } else
    933         mangleUnqualifiedName(ND);
    934     }
    935     DC = DC->getParent();
    936   }
    937 }
    938 
    939 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
    940   // Microsoft uses the names on the case labels for these dtor variants.  Clang
    941   // uses the Itanium terminology internally.  Everything in this ABI delegates
    942   // towards the base dtor.
    943   switch (T) {
    944   // <operator-name> ::= ?1  # destructor
    945   case Dtor_Base: Out << "?1"; return;
    946   // <operator-name> ::= ?_D # vbase destructor
    947   case Dtor_Complete: Out << "?_D"; return;
    948   // <operator-name> ::= ?_G # scalar deleting destructor
    949   case Dtor_Deleting: Out << "?_G"; return;
    950   // <operator-name> ::= ?_E # vector deleting destructor
    951   // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need
    952   // it.
    953   case Dtor_Comdat:
    954     llvm_unreachable("not expecting a COMDAT");
    955   }
    956   llvm_unreachable("Unsupported dtor type?");
    957 }
    958 
    959 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
    960                                                  SourceLocation Loc) {
    961   switch (OO) {
    962   //                     ?0 # constructor
    963   //                     ?1 # destructor
    964   // <operator-name> ::= ?2 # new
    965   case OO_New: Out << "?2"; break;
    966   // <operator-name> ::= ?3 # delete
    967   case OO_Delete: Out << "?3"; break;
    968   // <operator-name> ::= ?4 # =
    969   case OO_Equal: Out << "?4"; break;
    970   // <operator-name> ::= ?5 # >>
    971   case OO_GreaterGreater: Out << "?5"; break;
    972   // <operator-name> ::= ?6 # <<
    973   case OO_LessLess: Out << "?6"; break;
    974   // <operator-name> ::= ?7 # !
    975   case OO_Exclaim: Out << "?7"; break;
    976   // <operator-name> ::= ?8 # ==
    977   case OO_EqualEqual: Out << "?8"; break;
    978   // <operator-name> ::= ?9 # !=
    979   case OO_ExclaimEqual: Out << "?9"; break;
    980   // <operator-name> ::= ?A # []
    981   case OO_Subscript: Out << "?A"; break;
    982   //                     ?B # conversion
    983   // <operator-name> ::= ?C # ->
    984   case OO_Arrow: Out << "?C"; break;
    985   // <operator-name> ::= ?D # *
    986   case OO_Star: Out << "?D"; break;
    987   // <operator-name> ::= ?E # ++
    988   case OO_PlusPlus: Out << "?E"; break;
    989   // <operator-name> ::= ?F # --
    990   case OO_MinusMinus: Out << "?F"; break;
    991   // <operator-name> ::= ?G # -
    992   case OO_Minus: Out << "?G"; break;
    993   // <operator-name> ::= ?H # +
    994   case OO_Plus: Out << "?H"; break;
    995   // <operator-name> ::= ?I # &
    996   case OO_Amp: Out << "?I"; break;
    997   // <operator-name> ::= ?J # ->*
    998   case OO_ArrowStar: Out << "?J"; break;
    999   // <operator-name> ::= ?K # /
   1000   case OO_Slash: Out << "?K"; break;
   1001   // <operator-name> ::= ?L # %
   1002   case OO_Percent: Out << "?L"; break;
   1003   // <operator-name> ::= ?M # <
   1004   case OO_Less: Out << "?M"; break;
   1005   // <operator-name> ::= ?N # <=
   1006   case OO_LessEqual: Out << "?N"; break;
   1007   // <operator-name> ::= ?O # >
   1008   case OO_Greater: Out << "?O"; break;
   1009   // <operator-name> ::= ?P # >=
   1010   case OO_GreaterEqual: Out << "?P"; break;
   1011   // <operator-name> ::= ?Q # ,
   1012   case OO_Comma: Out << "?Q"; break;
   1013   // <operator-name> ::= ?R # ()
   1014   case OO_Call: Out << "?R"; break;
   1015   // <operator-name> ::= ?S # ~
   1016   case OO_Tilde: Out << "?S"; break;
   1017   // <operator-name> ::= ?T # ^
   1018   case OO_Caret: Out << "?T"; break;
   1019   // <operator-name> ::= ?U # |
   1020   case OO_Pipe: Out << "?U"; break;
   1021   // <operator-name> ::= ?V # &&
   1022   case OO_AmpAmp: Out << "?V"; break;
   1023   // <operator-name> ::= ?W # ||
   1024   case OO_PipePipe: Out << "?W"; break;
   1025   // <operator-name> ::= ?X # *=
   1026   case OO_StarEqual: Out << "?X"; break;
   1027   // <operator-name> ::= ?Y # +=
   1028   case OO_PlusEqual: Out << "?Y"; break;
   1029   // <operator-name> ::= ?Z # -=
   1030   case OO_MinusEqual: Out << "?Z"; break;
   1031   // <operator-name> ::= ?_0 # /=
   1032   case OO_SlashEqual: Out << "?_0"; break;
   1033   // <operator-name> ::= ?_1 # %=
   1034   case OO_PercentEqual: Out << "?_1"; break;
   1035   // <operator-name> ::= ?_2 # >>=
   1036   case OO_GreaterGreaterEqual: Out << "?_2"; break;
   1037   // <operator-name> ::= ?_3 # <<=
   1038   case OO_LessLessEqual: Out << "?_3"; break;
   1039   // <operator-name> ::= ?_4 # &=
   1040   case OO_AmpEqual: Out << "?_4"; break;
   1041   // <operator-name> ::= ?_5 # |=
   1042   case OO_PipeEqual: Out << "?_5"; break;
   1043   // <operator-name> ::= ?_6 # ^=
   1044   case OO_CaretEqual: Out << "?_6"; break;
   1045   //                     ?_7 # vftable
   1046   //                     ?_8 # vbtable
   1047   //                     ?_9 # vcall
   1048   //                     ?_A # typeof
   1049   //                     ?_B # local static guard
   1050   //                     ?_C # string
   1051   //                     ?_D # vbase destructor
   1052   //                     ?_E # vector deleting destructor
   1053   //                     ?_F # default constructor closure
   1054   //                     ?_G # scalar deleting destructor
   1055   //                     ?_H # vector constructor iterator
   1056   //                     ?_I # vector destructor iterator
   1057   //                     ?_J # vector vbase constructor iterator
   1058   //                     ?_K # virtual displacement map
   1059   //                     ?_L # eh vector constructor iterator
   1060   //                     ?_M # eh vector destructor iterator
   1061   //                     ?_N # eh vector vbase constructor iterator
   1062   //                     ?_O # copy constructor closure
   1063   //                     ?_P<name> # udt returning <name>
   1064   //                     ?_Q # <unknown>
   1065   //                     ?_R0 # RTTI Type Descriptor
   1066   //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
   1067   //                     ?_R2 # RTTI Base Class Array
   1068   //                     ?_R3 # RTTI Class Hierarchy Descriptor
   1069   //                     ?_R4 # RTTI Complete Object Locator
   1070   //                     ?_S # local vftable
   1071   //                     ?_T # local vftable constructor closure
   1072   // <operator-name> ::= ?_U # new[]
   1073   case OO_Array_New: Out << "?_U"; break;
   1074   // <operator-name> ::= ?_V # delete[]
   1075   case OO_Array_Delete: Out << "?_V"; break;
   1076 
   1077   case OO_Conditional: {
   1078     DiagnosticsEngine &Diags = Context.getDiags();
   1079     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   1080       "cannot mangle this conditional operator yet");
   1081     Diags.Report(Loc, DiagID);
   1082     break;
   1083   }
   1084 
   1085   case OO_Coawait: {
   1086     DiagnosticsEngine &Diags = Context.getDiags();
   1087     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   1088       "cannot mangle this operator co_await yet");
   1089     Diags.Report(Loc, DiagID);
   1090     break;
   1091   }
   1092 
   1093   case OO_None:
   1094   case NUM_OVERLOADED_OPERATORS:
   1095     llvm_unreachable("Not an overloaded operator");
   1096   }
   1097 }
   1098 
   1099 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
   1100   // <source name> ::= <identifier> @
   1101   BackRefVec::iterator Found =
   1102       std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
   1103   if (Found == NameBackReferences.end()) {
   1104     if (NameBackReferences.size() < 10)
   1105       NameBackReferences.push_back(Name);
   1106     Out << Name << '@';
   1107   } else {
   1108     Out << (Found - NameBackReferences.begin());
   1109   }
   1110 }
   1111 
   1112 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
   1113   Context.mangleObjCMethodName(MD, Out);
   1114 }
   1115 
   1116 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
   1117     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
   1118   // <template-name> ::= <unscoped-template-name> <template-args>
   1119   //                 ::= <substitution>
   1120   // Always start with the unqualified name.
   1121 
   1122   // Templates have their own context for back references.
   1123   ArgBackRefMap OuterArgsContext;
   1124   BackRefVec OuterTemplateContext;
   1125   PassObjectSizeArgsSet OuterPassObjectSizeArgs;
   1126   NameBackReferences.swap(OuterTemplateContext);
   1127   TypeBackReferences.swap(OuterArgsContext);
   1128   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
   1129 
   1130   mangleUnscopedTemplateName(TD);
   1131   mangleTemplateArgs(TD, TemplateArgs);
   1132 
   1133   // Restore the previous back reference contexts.
   1134   NameBackReferences.swap(OuterTemplateContext);
   1135   TypeBackReferences.swap(OuterArgsContext);
   1136   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
   1137 }
   1138 
   1139 void
   1140 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
   1141   // <unscoped-template-name> ::= ?$ <unqualified-name>
   1142   Out << "?$";
   1143   mangleUnqualifiedName(TD);
   1144 }
   1145 
   1146 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
   1147                                                    bool IsBoolean) {
   1148   // <integer-literal> ::= $0 <number>
   1149   Out << "$0";
   1150   // Make sure booleans are encoded as 0/1.
   1151   if (IsBoolean && Value.getBoolValue())
   1152     mangleNumber(1);
   1153   else if (Value.isSigned())
   1154     mangleNumber(Value.getSExtValue());
   1155   else
   1156     mangleNumber(Value.getZExtValue());
   1157 }
   1158 
   1159 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
   1160   // See if this is a constant expression.
   1161   llvm::APSInt Value;
   1162   if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
   1163     mangleIntegerLiteral(Value, E->getType()->isBooleanType());
   1164     return;
   1165   }
   1166 
   1167   // Look through no-op casts like template parameter substitutions.
   1168   E = E->IgnoreParenNoopCasts(Context.getASTContext());
   1169 
   1170   const CXXUuidofExpr *UE = nullptr;
   1171   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   1172     if (UO->getOpcode() == UO_AddrOf)
   1173       UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
   1174   } else
   1175     UE = dyn_cast<CXXUuidofExpr>(E);
   1176 
   1177   if (UE) {
   1178     // If we had to peek through an address-of operator, treat this like we are
   1179     // dealing with a pointer type.  Otherwise, treat it like a const reference.
   1180     //
   1181     // N.B. This matches up with the handling of TemplateArgument::Declaration
   1182     // in mangleTemplateArg
   1183     if (UE == E)
   1184       Out << "$E?";
   1185     else
   1186       Out << "$1?";
   1187 
   1188     // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
   1189     // const __s_GUID _GUID_{lower case UUID with underscores}
   1190     StringRef Uuid = UE->getUuidStr();
   1191     std::string Name = "_GUID_" + Uuid.lower();
   1192     std::replace(Name.begin(), Name.end(), '-', '_');
   1193 
   1194     mangleSourceName(Name);
   1195     // Terminate the whole name with an '@'.
   1196     Out << '@';
   1197     // It's a global variable.
   1198     Out << '3';
   1199     // It's a struct called __s_GUID.
   1200     mangleArtificalTagType(TTK_Struct, "__s_GUID");
   1201     // It's const.
   1202     Out << 'B';
   1203     return;
   1204   }
   1205 
   1206   // As bad as this diagnostic is, it's better than crashing.
   1207   DiagnosticsEngine &Diags = Context.getDiags();
   1208   unsigned DiagID = Diags.getCustomDiagID(
   1209       DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
   1210   Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
   1211                                         << E->getSourceRange();
   1212 }
   1213 
   1214 void MicrosoftCXXNameMangler::mangleTemplateArgs(
   1215     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
   1216   // <template-args> ::= <template-arg>+
   1217   const TemplateParameterList *TPL = TD->getTemplateParameters();
   1218   assert(TPL->size() == TemplateArgs.size() &&
   1219          "size mismatch between args and parms!");
   1220 
   1221   unsigned Idx = 0;
   1222   for (const TemplateArgument &TA : TemplateArgs.asArray())
   1223     mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
   1224 }
   1225 
   1226 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
   1227                                                 const TemplateArgument &TA,
   1228                                                 const NamedDecl *Parm) {
   1229   // <template-arg> ::= <type>
   1230   //                ::= <integer-literal>
   1231   //                ::= <member-data-pointer>
   1232   //                ::= <member-function-pointer>
   1233   //                ::= $E? <name> <type-encoding>
   1234   //                ::= $1? <name> <type-encoding>
   1235   //                ::= $0A@
   1236   //                ::= <template-args>
   1237 
   1238   switch (TA.getKind()) {
   1239   case TemplateArgument::Null:
   1240     llvm_unreachable("Can't mangle null template arguments!");
   1241   case TemplateArgument::TemplateExpansion:
   1242     llvm_unreachable("Can't mangle template expansion arguments!");
   1243   case TemplateArgument::Type: {
   1244     QualType T = TA.getAsType();
   1245     mangleType(T, SourceRange(), QMM_Escape);
   1246     break;
   1247   }
   1248   case TemplateArgument::Declaration: {
   1249     const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
   1250     if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
   1251       mangleMemberDataPointer(
   1252           cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
   1253           cast<ValueDecl>(ND));
   1254     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
   1255       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   1256       if (MD && MD->isInstance()) {
   1257         mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
   1258       } else {
   1259         Out << "$1?";
   1260         mangleName(FD);
   1261         mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
   1262       }
   1263     } else {
   1264       mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
   1265     }
   1266     break;
   1267   }
   1268   case TemplateArgument::Integral:
   1269     mangleIntegerLiteral(TA.getAsIntegral(),
   1270                          TA.getIntegralType()->isBooleanType());
   1271     break;
   1272   case TemplateArgument::NullPtr: {
   1273     QualType T = TA.getNullPtrType();
   1274     if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
   1275       const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   1276       if (MPT->isMemberFunctionPointerType() &&
   1277           !isa<FunctionTemplateDecl>(TD)) {
   1278         mangleMemberFunctionPointer(RD, nullptr);
   1279         return;
   1280       }
   1281       if (MPT->isMemberDataPointer()) {
   1282         if (!isa<FunctionTemplateDecl>(TD)) {
   1283           mangleMemberDataPointer(RD, nullptr);
   1284           return;
   1285         }
   1286         // nullptr data pointers are always represented with a single field
   1287         // which is initialized with either 0 or -1.  Why -1?  Well, we need to
   1288         // distinguish the case where the data member is at offset zero in the
   1289         // record.
   1290         // However, we are free to use 0 *if* we would use multiple fields for
   1291         // non-nullptr member pointers.
   1292         if (!RD->nullFieldOffsetIsZero()) {
   1293           mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
   1294           return;
   1295         }
   1296       }
   1297     }
   1298     mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
   1299     break;
   1300   }
   1301   case TemplateArgument::Expression:
   1302     mangleExpression(TA.getAsExpr());
   1303     break;
   1304   case TemplateArgument::Pack: {
   1305     ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
   1306     if (TemplateArgs.empty()) {
   1307       if (isa<TemplateTypeParmDecl>(Parm) ||
   1308           isa<TemplateTemplateParmDecl>(Parm))
   1309         // MSVC 2015 changed the mangling for empty expanded template packs,
   1310         // use the old mangling for link compatibility for old versions.
   1311         Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
   1312                     LangOptions::MSVC2015)
   1313                     ? "$$V"
   1314                     : "$$$V");
   1315       else if (isa<NonTypeTemplateParmDecl>(Parm))
   1316         Out << "$S";
   1317       else
   1318         llvm_unreachable("unexpected template parameter decl!");
   1319     } else {
   1320       for (const TemplateArgument &PA : TemplateArgs)
   1321         mangleTemplateArg(TD, PA, Parm);
   1322     }
   1323     break;
   1324   }
   1325   case TemplateArgument::Template: {
   1326     const NamedDecl *ND =
   1327         TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
   1328     if (const auto *TD = dyn_cast<TagDecl>(ND)) {
   1329       mangleType(TD);
   1330     } else if (isa<TypeAliasDecl>(ND)) {
   1331       Out << "$$Y";
   1332       mangleName(ND);
   1333     } else {
   1334       llvm_unreachable("unexpected template template NamedDecl!");
   1335     }
   1336     break;
   1337   }
   1338   }
   1339 }
   1340 
   1341 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
   1342                                                bool IsMember) {
   1343   // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
   1344   // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
   1345   // 'I' means __restrict (32/64-bit).
   1346   // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
   1347   // keyword!
   1348   // <base-cvr-qualifiers> ::= A  # near
   1349   //                       ::= B  # near const
   1350   //                       ::= C  # near volatile
   1351   //                       ::= D  # near const volatile
   1352   //                       ::= E  # far (16-bit)
   1353   //                       ::= F  # far const (16-bit)
   1354   //                       ::= G  # far volatile (16-bit)
   1355   //                       ::= H  # far const volatile (16-bit)
   1356   //                       ::= I  # huge (16-bit)
   1357   //                       ::= J  # huge const (16-bit)
   1358   //                       ::= K  # huge volatile (16-bit)
   1359   //                       ::= L  # huge const volatile (16-bit)
   1360   //                       ::= M <basis> # based
   1361   //                       ::= N <basis> # based const
   1362   //                       ::= O <basis> # based volatile
   1363   //                       ::= P <basis> # based const volatile
   1364   //                       ::= Q  # near member
   1365   //                       ::= R  # near const member
   1366   //                       ::= S  # near volatile member
   1367   //                       ::= T  # near const volatile member
   1368   //                       ::= U  # far member (16-bit)
   1369   //                       ::= V  # far const member (16-bit)
   1370   //                       ::= W  # far volatile member (16-bit)
   1371   //                       ::= X  # far const volatile member (16-bit)
   1372   //                       ::= Y  # huge member (16-bit)
   1373   //                       ::= Z  # huge const member (16-bit)
   1374   //                       ::= 0  # huge volatile member (16-bit)
   1375   //                       ::= 1  # huge const volatile member (16-bit)
   1376   //                       ::= 2 <basis> # based member
   1377   //                       ::= 3 <basis> # based const member
   1378   //                       ::= 4 <basis> # based volatile member
   1379   //                       ::= 5 <basis> # based const volatile member
   1380   //                       ::= 6  # near function (pointers only)
   1381   //                       ::= 7  # far function (pointers only)
   1382   //                       ::= 8  # near method (pointers only)
   1383   //                       ::= 9  # far method (pointers only)
   1384   //                       ::= _A <basis> # based function (pointers only)
   1385   //                       ::= _B <basis> # based function (far?) (pointers only)
   1386   //                       ::= _C <basis> # based method (pointers only)
   1387   //                       ::= _D <basis> # based method (far?) (pointers only)
   1388   //                       ::= _E # block (Clang)
   1389   // <basis> ::= 0 # __based(void)
   1390   //         ::= 1 # __based(segment)?
   1391   //         ::= 2 <name> # __based(name)
   1392   //         ::= 3 # ?
   1393   //         ::= 4 # ?
   1394   //         ::= 5 # not really based
   1395   bool HasConst = Quals.hasConst(),
   1396        HasVolatile = Quals.hasVolatile();
   1397 
   1398   if (!IsMember) {
   1399     if (HasConst && HasVolatile) {
   1400       Out << 'D';
   1401     } else if (HasVolatile) {
   1402       Out << 'C';
   1403     } else if (HasConst) {
   1404       Out << 'B';
   1405     } else {
   1406       Out << 'A';
   1407     }
   1408   } else {
   1409     if (HasConst && HasVolatile) {
   1410       Out << 'T';
   1411     } else if (HasVolatile) {
   1412       Out << 'S';
   1413     } else if (HasConst) {
   1414       Out << 'R';
   1415     } else {
   1416       Out << 'Q';
   1417     }
   1418   }
   1419 
   1420   // FIXME: For now, just drop all extension qualifiers on the floor.
   1421 }
   1422 
   1423 void
   1424 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
   1425   // <ref-qualifier> ::= G                # lvalue reference
   1426   //                 ::= H                # rvalue-reference
   1427   switch (RefQualifier) {
   1428   case RQ_None:
   1429     break;
   1430 
   1431   case RQ_LValue:
   1432     Out << 'G';
   1433     break;
   1434 
   1435   case RQ_RValue:
   1436     Out << 'H';
   1437     break;
   1438   }
   1439 }
   1440 
   1441 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
   1442                                                          QualType PointeeType) {
   1443   bool HasRestrict = Quals.hasRestrict();
   1444   if (PointersAre64Bit &&
   1445       (PointeeType.isNull() || !PointeeType->isFunctionType()))
   1446     Out << 'E';
   1447 
   1448   if (HasRestrict)
   1449     Out << 'I';
   1450 
   1451   if (Quals.hasUnaligned() ||
   1452       (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
   1453     Out << 'F';
   1454 }
   1455 
   1456 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
   1457   // <pointer-cv-qualifiers> ::= P  # no qualifiers
   1458   //                         ::= Q  # const
   1459   //                         ::= R  # volatile
   1460   //                         ::= S  # const volatile
   1461   bool HasConst = Quals.hasConst(),
   1462        HasVolatile = Quals.hasVolatile();
   1463 
   1464   if (HasConst && HasVolatile) {
   1465     Out << 'S';
   1466   } else if (HasVolatile) {
   1467     Out << 'R';
   1468   } else if (HasConst) {
   1469     Out << 'Q';
   1470   } else {
   1471     Out << 'P';
   1472   }
   1473 }
   1474 
   1475 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
   1476                                                  SourceRange Range) {
   1477   // MSVC will backreference two canonically equivalent types that have slightly
   1478   // different manglings when mangled alone.
   1479 
   1480   // Decayed types do not match up with non-decayed versions of the same type.
   1481   //
   1482   // e.g.
   1483   // void (*x)(void) will not form a backreference with void x(void)
   1484   void *TypePtr;
   1485   if (const auto *DT = T->getAs<DecayedType>()) {
   1486     QualType OriginalType = DT->getOriginalType();
   1487     // All decayed ArrayTypes should be treated identically; as-if they were
   1488     // a decayed IncompleteArrayType.
   1489     if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
   1490       OriginalType = getASTContext().getIncompleteArrayType(
   1491           AT->getElementType(), AT->getSizeModifier(),
   1492           AT->getIndexTypeCVRQualifiers());
   1493 
   1494     TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
   1495     // If the original parameter was textually written as an array,
   1496     // instead treat the decayed parameter like it's const.
   1497     //
   1498     // e.g.
   1499     // int [] -> int * const
   1500     if (OriginalType->isArrayType())
   1501       T = T.withConst();
   1502   } else {
   1503     TypePtr = T.getCanonicalType().getAsOpaquePtr();
   1504   }
   1505 
   1506   ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
   1507 
   1508   if (Found == TypeBackReferences.end()) {
   1509     size_t OutSizeBefore = Out.tell();
   1510 
   1511     mangleType(T, Range, QMM_Drop);
   1512 
   1513     // See if it's worth creating a back reference.
   1514     // Only types longer than 1 character are considered
   1515     // and only 10 back references slots are available:
   1516     bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
   1517     if (LongerThanOneChar && TypeBackReferences.size() < 10) {
   1518       size_t Size = TypeBackReferences.size();
   1519       TypeBackReferences[TypePtr] = Size;
   1520     }
   1521   } else {
   1522     Out << Found->second;
   1523   }
   1524 }
   1525 
   1526 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
   1527     const PassObjectSizeAttr *POSA) {
   1528   int Type = POSA->getType();
   1529 
   1530   auto Iter = PassObjectSizeArgs.insert(Type).first;
   1531   auto *TypePtr = (const void *)&*Iter;
   1532   ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
   1533 
   1534   if (Found == TypeBackReferences.end()) {
   1535     mangleArtificalTagType(TTK_Enum, "__pass_object_size" + llvm::utostr(Type),
   1536                            {"__clang"});
   1537 
   1538     if (TypeBackReferences.size() < 10) {
   1539       size_t Size = TypeBackReferences.size();
   1540       TypeBackReferences[TypePtr] = Size;
   1541     }
   1542   } else {
   1543     Out << Found->second;
   1544   }
   1545 }
   1546 
   1547 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
   1548                                          QualifierMangleMode QMM) {
   1549   // Don't use the canonical types.  MSVC includes things like 'const' on
   1550   // pointer arguments to function pointers that canonicalization strips away.
   1551   T = T.getDesugaredType(getASTContext());
   1552   Qualifiers Quals = T.getLocalQualifiers();
   1553   if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
   1554     // If there were any Quals, getAsArrayType() pushed them onto the array
   1555     // element type.
   1556     if (QMM == QMM_Mangle)
   1557       Out << 'A';
   1558     else if (QMM == QMM_Escape || QMM == QMM_Result)
   1559       Out << "$$B";
   1560     mangleArrayType(AT);
   1561     return;
   1562   }
   1563 
   1564   bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
   1565                    T->isReferenceType() || T->isBlockPointerType();
   1566 
   1567   switch (QMM) {
   1568   case QMM_Drop:
   1569     break;
   1570   case QMM_Mangle:
   1571     if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
   1572       Out << '6';
   1573       mangleFunctionType(FT);
   1574       return;
   1575     }
   1576     mangleQualifiers(Quals, false);
   1577     break;
   1578   case QMM_Escape:
   1579     if (!IsPointer && Quals) {
   1580       Out << "$$C";
   1581       mangleQualifiers(Quals, false);
   1582     }
   1583     break;
   1584   case QMM_Result:
   1585     // Presence of __unaligned qualifier shouldn't affect mangling here.
   1586     Quals.removeUnaligned();
   1587     if ((!IsPointer && Quals) || isa<TagType>(T)) {
   1588       Out << '?';
   1589       mangleQualifiers(Quals, false);
   1590     }
   1591     break;
   1592   }
   1593 
   1594   const Type *ty = T.getTypePtr();
   1595 
   1596   switch (ty->getTypeClass()) {
   1597 #define ABSTRACT_TYPE(CLASS, PARENT)
   1598 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
   1599   case Type::CLASS: \
   1600     llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
   1601     return;
   1602 #define TYPE(CLASS, PARENT) \
   1603   case Type::CLASS: \
   1604     mangleType(cast<CLASS##Type>(ty), Quals, Range); \
   1605     break;
   1606 #include "clang/AST/TypeNodes.def"
   1607 #undef ABSTRACT_TYPE
   1608 #undef NON_CANONICAL_TYPE
   1609 #undef TYPE
   1610   }
   1611 }
   1612 
   1613 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
   1614                                          SourceRange Range) {
   1615   //  <type>         ::= <builtin-type>
   1616   //  <builtin-type> ::= X  # void
   1617   //                 ::= C  # signed char
   1618   //                 ::= D  # char
   1619   //                 ::= E  # unsigned char
   1620   //                 ::= F  # short
   1621   //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
   1622   //                 ::= H  # int
   1623   //                 ::= I  # unsigned int
   1624   //                 ::= J  # long
   1625   //                 ::= K  # unsigned long
   1626   //                     L  # <none>
   1627   //                 ::= M  # float
   1628   //                 ::= N  # double
   1629   //                 ::= O  # long double (__float80 is mangled differently)
   1630   //                 ::= _J # long long, __int64
   1631   //                 ::= _K # unsigned long long, __int64
   1632   //                 ::= _L # __int128
   1633   //                 ::= _M # unsigned __int128
   1634   //                 ::= _N # bool
   1635   //                     _O # <array in parameter>
   1636   //                 ::= _T # __float80 (Intel)
   1637   //                 ::= _W # wchar_t
   1638   //                 ::= _Z # __float80 (Digital Mars)
   1639   switch (T->getKind()) {
   1640   case BuiltinType::Void:
   1641     Out << 'X';
   1642     break;
   1643   case BuiltinType::SChar:
   1644     Out << 'C';
   1645     break;
   1646   case BuiltinType::Char_U:
   1647   case BuiltinType::Char_S:
   1648     Out << 'D';
   1649     break;
   1650   case BuiltinType::UChar:
   1651     Out << 'E';
   1652     break;
   1653   case BuiltinType::Short:
   1654     Out << 'F';
   1655     break;
   1656   case BuiltinType::UShort:
   1657     Out << 'G';
   1658     break;
   1659   case BuiltinType::Int:
   1660     Out << 'H';
   1661     break;
   1662   case BuiltinType::UInt:
   1663     Out << 'I';
   1664     break;
   1665   case BuiltinType::Long:
   1666     Out << 'J';
   1667     break;
   1668   case BuiltinType::ULong:
   1669     Out << 'K';
   1670     break;
   1671   case BuiltinType::Float:
   1672     Out << 'M';
   1673     break;
   1674   case BuiltinType::Double:
   1675     Out << 'N';
   1676     break;
   1677   // TODO: Determine size and mangle accordingly
   1678   case BuiltinType::LongDouble:
   1679     Out << 'O';
   1680     break;
   1681   case BuiltinType::LongLong:
   1682     Out << "_J";
   1683     break;
   1684   case BuiltinType::ULongLong:
   1685     Out << "_K";
   1686     break;
   1687   case BuiltinType::Int128:
   1688     Out << "_L";
   1689     break;
   1690   case BuiltinType::UInt128:
   1691     Out << "_M";
   1692     break;
   1693   case BuiltinType::Bool:
   1694     Out << "_N";
   1695     break;
   1696   case BuiltinType::Char16:
   1697     Out << "_S";
   1698     break;
   1699   case BuiltinType::Char32:
   1700     Out << "_U";
   1701     break;
   1702   case BuiltinType::WChar_S:
   1703   case BuiltinType::WChar_U:
   1704     Out << "_W";
   1705     break;
   1706 
   1707 #define BUILTIN_TYPE(Id, SingletonId)
   1708 #define PLACEHOLDER_TYPE(Id, SingletonId) \
   1709   case BuiltinType::Id:
   1710 #include "clang/AST/BuiltinTypes.def"
   1711   case BuiltinType::Dependent:
   1712     llvm_unreachable("placeholder types shouldn't get to name mangling");
   1713 
   1714   case BuiltinType::ObjCId:
   1715     Out << "PA";
   1716     mangleArtificalTagType(TTK_Struct, "objc_object");
   1717     break;
   1718   case BuiltinType::ObjCClass:
   1719     Out << "PA";
   1720     mangleArtificalTagType(TTK_Struct, "objc_class");
   1721     break;
   1722   case BuiltinType::ObjCSel:
   1723     Out << "PA";
   1724     mangleArtificalTagType(TTK_Struct, "objc_selector");
   1725     break;
   1726 
   1727 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   1728   case BuiltinType::Id: \
   1729     Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
   1730     break;
   1731 #include "clang/Basic/OpenCLImageTypes.def"
   1732   case BuiltinType::OCLSampler:
   1733     Out << "PA";
   1734     mangleArtificalTagType(TTK_Struct, "ocl_sampler");
   1735     break;
   1736   case BuiltinType::OCLEvent:
   1737     Out << "PA";
   1738     mangleArtificalTagType(TTK_Struct, "ocl_event");
   1739     break;
   1740   case BuiltinType::OCLClkEvent:
   1741     Out << "PA";
   1742     mangleArtificalTagType(TTK_Struct, "ocl_clkevent");
   1743     break;
   1744   case BuiltinType::OCLQueue:
   1745     Out << "PA";
   1746     mangleArtificalTagType(TTK_Struct, "ocl_queue");
   1747     break;
   1748   case BuiltinType::OCLNDRange:
   1749     Out << "PA";
   1750     mangleArtificalTagType(TTK_Struct, "ocl_ndrange");
   1751     break;
   1752   case BuiltinType::OCLReserveID:
   1753     Out << "PA";
   1754     mangleArtificalTagType(TTK_Struct, "ocl_reserveid");
   1755     break;
   1756 
   1757   case BuiltinType::NullPtr:
   1758     Out << "$$T";
   1759     break;
   1760 
   1761   case BuiltinType::Float128:
   1762   case BuiltinType::Half: {
   1763     DiagnosticsEngine &Diags = Context.getDiags();
   1764     unsigned DiagID = Diags.getCustomDiagID(
   1765         DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
   1766     Diags.Report(Range.getBegin(), DiagID)
   1767         << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
   1768     break;
   1769   }
   1770   }
   1771 }
   1772 
   1773 // <type>          ::= <function-type>
   1774 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
   1775                                          SourceRange) {
   1776   // Structors only appear in decls, so at this point we know it's not a
   1777   // structor type.
   1778   // FIXME: This may not be lambda-friendly.
   1779   if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
   1780     Out << "$$A8@@";
   1781     mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
   1782   } else {
   1783     Out << "$$A6";
   1784     mangleFunctionType(T);
   1785   }
   1786 }
   1787 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
   1788                                          Qualifiers, SourceRange) {
   1789   Out << "$$A6";
   1790   mangleFunctionType(T);
   1791 }
   1792 
   1793 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
   1794                                                  const FunctionDecl *D,
   1795                                                  bool ForceThisQuals) {
   1796   // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
   1797   //                     <return-type> <argument-list> <throw-spec>
   1798   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
   1799 
   1800   SourceRange Range;
   1801   if (D) Range = D->getSourceRange();
   1802 
   1803   bool IsInLambda = false;
   1804   bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
   1805   CallingConv CC = T->getCallConv();
   1806   if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
   1807     if (MD->getParent()->isLambda())
   1808       IsInLambda = true;
   1809     if (MD->isInstance())
   1810       HasThisQuals = true;
   1811     if (isa<CXXDestructorDecl>(MD)) {
   1812       IsStructor = true;
   1813     } else if (isa<CXXConstructorDecl>(MD)) {
   1814       IsStructor = true;
   1815       IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
   1816                        StructorType == Ctor_DefaultClosure) &&
   1817                       getStructor(MD) == Structor;
   1818       if (IsCtorClosure)
   1819         CC = getASTContext().getDefaultCallingConvention(
   1820             /*IsVariadic=*/false, /*IsCXXMethod=*/true);
   1821     }
   1822   }
   1823 
   1824   // If this is a C++ instance method, mangle the CVR qualifiers for the
   1825   // this pointer.
   1826   if (HasThisQuals) {
   1827     Qualifiers Quals = Qualifiers::fromCVRUMask(Proto->getTypeQuals());
   1828     manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
   1829     mangleRefQualifier(Proto->getRefQualifier());
   1830     mangleQualifiers(Quals, /*IsMember=*/false);
   1831   }
   1832 
   1833   mangleCallingConvention(CC);
   1834 
   1835   // <return-type> ::= <type>
   1836   //               ::= @ # structors (they have no declared return type)
   1837   if (IsStructor) {
   1838     if (isa<CXXDestructorDecl>(D) && D == Structor &&
   1839         StructorType == Dtor_Deleting) {
   1840       // The scalar deleting destructor takes an extra int argument.
   1841       // However, the FunctionType generated has 0 arguments.
   1842       // FIXME: This is a temporary hack.
   1843       // Maybe should fix the FunctionType creation instead?
   1844       Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
   1845       return;
   1846     }
   1847     if (IsCtorClosure) {
   1848       // Default constructor closure and copy constructor closure both return
   1849       // void.
   1850       Out << 'X';
   1851 
   1852       if (StructorType == Ctor_DefaultClosure) {
   1853         // Default constructor closure always has no arguments.
   1854         Out << 'X';
   1855       } else if (StructorType == Ctor_CopyingClosure) {
   1856         // Copy constructor closure always takes an unqualified reference.
   1857         mangleArgumentType(getASTContext().getLValueReferenceType(
   1858                                Proto->getParamType(0)
   1859                                    ->getAs<LValueReferenceType>()
   1860                                    ->getPointeeType(),
   1861                                /*SpelledAsLValue=*/true),
   1862                            Range);
   1863         Out << '@';
   1864       } else {
   1865         llvm_unreachable("unexpected constructor closure!");
   1866       }
   1867       Out << 'Z';
   1868       return;
   1869     }
   1870     Out << '@';
   1871   } else {
   1872     QualType ResultType = T->getReturnType();
   1873     if (const auto *AT =
   1874             dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
   1875       Out << '?';
   1876       mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
   1877       Out << '?';
   1878       assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
   1879              "shouldn't need to mangle __auto_type!");
   1880       mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
   1881       Out << '@';
   1882     } else if (IsInLambda) {
   1883       Out << '@';
   1884     } else {
   1885       if (ResultType->isVoidType())
   1886         ResultType = ResultType.getUnqualifiedType();
   1887       mangleType(ResultType, Range, QMM_Result);
   1888     }
   1889   }
   1890 
   1891   // <argument-list> ::= X # void
   1892   //                 ::= <type>+ @
   1893   //                 ::= <type>* Z # varargs
   1894   if (!Proto) {
   1895     // Function types without prototypes can arise when mangling a function type
   1896     // within an overloadable function in C. We mangle these as the absence of
   1897     // any parameter types (not even an empty parameter list).
   1898     Out << '@';
   1899   } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
   1900     Out << 'X';
   1901   } else {
   1902     // Happens for function pointer type arguments for example.
   1903     for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
   1904       mangleArgumentType(Proto->getParamType(I), Range);
   1905       // Mangle each pass_object_size parameter as if it's a paramater of enum
   1906       // type passed directly after the parameter with the pass_object_size
   1907       // attribute. The aforementioned enum's name is __pass_object_size, and we
   1908       // pretend it resides in a top-level namespace called __clang.
   1909       //
   1910       // FIXME: Is there a defined extension notation for the MS ABI, or is it
   1911       // necessary to just cross our fingers and hope this type+namespace
   1912       // combination doesn't conflict with anything?
   1913       if (D)
   1914         if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
   1915           manglePassObjectSizeArg(P);
   1916     }
   1917     // <builtin-type>      ::= Z  # ellipsis
   1918     if (Proto->isVariadic())
   1919       Out << 'Z';
   1920     else
   1921       Out << '@';
   1922   }
   1923 
   1924   mangleThrowSpecification(Proto);
   1925 }
   1926 
   1927 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
   1928   // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this'
   1929   //                                            # pointer. in 64-bit mode *all*
   1930   //                                            # 'this' pointers are 64-bit.
   1931   //                   ::= <global-function>
   1932   // <member-function> ::= A # private: near
   1933   //                   ::= B # private: far
   1934   //                   ::= C # private: static near
   1935   //                   ::= D # private: static far
   1936   //                   ::= E # private: virtual near
   1937   //                   ::= F # private: virtual far
   1938   //                   ::= I # protected: near
   1939   //                   ::= J # protected: far
   1940   //                   ::= K # protected: static near
   1941   //                   ::= L # protected: static far
   1942   //                   ::= M # protected: virtual near
   1943   //                   ::= N # protected: virtual far
   1944   //                   ::= Q # public: near
   1945   //                   ::= R # public: far
   1946   //                   ::= S # public: static near
   1947   //                   ::= T # public: static far
   1948   //                   ::= U # public: virtual near
   1949   //                   ::= V # public: virtual far
   1950   // <global-function> ::= Y # global near
   1951   //                   ::= Z # global far
   1952   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   1953     switch (MD->getAccess()) {
   1954       case AS_none:
   1955         llvm_unreachable("Unsupported access specifier");
   1956       case AS_private:
   1957         if (MD->isStatic())
   1958           Out << 'C';
   1959         else if (MD->isVirtual())
   1960           Out << 'E';
   1961         else
   1962           Out << 'A';
   1963         break;
   1964       case AS_protected:
   1965         if (MD->isStatic())
   1966           Out << 'K';
   1967         else if (MD->isVirtual())
   1968           Out << 'M';
   1969         else
   1970           Out << 'I';
   1971         break;
   1972       case AS_public:
   1973         if (MD->isStatic())
   1974           Out << 'S';
   1975         else if (MD->isVirtual())
   1976           Out << 'U';
   1977         else
   1978           Out << 'Q';
   1979     }
   1980   } else {
   1981     Out << 'Y';
   1982   }
   1983 }
   1984 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
   1985   // <calling-convention> ::= A # __cdecl
   1986   //                      ::= B # __export __cdecl
   1987   //                      ::= C # __pascal
   1988   //                      ::= D # __export __pascal
   1989   //                      ::= E # __thiscall
   1990   //                      ::= F # __export __thiscall
   1991   //                      ::= G # __stdcall
   1992   //                      ::= H # __export __stdcall
   1993   //                      ::= I # __fastcall
   1994   //                      ::= J # __export __fastcall
   1995   //                      ::= Q # __vectorcall
   1996   // The 'export' calling conventions are from a bygone era
   1997   // (*cough*Win16*cough*) when functions were declared for export with
   1998   // that keyword. (It didn't actually export them, it just made them so
   1999   // that they could be in a DLL and somebody from another module could call
   2000   // them.)
   2001 
   2002   switch (CC) {
   2003     default:
   2004       llvm_unreachable("Unsupported CC for mangling");
   2005     case CC_X86_64Win64:
   2006     case CC_X86_64SysV:
   2007     case CC_C: Out << 'A'; break;
   2008     case CC_X86Pascal: Out << 'C'; break;
   2009     case CC_X86ThisCall: Out << 'E'; break;
   2010     case CC_X86StdCall: Out << 'G'; break;
   2011     case CC_X86FastCall: Out << 'I'; break;
   2012     case CC_X86VectorCall: Out << 'Q'; break;
   2013   }
   2014 }
   2015 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
   2016   mangleCallingConvention(T->getCallConv());
   2017 }
   2018 void MicrosoftCXXNameMangler::mangleThrowSpecification(
   2019                                                 const FunctionProtoType *FT) {
   2020   // <throw-spec> ::= Z # throw(...) (default)
   2021   //              ::= @ # throw() or __declspec/__attribute__((nothrow))
   2022   //              ::= <type>+
   2023   // NOTE: Since the Microsoft compiler ignores throw specifications, they are
   2024   // all actually mangled as 'Z'. (They're ignored because their associated
   2025   // functionality isn't implemented, and probably never will be.)
   2026   Out << 'Z';
   2027 }
   2028 
   2029 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
   2030                                          Qualifiers, SourceRange Range) {
   2031   // Probably should be mangled as a template instantiation; need to see what
   2032   // VC does first.
   2033   DiagnosticsEngine &Diags = Context.getDiags();
   2034   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2035     "cannot mangle this unresolved dependent type yet");
   2036   Diags.Report(Range.getBegin(), DiagID)
   2037     << Range;
   2038 }
   2039 
   2040 // <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
   2041 // <union-type>  ::= T <name>
   2042 // <struct-type> ::= U <name>
   2043 // <class-type>  ::= V <name>
   2044 // <enum-type>   ::= W4 <name>
   2045 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
   2046   switch (TTK) {
   2047     case TTK_Union:
   2048       Out << 'T';
   2049       break;
   2050     case TTK_Struct:
   2051     case TTK_Interface:
   2052       Out << 'U';
   2053       break;
   2054     case TTK_Class:
   2055       Out << 'V';
   2056       break;
   2057     case TTK_Enum:
   2058       Out << "W4";
   2059       break;
   2060   }
   2061 }
   2062 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
   2063                                          SourceRange) {
   2064   mangleType(cast<TagType>(T)->getDecl());
   2065 }
   2066 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
   2067                                          SourceRange) {
   2068   mangleType(cast<TagType>(T)->getDecl());
   2069 }
   2070 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
   2071   mangleTagTypeKind(TD->getTagKind());
   2072   mangleName(TD);
   2073 }
   2074 void MicrosoftCXXNameMangler::mangleArtificalTagType(
   2075     TagTypeKind TK, StringRef UnqualifiedName, ArrayRef<StringRef> NestedNames) {
   2076   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
   2077   mangleTagTypeKind(TK);
   2078 
   2079   // Always start with the unqualified name.
   2080   mangleSourceName(UnqualifiedName);
   2081 
   2082   for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
   2083     mangleSourceName(*I);
   2084 
   2085   // Terminate the whole name with an '@'.
   2086   Out << '@';
   2087 }
   2088 
   2089 // <type>       ::= <array-type>
   2090 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
   2091 //                  [Y <dimension-count> <dimension>+]
   2092 //                  <element-type> # as global, E is never required
   2093 // It's supposed to be the other way around, but for some strange reason, it
   2094 // isn't. Today this behavior is retained for the sole purpose of backwards
   2095 // compatibility.
   2096 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
   2097   // This isn't a recursive mangling, so now we have to do it all in this
   2098   // one call.
   2099   manglePointerCVQualifiers(T->getElementType().getQualifiers());
   2100   mangleType(T->getElementType(), SourceRange());
   2101 }
   2102 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
   2103                                          SourceRange) {
   2104   llvm_unreachable("Should have been special cased");
   2105 }
   2106 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
   2107                                          SourceRange) {
   2108   llvm_unreachable("Should have been special cased");
   2109 }
   2110 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
   2111                                          Qualifiers, SourceRange) {
   2112   llvm_unreachable("Should have been special cased");
   2113 }
   2114 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
   2115                                          Qualifiers, SourceRange) {
   2116   llvm_unreachable("Should have been special cased");
   2117 }
   2118 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
   2119   QualType ElementTy(T, 0);
   2120   SmallVector<llvm::APInt, 3> Dimensions;
   2121   for (;;) {
   2122     if (ElementTy->isConstantArrayType()) {
   2123       const ConstantArrayType *CAT =
   2124           getASTContext().getAsConstantArrayType(ElementTy);
   2125       Dimensions.push_back(CAT->getSize());
   2126       ElementTy = CAT->getElementType();
   2127     } else if (ElementTy->isIncompleteArrayType()) {
   2128       const IncompleteArrayType *IAT =
   2129           getASTContext().getAsIncompleteArrayType(ElementTy);
   2130       Dimensions.push_back(llvm::APInt(32, 0));
   2131       ElementTy = IAT->getElementType();
   2132     } else if (ElementTy->isVariableArrayType()) {
   2133       const VariableArrayType *VAT =
   2134         getASTContext().getAsVariableArrayType(ElementTy);
   2135       Dimensions.push_back(llvm::APInt(32, 0));
   2136       ElementTy = VAT->getElementType();
   2137     } else if (ElementTy->isDependentSizedArrayType()) {
   2138       // The dependent expression has to be folded into a constant (TODO).
   2139       const DependentSizedArrayType *DSAT =
   2140         getASTContext().getAsDependentSizedArrayType(ElementTy);
   2141       DiagnosticsEngine &Diags = Context.getDiags();
   2142       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2143         "cannot mangle this dependent-length array yet");
   2144       Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
   2145         << DSAT->getBracketsRange();
   2146       return;
   2147     } else {
   2148       break;
   2149     }
   2150   }
   2151   Out << 'Y';
   2152   // <dimension-count> ::= <number> # number of extra dimensions
   2153   mangleNumber(Dimensions.size());
   2154   for (const llvm::APInt &Dimension : Dimensions)
   2155     mangleNumber(Dimension.getLimitedValue());
   2156   mangleType(ElementTy, SourceRange(), QMM_Escape);
   2157 }
   2158 
   2159 // <type>                   ::= <pointer-to-member-type>
   2160 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
   2161 //                                                          <class name> <type>
   2162 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, Qualifiers Quals,
   2163                                          SourceRange Range) {
   2164   QualType PointeeType = T->getPointeeType();
   2165   manglePointerCVQualifiers(Quals);
   2166   manglePointerExtQualifiers(Quals, PointeeType);
   2167   if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
   2168     Out << '8';
   2169     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
   2170     mangleFunctionType(FPT, nullptr, true);
   2171   } else {
   2172     mangleQualifiers(PointeeType.getQualifiers(), true);
   2173     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
   2174     mangleType(PointeeType, Range, QMM_Drop);
   2175   }
   2176 }
   2177 
   2178 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
   2179                                          Qualifiers, SourceRange Range) {
   2180   DiagnosticsEngine &Diags = Context.getDiags();
   2181   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2182     "cannot mangle this template type parameter type yet");
   2183   Diags.Report(Range.getBegin(), DiagID)
   2184     << Range;
   2185 }
   2186 
   2187 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
   2188                                          Qualifiers, SourceRange Range) {
   2189   DiagnosticsEngine &Diags = Context.getDiags();
   2190   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2191     "cannot mangle this substituted parameter pack yet");
   2192   Diags.Report(Range.getBegin(), DiagID)
   2193     << Range;
   2194 }
   2195 
   2196 // <type> ::= <pointer-type>
   2197 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
   2198 //                       # the E is required for 64-bit non-static pointers
   2199 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
   2200                                          SourceRange Range) {
   2201   QualType PointeeType = T->getPointeeType();
   2202   manglePointerCVQualifiers(Quals);
   2203   manglePointerExtQualifiers(Quals, PointeeType);
   2204   mangleType(PointeeType, Range);
   2205 }
   2206 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
   2207                                          Qualifiers Quals, SourceRange Range) {
   2208   QualType PointeeType = T->getPointeeType();
   2209   manglePointerCVQualifiers(Quals);
   2210   manglePointerExtQualifiers(Quals, PointeeType);
   2211   // Object pointers never have qualifiers.
   2212   Out << 'A';
   2213   mangleType(PointeeType, Range);
   2214 }
   2215 
   2216 // <type> ::= <reference-type>
   2217 // <reference-type> ::= A E? <cvr-qualifiers> <type>
   2218 //                 # the E is required for 64-bit non-static lvalue references
   2219 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
   2220                                          Qualifiers Quals, SourceRange Range) {
   2221   QualType PointeeType = T->getPointeeType();
   2222   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
   2223   Out << 'A';
   2224   manglePointerExtQualifiers(Quals, PointeeType);
   2225   mangleType(PointeeType, Range);
   2226 }
   2227 
   2228 // <type> ::= <r-value-reference-type>
   2229 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
   2230 //                 # the E is required for 64-bit non-static rvalue references
   2231 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
   2232                                          Qualifiers Quals, SourceRange Range) {
   2233   QualType PointeeType = T->getPointeeType();
   2234   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
   2235   Out << "$$Q";
   2236   manglePointerExtQualifiers(Quals, PointeeType);
   2237   mangleType(PointeeType, Range);
   2238 }
   2239 
   2240 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
   2241                                          SourceRange Range) {
   2242   QualType ElementType = T->getElementType();
   2243 
   2244   llvm::SmallString<64> TemplateMangling;
   2245   llvm::raw_svector_ostream Stream(TemplateMangling);
   2246   MicrosoftCXXNameMangler Extra(Context, Stream);
   2247   Stream << "?$";
   2248   Extra.mangleSourceName("_Complex");
   2249   Extra.mangleType(ElementType, Range, QMM_Escape);
   2250 
   2251   mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
   2252 }
   2253 
   2254 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
   2255                                          SourceRange Range) {
   2256   const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
   2257   assert(ET && "vectors with non-builtin elements are unsupported");
   2258   uint64_t Width = getASTContext().getTypeSize(T);
   2259   // Pattern match exactly the typedefs in our intrinsic headers.  Anything that
   2260   // doesn't match the Intel types uses a custom mangling below.
   2261   size_t OutSizeBefore = Out.tell();
   2262   llvm::Triple::ArchType AT =
   2263       getASTContext().getTargetInfo().getTriple().getArch();
   2264   if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) {
   2265     if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
   2266       mangleArtificalTagType(TTK_Union, "__m64");
   2267     } else if (Width >= 128) {
   2268       if (ET->getKind() == BuiltinType::Float)
   2269         mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width));
   2270       else if (ET->getKind() == BuiltinType::LongLong)
   2271         mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
   2272       else if (ET->getKind() == BuiltinType::Double)
   2273         mangleArtificalTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
   2274     }
   2275   }
   2276 
   2277   bool IsBuiltin = Out.tell() != OutSizeBefore;
   2278   if (!IsBuiltin) {
   2279     // The MS ABI doesn't have a special mangling for vector types, so we define
   2280     // our own mangling to handle uses of __vector_size__ on user-specified
   2281     // types, and for extensions like __v4sf.
   2282 
   2283     llvm::SmallString<64> TemplateMangling;
   2284     llvm::raw_svector_ostream Stream(TemplateMangling);
   2285     MicrosoftCXXNameMangler Extra(Context, Stream);
   2286     Stream << "?$";
   2287     Extra.mangleSourceName("__vector");
   2288     Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
   2289     Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
   2290                                /*IsBoolean=*/false);
   2291 
   2292     mangleArtificalTagType(TTK_Union, TemplateMangling, {"__clang"});
   2293   }
   2294 }
   2295 
   2296 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
   2297                                          Qualifiers Quals, SourceRange Range) {
   2298   mangleType(static_cast<const VectorType *>(T), Quals, Range);
   2299 }
   2300 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
   2301                                          Qualifiers, SourceRange Range) {
   2302   DiagnosticsEngine &Diags = Context.getDiags();
   2303   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2304     "cannot mangle this dependent-sized extended vector type yet");
   2305   Diags.Report(Range.getBegin(), DiagID)
   2306     << Range;
   2307 }
   2308 
   2309 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
   2310                                          SourceRange) {
   2311   // ObjC interfaces have structs underlying them.
   2312   mangleTagTypeKind(TTK_Struct);
   2313   mangleName(T->getDecl());
   2314 }
   2315 
   2316 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers,
   2317                                          SourceRange Range) {
   2318   // We don't allow overloading by different protocol qualification,
   2319   // so mangling them isn't necessary.
   2320   mangleType(T->getBaseType(), Range);
   2321 }
   2322 
   2323 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
   2324                                          Qualifiers Quals, SourceRange Range) {
   2325   QualType PointeeType = T->getPointeeType();
   2326   manglePointerCVQualifiers(Quals);
   2327   manglePointerExtQualifiers(Quals, PointeeType);
   2328 
   2329   Out << "_E";
   2330 
   2331   mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
   2332 }
   2333 
   2334 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
   2335                                          Qualifiers, SourceRange) {
   2336   llvm_unreachable("Cannot mangle injected class name type.");
   2337 }
   2338 
   2339 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
   2340                                          Qualifiers, SourceRange Range) {
   2341   DiagnosticsEngine &Diags = Context.getDiags();
   2342   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2343     "cannot mangle this template specialization type yet");
   2344   Diags.Report(Range.getBegin(), DiagID)
   2345     << Range;
   2346 }
   2347 
   2348 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
   2349                                          SourceRange Range) {
   2350   DiagnosticsEngine &Diags = Context.getDiags();
   2351   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2352     "cannot mangle this dependent name type yet");
   2353   Diags.Report(Range.getBegin(), DiagID)
   2354     << Range;
   2355 }
   2356 
   2357 void MicrosoftCXXNameMangler::mangleType(
   2358     const DependentTemplateSpecializationType *T, Qualifiers,
   2359     SourceRange Range) {
   2360   DiagnosticsEngine &Diags = Context.getDiags();
   2361   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2362     "cannot mangle this dependent template specialization type yet");
   2363   Diags.Report(Range.getBegin(), DiagID)
   2364     << Range;
   2365 }
   2366 
   2367 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
   2368                                          SourceRange Range) {
   2369   DiagnosticsEngine &Diags = Context.getDiags();
   2370   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2371     "cannot mangle this pack expansion yet");
   2372   Diags.Report(Range.getBegin(), DiagID)
   2373     << Range;
   2374 }
   2375 
   2376 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
   2377                                          SourceRange Range) {
   2378   DiagnosticsEngine &Diags = Context.getDiags();
   2379   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2380     "cannot mangle this typeof(type) yet");
   2381   Diags.Report(Range.getBegin(), DiagID)
   2382     << Range;
   2383 }
   2384 
   2385 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
   2386                                          SourceRange Range) {
   2387   DiagnosticsEngine &Diags = Context.getDiags();
   2388   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2389     "cannot mangle this typeof(expression) yet");
   2390   Diags.Report(Range.getBegin(), DiagID)
   2391     << Range;
   2392 }
   2393 
   2394 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
   2395                                          SourceRange Range) {
   2396   DiagnosticsEngine &Diags = Context.getDiags();
   2397   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2398     "cannot mangle this decltype() yet");
   2399   Diags.Report(Range.getBegin(), DiagID)
   2400     << Range;
   2401 }
   2402 
   2403 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
   2404                                          Qualifiers, SourceRange Range) {
   2405   DiagnosticsEngine &Diags = Context.getDiags();
   2406   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2407     "cannot mangle this unary transform type yet");
   2408   Diags.Report(Range.getBegin(), DiagID)
   2409     << Range;
   2410 }
   2411 
   2412 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
   2413                                          SourceRange Range) {
   2414   assert(T->getDeducedType().isNull() && "expecting a dependent type!");
   2415 
   2416   DiagnosticsEngine &Diags = Context.getDiags();
   2417   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2418     "cannot mangle this 'auto' type yet");
   2419   Diags.Report(Range.getBegin(), DiagID)
   2420     << Range;
   2421 }
   2422 
   2423 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
   2424                                          SourceRange Range) {
   2425   QualType ValueType = T->getValueType();
   2426 
   2427   llvm::SmallString<64> TemplateMangling;
   2428   llvm::raw_svector_ostream Stream(TemplateMangling);
   2429   MicrosoftCXXNameMangler Extra(Context, Stream);
   2430   Stream << "?$";
   2431   Extra.mangleSourceName("_Atomic");
   2432   Extra.mangleType(ValueType, Range, QMM_Escape);
   2433 
   2434   mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
   2435 }
   2436 
   2437 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
   2438                                          SourceRange Range) {
   2439   DiagnosticsEngine &Diags = Context.getDiags();
   2440   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2441     "cannot mangle this OpenCL pipe type yet");
   2442   Diags.Report(Range.getBegin(), DiagID)
   2443     << Range;
   2444 }
   2445 
   2446 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
   2447                                                raw_ostream &Out) {
   2448   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
   2449          "Invalid mangleName() call, argument is not a variable or function!");
   2450   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
   2451          "Invalid mangleName() call on 'structor decl!");
   2452 
   2453   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
   2454                                  getASTContext().getSourceManager(),
   2455                                  "Mangling declaration");
   2456 
   2457   msvc_hashing_ostream MHO(Out);
   2458   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2459   return Mangler.mangle(D);
   2460 }
   2461 
   2462 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
   2463 //                       <virtual-adjustment>
   2464 // <no-adjustment>      ::= A # private near
   2465 //                      ::= B # private far
   2466 //                      ::= I # protected near
   2467 //                      ::= J # protected far
   2468 //                      ::= Q # public near
   2469 //                      ::= R # public far
   2470 // <static-adjustment>  ::= G <static-offset> # private near
   2471 //                      ::= H <static-offset> # private far
   2472 //                      ::= O <static-offset> # protected near
   2473 //                      ::= P <static-offset> # protected far
   2474 //                      ::= W <static-offset> # public near
   2475 //                      ::= X <static-offset> # public far
   2476 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
   2477 //                      ::= $1 <virtual-shift> <static-offset> # private far
   2478 //                      ::= $2 <virtual-shift> <static-offset> # protected near
   2479 //                      ::= $3 <virtual-shift> <static-offset> # protected far
   2480 //                      ::= $4 <virtual-shift> <static-offset> # public near
   2481 //                      ::= $5 <virtual-shift> <static-offset> # public far
   2482 // <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift>
   2483 // <vtordisp-shift>     ::= <offset-to-vtordisp>
   2484 // <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset>
   2485 //                          <offset-to-vtordisp>
   2486 static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
   2487                                       const ThisAdjustment &Adjustment,
   2488                                       MicrosoftCXXNameMangler &Mangler,
   2489                                       raw_ostream &Out) {
   2490   if (!Adjustment.Virtual.isEmpty()) {
   2491     Out << '$';
   2492     char AccessSpec;
   2493     switch (MD->getAccess()) {
   2494     case AS_none:
   2495       llvm_unreachable("Unsupported access specifier");
   2496     case AS_private:
   2497       AccessSpec = '0';
   2498       break;
   2499     case AS_protected:
   2500       AccessSpec = '2';
   2501       break;
   2502     case AS_public:
   2503       AccessSpec = '4';
   2504     }
   2505     if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
   2506       Out << 'R' << AccessSpec;
   2507       Mangler.mangleNumber(
   2508           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
   2509       Mangler.mangleNumber(
   2510           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
   2511       Mangler.mangleNumber(
   2512           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
   2513       Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
   2514     } else {
   2515       Out << AccessSpec;
   2516       Mangler.mangleNumber(
   2517           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
   2518       Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
   2519     }
   2520   } else if (Adjustment.NonVirtual != 0) {
   2521     switch (MD->getAccess()) {
   2522     case AS_none:
   2523       llvm_unreachable("Unsupported access specifier");
   2524     case AS_private:
   2525       Out << 'G';
   2526       break;
   2527     case AS_protected:
   2528       Out << 'O';
   2529       break;
   2530     case AS_public:
   2531       Out << 'W';
   2532     }
   2533     Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
   2534   } else {
   2535     switch (MD->getAccess()) {
   2536     case AS_none:
   2537       llvm_unreachable("Unsupported access specifier");
   2538     case AS_private:
   2539       Out << 'A';
   2540       break;
   2541     case AS_protected:
   2542       Out << 'I';
   2543       break;
   2544     case AS_public:
   2545       Out << 'Q';
   2546     }
   2547   }
   2548 }
   2549 
   2550 void
   2551 MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
   2552                                                      raw_ostream &Out) {
   2553   MicrosoftVTableContext *VTContext =
   2554       cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
   2555   const MicrosoftVTableContext::MethodVFTableLocation &ML =
   2556       VTContext->getMethodVFTableLocation(GlobalDecl(MD));
   2557 
   2558   msvc_hashing_ostream MHO(Out);
   2559   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2560   Mangler.getStream() << "\01?";
   2561   Mangler.mangleVirtualMemPtrThunk(MD, ML);
   2562 }
   2563 
   2564 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
   2565                                              const ThunkInfo &Thunk,
   2566                                              raw_ostream &Out) {
   2567   msvc_hashing_ostream MHO(Out);
   2568   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2569   Mangler.getStream() << "\01?";
   2570   Mangler.mangleName(MD);
   2571   mangleThunkThisAdjustment(MD, Thunk.This, Mangler, MHO);
   2572   if (!Thunk.Return.isEmpty())
   2573     assert(Thunk.Method != nullptr &&
   2574            "Thunk info should hold the overridee decl");
   2575 
   2576   const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
   2577   Mangler.mangleFunctionType(
   2578       DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
   2579 }
   2580 
   2581 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
   2582     const CXXDestructorDecl *DD, CXXDtorType Type,
   2583     const ThisAdjustment &Adjustment, raw_ostream &Out) {
   2584   // FIXME: Actually, the dtor thunk should be emitted for vector deleting
   2585   // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
   2586   // mangling manually until we support both deleting dtor types.
   2587   assert(Type == Dtor_Deleting);
   2588   msvc_hashing_ostream MHO(Out);
   2589   MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
   2590   Mangler.getStream() << "\01??_E";
   2591   Mangler.mangleName(DD->getParent());
   2592   mangleThunkThisAdjustment(DD, Adjustment, Mangler, MHO);
   2593   Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
   2594 }
   2595 
   2596 void MicrosoftMangleContextImpl::mangleCXXVFTable(
   2597     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
   2598     raw_ostream &Out) {
   2599   // <mangled-name> ::= ?_7 <class-name> <storage-class>
   2600   //                    <cvr-qualifiers> [<name>] @
   2601   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
   2602   // is always '6' for vftables.
   2603   msvc_hashing_ostream MHO(Out);
   2604   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2605   if (Derived->hasAttr<DLLImportAttr>())
   2606     Mangler.getStream() << "\01??_S";
   2607   else
   2608     Mangler.getStream() << "\01??_7";
   2609   Mangler.mangleName(Derived);
   2610   Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
   2611   for (const CXXRecordDecl *RD : BasePath)
   2612     Mangler.mangleName(RD);
   2613   Mangler.getStream() << '@';
   2614 }
   2615 
   2616 void MicrosoftMangleContextImpl::mangleCXXVBTable(
   2617     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
   2618     raw_ostream &Out) {
   2619   // <mangled-name> ::= ?_8 <class-name> <storage-class>
   2620   //                    <cvr-qualifiers> [<name>] @
   2621   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
   2622   // is always '7' for vbtables.
   2623   msvc_hashing_ostream MHO(Out);
   2624   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2625   Mangler.getStream() << "\01??_8";
   2626   Mangler.mangleName(Derived);
   2627   Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const.
   2628   for (const CXXRecordDecl *RD : BasePath)
   2629     Mangler.mangleName(RD);
   2630   Mangler.getStream() << '@';
   2631 }
   2632 
   2633 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
   2634   msvc_hashing_ostream MHO(Out);
   2635   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2636   Mangler.getStream() << "\01??_R0";
   2637   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
   2638   Mangler.getStream() << "@8";
   2639 }
   2640 
   2641 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
   2642                                                    raw_ostream &Out) {
   2643   MicrosoftCXXNameMangler Mangler(*this, Out);
   2644   Mangler.getStream() << '.';
   2645   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
   2646 }
   2647 
   2648 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
   2649     const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
   2650   msvc_hashing_ostream MHO(Out);
   2651   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2652   Mangler.getStream() << "\01??_K";
   2653   Mangler.mangleName(SrcRD);
   2654   Mangler.getStream() << "$C";
   2655   Mangler.mangleName(DstRD);
   2656 }
   2657 
   2658 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
   2659                                                     bool IsVolatile,
   2660                                                     bool IsUnaligned,
   2661                                                     uint32_t NumEntries,
   2662                                                     raw_ostream &Out) {
   2663   msvc_hashing_ostream MHO(Out);
   2664   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2665   Mangler.getStream() << "_TI";
   2666   if (IsConst)
   2667     Mangler.getStream() << 'C';
   2668   if (IsVolatile)
   2669     Mangler.getStream() << 'V';
   2670   if (IsUnaligned)
   2671     Mangler.getStream() << 'U';
   2672   Mangler.getStream() << NumEntries;
   2673   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
   2674 }
   2675 
   2676 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
   2677     QualType T, uint32_t NumEntries, raw_ostream &Out) {
   2678   msvc_hashing_ostream MHO(Out);
   2679   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2680   Mangler.getStream() << "_CTA";
   2681   Mangler.getStream() << NumEntries;
   2682   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
   2683 }
   2684 
   2685 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
   2686     QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
   2687     uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
   2688     raw_ostream &Out) {
   2689   MicrosoftCXXNameMangler Mangler(*this, Out);
   2690   Mangler.getStream() << "_CT";
   2691 
   2692   llvm::SmallString<64> RTTIMangling;
   2693   {
   2694     llvm::raw_svector_ostream Stream(RTTIMangling);
   2695     msvc_hashing_ostream MHO(Stream);
   2696     mangleCXXRTTI(T, MHO);
   2697   }
   2698   Mangler.getStream() << RTTIMangling.substr(1);
   2699 
   2700   // VS2015 CTP6 omits the copy-constructor in the mangled name.  This name is,
   2701   // in fact, superfluous but I'm not sure the change was made consciously.
   2702   llvm::SmallString<64> CopyCtorMangling;
   2703   if (!getASTContext().getLangOpts().isCompatibleWithMSVC(
   2704           LangOptions::MSVC2015) &&
   2705       CD) {
   2706     llvm::raw_svector_ostream Stream(CopyCtorMangling);
   2707     msvc_hashing_ostream MHO(Stream);
   2708     mangleCXXCtor(CD, CT, MHO);
   2709   }
   2710   Mangler.getStream() << CopyCtorMangling.substr(1);
   2711 
   2712   Mangler.getStream() << Size;
   2713   if (VBPtrOffset == -1) {
   2714     if (NVOffset) {
   2715       Mangler.getStream() << NVOffset;
   2716     }
   2717   } else {
   2718     Mangler.getStream() << NVOffset;
   2719     Mangler.getStream() << VBPtrOffset;
   2720     Mangler.getStream() << VBIndex;
   2721   }
   2722 }
   2723 
   2724 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
   2725     const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
   2726     uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
   2727   msvc_hashing_ostream MHO(Out);
   2728   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2729   Mangler.getStream() << "\01??_R1";
   2730   Mangler.mangleNumber(NVOffset);
   2731   Mangler.mangleNumber(VBPtrOffset);
   2732   Mangler.mangleNumber(VBTableOffset);
   2733   Mangler.mangleNumber(Flags);
   2734   Mangler.mangleName(Derived);
   2735   Mangler.getStream() << "8";
   2736 }
   2737 
   2738 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
   2739     const CXXRecordDecl *Derived, raw_ostream &Out) {
   2740   msvc_hashing_ostream MHO(Out);
   2741   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2742   Mangler.getStream() << "\01??_R2";
   2743   Mangler.mangleName(Derived);
   2744   Mangler.getStream() << "8";
   2745 }
   2746 
   2747 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
   2748     const CXXRecordDecl *Derived, raw_ostream &Out) {
   2749   msvc_hashing_ostream MHO(Out);
   2750   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2751   Mangler.getStream() << "\01??_R3";
   2752   Mangler.mangleName(Derived);
   2753   Mangler.getStream() << "8";
   2754 }
   2755 
   2756 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
   2757     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
   2758     raw_ostream &Out) {
   2759   // <mangled-name> ::= ?_R4 <class-name> <storage-class>
   2760   //                    <cvr-qualifiers> [<name>] @
   2761   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
   2762   // is always '6' for vftables.
   2763   llvm::SmallString<64> VFTableMangling;
   2764   llvm::raw_svector_ostream Stream(VFTableMangling);
   2765   mangleCXXVFTable(Derived, BasePath, Stream);
   2766 
   2767   if (VFTableMangling.startswith("\01??@")) {
   2768     assert(VFTableMangling.endswith("@"));
   2769     Out << VFTableMangling << "??_R4@";
   2770     return;
   2771   }
   2772 
   2773   assert(VFTableMangling.startswith("\01??_7") ||
   2774          VFTableMangling.startswith("\01??_S"));
   2775 
   2776   Out << "\01??_R4" << StringRef(VFTableMangling).drop_front(5);
   2777 }
   2778 
   2779 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
   2780     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
   2781   msvc_hashing_ostream MHO(Out);
   2782   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2783   // The function body is in the same comdat as the function with the handler,
   2784   // so the numbering here doesn't have to be the same across TUs.
   2785   //
   2786   // <mangled-name> ::= ?filt$ <filter-number> @0
   2787   Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
   2788   Mangler.mangleName(EnclosingDecl);
   2789 }
   2790 
   2791 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
   2792     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
   2793   msvc_hashing_ostream MHO(Out);
   2794   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2795   // The function body is in the same comdat as the function with the handler,
   2796   // so the numbering here doesn't have to be the same across TUs.
   2797   //
   2798   // <mangled-name> ::= ?fin$ <filter-number> @0
   2799   Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
   2800   Mangler.mangleName(EnclosingDecl);
   2801 }
   2802 
   2803 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
   2804   // This is just a made up unique string for the purposes of tbaa.  undname
   2805   // does *not* know how to demangle it.
   2806   MicrosoftCXXNameMangler Mangler(*this, Out);
   2807   Mangler.getStream() << '?';
   2808   Mangler.mangleType(T, SourceRange());
   2809 }
   2810 
   2811 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
   2812                                                CXXCtorType Type,
   2813                                                raw_ostream &Out) {
   2814   msvc_hashing_ostream MHO(Out);
   2815   MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
   2816   mangler.mangle(D);
   2817 }
   2818 
   2819 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
   2820                                                CXXDtorType Type,
   2821                                                raw_ostream &Out) {
   2822   msvc_hashing_ostream MHO(Out);
   2823   MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
   2824   mangler.mangle(D);
   2825 }
   2826 
   2827 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
   2828     const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
   2829   msvc_hashing_ostream MHO(Out);
   2830   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2831 
   2832   Mangler.getStream() << "\01?$RT" << ManglingNumber << '@';
   2833   Mangler.mangle(VD, "");
   2834 }
   2835 
   2836 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
   2837     const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
   2838   msvc_hashing_ostream MHO(Out);
   2839   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2840 
   2841   Mangler.getStream() << "\01?$TSS" << GuardNum << '@';
   2842   Mangler.mangleNestedName(VD);
   2843   Mangler.getStream() << "@4HA";
   2844 }
   2845 
   2846 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
   2847                                                            raw_ostream &Out) {
   2848   // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
   2849   //              ::= ?__J <postfix> @5 <scope-depth>
   2850   //              ::= ?$S <guard-num> @ <postfix> @4IA
   2851 
   2852   // The first mangling is what MSVC uses to guard static locals in inline
   2853   // functions.  It uses a different mangling in external functions to support
   2854   // guarding more than 32 variables.  MSVC rejects inline functions with more
   2855   // than 32 static locals.  We don't fully implement the second mangling
   2856   // because those guards are not externally visible, and instead use LLVM's
   2857   // default renaming when creating a new guard variable.
   2858   msvc_hashing_ostream MHO(Out);
   2859   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2860 
   2861   bool Visible = VD->isExternallyVisible();
   2862   if (Visible) {
   2863     Mangler.getStream() << (VD->getTLSKind() ? "\01??__J" : "\01??_B");
   2864   } else {
   2865     Mangler.getStream() << "\01?$S1@";
   2866   }
   2867   unsigned ScopeDepth = 0;
   2868   if (Visible && !getNextDiscriminator(VD, ScopeDepth))
   2869     // If we do not have a discriminator and are emitting a guard variable for
   2870     // use at global scope, then mangling the nested name will not be enough to
   2871     // remove ambiguities.
   2872     Mangler.mangle(VD, "");
   2873   else
   2874     Mangler.mangleNestedName(VD);
   2875   Mangler.getStream() << (Visible ? "@5" : "@4IA");
   2876   if (ScopeDepth)
   2877     Mangler.mangleNumber(ScopeDepth);
   2878 }
   2879 
   2880 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
   2881                                                     char CharCode,
   2882                                                     raw_ostream &Out) {
   2883   msvc_hashing_ostream MHO(Out);
   2884   MicrosoftCXXNameMangler Mangler(*this, MHO);
   2885   Mangler.getStream() << "\01??__" << CharCode;
   2886   Mangler.mangleName(D);
   2887   if (D->isStaticDataMember()) {
   2888     Mangler.mangleVariableEncoding(D);
   2889     Mangler.getStream() << '@';
   2890   }
   2891   // This is the function class mangling.  These stubs are global, non-variadic,
   2892   // cdecl functions that return void and take no args.
   2893   Mangler.getStream() << "YAXXZ";
   2894 }
   2895 
   2896 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
   2897                                                           raw_ostream &Out) {
   2898   // <initializer-name> ::= ?__E <name> YAXXZ
   2899   mangleInitFiniStub(D, 'E', Out);
   2900 }
   2901 
   2902 void
   2903 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
   2904                                                           raw_ostream &Out) {
   2905   // <destructor-name> ::= ?__F <name> YAXXZ
   2906   mangleInitFiniStub(D, 'F', Out);
   2907 }
   2908 
   2909 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
   2910                                                      raw_ostream &Out) {
   2911   // <char-type> ::= 0   # char
   2912   //             ::= 1   # wchar_t
   2913   //             ::= ??? # char16_t/char32_t will need a mangling too...
   2914   //
   2915   // <literal-length> ::= <non-negative integer>  # the length of the literal
   2916   //
   2917   // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including
   2918   //                                              # null-terminator
   2919   //
   2920   // <encoded-string> ::= <simple character>           # uninteresting character
   2921   //                  ::= '?$' <hex digit> <hex digit> # these two nibbles
   2922   //                                                   # encode the byte for the
   2923   //                                                   # character
   2924   //                  ::= '?' [a-z]                    # \xe1 - \xfa
   2925   //                  ::= '?' [A-Z]                    # \xc1 - \xda
   2926   //                  ::= '?' [0-9]                    # [,/\:. \n\t'-]
   2927   //
   2928   // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
   2929   //               <encoded-string> '@'
   2930   MicrosoftCXXNameMangler Mangler(*this, Out);
   2931   Mangler.getStream() << "\01??_C@_";
   2932 
   2933   // <char-type>: The "kind" of string literal is encoded into the mangled name.
   2934   if (SL->isWide())
   2935     Mangler.getStream() << '1';
   2936   else
   2937     Mangler.getStream() << '0';
   2938 
   2939   // <literal-length>: The next part of the mangled name consists of the length
   2940   // of the string.
   2941   // The StringLiteral does not consider the NUL terminator byte(s) but the
   2942   // mangling does.
   2943   // N.B. The length is in terms of bytes, not characters.
   2944   Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
   2945 
   2946   auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
   2947     unsigned CharByteWidth = SL->getCharByteWidth();
   2948     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
   2949     unsigned OffsetInCodeUnit = Index % CharByteWidth;
   2950     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
   2951   };
   2952 
   2953   auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
   2954     unsigned CharByteWidth = SL->getCharByteWidth();
   2955     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
   2956     unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
   2957     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
   2958   };
   2959 
   2960   // CRC all the bytes of the StringLiteral.
   2961   llvm::JamCRC JC;
   2962   for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
   2963     JC.update(GetLittleEndianByte(I));
   2964 
   2965   // The NUL terminator byte(s) were not present earlier,
   2966   // we need to manually process those bytes into the CRC.
   2967   for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
   2968        ++NullTerminator)
   2969     JC.update('\x00');
   2970 
   2971   // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
   2972   // scheme.
   2973   Mangler.mangleNumber(JC.getCRC());
   2974 
   2975   // <encoded-string>: The mangled name also contains the first 32 _characters_
   2976   // (including null-terminator bytes) of the StringLiteral.
   2977   // Each character is encoded by splitting them into bytes and then encoding
   2978   // the constituent bytes.
   2979   auto MangleByte = [&Mangler](char Byte) {
   2980     // There are five different manglings for characters:
   2981     // - [a-zA-Z0-9_$]: A one-to-one mapping.
   2982     // - ?[a-z]: The range from \xe1 to \xfa.
   2983     // - ?[A-Z]: The range from \xc1 to \xda.
   2984     // - ?[0-9]: The set of [,/\:. \n\t'-].
   2985     // - ?$XX: A fallback which maps nibbles.
   2986     if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
   2987       Mangler.getStream() << Byte;
   2988     } else if (isLetter(Byte & 0x7f)) {
   2989       Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
   2990     } else {
   2991       const char SpecialChars[] = {',', '/',  '\\', ':',  '.',
   2992                                    ' ', '\n', '\t', '\'', '-'};
   2993       const char *Pos =
   2994           std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
   2995       if (Pos != std::end(SpecialChars)) {
   2996         Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
   2997       } else {
   2998         Mangler.getStream() << "?$";
   2999         Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
   3000         Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
   3001       }
   3002     }
   3003   };
   3004 
   3005   // Enforce our 32 character max.
   3006   unsigned NumCharsToMangle = std::min(32U, SL->getLength());
   3007   for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
   3008        ++I)
   3009     if (SL->isWide())
   3010       MangleByte(GetBigEndianByte(I));
   3011     else
   3012       MangleByte(GetLittleEndianByte(I));
   3013 
   3014   // Encode the NUL terminator if there is room.
   3015   if (NumCharsToMangle < 32)
   3016     for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
   3017          ++NullTerminator)
   3018       MangleByte(0);
   3019 
   3020   Mangler.getStream() << '@';
   3021 }
   3022 
   3023 MicrosoftMangleContext *
   3024 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
   3025   return new MicrosoftMangleContextImpl(Context, Diags);
   3026 }
   3027