Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the code that handles AST -> LLVM type lowering.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenTypes.h"
     15 #include "CGCXXABI.h"
     16 #include "CGCall.h"
     17 #include "CGOpenCLRuntime.h"
     18 #include "CGRecordLayout.h"
     19 #include "TargetInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/Expr.h"
     24 #include "clang/AST/RecordLayout.h"
     25 #include "clang/CodeGen/CGFunctionInfo.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/Module.h"
     29 using namespace clang;
     30 using namespace CodeGen;
     31 
     32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
     33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
     34     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
     35     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
     36   SkippedLayout = false;
     37 }
     38 
     39 CodeGenTypes::~CodeGenTypes() {
     40   llvm::DeleteContainerSeconds(CGRecordLayouts);
     41 
     42   for (llvm::FoldingSet<CGFunctionInfo>::iterator
     43        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
     44     delete &*I++;
     45 }
     46 
     47 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
     48                                      llvm::StructType *Ty,
     49                                      StringRef suffix) {
     50   SmallString<256> TypeName;
     51   llvm::raw_svector_ostream OS(TypeName);
     52   OS << RD->getKindName() << '.';
     53 
     54   // Name the codegen type after the typedef name
     55   // if there is no tag type name available
     56   if (RD->getIdentifier()) {
     57     // FIXME: We should not have to check for a null decl context here.
     58     // Right now we do it because the implicit Obj-C decls don't have one.
     59     if (RD->getDeclContext())
     60       RD->printQualifiedName(OS);
     61     else
     62       RD->printName(OS);
     63   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
     64     // FIXME: We should not have to check for a null decl context here.
     65     // Right now we do it because the implicit Obj-C decls don't have one.
     66     if (TDD->getDeclContext())
     67       TDD->printQualifiedName(OS);
     68     else
     69       TDD->printName(OS);
     70   } else
     71     OS << "anon";
     72 
     73   if (!suffix.empty())
     74     OS << suffix;
     75 
     76   Ty->setName(OS.str());
     77 }
     78 
     79 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
     80 /// ConvertType in that it is used to convert to the memory representation for
     81 /// a type.  For example, the scalar representation for _Bool is i1, but the
     82 /// memory representation is usually i8 or i32, depending on the target.
     83 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
     84   llvm::Type *R = ConvertType(T);
     85 
     86   // If this is a non-bool type, don't map it.
     87   if (!R->isIntegerTy(1))
     88     return R;
     89 
     90   // Otherwise, return an integer of the target-specified size.
     91   return llvm::IntegerType::get(getLLVMContext(),
     92                                 (unsigned)Context.getTypeSize(T));
     93 }
     94 
     95 
     96 /// isRecordLayoutComplete - Return true if the specified type is already
     97 /// completely laid out.
     98 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
     99   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
    100   RecordDeclTypes.find(Ty);
    101   return I != RecordDeclTypes.end() && !I->second->isOpaque();
    102 }
    103 
    104 static bool
    105 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    106                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
    107 
    108 
    109 /// isSafeToConvert - Return true if it is safe to convert the specified record
    110 /// decl to IR and lay it out, false if doing so would cause us to get into a
    111 /// recursive compilation mess.
    112 static bool
    113 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
    114                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    115   // If we have already checked this type (maybe the same type is used by-value
    116   // multiple times in multiple structure fields, don't check again.
    117   if (!AlreadyChecked.insert(RD).second)
    118     return true;
    119 
    120   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
    121 
    122   // If this type is already laid out, converting it is a noop.
    123   if (CGT.isRecordLayoutComplete(Key)) return true;
    124 
    125   // If this type is currently being laid out, we can't recursively compile it.
    126   if (CGT.isRecordBeingLaidOut(Key))
    127     return false;
    128 
    129   // If this type would require laying out bases that are currently being laid
    130   // out, don't do it.  This includes virtual base classes which get laid out
    131   // when a class is translated, even though they aren't embedded by-value into
    132   // the class.
    133   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    134     for (const auto &I : CRD->bases())
    135       if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
    136                            CGT, AlreadyChecked))
    137         return false;
    138   }
    139 
    140   // If this type would require laying out members that are currently being laid
    141   // out, don't do it.
    142   for (const auto *I : RD->fields())
    143     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
    144       return false;
    145 
    146   // If there are no problems, lets do it.
    147   return true;
    148 }
    149 
    150 /// isSafeToConvert - Return true if it is safe to convert this field type,
    151 /// which requires the structure elements contained by-value to all be
    152 /// recursively safe to convert.
    153 static bool
    154 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    155                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    156   // Strip off atomic type sugar.
    157   if (const auto *AT = T->getAs<AtomicType>())
    158     T = AT->getValueType();
    159 
    160   // If this is a record, check it.
    161   if (const auto *RT = T->getAs<RecordType>())
    162     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
    163 
    164   // If this is an array, check the elements, which are embedded inline.
    165   if (const auto *AT = CGT.getContext().getAsArrayType(T))
    166     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
    167 
    168   // Otherwise, there is no concern about transforming this.  We only care about
    169   // things that are contained by-value in a structure that can have another
    170   // structure as a member.
    171   return true;
    172 }
    173 
    174 
    175 /// isSafeToConvert - Return true if it is safe to convert the specified record
    176 /// decl to IR and lay it out, false if doing so would cause us to get into a
    177 /// recursive compilation mess.
    178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
    179   // If no structs are being laid out, we can certainly do this one.
    180   if (CGT.noRecordsBeingLaidOut()) return true;
    181 
    182   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
    183   return isSafeToConvert(RD, CGT, AlreadyChecked);
    184 }
    185 
    186 /// isFuncParamTypeConvertible - Return true if the specified type in a
    187 /// function parameter or result position can be converted to an IR type at this
    188 /// point.  This boils down to being whether it is complete, as well as whether
    189 /// we've temporarily deferred expanding the type because we're in a recursive
    190 /// context.
    191 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
    192   // Some ABIs cannot have their member pointers represented in IR unless
    193   // certain circumstances have been reached.
    194   if (const auto *MPT = Ty->getAs<MemberPointerType>())
    195     return getCXXABI().isMemberPointerConvertible(MPT);
    196 
    197   // If this isn't a tagged type, we can convert it!
    198   const TagType *TT = Ty->getAs<TagType>();
    199   if (!TT) return true;
    200 
    201   // Incomplete types cannot be converted.
    202   if (TT->isIncompleteType())
    203     return false;
    204 
    205   // If this is an enum, then it is always safe to convert.
    206   const RecordType *RT = dyn_cast<RecordType>(TT);
    207   if (!RT) return true;
    208 
    209   // Otherwise, we have to be careful.  If it is a struct that we're in the
    210   // process of expanding, then we can't convert the function type.  That's ok
    211   // though because we must be in a pointer context under the struct, so we can
    212   // just convert it to a dummy type.
    213   //
    214   // We decide this by checking whether ConvertRecordDeclType returns us an
    215   // opaque type for a struct that we know is defined.
    216   return isSafeToConvert(RT->getDecl(), *this);
    217 }
    218 
    219 
    220 /// Code to verify a given function type is complete, i.e. the return type
    221 /// and all of the parameter types are complete.  Also check to see if we are in
    222 /// a RS_StructPointer context, and if so whether any struct types have been
    223 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
    224 /// that cannot be converted to an IR type.
    225 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
    226   if (!isFuncParamTypeConvertible(FT->getReturnType()))
    227     return false;
    228 
    229   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    230     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
    231       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
    232         return false;
    233 
    234   return true;
    235 }
    236 
    237 /// UpdateCompletedType - When we find the full definition for a TagDecl,
    238 /// replace the 'opaque' type we previously made for it if applicable.
    239 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
    240   // If this is an enum being completed, then we flush all non-struct types from
    241   // the cache.  This allows function types and other things that may be derived
    242   // from the enum to be recomputed.
    243   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
    244     // Only flush the cache if we've actually already converted this type.
    245     if (TypeCache.count(ED->getTypeForDecl())) {
    246       // Okay, we formed some types based on this.  We speculated that the enum
    247       // would be lowered to i32, so we only need to flush the cache if this
    248       // didn't happen.
    249       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
    250         TypeCache.clear();
    251     }
    252     // If necessary, provide the full definition of a type only used with a
    253     // declaration so far.
    254     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    255       DI->completeType(ED);
    256     return;
    257   }
    258 
    259   // If we completed a RecordDecl that we previously used and converted to an
    260   // anonymous type, then go ahead and complete it now.
    261   const RecordDecl *RD = cast<RecordDecl>(TD);
    262   if (RD->isDependentType()) return;
    263 
    264   // Only complete it if we converted it already.  If we haven't converted it
    265   // yet, we'll just do it lazily.
    266   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
    267     ConvertRecordDeclType(RD);
    268 
    269   // If necessary, provide the full definition of a type only used with a
    270   // declaration so far.
    271   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    272     DI->completeType(RD);
    273 }
    274 
    275 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
    276   QualType T = Context.getRecordType(RD);
    277   T = Context.getCanonicalType(T);
    278 
    279   const Type *Ty = T.getTypePtr();
    280   if (RecordsWithOpaqueMemberPointers.count(Ty)) {
    281     TypeCache.clear();
    282     RecordsWithOpaqueMemberPointers.clear();
    283   }
    284 }
    285 
    286 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
    287                                     const llvm::fltSemantics &format,
    288                                     bool UseNativeHalf = false) {
    289   if (&format == &llvm::APFloat::IEEEhalf) {
    290     if (UseNativeHalf)
    291       return llvm::Type::getHalfTy(VMContext);
    292     else
    293       return llvm::Type::getInt16Ty(VMContext);
    294   }
    295   if (&format == &llvm::APFloat::IEEEsingle)
    296     return llvm::Type::getFloatTy(VMContext);
    297   if (&format == &llvm::APFloat::IEEEdouble)
    298     return llvm::Type::getDoubleTy(VMContext);
    299   if (&format == &llvm::APFloat::IEEEquad)
    300     return llvm::Type::getFP128Ty(VMContext);
    301   if (&format == &llvm::APFloat::PPCDoubleDouble)
    302     return llvm::Type::getPPC_FP128Ty(VMContext);
    303   if (&format == &llvm::APFloat::x87DoubleExtended)
    304     return llvm::Type::getX86_FP80Ty(VMContext);
    305   llvm_unreachable("Unknown float format!");
    306 }
    307 
    308 llvm::Type *CodeGenTypes::ConvertFunctionType(QualType QFT,
    309                                               const FunctionDecl *FD) {
    310   assert(QFT.isCanonical());
    311   const Type *Ty = QFT.getTypePtr();
    312   const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
    313   // First, check whether we can build the full function type.  If the
    314   // function type depends on an incomplete type (e.g. a struct or enum), we
    315   // cannot lower the function type.
    316   if (!isFuncTypeConvertible(FT)) {
    317     // This function's type depends on an incomplete tag type.
    318 
    319     // Force conversion of all the relevant record types, to make sure
    320     // we re-convert the FunctionType when appropriate.
    321     if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
    322       ConvertRecordDeclType(RT->getDecl());
    323     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    324       for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
    325         if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
    326           ConvertRecordDeclType(RT->getDecl());
    327 
    328     SkippedLayout = true;
    329 
    330     // Return a placeholder type.
    331     return llvm::StructType::get(getLLVMContext());
    332   }
    333 
    334   // While we're converting the parameter types for a function, we don't want
    335   // to recursively convert any pointed-to structs.  Converting directly-used
    336   // structs is ok though.
    337   if (!RecordsBeingLaidOut.insert(Ty).second) {
    338     SkippedLayout = true;
    339     return llvm::StructType::get(getLLVMContext());
    340   }
    341 
    342   // The function type can be built; call the appropriate routines to
    343   // build it.
    344   const CGFunctionInfo *FI;
    345   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
    346     FI = &arrangeFreeFunctionType(
    347         CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)), FD);
    348   } else {
    349     const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
    350     FI = &arrangeFreeFunctionType(
    351         CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
    352   }
    353 
    354   llvm::Type *ResultType = nullptr;
    355   // If there is something higher level prodding our CGFunctionInfo, then
    356   // don't recurse into it again.
    357   if (FunctionsBeingProcessed.count(FI)) {
    358 
    359     ResultType = llvm::StructType::get(getLLVMContext());
    360     SkippedLayout = true;
    361   } else {
    362 
    363     // Otherwise, we're good to go, go ahead and convert it.
    364     ResultType = GetFunctionType(*FI);
    365   }
    366 
    367   RecordsBeingLaidOut.erase(Ty);
    368 
    369   if (SkippedLayout)
    370     TypeCache.clear();
    371 
    372   if (RecordsBeingLaidOut.empty())
    373     while (!DeferredRecords.empty())
    374       ConvertRecordDeclType(DeferredRecords.pop_back_val());
    375   return ResultType;
    376 }
    377 
    378 /// ConvertType - Convert the specified type to its LLVM form.
    379 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
    380   T = Context.getCanonicalType(T);
    381 
    382   const Type *Ty = T.getTypePtr();
    383 
    384   // RecordTypes are cached and processed specially.
    385   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
    386     return ConvertRecordDeclType(RT->getDecl());
    387 
    388   // See if type is already cached.
    389   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
    390   // If type is found in map then use it. Otherwise, convert type T.
    391   if (TCI != TypeCache.end())
    392     return TCI->second;
    393 
    394   // If we don't have it in the cache, convert it now.
    395   llvm::Type *ResultType = nullptr;
    396   switch (Ty->getTypeClass()) {
    397   case Type::Record: // Handled above.
    398 #define TYPE(Class, Base)
    399 #define ABSTRACT_TYPE(Class, Base)
    400 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
    401 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    402 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
    403 #include "clang/AST/TypeNodes.def"
    404     llvm_unreachable("Non-canonical or dependent types aren't possible.");
    405 
    406   case Type::Builtin: {
    407     switch (cast<BuiltinType>(Ty)->getKind()) {
    408     case BuiltinType::Void:
    409     case BuiltinType::ObjCId:
    410     case BuiltinType::ObjCClass:
    411     case BuiltinType::ObjCSel:
    412       // LLVM void type can only be used as the result of a function call.  Just
    413       // map to the same as char.
    414       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    415       break;
    416 
    417     case BuiltinType::Bool:
    418       // Note that we always return bool as i1 for use as a scalar type.
    419       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
    420       break;
    421 
    422     case BuiltinType::Char_S:
    423     case BuiltinType::Char_U:
    424     case BuiltinType::SChar:
    425     case BuiltinType::UChar:
    426     case BuiltinType::Short:
    427     case BuiltinType::UShort:
    428     case BuiltinType::Int:
    429     case BuiltinType::UInt:
    430     case BuiltinType::Long:
    431     case BuiltinType::ULong:
    432     case BuiltinType::LongLong:
    433     case BuiltinType::ULongLong:
    434     case BuiltinType::WChar_S:
    435     case BuiltinType::WChar_U:
    436     case BuiltinType::Char16:
    437     case BuiltinType::Char32:
    438       ResultType = llvm::IntegerType::get(getLLVMContext(),
    439                                  static_cast<unsigned>(Context.getTypeSize(T)));
    440       break;
    441 
    442     case BuiltinType::Half:
    443       // Half FP can either be storage-only (lowered to i16) or native.
    444       ResultType =
    445           getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
    446                            Context.getLangOpts().NativeHalfType ||
    447                                Context.getLangOpts().HalfArgsAndReturns);
    448       break;
    449     case BuiltinType::Float:
    450     case BuiltinType::Double:
    451     case BuiltinType::LongDouble:
    452     case BuiltinType::Float128:
    453       ResultType = getTypeForFormat(getLLVMContext(),
    454                                     Context.getFloatTypeSemantics(T),
    455                                     /* UseNativeHalf = */ false);
    456       break;
    457 
    458     case BuiltinType::NullPtr:
    459       // Model std::nullptr_t as i8*
    460       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
    461       break;
    462 
    463     case BuiltinType::UInt128:
    464     case BuiltinType::Int128:
    465       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
    466       break;
    467 
    468 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
    469     case BuiltinType::Id:
    470 #include "clang/Basic/OpenCLImageTypes.def"
    471     case BuiltinType::OCLSampler:
    472     case BuiltinType::OCLEvent:
    473     case BuiltinType::OCLClkEvent:
    474     case BuiltinType::OCLQueue:
    475     case BuiltinType::OCLNDRange:
    476     case BuiltinType::OCLReserveID:
    477       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
    478       break;
    479 
    480     case BuiltinType::Dependent:
    481 #define BUILTIN_TYPE(Id, SingletonId)
    482 #define PLACEHOLDER_TYPE(Id, SingletonId) \
    483     case BuiltinType::Id:
    484 #include "clang/AST/BuiltinTypes.def"
    485       llvm_unreachable("Unexpected placeholder builtin type!");
    486     }
    487     break;
    488   }
    489   case Type::Auto:
    490     llvm_unreachable("Unexpected undeduced auto type!");
    491   case Type::Complex: {
    492     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
    493     ResultType = llvm::StructType::get(EltTy, EltTy, nullptr);
    494     break;
    495   }
    496   case Type::LValueReference:
    497   case Type::RValueReference: {
    498     const ReferenceType *RTy = cast<ReferenceType>(Ty);
    499     QualType ETy = RTy->getPointeeType();
    500     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    501     unsigned AS = Context.getTargetAddressSpace(ETy);
    502     ResultType = llvm::PointerType::get(PointeeType, AS);
    503     break;
    504   }
    505   case Type::Pointer: {
    506     const PointerType *PTy = cast<PointerType>(Ty);
    507     QualType ETy = PTy->getPointeeType();
    508     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    509     if (PointeeType->isVoidTy())
    510       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
    511     unsigned AS = Context.getTargetAddressSpace(ETy);
    512     ResultType = llvm::PointerType::get(PointeeType, AS);
    513     break;
    514   }
    515 
    516   case Type::VariableArray: {
    517     const VariableArrayType *A = cast<VariableArrayType>(Ty);
    518     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    519            "FIXME: We only handle trivial array types so far!");
    520     // VLAs resolve to the innermost element type; this matches
    521     // the return of alloca, and there isn't any obviously better choice.
    522     ResultType = ConvertTypeForMem(A->getElementType());
    523     break;
    524   }
    525   case Type::IncompleteArray: {
    526     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
    527     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    528            "FIXME: We only handle trivial array types so far!");
    529     // int X[] -> [0 x int], unless the element type is not sized.  If it is
    530     // unsized (e.g. an incomplete struct) just use [0 x i8].
    531     ResultType = ConvertTypeForMem(A->getElementType());
    532     if (!ResultType->isSized()) {
    533       SkippedLayout = true;
    534       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    535     }
    536     ResultType = llvm::ArrayType::get(ResultType, 0);
    537     break;
    538   }
    539   case Type::ConstantArray: {
    540     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
    541     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
    542 
    543     // Lower arrays of undefined struct type to arrays of i8 just to have a
    544     // concrete type.
    545     if (!EltTy->isSized()) {
    546       SkippedLayout = true;
    547       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
    548     }
    549 
    550     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
    551     break;
    552   }
    553   case Type::ExtVector:
    554   case Type::Vector: {
    555     const VectorType *VT = cast<VectorType>(Ty);
    556     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
    557                                        VT->getNumElements());
    558     break;
    559   }
    560   case Type::FunctionNoProto:
    561   case Type::FunctionProto:
    562     ResultType = ConvertFunctionType(T);
    563     break;
    564   case Type::ObjCObject:
    565     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
    566     break;
    567 
    568   case Type::ObjCInterface: {
    569     // Objective-C interfaces are always opaque (outside of the
    570     // runtime, which can do whatever it likes); we never refine
    571     // these.
    572     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
    573     if (!T)
    574       T = llvm::StructType::create(getLLVMContext());
    575     ResultType = T;
    576     break;
    577   }
    578 
    579   case Type::ObjCObjectPointer: {
    580     // Protocol qualifications do not influence the LLVM type, we just return a
    581     // pointer to the underlying interface type. We don't need to worry about
    582     // recursive conversion.
    583     llvm::Type *T =
    584       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
    585     ResultType = T->getPointerTo();
    586     break;
    587   }
    588 
    589   case Type::Enum: {
    590     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
    591     if (ED->isCompleteDefinition() || ED->isFixed())
    592       return ConvertType(ED->getIntegerType());
    593     // Return a placeholder 'i32' type.  This can be changed later when the
    594     // type is defined (see UpdateCompletedType), but is likely to be the
    595     // "right" answer.
    596     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
    597     break;
    598   }
    599 
    600   case Type::BlockPointer: {
    601     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
    602     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
    603     unsigned AS = Context.getTargetAddressSpace(FTy);
    604     ResultType = llvm::PointerType::get(PointeeType, AS);
    605     break;
    606   }
    607 
    608   case Type::MemberPointer: {
    609     auto *MPTy = cast<MemberPointerType>(Ty);
    610     if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
    611       RecordsWithOpaqueMemberPointers.insert(MPTy->getClass());
    612       ResultType = llvm::StructType::create(getLLVMContext());
    613     } else {
    614       ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
    615     }
    616     break;
    617   }
    618 
    619   case Type::Atomic: {
    620     QualType valueType = cast<AtomicType>(Ty)->getValueType();
    621     ResultType = ConvertTypeForMem(valueType);
    622 
    623     // Pad out to the inflated size if necessary.
    624     uint64_t valueSize = Context.getTypeSize(valueType);
    625     uint64_t atomicSize = Context.getTypeSize(Ty);
    626     if (valueSize != atomicSize) {
    627       assert(valueSize < atomicSize);
    628       llvm::Type *elts[] = {
    629         ResultType,
    630         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
    631       };
    632       ResultType = llvm::StructType::get(getLLVMContext(),
    633                                          llvm::makeArrayRef(elts));
    634     }
    635     break;
    636   }
    637   case Type::Pipe: {
    638     ResultType = CGM.getOpenCLRuntime().getPipeType();
    639     break;
    640   }
    641   }
    642 
    643   assert(ResultType && "Didn't convert a type?");
    644 
    645   TypeCache[Ty] = ResultType;
    646   return ResultType;
    647 }
    648 
    649 bool CodeGenModule::isPaddedAtomicType(QualType type) {
    650   return isPaddedAtomicType(type->castAs<AtomicType>());
    651 }
    652 
    653 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
    654   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
    655 }
    656 
    657 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
    658 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
    659   // TagDecl's are not necessarily unique, instead use the (clang)
    660   // type connected to the decl.
    661   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    662 
    663   llvm::StructType *&Entry = RecordDeclTypes[Key];
    664 
    665   // If we don't have a StructType at all yet, create the forward declaration.
    666   if (!Entry) {
    667     Entry = llvm::StructType::create(getLLVMContext());
    668     addRecordTypeName(RD, Entry, "");
    669   }
    670   llvm::StructType *Ty = Entry;
    671 
    672   // If this is still a forward declaration, or the LLVM type is already
    673   // complete, there's nothing more to do.
    674   RD = RD->getDefinition();
    675   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
    676     return Ty;
    677 
    678   // If converting this type would cause us to infinitely loop, don't do it!
    679   if (!isSafeToConvert(RD, *this)) {
    680     DeferredRecords.push_back(RD);
    681     return Ty;
    682   }
    683 
    684   // Okay, this is a definition of a type.  Compile the implementation now.
    685   bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
    686   (void)InsertResult;
    687   assert(InsertResult && "Recursively compiling a struct?");
    688 
    689   // Force conversion of non-virtual base classes recursively.
    690   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    691     for (const auto &I : CRD->bases()) {
    692       if (I.isVirtual()) continue;
    693 
    694       ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
    695     }
    696   }
    697 
    698   // Layout fields.
    699   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
    700   CGRecordLayouts[Key] = Layout;
    701 
    702   // We're done laying out this struct.
    703   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
    704   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
    705 
    706   // If this struct blocked a FunctionType conversion, then recompute whatever
    707   // was derived from that.
    708   // FIXME: This is hugely overconservative.
    709   if (SkippedLayout)
    710     TypeCache.clear();
    711 
    712   // If we're done converting the outer-most record, then convert any deferred
    713   // structs as well.
    714   if (RecordsBeingLaidOut.empty())
    715     while (!DeferredRecords.empty())
    716       ConvertRecordDeclType(DeferredRecords.pop_back_val());
    717 
    718   return Ty;
    719 }
    720 
    721 /// getCGRecordLayout - Return record layout info for the given record decl.
    722 const CGRecordLayout &
    723 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
    724   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    725 
    726   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
    727   if (!Layout) {
    728     // Compute the type information.
    729     ConvertRecordDeclType(RD);
    730 
    731     // Now try again.
    732     Layout = CGRecordLayouts.lookup(Key);
    733   }
    734 
    735   assert(Layout && "Unable to find record layout information for type");
    736   return *Layout;
    737 }
    738 
    739 bool CodeGenTypes::isZeroInitializable(QualType T) {
    740   // No need to check for member pointers when not compiling C++.
    741   if (!Context.getLangOpts().CPlusPlus)
    742     return true;
    743 
    744   if (const auto *AT = Context.getAsArrayType(T)) {
    745     if (isa<IncompleteArrayType>(AT))
    746       return true;
    747     if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
    748       if (Context.getConstantArrayElementCount(CAT) == 0)
    749         return true;
    750     T = Context.getBaseElementType(T);
    751   }
    752 
    753   // Records are non-zero-initializable if they contain any
    754   // non-zero-initializable subobjects.
    755   if (const RecordType *RT = T->getAs<RecordType>()) {
    756     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    757     return isZeroInitializable(RD);
    758   }
    759 
    760   // We have to ask the ABI about member pointers.
    761   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
    762     return getCXXABI().isZeroInitializable(MPT);
    763 
    764   // Everything else is okay.
    765   return true;
    766 }
    767 
    768 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
    769   return getCGRecordLayout(RD).isZeroInitializable();
    770 }
    771