Home | History | Annotate | Download | only in CodeGen
      1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "TargetInfo.h"
     16 #include "ABIInfo.h"
     17 #include "CGCXXABI.h"
     18 #include "CGValue.h"
     19 #include "CodeGenFunction.h"
     20 #include "clang/AST/RecordLayout.h"
     21 #include "clang/CodeGen/CGFunctionInfo.h"
     22 #include "clang/CodeGen/SwiftCallingConv.h"
     23 #include "clang/Frontend/CodeGenOptions.h"
     24 #include "llvm/ADT/StringExtras.h"
     25 #include "llvm/ADT/Triple.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/Type.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include <algorithm>    // std::sort
     30 
     31 using namespace clang;
     32 using namespace CodeGen;
     33 
     34 // Helper for coercing an aggregate argument or return value into an integer
     35 // array of the same size (including padding) and alignment.  This alternate
     36 // coercion happens only for the RenderScript ABI and can be removed after
     37 // runtimes that rely on it are no longer supported.
     38 //
     39 // RenderScript assumes that the size of the argument / return value in the IR
     40 // is the same as the size of the corresponding qualified type. This helper
     41 // coerces the aggregate type into an array of the same size (including
     42 // padding).  This coercion is used in lieu of expansion of struct members or
     43 // other canonical coercions that return a coerced-type of larger size.
     44 //
     45 // Ty          - The argument / return value type
     46 // Context     - The associated ASTContext
     47 // LLVMContext - The associated LLVMContext
     48 static ABIArgInfo coerceToIntArray(QualType Ty,
     49                                    ASTContext &Context,
     50                                    llvm::LLVMContext &LLVMContext) {
     51   // Alignment and Size are measured in bits.
     52   const uint64_t Size = Context.getTypeSize(Ty);
     53   const uint64_t Alignment = Context.getTypeAlign(Ty);
     54   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
     55   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
     56   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
     57 }
     58 
     59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
     60                                llvm::Value *Array,
     61                                llvm::Value *Value,
     62                                unsigned FirstIndex,
     63                                unsigned LastIndex) {
     64   // Alternatively, we could emit this as a loop in the source.
     65   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
     66     llvm::Value *Cell =
     67         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
     68     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
     69   }
     70 }
     71 
     72 static bool isAggregateTypeForABI(QualType T) {
     73   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
     74          T->isMemberFunctionPointerType();
     75 }
     76 
     77 ABIArgInfo
     78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
     79                                  llvm::Type *Padding) const {
     80   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
     81                                  ByRef, Realign, Padding);
     82 }
     83 
     84 ABIArgInfo
     85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
     86   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
     87                                       /*ByRef*/ false, Realign);
     88 }
     89 
     90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
     91                              QualType Ty) const {
     92   return Address::invalid();
     93 }
     94 
     95 ABIInfo::~ABIInfo() {}
     96 
     97 /// Does the given lowering require more than the given number of
     98 /// registers when expanded?
     99 ///
    100 /// This is intended to be the basis of a reasonable basic implementation
    101 /// of should{Pass,Return}IndirectlyForSwift.
    102 ///
    103 /// For most targets, a limit of four total registers is reasonable; this
    104 /// limits the amount of code required in order to move around the value
    105 /// in case it wasn't produced immediately prior to the call by the caller
    106 /// (or wasn't produced in exactly the right registers) or isn't used
    107 /// immediately within the callee.  But some targets may need to further
    108 /// limit the register count due to an inability to support that many
    109 /// return registers.
    110 static bool occupiesMoreThan(CodeGenTypes &cgt,
    111                              ArrayRef<llvm::Type*> scalarTypes,
    112                              unsigned maxAllRegisters) {
    113   unsigned intCount = 0, fpCount = 0;
    114   for (llvm::Type *type : scalarTypes) {
    115     if (type->isPointerTy()) {
    116       intCount++;
    117     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
    118       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
    119       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
    120     } else {
    121       assert(type->isVectorTy() || type->isFloatingPointTy());
    122       fpCount++;
    123     }
    124   }
    125 
    126   return (intCount + fpCount > maxAllRegisters);
    127 }
    128 
    129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
    130                                              llvm::Type *eltTy,
    131                                              unsigned numElts) const {
    132   // The default implementation of this assumes that the target guarantees
    133   // 128-bit SIMD support but nothing more.
    134   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
    135 }
    136 
    137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
    138                                               CGCXXABI &CXXABI) {
    139   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
    140   if (!RD)
    141     return CGCXXABI::RAA_Default;
    142   return CXXABI.getRecordArgABI(RD);
    143 }
    144 
    145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
    146                                               CGCXXABI &CXXABI) {
    147   const RecordType *RT = T->getAs<RecordType>();
    148   if (!RT)
    149     return CGCXXABI::RAA_Default;
    150   return getRecordArgABI(RT, CXXABI);
    151 }
    152 
    153 /// Pass transparent unions as if they were the type of the first element. Sema
    154 /// should ensure that all elements of the union have the same "machine type".
    155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
    156   if (const RecordType *UT = Ty->getAsUnionType()) {
    157     const RecordDecl *UD = UT->getDecl();
    158     if (UD->hasAttr<TransparentUnionAttr>()) {
    159       assert(!UD->field_empty() && "sema created an empty transparent union");
    160       return UD->field_begin()->getType();
    161     }
    162   }
    163   return Ty;
    164 }
    165 
    166 CGCXXABI &ABIInfo::getCXXABI() const {
    167   return CGT.getCXXABI();
    168 }
    169 
    170 ASTContext &ABIInfo::getContext() const {
    171   return CGT.getContext();
    172 }
    173 
    174 llvm::LLVMContext &ABIInfo::getVMContext() const {
    175   return CGT.getLLVMContext();
    176 }
    177 
    178 const llvm::DataLayout &ABIInfo::getDataLayout() const {
    179   return CGT.getDataLayout();
    180 }
    181 
    182 const TargetInfo &ABIInfo::getTarget() const {
    183   return CGT.getTarget();
    184 }
    185 
    186 bool ABIInfo:: isAndroid() const {
    187   return getTarget().getTriple().isAndroid() ||
    188          getContext().getLangOpts().RenderScript;
    189 }
    190 
    191 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
    192   return false;
    193 }
    194 
    195 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
    196                                                 uint64_t Members) const {
    197   return false;
    198 }
    199 
    200 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
    201   return false;
    202 }
    203 
    204 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
    205   raw_ostream &OS = llvm::errs();
    206   OS << "(ABIArgInfo Kind=";
    207   switch (TheKind) {
    208   case Direct:
    209     OS << "Direct Type=";
    210     if (llvm::Type *Ty = getCoerceToType())
    211       Ty->print(OS);
    212     else
    213       OS << "null";
    214     break;
    215   case Extend:
    216     OS << "Extend";
    217     break;
    218   case Ignore:
    219     OS << "Ignore";
    220     break;
    221   case InAlloca:
    222     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
    223     break;
    224   case Indirect:
    225     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
    226        << " ByVal=" << getIndirectByVal()
    227        << " Realign=" << getIndirectRealign();
    228     break;
    229   case Expand:
    230     OS << "Expand";
    231     break;
    232   case CoerceAndExpand:
    233     OS << "CoerceAndExpand Type=";
    234     getCoerceAndExpandType()->print(OS);
    235     break;
    236   }
    237   OS << ")\n";
    238 }
    239 
    240 // Dynamically round a pointer up to a multiple of the given alignment.
    241 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
    242                                                   llvm::Value *Ptr,
    243                                                   CharUnits Align) {
    244   llvm::Value *PtrAsInt = Ptr;
    245   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
    246   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
    247   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
    248         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
    249   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
    250            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
    251   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
    252                                         Ptr->getType(),
    253                                         Ptr->getName() + ".aligned");
    254   return PtrAsInt;
    255 }
    256 
    257 /// Emit va_arg for a platform using the common void* representation,
    258 /// where arguments are simply emitted in an array of slots on the stack.
    259 ///
    260 /// This version implements the core direct-value passing rules.
    261 ///
    262 /// \param SlotSize - The size and alignment of a stack slot.
    263 ///   Each argument will be allocated to a multiple of this number of
    264 ///   slots, and all the slots will be aligned to this value.
    265 /// \param AllowHigherAlign - The slot alignment is not a cap;
    266 ///   an argument type with an alignment greater than the slot size
    267 ///   will be emitted on a higher-alignment address, potentially
    268 ///   leaving one or more empty slots behind as padding.  If this
    269 ///   is false, the returned address might be less-aligned than
    270 ///   DirectAlign.
    271 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
    272                                       Address VAListAddr,
    273                                       llvm::Type *DirectTy,
    274                                       CharUnits DirectSize,
    275                                       CharUnits DirectAlign,
    276                                       CharUnits SlotSize,
    277                                       bool AllowHigherAlign) {
    278   // Cast the element type to i8* if necessary.  Some platforms define
    279   // va_list as a struct containing an i8* instead of just an i8*.
    280   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
    281     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
    282 
    283   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
    284 
    285   // If the CC aligns values higher than the slot size, do so if needed.
    286   Address Addr = Address::invalid();
    287   if (AllowHigherAlign && DirectAlign > SlotSize) {
    288     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
    289                                                  DirectAlign);
    290   } else {
    291     Addr = Address(Ptr, SlotSize);
    292   }
    293 
    294   // Advance the pointer past the argument, then store that back.
    295   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
    296   llvm::Value *NextPtr =
    297     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
    298                                            "argp.next");
    299   CGF.Builder.CreateStore(NextPtr, VAListAddr);
    300 
    301   // If the argument is smaller than a slot, and this is a big-endian
    302   // target, the argument will be right-adjusted in its slot.
    303   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
    304       !DirectTy->isStructTy()) {
    305     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
    306   }
    307 
    308   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
    309   return Addr;
    310 }
    311 
    312 /// Emit va_arg for a platform using the common void* representation,
    313 /// where arguments are simply emitted in an array of slots on the stack.
    314 ///
    315 /// \param IsIndirect - Values of this type are passed indirectly.
    316 /// \param ValueInfo - The size and alignment of this type, generally
    317 ///   computed with getContext().getTypeInfoInChars(ValueTy).
    318 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
    319 ///   Each argument will be allocated to a multiple of this number of
    320 ///   slots, and all the slots will be aligned to this value.
    321 /// \param AllowHigherAlign - The slot alignment is not a cap;
    322 ///   an argument type with an alignment greater than the slot size
    323 ///   will be emitted on a higher-alignment address, potentially
    324 ///   leaving one or more empty slots behind as padding.
    325 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
    326                                 QualType ValueTy, bool IsIndirect,
    327                                 std::pair<CharUnits, CharUnits> ValueInfo,
    328                                 CharUnits SlotSizeAndAlign,
    329                                 bool AllowHigherAlign) {
    330   // The size and alignment of the value that was passed directly.
    331   CharUnits DirectSize, DirectAlign;
    332   if (IsIndirect) {
    333     DirectSize = CGF.getPointerSize();
    334     DirectAlign = CGF.getPointerAlign();
    335   } else {
    336     DirectSize = ValueInfo.first;
    337     DirectAlign = ValueInfo.second;
    338   }
    339 
    340   // Cast the address we've calculated to the right type.
    341   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
    342   if (IsIndirect)
    343     DirectTy = DirectTy->getPointerTo(0);
    344 
    345   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
    346                                         DirectSize, DirectAlign,
    347                                         SlotSizeAndAlign,
    348                                         AllowHigherAlign);
    349 
    350   if (IsIndirect) {
    351     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
    352   }
    353 
    354   return Addr;
    355 
    356 }
    357 
    358 static Address emitMergePHI(CodeGenFunction &CGF,
    359                             Address Addr1, llvm::BasicBlock *Block1,
    360                             Address Addr2, llvm::BasicBlock *Block2,
    361                             const llvm::Twine &Name = "") {
    362   assert(Addr1.getType() == Addr2.getType());
    363   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
    364   PHI->addIncoming(Addr1.getPointer(), Block1);
    365   PHI->addIncoming(Addr2.getPointer(), Block2);
    366   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
    367   return Address(PHI, Align);
    368 }
    369 
    370 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
    371 
    372 // If someone can figure out a general rule for this, that would be great.
    373 // It's probably just doomed to be platform-dependent, though.
    374 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
    375   // Verified for:
    376   //   x86-64     FreeBSD, Linux, Darwin
    377   //   x86-32     FreeBSD, Linux, Darwin
    378   //   PowerPC    Linux, Darwin
    379   //   ARM        Darwin (*not* EABI)
    380   //   AArch64    Linux
    381   return 32;
    382 }
    383 
    384 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
    385                                      const FunctionNoProtoType *fnType) const {
    386   // The following conventions are known to require this to be false:
    387   //   x86_stdcall
    388   //   MIPS
    389   // For everything else, we just prefer false unless we opt out.
    390   return false;
    391 }
    392 
    393 void
    394 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
    395                                              llvm::SmallString<24> &Opt) const {
    396   // This assumes the user is passing a library name like "rt" instead of a
    397   // filename like "librt.a/so", and that they don't care whether it's static or
    398   // dynamic.
    399   Opt = "-l";
    400   Opt += Lib;
    401 }
    402 
    403 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
    404   return llvm::CallingConv::C;
    405 }
    406 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
    407 
    408 /// isEmptyField - Return true iff a the field is "empty", that is it
    409 /// is an unnamed bit-field or an (array of) empty record(s).
    410 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
    411                          bool AllowArrays) {
    412   if (FD->isUnnamedBitfield())
    413     return true;
    414 
    415   QualType FT = FD->getType();
    416 
    417   // Constant arrays of empty records count as empty, strip them off.
    418   // Constant arrays of zero length always count as empty.
    419   if (AllowArrays)
    420     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
    421       if (AT->getSize() == 0)
    422         return true;
    423       FT = AT->getElementType();
    424     }
    425 
    426   const RecordType *RT = FT->getAs<RecordType>();
    427   if (!RT)
    428     return false;
    429 
    430   // C++ record fields are never empty, at least in the Itanium ABI.
    431   //
    432   // FIXME: We should use a predicate for whether this behavior is true in the
    433   // current ABI.
    434   if (isa<CXXRecordDecl>(RT->getDecl()))
    435     return false;
    436 
    437   return isEmptyRecord(Context, FT, AllowArrays);
    438 }
    439 
    440 /// isEmptyRecord - Return true iff a structure contains only empty
    441 /// fields. Note that a structure with a flexible array member is not
    442 /// considered empty.
    443 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
    444   const RecordType *RT = T->getAs<RecordType>();
    445   if (!RT)
    446     return false;
    447   const RecordDecl *RD = RT->getDecl();
    448   if (RD->hasFlexibleArrayMember())
    449     return false;
    450 
    451   // If this is a C++ record, check the bases first.
    452   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    453     for (const auto &I : CXXRD->bases())
    454       if (!isEmptyRecord(Context, I.getType(), true))
    455         return false;
    456 
    457   for (const auto *I : RD->fields())
    458     if (!isEmptyField(Context, I, AllowArrays))
    459       return false;
    460   return true;
    461 }
    462 
    463 /// isSingleElementStruct - Determine if a structure is a "single
    464 /// element struct", i.e. it has exactly one non-empty field or
    465 /// exactly one field which is itself a single element
    466 /// struct. Structures with flexible array members are never
    467 /// considered single element structs.
    468 ///
    469 /// \return The field declaration for the single non-empty field, if
    470 /// it exists.
    471 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
    472   const RecordType *RT = T->getAs<RecordType>();
    473   if (!RT)
    474     return nullptr;
    475 
    476   const RecordDecl *RD = RT->getDecl();
    477   if (RD->hasFlexibleArrayMember())
    478     return nullptr;
    479 
    480   const Type *Found = nullptr;
    481 
    482   // If this is a C++ record, check the bases first.
    483   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    484     for (const auto &I : CXXRD->bases()) {
    485       // Ignore empty records.
    486       if (isEmptyRecord(Context, I.getType(), true))
    487         continue;
    488 
    489       // If we already found an element then this isn't a single-element struct.
    490       if (Found)
    491         return nullptr;
    492 
    493       // If this is non-empty and not a single element struct, the composite
    494       // cannot be a single element struct.
    495       Found = isSingleElementStruct(I.getType(), Context);
    496       if (!Found)
    497         return nullptr;
    498     }
    499   }
    500 
    501   // Check for single element.
    502   for (const auto *FD : RD->fields()) {
    503     QualType FT = FD->getType();
    504 
    505     // Ignore empty fields.
    506     if (isEmptyField(Context, FD, true))
    507       continue;
    508 
    509     // If we already found an element then this isn't a single-element
    510     // struct.
    511     if (Found)
    512       return nullptr;
    513 
    514     // Treat single element arrays as the element.
    515     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
    516       if (AT->getSize().getZExtValue() != 1)
    517         break;
    518       FT = AT->getElementType();
    519     }
    520 
    521     if (!isAggregateTypeForABI(FT)) {
    522       Found = FT.getTypePtr();
    523     } else {
    524       Found = isSingleElementStruct(FT, Context);
    525       if (!Found)
    526         return nullptr;
    527     }
    528   }
    529 
    530   // We don't consider a struct a single-element struct if it has
    531   // padding beyond the element type.
    532   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
    533     return nullptr;
    534 
    535   return Found;
    536 }
    537 
    538 namespace {
    539 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
    540                        const ABIArgInfo &AI) {
    541   // This default implementation defers to the llvm backend's va_arg
    542   // instruction. It can handle only passing arguments directly
    543   // (typically only handled in the backend for primitive types), or
    544   // aggregates passed indirectly by pointer (NOTE: if the "byval"
    545   // flag has ABI impact in the callee, this implementation cannot
    546   // work.)
    547 
    548   // Only a few cases are covered here at the moment -- those needed
    549   // by the default abi.
    550   llvm::Value *Val;
    551 
    552   if (AI.isIndirect()) {
    553     assert(!AI.getPaddingType() &&
    554            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
    555     assert(
    556         !AI.getIndirectRealign() &&
    557         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
    558 
    559     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
    560     CharUnits TyAlignForABI = TyInfo.second;
    561 
    562     llvm::Type *BaseTy =
    563         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
    564     llvm::Value *Addr =
    565         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
    566     return Address(Addr, TyAlignForABI);
    567   } else {
    568     assert((AI.isDirect() || AI.isExtend()) &&
    569            "Unexpected ArgInfo Kind in generic VAArg emitter!");
    570 
    571     assert(!AI.getInReg() &&
    572            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
    573     assert(!AI.getPaddingType() &&
    574            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
    575     assert(!AI.getDirectOffset() &&
    576            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
    577     assert(!AI.getCoerceToType() &&
    578            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
    579 
    580     Address Temp = CGF.CreateMemTemp(Ty, "varet");
    581     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
    582     CGF.Builder.CreateStore(Val, Temp);
    583     return Temp;
    584   }
    585 }
    586 
    587 /// DefaultABIInfo - The default implementation for ABI specific
    588 /// details. This implementation provides information which results in
    589 /// self-consistent and sensible LLVM IR generation, but does not
    590 /// conform to any particular ABI.
    591 class DefaultABIInfo : public ABIInfo {
    592 public:
    593   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    594 
    595   ABIArgInfo classifyReturnType(QualType RetTy) const;
    596   ABIArgInfo classifyArgumentType(QualType RetTy) const;
    597 
    598   void computeInfo(CGFunctionInfo &FI) const override {
    599     if (!getCXXABI().classifyReturnType(FI))
    600       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    601     for (auto &I : FI.arguments())
    602       I.info = classifyArgumentType(I.type);
    603   }
    604 
    605   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
    606                     QualType Ty) const override {
    607     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
    608   }
    609 };
    610 
    611 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
    612 public:
    613   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    614     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
    615 };
    616 
    617 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
    618   Ty = useFirstFieldIfTransparentUnion(Ty);
    619 
    620   if (isAggregateTypeForABI(Ty)) {
    621     // Records with non-trivial destructors/copy-constructors should not be
    622     // passed by value.
    623     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
    624       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    625 
    626     return getNaturalAlignIndirect(Ty);
    627   }
    628 
    629   // Treat an enum type as its underlying type.
    630   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    631     Ty = EnumTy->getDecl()->getIntegerType();
    632 
    633   return (Ty->isPromotableIntegerType() ?
    634           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    635 }
    636 
    637 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
    638   if (RetTy->isVoidType())
    639     return ABIArgInfo::getIgnore();
    640 
    641   if (isAggregateTypeForABI(RetTy))
    642     return getNaturalAlignIndirect(RetTy);
    643 
    644   // Treat an enum type as its underlying type.
    645   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    646     RetTy = EnumTy->getDecl()->getIntegerType();
    647 
    648   return (RetTy->isPromotableIntegerType() ?
    649           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    650 }
    651 
    652 //===----------------------------------------------------------------------===//
    653 // WebAssembly ABI Implementation
    654 //
    655 // This is a very simple ABI that relies a lot on DefaultABIInfo.
    656 //===----------------------------------------------------------------------===//
    657 
    658 class WebAssemblyABIInfo final : public DefaultABIInfo {
    659 public:
    660   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
    661       : DefaultABIInfo(CGT) {}
    662 
    663 private:
    664   ABIArgInfo classifyReturnType(QualType RetTy) const;
    665   ABIArgInfo classifyArgumentType(QualType Ty) const;
    666 
    667   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
    668   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
    669   // overload them.
    670   void computeInfo(CGFunctionInfo &FI) const override {
    671     if (!getCXXABI().classifyReturnType(FI))
    672       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    673     for (auto &Arg : FI.arguments())
    674       Arg.info = classifyArgumentType(Arg.type);
    675   }
    676 
    677   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
    678                     QualType Ty) const override;
    679 };
    680 
    681 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
    682 public:
    683   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    684       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
    685 };
    686 
    687 /// \brief Classify argument of given type \p Ty.
    688 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
    689   Ty = useFirstFieldIfTransparentUnion(Ty);
    690 
    691   if (isAggregateTypeForABI(Ty)) {
    692     // Records with non-trivial destructors/copy-constructors should not be
    693     // passed by value.
    694     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
    695       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    696     // Ignore empty structs/unions.
    697     if (isEmptyRecord(getContext(), Ty, true))
    698       return ABIArgInfo::getIgnore();
    699     // Lower single-element structs to just pass a regular value. TODO: We
    700     // could do reasonable-size multiple-element structs too, using getExpand(),
    701     // though watch out for things like bitfields.
    702     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
    703       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
    704   }
    705 
    706   // Otherwise just do the default thing.
    707   return DefaultABIInfo::classifyArgumentType(Ty);
    708 }
    709 
    710 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
    711   if (isAggregateTypeForABI(RetTy)) {
    712     // Records with non-trivial destructors/copy-constructors should not be
    713     // returned by value.
    714     if (!getRecordArgABI(RetTy, getCXXABI())) {
    715       // Ignore empty structs/unions.
    716       if (isEmptyRecord(getContext(), RetTy, true))
    717         return ABIArgInfo::getIgnore();
    718       // Lower single-element structs to just return a regular value. TODO: We
    719       // could do reasonable-size multiple-element structs too, using
    720       // ABIArgInfo::getDirect().
    721       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
    722         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
    723     }
    724   }
    725 
    726   // Otherwise just do the default thing.
    727   return DefaultABIInfo::classifyReturnType(RetTy);
    728 }
    729 
    730 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
    731                                       QualType Ty) const {
    732   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
    733                           getContext().getTypeInfoInChars(Ty),
    734                           CharUnits::fromQuantity(4),
    735                           /*AllowHigherAlign=*/ true);
    736 }
    737 
    738 //===----------------------------------------------------------------------===//
    739 // le32/PNaCl bitcode ABI Implementation
    740 //
    741 // This is a simplified version of the x86_32 ABI.  Arguments and return values
    742 // are always passed on the stack.
    743 //===----------------------------------------------------------------------===//
    744 
    745 class PNaClABIInfo : public ABIInfo {
    746  public:
    747   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
    748 
    749   ABIArgInfo classifyReturnType(QualType RetTy) const;
    750   ABIArgInfo classifyArgumentType(QualType RetTy) const;
    751 
    752   void computeInfo(CGFunctionInfo &FI) const override;
    753   Address EmitVAArg(CodeGenFunction &CGF,
    754                     Address VAListAddr, QualType Ty) const override;
    755 };
    756 
    757 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
    758  public:
    759   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    760     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
    761 };
    762 
    763 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
    764   if (!getCXXABI().classifyReturnType(FI))
    765     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    766 
    767   for (auto &I : FI.arguments())
    768     I.info = classifyArgumentType(I.type);
    769 }
    770 
    771 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
    772                                 QualType Ty) const {
    773   // The PNaCL ABI is a bit odd, in that varargs don't use normal
    774   // function classification. Structs get passed directly for varargs
    775   // functions, through a rewriting transform in
    776   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
    777   // this target to actually support a va_arg instructions with an
    778   // aggregate type, unlike other targets.
    779   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
    780 }
    781 
    782 /// \brief Classify argument of given type \p Ty.
    783 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
    784   if (isAggregateTypeForABI(Ty)) {
    785     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
    786       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    787     return getNaturalAlignIndirect(Ty);
    788   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
    789     // Treat an enum type as its underlying type.
    790     Ty = EnumTy->getDecl()->getIntegerType();
    791   } else if (Ty->isFloatingType()) {
    792     // Floating-point types don't go inreg.
    793     return ABIArgInfo::getDirect();
    794   }
    795 
    796   return (Ty->isPromotableIntegerType() ?
    797           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    798 }
    799 
    800 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
    801   if (RetTy->isVoidType())
    802     return ABIArgInfo::getIgnore();
    803 
    804   // In the PNaCl ABI we always return records/structures on the stack.
    805   if (isAggregateTypeForABI(RetTy))
    806     return getNaturalAlignIndirect(RetTy);
    807 
    808   // Treat an enum type as its underlying type.
    809   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    810     RetTy = EnumTy->getDecl()->getIntegerType();
    811 
    812   return (RetTy->isPromotableIntegerType() ?
    813           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
    814 }
    815 
    816 /// IsX86_MMXType - Return true if this is an MMX type.
    817 bool IsX86_MMXType(llvm::Type *IRType) {
    818   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
    819   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
    820     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
    821     IRType->getScalarSizeInBits() != 64;
    822 }
    823 
    824 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    825                                           StringRef Constraint,
    826                                           llvm::Type* Ty) {
    827   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
    828     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
    829       // Invalid MMX constraint
    830       return nullptr;
    831     }
    832 
    833     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
    834   }
    835 
    836   // No operation needed
    837   return Ty;
    838 }
    839 
    840 /// Returns true if this type can be passed in SSE registers with the
    841 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
    842 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
    843   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    844     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
    845       return true;
    846   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
    847     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
    848     // registers specially.
    849     unsigned VecSize = Context.getTypeSize(VT);
    850     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
    851       return true;
    852   }
    853   return false;
    854 }
    855 
    856 /// Returns true if this aggregate is small enough to be passed in SSE registers
    857 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
    858 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
    859   return NumMembers <= 4;
    860 }
    861 
    862 //===----------------------------------------------------------------------===//
    863 // X86-32 ABI Implementation
    864 //===----------------------------------------------------------------------===//
    865 
    866 /// \brief Similar to llvm::CCState, but for Clang.
    867 struct CCState {
    868   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
    869 
    870   unsigned CC;
    871   unsigned FreeRegs;
    872   unsigned FreeSSERegs;
    873 };
    874 
    875 /// X86_32ABIInfo - The X86-32 ABI information.
    876 class X86_32ABIInfo : public SwiftABIInfo {
    877   enum Class {
    878     Integer,
    879     Float
    880   };
    881 
    882   static const unsigned MinABIStackAlignInBytes = 4;
    883 
    884   bool IsDarwinVectorABI;
    885   bool IsRetSmallStructInRegABI;
    886   bool IsWin32StructABI;
    887   bool IsSoftFloatABI;
    888   bool IsMCUABI;
    889   unsigned DefaultNumRegisterParameters;
    890 
    891   static bool isRegisterSize(unsigned Size) {
    892     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
    893   }
    894 
    895   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
    896     // FIXME: Assumes vectorcall is in use.
    897     return isX86VectorTypeForVectorCall(getContext(), Ty);
    898   }
    899 
    900   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
    901                                          uint64_t NumMembers) const override {
    902     // FIXME: Assumes vectorcall is in use.
    903     return isX86VectorCallAggregateSmallEnough(NumMembers);
    904   }
    905 
    906   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
    907 
    908   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
    909   /// such that the argument will be passed in memory.
    910   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
    911 
    912   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
    913 
    914   /// \brief Return the alignment to use for the given type on the stack.
    915   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
    916 
    917   Class classify(QualType Ty) const;
    918   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
    919   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
    920   /// \brief Updates the number of available free registers, returns
    921   /// true if any registers were allocated.
    922   bool updateFreeRegs(QualType Ty, CCState &State) const;
    923 
    924   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
    925                                 bool &NeedsPadding) const;
    926   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
    927 
    928   bool canExpandIndirectArgument(QualType Ty) const;
    929 
    930   /// \brief Rewrite the function info so that all memory arguments use
    931   /// inalloca.
    932   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
    933 
    934   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
    935                            CharUnits &StackOffset, ABIArgInfo &Info,
    936                            QualType Type) const;
    937 
    938 public:
    939 
    940   void computeInfo(CGFunctionInfo &FI) const override;
    941   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
    942                     QualType Ty) const override;
    943 
    944   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
    945                 bool RetSmallStructInRegABI, bool Win32StructABI,
    946                 unsigned NumRegisterParameters, bool SoftFloatABI)
    947     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
    948       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
    949       IsWin32StructABI(Win32StructABI),
    950       IsSoftFloatABI(SoftFloatABI),
    951       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
    952       DefaultNumRegisterParameters(NumRegisterParameters) {}
    953 
    954   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
    955                                     ArrayRef<llvm::Type*> scalars,
    956                                     bool asReturnValue) const override {
    957     // LLVM's x86-32 lowering currently only assigns up to three
    958     // integer registers and three fp registers.  Oddly, it'll use up to
    959     // four vector registers for vectors, but those can overlap with the
    960     // scalar registers.
    961     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
    962   }
    963 };
    964 
    965 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
    966 public:
    967   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
    968                           bool RetSmallStructInRegABI, bool Win32StructABI,
    969                           unsigned NumRegisterParameters, bool SoftFloatABI)
    970       : TargetCodeGenInfo(new X86_32ABIInfo(
    971             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
    972             NumRegisterParameters, SoftFloatABI)) {}
    973 
    974   static bool isStructReturnInRegABI(
    975       const llvm::Triple &Triple, const CodeGenOptions &Opts);
    976 
    977   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
    978                            CodeGen::CodeGenModule &CGM) const override;
    979 
    980   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
    981     // Darwin uses different dwarf register numbers for EH.
    982     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
    983     return 4;
    984   }
    985 
    986   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
    987                                llvm::Value *Address) const override;
    988 
    989   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
    990                                   StringRef Constraint,
    991                                   llvm::Type* Ty) const override {
    992     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
    993   }
    994 
    995   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
    996                                 std::string &Constraints,
    997                                 std::vector<llvm::Type *> &ResultRegTypes,
    998                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
    999                                 std::vector<LValue> &ResultRegDests,
   1000                                 std::string &AsmString,
   1001                                 unsigned NumOutputs) const override;
   1002 
   1003   llvm::Constant *
   1004   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
   1005     unsigned Sig = (0xeb << 0) |  // jmp rel8
   1006                    (0x06 << 8) |  //           .+0x08
   1007                    ('F' << 16) |
   1008                    ('T' << 24);
   1009     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
   1010   }
   1011 
   1012   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
   1013     return "movl\t%ebp, %ebp"
   1014            "\t\t## marker for objc_retainAutoreleaseReturnValue";
   1015   }
   1016 };
   1017 
   1018 }
   1019 
   1020 /// Rewrite input constraint references after adding some output constraints.
   1021 /// In the case where there is one output and one input and we add one output,
   1022 /// we need to replace all operand references greater than or equal to 1:
   1023 ///     mov $0, $1
   1024 ///     mov eax, $1
   1025 /// The result will be:
   1026 ///     mov $0, $2
   1027 ///     mov eax, $2
   1028 static void rewriteInputConstraintReferences(unsigned FirstIn,
   1029                                              unsigned NumNewOuts,
   1030                                              std::string &AsmString) {
   1031   std::string Buf;
   1032   llvm::raw_string_ostream OS(Buf);
   1033   size_t Pos = 0;
   1034   while (Pos < AsmString.size()) {
   1035     size_t DollarStart = AsmString.find('$', Pos);
   1036     if (DollarStart == std::string::npos)
   1037       DollarStart = AsmString.size();
   1038     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
   1039     if (DollarEnd == std::string::npos)
   1040       DollarEnd = AsmString.size();
   1041     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
   1042     Pos = DollarEnd;
   1043     size_t NumDollars = DollarEnd - DollarStart;
   1044     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
   1045       // We have an operand reference.
   1046       size_t DigitStart = Pos;
   1047       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
   1048       if (DigitEnd == std::string::npos)
   1049         DigitEnd = AsmString.size();
   1050       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
   1051       unsigned OperandIndex;
   1052       if (!OperandStr.getAsInteger(10, OperandIndex)) {
   1053         if (OperandIndex >= FirstIn)
   1054           OperandIndex += NumNewOuts;
   1055         OS << OperandIndex;
   1056       } else {
   1057         OS << OperandStr;
   1058       }
   1059       Pos = DigitEnd;
   1060     }
   1061   }
   1062   AsmString = std::move(OS.str());
   1063 }
   1064 
   1065 /// Add output constraints for EAX:EDX because they are return registers.
   1066 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
   1067     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
   1068     std::vector<llvm::Type *> &ResultRegTypes,
   1069     std::vector<llvm::Type *> &ResultTruncRegTypes,
   1070     std::vector<LValue> &ResultRegDests, std::string &AsmString,
   1071     unsigned NumOutputs) const {
   1072   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
   1073 
   1074   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
   1075   // larger.
   1076   if (!Constraints.empty())
   1077     Constraints += ',';
   1078   if (RetWidth <= 32) {
   1079     Constraints += "={eax}";
   1080     ResultRegTypes.push_back(CGF.Int32Ty);
   1081   } else {
   1082     // Use the 'A' constraint for EAX:EDX.
   1083     Constraints += "=A";
   1084     ResultRegTypes.push_back(CGF.Int64Ty);
   1085   }
   1086 
   1087   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
   1088   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
   1089   ResultTruncRegTypes.push_back(CoerceTy);
   1090 
   1091   // Coerce the integer by bitcasting the return slot pointer.
   1092   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
   1093                                                   CoerceTy->getPointerTo()));
   1094   ResultRegDests.push_back(ReturnSlot);
   1095 
   1096   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
   1097 }
   1098 
   1099 /// shouldReturnTypeInRegister - Determine if the given type should be
   1100 /// returned in a register (for the Darwin and MCU ABI).
   1101 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
   1102                                                ASTContext &Context) const {
   1103   uint64_t Size = Context.getTypeSize(Ty);
   1104 
   1105   // For i386, type must be register sized.
   1106   // For the MCU ABI, it only needs to be <= 8-byte
   1107   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
   1108    return false;
   1109 
   1110   if (Ty->isVectorType()) {
   1111     // 64- and 128- bit vectors inside structures are not returned in
   1112     // registers.
   1113     if (Size == 64 || Size == 128)
   1114       return false;
   1115 
   1116     return true;
   1117   }
   1118 
   1119   // If this is a builtin, pointer, enum, complex type, member pointer, or
   1120   // member function pointer it is ok.
   1121   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
   1122       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
   1123       Ty->isBlockPointerType() || Ty->isMemberPointerType())
   1124     return true;
   1125 
   1126   // Arrays are treated like records.
   1127   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
   1128     return shouldReturnTypeInRegister(AT->getElementType(), Context);
   1129 
   1130   // Otherwise, it must be a record type.
   1131   const RecordType *RT = Ty->getAs<RecordType>();
   1132   if (!RT) return false;
   1133 
   1134   // FIXME: Traverse bases here too.
   1135 
   1136   // Structure types are passed in register if all fields would be
   1137   // passed in a register.
   1138   for (const auto *FD : RT->getDecl()->fields()) {
   1139     // Empty fields are ignored.
   1140     if (isEmptyField(Context, FD, true))
   1141       continue;
   1142 
   1143     // Check fields recursively.
   1144     if (!shouldReturnTypeInRegister(FD->getType(), Context))
   1145       return false;
   1146   }
   1147   return true;
   1148 }
   1149 
   1150 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
   1151   // Treat complex types as the element type.
   1152   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
   1153     Ty = CTy->getElementType();
   1154 
   1155   // Check for a type which we know has a simple scalar argument-passing
   1156   // convention without any padding.  (We're specifically looking for 32
   1157   // and 64-bit integer and integer-equivalents, float, and double.)
   1158   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
   1159       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
   1160     return false;
   1161 
   1162   uint64_t Size = Context.getTypeSize(Ty);
   1163   return Size == 32 || Size == 64;
   1164 }
   1165 
   1166 /// Test whether an argument type which is to be passed indirectly (on the
   1167 /// stack) would have the equivalent layout if it was expanded into separate
   1168 /// arguments. If so, we prefer to do the latter to avoid inhibiting
   1169 /// optimizations.
   1170 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
   1171   // We can only expand structure types.
   1172   const RecordType *RT = Ty->getAs<RecordType>();
   1173   if (!RT)
   1174     return false;
   1175   const RecordDecl *RD = RT->getDecl();
   1176   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   1177     if (!IsWin32StructABI ) {
   1178       // On non-Windows, we have to conservatively match our old bitcode
   1179       // prototypes in order to be ABI-compatible at the bitcode level.
   1180       if (!CXXRD->isCLike())
   1181         return false;
   1182     } else {
   1183       // Don't do this for dynamic classes.
   1184       if (CXXRD->isDynamicClass())
   1185         return false;
   1186       // Don't do this if there are any non-empty bases.
   1187       for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
   1188         if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true))
   1189           return false;
   1190       }
   1191     }
   1192   }
   1193 
   1194   uint64_t Size = 0;
   1195 
   1196   for (const auto *FD : RD->fields()) {
   1197     // Scalar arguments on the stack get 4 byte alignment on x86. If the
   1198     // argument is smaller than 32-bits, expanding the struct will create
   1199     // alignment padding.
   1200     if (!is32Or64BitBasicType(FD->getType(), getContext()))
   1201       return false;
   1202 
   1203     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
   1204     // how to expand them yet, and the predicate for telling if a bitfield still
   1205     // counts as "basic" is more complicated than what we were doing previously.
   1206     if (FD->isBitField())
   1207       return false;
   1208 
   1209     Size += getContext().getTypeSize(FD->getType());
   1210   }
   1211 
   1212   // We can do this if there was no alignment padding.
   1213   return Size == getContext().getTypeSize(Ty);
   1214 }
   1215 
   1216 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
   1217   // If the return value is indirect, then the hidden argument is consuming one
   1218   // integer register.
   1219   if (State.FreeRegs) {
   1220     --State.FreeRegs;
   1221     if (!IsMCUABI)
   1222       return getNaturalAlignIndirectInReg(RetTy);
   1223   }
   1224   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
   1225 }
   1226 
   1227 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
   1228                                              CCState &State) const {
   1229   if (RetTy->isVoidType())
   1230     return ABIArgInfo::getIgnore();
   1231 
   1232   const Type *Base = nullptr;
   1233   uint64_t NumElts = 0;
   1234   if (State.CC == llvm::CallingConv::X86_VectorCall &&
   1235       isHomogeneousAggregate(RetTy, Base, NumElts)) {
   1236     // The LLVM struct type for such an aggregate should lower properly.
   1237     return ABIArgInfo::getDirect();
   1238   }
   1239 
   1240   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
   1241     // On Darwin, some vectors are returned in registers.
   1242     if (IsDarwinVectorABI) {
   1243       uint64_t Size = getContext().getTypeSize(RetTy);
   1244 
   1245       // 128-bit vectors are a special case; they are returned in
   1246       // registers and we need to make sure to pick a type the LLVM
   1247       // backend will like.
   1248       if (Size == 128)
   1249         return ABIArgInfo::getDirect(llvm::VectorType::get(
   1250                   llvm::Type::getInt64Ty(getVMContext()), 2));
   1251 
   1252       // Always return in register if it fits in a general purpose
   1253       // register, or if it is 64 bits and has a single element.
   1254       if ((Size == 8 || Size == 16 || Size == 32) ||
   1255           (Size == 64 && VT->getNumElements() == 1))
   1256         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   1257                                                             Size));
   1258 
   1259       return getIndirectReturnResult(RetTy, State);
   1260     }
   1261 
   1262     return ABIArgInfo::getDirect();
   1263   }
   1264 
   1265   if (isAggregateTypeForABI(RetTy)) {
   1266     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
   1267       // Structures with flexible arrays are always indirect.
   1268       if (RT->getDecl()->hasFlexibleArrayMember())
   1269         return getIndirectReturnResult(RetTy, State);
   1270     }
   1271 
   1272     // If specified, structs and unions are always indirect.
   1273     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
   1274       return getIndirectReturnResult(RetTy, State);
   1275 
   1276     // Ignore empty structs/unions.
   1277     if (isEmptyRecord(getContext(), RetTy, true))
   1278       return ABIArgInfo::getIgnore();
   1279 
   1280     // Small structures which are register sized are generally returned
   1281     // in a register.
   1282     if (shouldReturnTypeInRegister(RetTy, getContext())) {
   1283       uint64_t Size = getContext().getTypeSize(RetTy);
   1284 
   1285       // As a special-case, if the struct is a "single-element" struct, and
   1286       // the field is of type "float" or "double", return it in a
   1287       // floating-point register. (MSVC does not apply this special case.)
   1288       // We apply a similar transformation for pointer types to improve the
   1289       // quality of the generated IR.
   1290       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
   1291         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
   1292             || SeltTy->hasPointerRepresentation())
   1293           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
   1294 
   1295       // FIXME: We should be able to narrow this integer in cases with dead
   1296       // padding.
   1297       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
   1298     }
   1299 
   1300     return getIndirectReturnResult(RetTy, State);
   1301   }
   1302 
   1303   // Treat an enum type as its underlying type.
   1304   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   1305     RetTy = EnumTy->getDecl()->getIntegerType();
   1306 
   1307   return (RetTy->isPromotableIntegerType() ?
   1308           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   1309 }
   1310 
   1311 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
   1312   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
   1313 }
   1314 
   1315 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
   1316   const RecordType *RT = Ty->getAs<RecordType>();
   1317   if (!RT)
   1318     return 0;
   1319   const RecordDecl *RD = RT->getDecl();
   1320 
   1321   // If this is a C++ record, check the bases first.
   1322   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
   1323     for (const auto &I : CXXRD->bases())
   1324       if (!isRecordWithSSEVectorType(Context, I.getType()))
   1325         return false;
   1326 
   1327   for (const auto *i : RD->fields()) {
   1328     QualType FT = i->getType();
   1329 
   1330     if (isSSEVectorType(Context, FT))
   1331       return true;
   1332 
   1333     if (isRecordWithSSEVectorType(Context, FT))
   1334       return true;
   1335   }
   1336 
   1337   return false;
   1338 }
   1339 
   1340 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
   1341                                                  unsigned Align) const {
   1342   // Otherwise, if the alignment is less than or equal to the minimum ABI
   1343   // alignment, just use the default; the backend will handle this.
   1344   if (Align <= MinABIStackAlignInBytes)
   1345     return 0; // Use default alignment.
   1346 
   1347   // On non-Darwin, the stack type alignment is always 4.
   1348   if (!IsDarwinVectorABI) {
   1349     // Set explicit alignment, since we may need to realign the top.
   1350     return MinABIStackAlignInBytes;
   1351   }
   1352 
   1353   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
   1354   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
   1355                       isRecordWithSSEVectorType(getContext(), Ty)))
   1356     return 16;
   1357 
   1358   return MinABIStackAlignInBytes;
   1359 }
   1360 
   1361 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
   1362                                             CCState &State) const {
   1363   if (!ByVal) {
   1364     if (State.FreeRegs) {
   1365       --State.FreeRegs; // Non-byval indirects just use one pointer.
   1366       if (!IsMCUABI)
   1367         return getNaturalAlignIndirectInReg(Ty);
   1368     }
   1369     return getNaturalAlignIndirect(Ty, false);
   1370   }
   1371 
   1372   // Compute the byval alignment.
   1373   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
   1374   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
   1375   if (StackAlign == 0)
   1376     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
   1377 
   1378   // If the stack alignment is less than the type alignment, realign the
   1379   // argument.
   1380   bool Realign = TypeAlign > StackAlign;
   1381   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
   1382                                  /*ByVal=*/true, Realign);
   1383 }
   1384 
   1385 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
   1386   const Type *T = isSingleElementStruct(Ty, getContext());
   1387   if (!T)
   1388     T = Ty.getTypePtr();
   1389 
   1390   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
   1391     BuiltinType::Kind K = BT->getKind();
   1392     if (K == BuiltinType::Float || K == BuiltinType::Double)
   1393       return Float;
   1394   }
   1395   return Integer;
   1396 }
   1397 
   1398 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
   1399   if (!IsSoftFloatABI) {
   1400     Class C = classify(Ty);
   1401     if (C == Float)
   1402       return false;
   1403   }
   1404 
   1405   unsigned Size = getContext().getTypeSize(Ty);
   1406   unsigned SizeInRegs = (Size + 31) / 32;
   1407 
   1408   if (SizeInRegs == 0)
   1409     return false;
   1410 
   1411   if (!IsMCUABI) {
   1412     if (SizeInRegs > State.FreeRegs) {
   1413       State.FreeRegs = 0;
   1414       return false;
   1415     }
   1416   } else {
   1417     // The MCU psABI allows passing parameters in-reg even if there are
   1418     // earlier parameters that are passed on the stack. Also,
   1419     // it does not allow passing >8-byte structs in-register,
   1420     // even if there are 3 free registers available.
   1421     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
   1422       return false;
   1423   }
   1424 
   1425   State.FreeRegs -= SizeInRegs;
   1426   return true;
   1427 }
   1428 
   1429 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
   1430                                              bool &InReg,
   1431                                              bool &NeedsPadding) const {
   1432   // On Windows, aggregates other than HFAs are never passed in registers, and
   1433   // they do not consume register slots. Homogenous floating-point aggregates
   1434   // (HFAs) have already been dealt with at this point.
   1435   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
   1436     return false;
   1437 
   1438   NeedsPadding = false;
   1439   InReg = !IsMCUABI;
   1440 
   1441   if (!updateFreeRegs(Ty, State))
   1442     return false;
   1443 
   1444   if (IsMCUABI)
   1445     return true;
   1446 
   1447   if (State.CC == llvm::CallingConv::X86_FastCall ||
   1448       State.CC == llvm::CallingConv::X86_VectorCall) {
   1449     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
   1450       NeedsPadding = true;
   1451 
   1452     return false;
   1453   }
   1454 
   1455   return true;
   1456 }
   1457 
   1458 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
   1459   if (!updateFreeRegs(Ty, State))
   1460     return false;
   1461 
   1462   if (IsMCUABI)
   1463     return false;
   1464 
   1465   if (State.CC == llvm::CallingConv::X86_FastCall ||
   1466       State.CC == llvm::CallingConv::X86_VectorCall) {
   1467     if (getContext().getTypeSize(Ty) > 32)
   1468       return false;
   1469 
   1470     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
   1471         Ty->isReferenceType());
   1472   }
   1473 
   1474   return true;
   1475 }
   1476 
   1477 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
   1478                                                CCState &State) const {
   1479   // FIXME: Set alignment on indirect arguments.
   1480 
   1481   Ty = useFirstFieldIfTransparentUnion(Ty);
   1482 
   1483   // Check with the C++ ABI first.
   1484   const RecordType *RT = Ty->getAs<RecordType>();
   1485   if (RT) {
   1486     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
   1487     if (RAA == CGCXXABI::RAA_Indirect) {
   1488       return getIndirectResult(Ty, false, State);
   1489     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
   1490       // The field index doesn't matter, we'll fix it up later.
   1491       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
   1492     }
   1493   }
   1494 
   1495   // vectorcall adds the concept of a homogenous vector aggregate, similar
   1496   // to other targets.
   1497   const Type *Base = nullptr;
   1498   uint64_t NumElts = 0;
   1499   if (State.CC == llvm::CallingConv::X86_VectorCall &&
   1500       isHomogeneousAggregate(Ty, Base, NumElts)) {
   1501     if (State.FreeSSERegs >= NumElts) {
   1502       State.FreeSSERegs -= NumElts;
   1503       if (Ty->isBuiltinType() || Ty->isVectorType())
   1504         return ABIArgInfo::getDirect();
   1505       return ABIArgInfo::getExpand();
   1506     }
   1507     return getIndirectResult(Ty, /*ByVal=*/false, State);
   1508   }
   1509 
   1510   if (isAggregateTypeForABI(Ty)) {
   1511     // Structures with flexible arrays are always indirect.
   1512     // FIXME: This should not be byval!
   1513     if (RT && RT->getDecl()->hasFlexibleArrayMember())
   1514       return getIndirectResult(Ty, true, State);
   1515 
   1516     // Ignore empty structs/unions on non-Windows.
   1517     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
   1518       return ABIArgInfo::getIgnore();
   1519 
   1520     llvm::LLVMContext &LLVMContext = getVMContext();
   1521     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
   1522     bool NeedsPadding = false;
   1523     bool InReg;
   1524     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
   1525       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
   1526       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
   1527       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
   1528       if (InReg)
   1529         return ABIArgInfo::getDirectInReg(Result);
   1530       else
   1531         return ABIArgInfo::getDirect(Result);
   1532     }
   1533     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
   1534 
   1535     // Expand small (<= 128-bit) record types when we know that the stack layout
   1536     // of those arguments will match the struct. This is important because the
   1537     // LLVM backend isn't smart enough to remove byval, which inhibits many
   1538     // optimizations.
   1539     // Don't do this for the MCU if there are still free integer registers
   1540     // (see X86_64 ABI for full explanation).
   1541     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
   1542         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
   1543       return ABIArgInfo::getExpandWithPadding(
   1544           State.CC == llvm::CallingConv::X86_FastCall ||
   1545               State.CC == llvm::CallingConv::X86_VectorCall,
   1546           PaddingType);
   1547 
   1548     return getIndirectResult(Ty, true, State);
   1549   }
   1550 
   1551   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   1552     // On Darwin, some vectors are passed in memory, we handle this by passing
   1553     // it as an i8/i16/i32/i64.
   1554     if (IsDarwinVectorABI) {
   1555       uint64_t Size = getContext().getTypeSize(Ty);
   1556       if ((Size == 8 || Size == 16 || Size == 32) ||
   1557           (Size == 64 && VT->getNumElements() == 1))
   1558         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   1559                                                             Size));
   1560     }
   1561 
   1562     if (IsX86_MMXType(CGT.ConvertType(Ty)))
   1563       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
   1564 
   1565     return ABIArgInfo::getDirect();
   1566   }
   1567 
   1568 
   1569   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   1570     Ty = EnumTy->getDecl()->getIntegerType();
   1571 
   1572   bool InReg = shouldPrimitiveUseInReg(Ty, State);
   1573 
   1574   if (Ty->isPromotableIntegerType()) {
   1575     if (InReg)
   1576       return ABIArgInfo::getExtendInReg();
   1577     return ABIArgInfo::getExtend();
   1578   }
   1579 
   1580   if (InReg)
   1581     return ABIArgInfo::getDirectInReg();
   1582   return ABIArgInfo::getDirect();
   1583 }
   1584 
   1585 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   1586   CCState State(FI.getCallingConvention());
   1587   if (IsMCUABI)
   1588     State.FreeRegs = 3;
   1589   else if (State.CC == llvm::CallingConv::X86_FastCall)
   1590     State.FreeRegs = 2;
   1591   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
   1592     State.FreeRegs = 2;
   1593     State.FreeSSERegs = 6;
   1594   } else if (FI.getHasRegParm())
   1595     State.FreeRegs = FI.getRegParm();
   1596   else
   1597     State.FreeRegs = DefaultNumRegisterParameters;
   1598 
   1599   if (!getCXXABI().classifyReturnType(FI)) {
   1600     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
   1601   } else if (FI.getReturnInfo().isIndirect()) {
   1602     // The C++ ABI is not aware of register usage, so we have to check if the
   1603     // return value was sret and put it in a register ourselves if appropriate.
   1604     if (State.FreeRegs) {
   1605       --State.FreeRegs;  // The sret parameter consumes a register.
   1606       if (!IsMCUABI)
   1607         FI.getReturnInfo().setInReg(true);
   1608     }
   1609   }
   1610 
   1611   // The chain argument effectively gives us another free register.
   1612   if (FI.isChainCall())
   1613     ++State.FreeRegs;
   1614 
   1615   bool UsedInAlloca = false;
   1616   for (auto &I : FI.arguments()) {
   1617     I.info = classifyArgumentType(I.type, State);
   1618     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
   1619   }
   1620 
   1621   // If we needed to use inalloca for any argument, do a second pass and rewrite
   1622   // all the memory arguments to use inalloca.
   1623   if (UsedInAlloca)
   1624     rewriteWithInAlloca(FI);
   1625 }
   1626 
   1627 void
   1628 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
   1629                                    CharUnits &StackOffset, ABIArgInfo &Info,
   1630                                    QualType Type) const {
   1631   // Arguments are always 4-byte-aligned.
   1632   CharUnits FieldAlign = CharUnits::fromQuantity(4);
   1633 
   1634   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
   1635   Info = ABIArgInfo::getInAlloca(FrameFields.size());
   1636   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
   1637   StackOffset += getContext().getTypeSizeInChars(Type);
   1638 
   1639   // Insert padding bytes to respect alignment.
   1640   CharUnits FieldEnd = StackOffset;
   1641   StackOffset = FieldEnd.alignTo(FieldAlign);
   1642   if (StackOffset != FieldEnd) {
   1643     CharUnits NumBytes = StackOffset - FieldEnd;
   1644     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
   1645     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
   1646     FrameFields.push_back(Ty);
   1647   }
   1648 }
   1649 
   1650 static bool isArgInAlloca(const ABIArgInfo &Info) {
   1651   // Leave ignored and inreg arguments alone.
   1652   switch (Info.getKind()) {
   1653   case ABIArgInfo::InAlloca:
   1654     return true;
   1655   case ABIArgInfo::Indirect:
   1656     assert(Info.getIndirectByVal());
   1657     return true;
   1658   case ABIArgInfo::Ignore:
   1659     return false;
   1660   case ABIArgInfo::Direct:
   1661   case ABIArgInfo::Extend:
   1662     if (Info.getInReg())
   1663       return false;
   1664     return true;
   1665   case ABIArgInfo::Expand:
   1666   case ABIArgInfo::CoerceAndExpand:
   1667     // These are aggregate types which are never passed in registers when
   1668     // inalloca is involved.
   1669     return true;
   1670   }
   1671   llvm_unreachable("invalid enum");
   1672 }
   1673 
   1674 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
   1675   assert(IsWin32StructABI && "inalloca only supported on win32");
   1676 
   1677   // Build a packed struct type for all of the arguments in memory.
   1678   SmallVector<llvm::Type *, 6> FrameFields;
   1679 
   1680   // The stack alignment is always 4.
   1681   CharUnits StackAlign = CharUnits::fromQuantity(4);
   1682 
   1683   CharUnits StackOffset;
   1684   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
   1685 
   1686   // Put 'this' into the struct before 'sret', if necessary.
   1687   bool IsThisCall =
   1688       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
   1689   ABIArgInfo &Ret = FI.getReturnInfo();
   1690   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
   1691       isArgInAlloca(I->info)) {
   1692     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
   1693     ++I;
   1694   }
   1695 
   1696   // Put the sret parameter into the inalloca struct if it's in memory.
   1697   if (Ret.isIndirect() && !Ret.getInReg()) {
   1698     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
   1699     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
   1700     // On Windows, the hidden sret parameter is always returned in eax.
   1701     Ret.setInAllocaSRet(IsWin32StructABI);
   1702   }
   1703 
   1704   // Skip the 'this' parameter in ecx.
   1705   if (IsThisCall)
   1706     ++I;
   1707 
   1708   // Put arguments passed in memory into the struct.
   1709   for (; I != E; ++I) {
   1710     if (isArgInAlloca(I->info))
   1711       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
   1712   }
   1713 
   1714   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
   1715                                         /*isPacked=*/true),
   1716                   StackAlign);
   1717 }
   1718 
   1719 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
   1720                                  Address VAListAddr, QualType Ty) const {
   1721 
   1722   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
   1723 
   1724   // x86-32 changes the alignment of certain arguments on the stack.
   1725   //
   1726   // Just messing with TypeInfo like this works because we never pass
   1727   // anything indirectly.
   1728   TypeInfo.second = CharUnits::fromQuantity(
   1729                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
   1730 
   1731   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
   1732                           TypeInfo, CharUnits::fromQuantity(4),
   1733                           /*AllowHigherAlign*/ true);
   1734 }
   1735 
   1736 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
   1737     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
   1738   assert(Triple.getArch() == llvm::Triple::x86);
   1739 
   1740   switch (Opts.getStructReturnConvention()) {
   1741   case CodeGenOptions::SRCK_Default:
   1742     break;
   1743   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
   1744     return false;
   1745   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
   1746     return true;
   1747   }
   1748 
   1749   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
   1750     return true;
   1751 
   1752   switch (Triple.getOS()) {
   1753   case llvm::Triple::DragonFly:
   1754   case llvm::Triple::FreeBSD:
   1755   case llvm::Triple::OpenBSD:
   1756   case llvm::Triple::Bitrig:
   1757   case llvm::Triple::Win32:
   1758     return true;
   1759   default:
   1760     return false;
   1761   }
   1762 }
   1763 
   1764 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
   1765                                                   llvm::GlobalValue *GV,
   1766                                             CodeGen::CodeGenModule &CGM) const {
   1767   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
   1768     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
   1769       // Get the LLVM function.
   1770       llvm::Function *Fn = cast<llvm::Function>(GV);
   1771 
   1772       // Now add the 'alignstack' attribute with a value of 16.
   1773       llvm::AttrBuilder B;
   1774       B.addStackAlignmentAttr(16);
   1775       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
   1776                       llvm::AttributeSet::get(CGM.getLLVMContext(),
   1777                                               llvm::AttributeSet::FunctionIndex,
   1778                                               B));
   1779     }
   1780     if (FD->hasAttr<AnyX86InterruptAttr>()) {
   1781       llvm::Function *Fn = cast<llvm::Function>(GV);
   1782       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
   1783     }
   1784   }
   1785 }
   1786 
   1787 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
   1788                                                CodeGen::CodeGenFunction &CGF,
   1789                                                llvm::Value *Address) const {
   1790   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   1791 
   1792   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
   1793 
   1794   // 0-7 are the eight integer registers;  the order is different
   1795   //   on Darwin (for EH), but the range is the same.
   1796   // 8 is %eip.
   1797   AssignToArrayRange(Builder, Address, Four8, 0, 8);
   1798 
   1799   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
   1800     // 12-16 are st(0..4).  Not sure why we stop at 4.
   1801     // These have size 16, which is sizeof(long double) on
   1802     // platforms with 8-byte alignment for that type.
   1803     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
   1804     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
   1805 
   1806   } else {
   1807     // 9 is %eflags, which doesn't get a size on Darwin for some
   1808     // reason.
   1809     Builder.CreateAlignedStore(
   1810         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
   1811                                CharUnits::One());
   1812 
   1813     // 11-16 are st(0..5).  Not sure why we stop at 5.
   1814     // These have size 12, which is sizeof(long double) on
   1815     // platforms with 4-byte alignment for that type.
   1816     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
   1817     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
   1818   }
   1819 
   1820   return false;
   1821 }
   1822 
   1823 //===----------------------------------------------------------------------===//
   1824 // X86-64 ABI Implementation
   1825 //===----------------------------------------------------------------------===//
   1826 
   1827 
   1828 namespace {
   1829 /// The AVX ABI level for X86 targets.
   1830 enum class X86AVXABILevel {
   1831   None,
   1832   AVX,
   1833   AVX512
   1834 };
   1835 
   1836 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
   1837 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
   1838   switch (AVXLevel) {
   1839   case X86AVXABILevel::AVX512:
   1840     return 512;
   1841   case X86AVXABILevel::AVX:
   1842     return 256;
   1843   case X86AVXABILevel::None:
   1844     return 128;
   1845   }
   1846   llvm_unreachable("Unknown AVXLevel");
   1847 }
   1848 
   1849 /// X86_64ABIInfo - The X86_64 ABI information.
   1850 class X86_64ABIInfo : public SwiftABIInfo {
   1851   enum Class {
   1852     Integer = 0,
   1853     SSE,
   1854     SSEUp,
   1855     X87,
   1856     X87Up,
   1857     ComplexX87,
   1858     NoClass,
   1859     Memory
   1860   };
   1861 
   1862   /// merge - Implement the X86_64 ABI merging algorithm.
   1863   ///
   1864   /// Merge an accumulating classification \arg Accum with a field
   1865   /// classification \arg Field.
   1866   ///
   1867   /// \param Accum - The accumulating classification. This should
   1868   /// always be either NoClass or the result of a previous merge
   1869   /// call. In addition, this should never be Memory (the caller
   1870   /// should just return Memory for the aggregate).
   1871   static Class merge(Class Accum, Class Field);
   1872 
   1873   /// postMerge - Implement the X86_64 ABI post merging algorithm.
   1874   ///
   1875   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
   1876   /// final MEMORY or SSE classes when necessary.
   1877   ///
   1878   /// \param AggregateSize - The size of the current aggregate in
   1879   /// the classification process.
   1880   ///
   1881   /// \param Lo - The classification for the parts of the type
   1882   /// residing in the low word of the containing object.
   1883   ///
   1884   /// \param Hi - The classification for the parts of the type
   1885   /// residing in the higher words of the containing object.
   1886   ///
   1887   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
   1888 
   1889   /// classify - Determine the x86_64 register classes in which the
   1890   /// given type T should be passed.
   1891   ///
   1892   /// \param Lo - The classification for the parts of the type
   1893   /// residing in the low word of the containing object.
   1894   ///
   1895   /// \param Hi - The classification for the parts of the type
   1896   /// residing in the high word of the containing object.
   1897   ///
   1898   /// \param OffsetBase - The bit offset of this type in the
   1899   /// containing object.  Some parameters are classified different
   1900   /// depending on whether they straddle an eightbyte boundary.
   1901   ///
   1902   /// \param isNamedArg - Whether the argument in question is a "named"
   1903   /// argument, as used in AMD64-ABI 3.5.7.
   1904   ///
   1905   /// If a word is unused its result will be NoClass; if a type should
   1906   /// be passed in Memory then at least the classification of \arg Lo
   1907   /// will be Memory.
   1908   ///
   1909   /// The \arg Lo class will be NoClass iff the argument is ignored.
   1910   ///
   1911   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
   1912   /// also be ComplexX87.
   1913   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
   1914                 bool isNamedArg) const;
   1915 
   1916   llvm::Type *GetByteVectorType(QualType Ty) const;
   1917   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
   1918                                  unsigned IROffset, QualType SourceTy,
   1919                                  unsigned SourceOffset) const;
   1920   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
   1921                                      unsigned IROffset, QualType SourceTy,
   1922                                      unsigned SourceOffset) const;
   1923 
   1924   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
   1925   /// such that the argument will be returned in memory.
   1926   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
   1927 
   1928   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
   1929   /// such that the argument will be passed in memory.
   1930   ///
   1931   /// \param freeIntRegs - The number of free integer registers remaining
   1932   /// available.
   1933   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
   1934 
   1935   ABIArgInfo classifyReturnType(QualType RetTy) const;
   1936 
   1937   ABIArgInfo classifyArgumentType(QualType Ty,
   1938                                   unsigned freeIntRegs,
   1939                                   unsigned &neededInt,
   1940                                   unsigned &neededSSE,
   1941                                   bool isNamedArg) const;
   1942 
   1943   bool IsIllegalVectorType(QualType Ty) const;
   1944 
   1945   /// The 0.98 ABI revision clarified a lot of ambiguities,
   1946   /// unfortunately in ways that were not always consistent with
   1947   /// certain previous compilers.  In particular, platforms which
   1948   /// required strict binary compatibility with older versions of GCC
   1949   /// may need to exempt themselves.
   1950   bool honorsRevision0_98() const {
   1951     return !getTarget().getTriple().isOSDarwin();
   1952   }
   1953 
   1954   /// GCC classifies <1 x long long> as SSE but compatibility with older clang
   1955   // compilers require us to classify it as INTEGER.
   1956   bool classifyIntegerMMXAsSSE() const {
   1957     const llvm::Triple &Triple = getTarget().getTriple();
   1958     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
   1959       return false;
   1960     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
   1961       return false;
   1962     return true;
   1963   }
   1964 
   1965   X86AVXABILevel AVXLevel;
   1966   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
   1967   // 64-bit hardware.
   1968   bool Has64BitPointers;
   1969 
   1970 public:
   1971   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
   1972       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
   1973       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
   1974   }
   1975 
   1976   bool isPassedUsingAVXType(QualType type) const {
   1977     unsigned neededInt, neededSSE;
   1978     // The freeIntRegs argument doesn't matter here.
   1979     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
   1980                                            /*isNamedArg*/true);
   1981     if (info.isDirect()) {
   1982       llvm::Type *ty = info.getCoerceToType();
   1983       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
   1984         return (vectorTy->getBitWidth() > 128);
   1985     }
   1986     return false;
   1987   }
   1988 
   1989   void computeInfo(CGFunctionInfo &FI) const override;
   1990 
   1991   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   1992                     QualType Ty) const override;
   1993   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
   1994                       QualType Ty) const override;
   1995 
   1996   bool has64BitPointers() const {
   1997     return Has64BitPointers;
   1998   }
   1999 
   2000   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
   2001                                     ArrayRef<llvm::Type*> scalars,
   2002                                     bool asReturnValue) const override {
   2003     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
   2004   }
   2005 };
   2006 
   2007 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
   2008 class WinX86_64ABIInfo : public ABIInfo {
   2009 public:
   2010   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
   2011       : ABIInfo(CGT),
   2012         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
   2013 
   2014   void computeInfo(CGFunctionInfo &FI) const override;
   2015 
   2016   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   2017                     QualType Ty) const override;
   2018 
   2019   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
   2020     // FIXME: Assumes vectorcall is in use.
   2021     return isX86VectorTypeForVectorCall(getContext(), Ty);
   2022   }
   2023 
   2024   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
   2025                                          uint64_t NumMembers) const override {
   2026     // FIXME: Assumes vectorcall is in use.
   2027     return isX86VectorCallAggregateSmallEnough(NumMembers);
   2028   }
   2029 
   2030 private:
   2031   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
   2032                       bool IsReturnType) const;
   2033 
   2034   bool IsMingw64;
   2035 };
   2036 
   2037 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
   2038 public:
   2039   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
   2040       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
   2041 
   2042   const X86_64ABIInfo &getABIInfo() const {
   2043     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
   2044   }
   2045 
   2046   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
   2047     return 7;
   2048   }
   2049 
   2050   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2051                                llvm::Value *Address) const override {
   2052     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
   2053 
   2054     // 0-15 are the 16 integer registers.
   2055     // 16 is %rip.
   2056     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
   2057     return false;
   2058   }
   2059 
   2060   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
   2061                                   StringRef Constraint,
   2062                                   llvm::Type* Ty) const override {
   2063     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
   2064   }
   2065 
   2066   bool isNoProtoCallVariadic(const CallArgList &args,
   2067                              const FunctionNoProtoType *fnType) const override {
   2068     // The default CC on x86-64 sets %al to the number of SSA
   2069     // registers used, and GCC sets this when calling an unprototyped
   2070     // function, so we override the default behavior.  However, don't do
   2071     // that when AVX types are involved: the ABI explicitly states it is
   2072     // undefined, and it doesn't work in practice because of how the ABI
   2073     // defines varargs anyway.
   2074     if (fnType->getCallConv() == CC_C) {
   2075       bool HasAVXType = false;
   2076       for (CallArgList::const_iterator
   2077              it = args.begin(), ie = args.end(); it != ie; ++it) {
   2078         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
   2079           HasAVXType = true;
   2080           break;
   2081         }
   2082       }
   2083 
   2084       if (!HasAVXType)
   2085         return true;
   2086     }
   2087 
   2088     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
   2089   }
   2090 
   2091   llvm::Constant *
   2092   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
   2093     unsigned Sig;
   2094     if (getABIInfo().has64BitPointers())
   2095       Sig = (0xeb << 0) |  // jmp rel8
   2096             (0x0a << 8) |  //           .+0x0c
   2097             ('F' << 16) |
   2098             ('T' << 24);
   2099     else
   2100       Sig = (0xeb << 0) |  // jmp rel8
   2101             (0x06 << 8) |  //           .+0x08
   2102             ('F' << 16) |
   2103             ('T' << 24);
   2104     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
   2105   }
   2106 
   2107   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   2108                            CodeGen::CodeGenModule &CGM) const override {
   2109     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
   2110       if (FD->hasAttr<AnyX86InterruptAttr>()) {
   2111         llvm::Function *Fn = cast<llvm::Function>(GV);
   2112         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
   2113       }
   2114     }
   2115   }
   2116 };
   2117 
   2118 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
   2119 public:
   2120   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
   2121     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
   2122 
   2123   void getDependentLibraryOption(llvm::StringRef Lib,
   2124                                  llvm::SmallString<24> &Opt) const override {
   2125     Opt = "\01";
   2126     // If the argument contains a space, enclose it in quotes.
   2127     if (Lib.find(" ") != StringRef::npos)
   2128       Opt += "\"" + Lib.str() + "\"";
   2129     else
   2130       Opt += Lib;
   2131   }
   2132 };
   2133 
   2134 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
   2135   // If the argument does not end in .lib, automatically add the suffix.
   2136   // If the argument contains a space, enclose it in quotes.
   2137   // This matches the behavior of MSVC.
   2138   bool Quote = (Lib.find(" ") != StringRef::npos);
   2139   std::string ArgStr = Quote ? "\"" : "";
   2140   ArgStr += Lib;
   2141   if (!Lib.endswith_lower(".lib"))
   2142     ArgStr += ".lib";
   2143   ArgStr += Quote ? "\"" : "";
   2144   return ArgStr;
   2145 }
   2146 
   2147 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
   2148 public:
   2149   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
   2150         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
   2151         unsigned NumRegisterParameters)
   2152     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
   2153         Win32StructABI, NumRegisterParameters, false) {}
   2154 
   2155   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   2156                            CodeGen::CodeGenModule &CGM) const override;
   2157 
   2158   void getDependentLibraryOption(llvm::StringRef Lib,
   2159                                  llvm::SmallString<24> &Opt) const override {
   2160     Opt = "/DEFAULTLIB:";
   2161     Opt += qualifyWindowsLibrary(Lib);
   2162   }
   2163 
   2164   void getDetectMismatchOption(llvm::StringRef Name,
   2165                                llvm::StringRef Value,
   2166                                llvm::SmallString<32> &Opt) const override {
   2167     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
   2168   }
   2169 };
   2170 
   2171 static void addStackProbeSizeTargetAttribute(const Decl *D,
   2172                                              llvm::GlobalValue *GV,
   2173                                              CodeGen::CodeGenModule &CGM) {
   2174   if (D && isa<FunctionDecl>(D)) {
   2175     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
   2176       llvm::Function *Fn = cast<llvm::Function>(GV);
   2177 
   2178       Fn->addFnAttr("stack-probe-size",
   2179                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
   2180     }
   2181   }
   2182 }
   2183 
   2184 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
   2185                                                      llvm::GlobalValue *GV,
   2186                                             CodeGen::CodeGenModule &CGM) const {
   2187   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
   2188 
   2189   addStackProbeSizeTargetAttribute(D, GV, CGM);
   2190 }
   2191 
   2192 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
   2193 public:
   2194   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
   2195                              X86AVXABILevel AVXLevel)
   2196       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
   2197 
   2198   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   2199                            CodeGen::CodeGenModule &CGM) const override;
   2200 
   2201   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
   2202     return 7;
   2203   }
   2204 
   2205   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   2206                                llvm::Value *Address) const override {
   2207     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
   2208 
   2209     // 0-15 are the 16 integer registers.
   2210     // 16 is %rip.
   2211     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
   2212     return false;
   2213   }
   2214 
   2215   void getDependentLibraryOption(llvm::StringRef Lib,
   2216                                  llvm::SmallString<24> &Opt) const override {
   2217     Opt = "/DEFAULTLIB:";
   2218     Opt += qualifyWindowsLibrary(Lib);
   2219   }
   2220 
   2221   void getDetectMismatchOption(llvm::StringRef Name,
   2222                                llvm::StringRef Value,
   2223                                llvm::SmallString<32> &Opt) const override {
   2224     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
   2225   }
   2226 };
   2227 
   2228 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
   2229                                                      llvm::GlobalValue *GV,
   2230                                             CodeGen::CodeGenModule &CGM) const {
   2231   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
   2232 
   2233   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
   2234     if (FD->hasAttr<AnyX86InterruptAttr>()) {
   2235       llvm::Function *Fn = cast<llvm::Function>(GV);
   2236       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
   2237     }
   2238   }
   2239 
   2240   addStackProbeSizeTargetAttribute(D, GV, CGM);
   2241 }
   2242 }
   2243 
   2244 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
   2245                               Class &Hi) const {
   2246   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
   2247   //
   2248   // (a) If one of the classes is Memory, the whole argument is passed in
   2249   //     memory.
   2250   //
   2251   // (b) If X87UP is not preceded by X87, the whole argument is passed in
   2252   //     memory.
   2253   //
   2254   // (c) If the size of the aggregate exceeds two eightbytes and the first
   2255   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
   2256   //     argument is passed in memory. NOTE: This is necessary to keep the
   2257   //     ABI working for processors that don't support the __m256 type.
   2258   //
   2259   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
   2260   //
   2261   // Some of these are enforced by the merging logic.  Others can arise
   2262   // only with unions; for example:
   2263   //   union { _Complex double; unsigned; }
   2264   //
   2265   // Note that clauses (b) and (c) were added in 0.98.
   2266   //
   2267   if (Hi == Memory)
   2268     Lo = Memory;
   2269   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
   2270     Lo = Memory;
   2271   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
   2272     Lo = Memory;
   2273   if (Hi == SSEUp && Lo != SSE)
   2274     Hi = SSE;
   2275 }
   2276 
   2277 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
   2278   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
   2279   // classified recursively so that always two fields are
   2280   // considered. The resulting class is calculated according to
   2281   // the classes of the fields in the eightbyte:
   2282   //
   2283   // (a) If both classes are equal, this is the resulting class.
   2284   //
   2285   // (b) If one of the classes is NO_CLASS, the resulting class is
   2286   // the other class.
   2287   //
   2288   // (c) If one of the classes is MEMORY, the result is the MEMORY
   2289   // class.
   2290   //
   2291   // (d) If one of the classes is INTEGER, the result is the
   2292   // INTEGER.
   2293   //
   2294   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
   2295   // MEMORY is used as class.
   2296   //
   2297   // (f) Otherwise class SSE is used.
   2298 
   2299   // Accum should never be memory (we should have returned) or
   2300   // ComplexX87 (because this cannot be passed in a structure).
   2301   assert((Accum != Memory && Accum != ComplexX87) &&
   2302          "Invalid accumulated classification during merge.");
   2303   if (Accum == Field || Field == NoClass)
   2304     return Accum;
   2305   if (Field == Memory)
   2306     return Memory;
   2307   if (Accum == NoClass)
   2308     return Field;
   2309   if (Accum == Integer || Field == Integer)
   2310     return Integer;
   2311   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
   2312       Accum == X87 || Accum == X87Up)
   2313     return Memory;
   2314   return SSE;
   2315 }
   2316 
   2317 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
   2318                              Class &Lo, Class &Hi, bool isNamedArg) const {
   2319   // FIXME: This code can be simplified by introducing a simple value class for
   2320   // Class pairs with appropriate constructor methods for the various
   2321   // situations.
   2322 
   2323   // FIXME: Some of the split computations are wrong; unaligned vectors
   2324   // shouldn't be passed in registers for example, so there is no chance they
   2325   // can straddle an eightbyte. Verify & simplify.
   2326 
   2327   Lo = Hi = NoClass;
   2328 
   2329   Class &Current = OffsetBase < 64 ? Lo : Hi;
   2330   Current = Memory;
   2331 
   2332   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   2333     BuiltinType::Kind k = BT->getKind();
   2334 
   2335     if (k == BuiltinType::Void) {
   2336       Current = NoClass;
   2337     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
   2338       Lo = Integer;
   2339       Hi = Integer;
   2340     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
   2341       Current = Integer;
   2342     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
   2343       Current = SSE;
   2344     } else if (k == BuiltinType::LongDouble) {
   2345       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
   2346       if (LDF == &llvm::APFloat::IEEEquad) {
   2347         Lo = SSE;
   2348         Hi = SSEUp;
   2349       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
   2350         Lo = X87;
   2351         Hi = X87Up;
   2352       } else if (LDF == &llvm::APFloat::IEEEdouble) {
   2353         Current = SSE;
   2354       } else
   2355         llvm_unreachable("unexpected long double representation!");
   2356     }
   2357     // FIXME: _Decimal32 and _Decimal64 are SSE.
   2358     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
   2359     return;
   2360   }
   2361 
   2362   if (const EnumType *ET = Ty->getAs<EnumType>()) {
   2363     // Classify the underlying integer type.
   2364     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
   2365     return;
   2366   }
   2367 
   2368   if (Ty->hasPointerRepresentation()) {
   2369     Current = Integer;
   2370     return;
   2371   }
   2372 
   2373   if (Ty->isMemberPointerType()) {
   2374     if (Ty->isMemberFunctionPointerType()) {
   2375       if (Has64BitPointers) {
   2376         // If Has64BitPointers, this is an {i64, i64}, so classify both
   2377         // Lo and Hi now.
   2378         Lo = Hi = Integer;
   2379       } else {
   2380         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
   2381         // straddles an eightbyte boundary, Hi should be classified as well.
   2382         uint64_t EB_FuncPtr = (OffsetBase) / 64;
   2383         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
   2384         if (EB_FuncPtr != EB_ThisAdj) {
   2385           Lo = Hi = Integer;
   2386         } else {
   2387           Current = Integer;
   2388         }
   2389       }
   2390     } else {
   2391       Current = Integer;
   2392     }
   2393     return;
   2394   }
   2395 
   2396   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   2397     uint64_t Size = getContext().getTypeSize(VT);
   2398     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
   2399       // gcc passes the following as integer:
   2400       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
   2401       // 2 bytes - <2 x char>, <1 x short>
   2402       // 1 byte  - <1 x char>
   2403       Current = Integer;
   2404 
   2405       // If this type crosses an eightbyte boundary, it should be
   2406       // split.
   2407       uint64_t EB_Lo = (OffsetBase) / 64;
   2408       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
   2409       if (EB_Lo != EB_Hi)
   2410         Hi = Lo;
   2411     } else if (Size == 64) {
   2412       QualType ElementType = VT->getElementType();
   2413 
   2414       // gcc passes <1 x double> in memory. :(
   2415       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
   2416         return;
   2417 
   2418       // gcc passes <1 x long long> as SSE but clang used to unconditionally
   2419       // pass them as integer.  For platforms where clang is the de facto
   2420       // platform compiler, we must continue to use integer.
   2421       if (!classifyIntegerMMXAsSSE() &&
   2422           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
   2423            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
   2424            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
   2425            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
   2426         Current = Integer;
   2427       else
   2428         Current = SSE;
   2429 
   2430       // If this type crosses an eightbyte boundary, it should be
   2431       // split.
   2432       if (OffsetBase && OffsetBase != 64)
   2433         Hi = Lo;
   2434     } else if (Size == 128 ||
   2435                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
   2436       // Arguments of 256-bits are split into four eightbyte chunks. The
   2437       // least significant one belongs to class SSE and all the others to class
   2438       // SSEUP. The original Lo and Hi design considers that types can't be
   2439       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
   2440       // This design isn't correct for 256-bits, but since there're no cases
   2441       // where the upper parts would need to be inspected, avoid adding
   2442       // complexity and just consider Hi to match the 64-256 part.
   2443       //
   2444       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
   2445       // registers if they are "named", i.e. not part of the "..." of a
   2446       // variadic function.
   2447       //
   2448       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
   2449       // split into eight eightbyte chunks, one SSE and seven SSEUP.
   2450       Lo = SSE;
   2451       Hi = SSEUp;
   2452     }
   2453     return;
   2454   }
   2455 
   2456   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
   2457     QualType ET = getContext().getCanonicalType(CT->getElementType());
   2458 
   2459     uint64_t Size = getContext().getTypeSize(Ty);
   2460     if (ET->isIntegralOrEnumerationType()) {
   2461       if (Size <= 64)
   2462         Current = Integer;
   2463       else if (Size <= 128)
   2464         Lo = Hi = Integer;
   2465     } else if (ET == getContext().FloatTy) {
   2466       Current = SSE;
   2467     } else if (ET == getContext().DoubleTy) {
   2468       Lo = Hi = SSE;
   2469     } else if (ET == getContext().LongDoubleTy) {
   2470       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
   2471       if (LDF == &llvm::APFloat::IEEEquad)
   2472         Current = Memory;
   2473       else if (LDF == &llvm::APFloat::x87DoubleExtended)
   2474         Current = ComplexX87;
   2475       else if (LDF == &llvm::APFloat::IEEEdouble)
   2476         Lo = Hi = SSE;
   2477       else
   2478         llvm_unreachable("unexpected long double representation!");
   2479     }
   2480 
   2481     // If this complex type crosses an eightbyte boundary then it
   2482     // should be split.
   2483     uint64_t EB_Real = (OffsetBase) / 64;
   2484     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
   2485     if (Hi == NoClass && EB_Real != EB_Imag)
   2486       Hi = Lo;
   2487 
   2488     return;
   2489   }
   2490 
   2491   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   2492     // Arrays are treated like structures.
   2493 
   2494     uint64_t Size = getContext().getTypeSize(Ty);
   2495 
   2496     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
   2497     // than four eightbytes, ..., it has class MEMORY.
   2498     if (Size > 256)
   2499       return;
   2500 
   2501     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
   2502     // fields, it has class MEMORY.
   2503     //
   2504     // Only need to check alignment of array base.
   2505     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
   2506       return;
   2507 
   2508     // Otherwise implement simplified merge. We could be smarter about
   2509     // this, but it isn't worth it and would be harder to verify.
   2510     Current = NoClass;
   2511     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
   2512     uint64_t ArraySize = AT->getSize().getZExtValue();
   2513 
   2514     // The only case a 256-bit wide vector could be used is when the array
   2515     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
   2516     // to work for sizes wider than 128, early check and fallback to memory.
   2517     if (Size > 128 && EltSize != 256)
   2518       return;
   2519 
   2520     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
   2521       Class FieldLo, FieldHi;
   2522       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
   2523       Lo = merge(Lo, FieldLo);
   2524       Hi = merge(Hi, FieldHi);
   2525       if (Lo == Memory || Hi == Memory)
   2526         break;
   2527     }
   2528 
   2529     postMerge(Size, Lo, Hi);
   2530     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
   2531     return;
   2532   }
   2533 
   2534   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   2535     uint64_t Size = getContext().getTypeSize(Ty);
   2536 
   2537     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
   2538     // than four eightbytes, ..., it has class MEMORY.
   2539     if (Size > 256)
   2540       return;
   2541 
   2542     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
   2543     // copy constructor or a non-trivial destructor, it is passed by invisible
   2544     // reference.
   2545     if (getRecordArgABI(RT, getCXXABI()))
   2546       return;
   2547 
   2548     const RecordDecl *RD = RT->getDecl();
   2549 
   2550     // Assume variable sized types are passed in memory.
   2551     if (RD->hasFlexibleArrayMember())
   2552       return;
   2553 
   2554     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   2555 
   2556     // Reset Lo class, this will be recomputed.
   2557     Current = NoClass;
   2558 
   2559     // If this is a C++ record, classify the bases first.
   2560     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   2561       for (const auto &I : CXXRD->bases()) {
   2562         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
   2563                "Unexpected base class!");
   2564         const CXXRecordDecl *Base =
   2565           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
   2566 
   2567         // Classify this field.
   2568         //
   2569         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
   2570         // single eightbyte, each is classified separately. Each eightbyte gets
   2571         // initialized to class NO_CLASS.
   2572         Class FieldLo, FieldHi;
   2573         uint64_t Offset =
   2574           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
   2575         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
   2576         Lo = merge(Lo, FieldLo);
   2577         Hi = merge(Hi, FieldHi);
   2578         if (Lo == Memory || Hi == Memory) {
   2579           postMerge(Size, Lo, Hi);
   2580           return;
   2581         }
   2582       }
   2583     }
   2584 
   2585     // Classify the fields one at a time, merging the results.
   2586     unsigned idx = 0;
   2587     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2588            i != e; ++i, ++idx) {
   2589       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
   2590       bool BitField = i->isBitField();
   2591 
   2592       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
   2593       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
   2594       //
   2595       // The only case a 256-bit wide vector could be used is when the struct
   2596       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
   2597       // to work for sizes wider than 128, early check and fallback to memory.
   2598       //
   2599       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
   2600         Lo = Memory;
   2601         postMerge(Size, Lo, Hi);
   2602         return;
   2603       }
   2604       // Note, skip this test for bit-fields, see below.
   2605       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
   2606         Lo = Memory;
   2607         postMerge(Size, Lo, Hi);
   2608         return;
   2609       }
   2610 
   2611       // Classify this field.
   2612       //
   2613       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
   2614       // exceeds a single eightbyte, each is classified
   2615       // separately. Each eightbyte gets initialized to class
   2616       // NO_CLASS.
   2617       Class FieldLo, FieldHi;
   2618 
   2619       // Bit-fields require special handling, they do not force the
   2620       // structure to be passed in memory even if unaligned, and
   2621       // therefore they can straddle an eightbyte.
   2622       if (BitField) {
   2623         // Ignore padding bit-fields.
   2624         if (i->isUnnamedBitfield())
   2625           continue;
   2626 
   2627         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
   2628         uint64_t Size = i->getBitWidthValue(getContext());
   2629 
   2630         uint64_t EB_Lo = Offset / 64;
   2631         uint64_t EB_Hi = (Offset + Size - 1) / 64;
   2632 
   2633         if (EB_Lo) {
   2634           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
   2635           FieldLo = NoClass;
   2636           FieldHi = Integer;
   2637         } else {
   2638           FieldLo = Integer;
   2639           FieldHi = EB_Hi ? Integer : NoClass;
   2640         }
   2641       } else
   2642         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
   2643       Lo = merge(Lo, FieldLo);
   2644       Hi = merge(Hi, FieldHi);
   2645       if (Lo == Memory || Hi == Memory)
   2646         break;
   2647     }
   2648 
   2649     postMerge(Size, Lo, Hi);
   2650   }
   2651 }
   2652 
   2653 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
   2654   // If this is a scalar LLVM value then assume LLVM will pass it in the right
   2655   // place naturally.
   2656   if (!isAggregateTypeForABI(Ty)) {
   2657     // Treat an enum type as its underlying type.
   2658     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2659       Ty = EnumTy->getDecl()->getIntegerType();
   2660 
   2661     return (Ty->isPromotableIntegerType() ?
   2662             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2663   }
   2664 
   2665   return getNaturalAlignIndirect(Ty);
   2666 }
   2667 
   2668 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
   2669   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
   2670     uint64_t Size = getContext().getTypeSize(VecTy);
   2671     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
   2672     if (Size <= 64 || Size > LargestVector)
   2673       return true;
   2674   }
   2675 
   2676   return false;
   2677 }
   2678 
   2679 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
   2680                                             unsigned freeIntRegs) const {
   2681   // If this is a scalar LLVM value then assume LLVM will pass it in the right
   2682   // place naturally.
   2683   //
   2684   // This assumption is optimistic, as there could be free registers available
   2685   // when we need to pass this argument in memory, and LLVM could try to pass
   2686   // the argument in the free register. This does not seem to happen currently,
   2687   // but this code would be much safer if we could mark the argument with
   2688   // 'onstack'. See PR12193.
   2689   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
   2690     // Treat an enum type as its underlying type.
   2691     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   2692       Ty = EnumTy->getDecl()->getIntegerType();
   2693 
   2694     return (Ty->isPromotableIntegerType() ?
   2695             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   2696   }
   2697 
   2698   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   2699     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   2700 
   2701   // Compute the byval alignment. We specify the alignment of the byval in all
   2702   // cases so that the mid-level optimizer knows the alignment of the byval.
   2703   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
   2704 
   2705   // Attempt to avoid passing indirect results using byval when possible. This
   2706   // is important for good codegen.
   2707   //
   2708   // We do this by coercing the value into a scalar type which the backend can
   2709   // handle naturally (i.e., without using byval).
   2710   //
   2711   // For simplicity, we currently only do this when we have exhausted all of the
   2712   // free integer registers. Doing this when there are free integer registers
   2713   // would require more care, as we would have to ensure that the coerced value
   2714   // did not claim the unused register. That would require either reording the
   2715   // arguments to the function (so that any subsequent inreg values came first),
   2716   // or only doing this optimization when there were no following arguments that
   2717   // might be inreg.
   2718   //
   2719   // We currently expect it to be rare (particularly in well written code) for
   2720   // arguments to be passed on the stack when there are still free integer
   2721   // registers available (this would typically imply large structs being passed
   2722   // by value), so this seems like a fair tradeoff for now.
   2723   //
   2724   // We can revisit this if the backend grows support for 'onstack' parameter
   2725   // attributes. See PR12193.
   2726   if (freeIntRegs == 0) {
   2727     uint64_t Size = getContext().getTypeSize(Ty);
   2728 
   2729     // If this type fits in an eightbyte, coerce it into the matching integral
   2730     // type, which will end up on the stack (with alignment 8).
   2731     if (Align == 8 && Size <= 64)
   2732       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
   2733                                                           Size));
   2734   }
   2735 
   2736   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
   2737 }
   2738 
   2739 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
   2740 /// register. Pick an LLVM IR type that will be passed as a vector register.
   2741 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
   2742   // Wrapper structs/arrays that only contain vectors are passed just like
   2743   // vectors; strip them off if present.
   2744   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
   2745     Ty = QualType(InnerTy, 0);
   2746 
   2747   llvm::Type *IRType = CGT.ConvertType(Ty);
   2748   if (isa<llvm::VectorType>(IRType) ||
   2749       IRType->getTypeID() == llvm::Type::FP128TyID)
   2750     return IRType;
   2751 
   2752   // We couldn't find the preferred IR vector type for 'Ty'.
   2753   uint64_t Size = getContext().getTypeSize(Ty);
   2754   assert((Size == 128 || Size == 256) && "Invalid type found!");
   2755 
   2756   // Return a LLVM IR vector type based on the size of 'Ty'.
   2757   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
   2758                                Size / 64);
   2759 }
   2760 
   2761 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
   2762 /// is known to either be off the end of the specified type or being in
   2763 /// alignment padding.  The user type specified is known to be at most 128 bits
   2764 /// in size, and have passed through X86_64ABIInfo::classify with a successful
   2765 /// classification that put one of the two halves in the INTEGER class.
   2766 ///
   2767 /// It is conservatively correct to return false.
   2768 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
   2769                                   unsigned EndBit, ASTContext &Context) {
   2770   // If the bytes being queried are off the end of the type, there is no user
   2771   // data hiding here.  This handles analysis of builtins, vectors and other
   2772   // types that don't contain interesting padding.
   2773   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
   2774   if (TySize <= StartBit)
   2775     return true;
   2776 
   2777   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
   2778     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
   2779     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
   2780 
   2781     // Check each element to see if the element overlaps with the queried range.
   2782     for (unsigned i = 0; i != NumElts; ++i) {
   2783       // If the element is after the span we care about, then we're done..
   2784       unsigned EltOffset = i*EltSize;
   2785       if (EltOffset >= EndBit) break;
   2786 
   2787       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
   2788       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
   2789                                  EndBit-EltOffset, Context))
   2790         return false;
   2791     }
   2792     // If it overlaps no elements, then it is safe to process as padding.
   2793     return true;
   2794   }
   2795 
   2796   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   2797     const RecordDecl *RD = RT->getDecl();
   2798     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   2799 
   2800     // If this is a C++ record, check the bases first.
   2801     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   2802       for (const auto &I : CXXRD->bases()) {
   2803         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
   2804                "Unexpected base class!");
   2805         const CXXRecordDecl *Base =
   2806           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
   2807 
   2808         // If the base is after the span we care about, ignore it.
   2809         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
   2810         if (BaseOffset >= EndBit) continue;
   2811 
   2812         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
   2813         if (!BitsContainNoUserData(I.getType(), BaseStart,
   2814                                    EndBit-BaseOffset, Context))
   2815           return false;
   2816       }
   2817     }
   2818 
   2819     // Verify that no field has data that overlaps the region of interest.  Yes
   2820     // this could be sped up a lot by being smarter about queried fields,
   2821     // however we're only looking at structs up to 16 bytes, so we don't care
   2822     // much.
   2823     unsigned idx = 0;
   2824     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   2825          i != e; ++i, ++idx) {
   2826       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
   2827 
   2828       // If we found a field after the region we care about, then we're done.
   2829       if (FieldOffset >= EndBit) break;
   2830 
   2831       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
   2832       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
   2833                                  Context))
   2834         return false;
   2835     }
   2836 
   2837     // If nothing in this record overlapped the area of interest, then we're
   2838     // clean.
   2839     return true;
   2840   }
   2841 
   2842   return false;
   2843 }
   2844 
   2845 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
   2846 /// float member at the specified offset.  For example, {int,{float}} has a
   2847 /// float at offset 4.  It is conservatively correct for this routine to return
   2848 /// false.
   2849 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
   2850                                   const llvm::DataLayout &TD) {
   2851   // Base case if we find a float.
   2852   if (IROffset == 0 && IRType->isFloatTy())
   2853     return true;
   2854 
   2855   // If this is a struct, recurse into the field at the specified offset.
   2856   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
   2857     const llvm::StructLayout *SL = TD.getStructLayout(STy);
   2858     unsigned Elt = SL->getElementContainingOffset(IROffset);
   2859     IROffset -= SL->getElementOffset(Elt);
   2860     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
   2861   }
   2862 
   2863   // If this is an array, recurse into the field at the specified offset.
   2864   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
   2865     llvm::Type *EltTy = ATy->getElementType();
   2866     unsigned EltSize = TD.getTypeAllocSize(EltTy);
   2867     IROffset -= IROffset/EltSize*EltSize;
   2868     return ContainsFloatAtOffset(EltTy, IROffset, TD);
   2869   }
   2870 
   2871   return false;
   2872 }
   2873 
   2874 
   2875 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
   2876 /// low 8 bytes of an XMM register, corresponding to the SSE class.
   2877 llvm::Type *X86_64ABIInfo::
   2878 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
   2879                    QualType SourceTy, unsigned SourceOffset) const {
   2880   // The only three choices we have are either double, <2 x float>, or float. We
   2881   // pass as float if the last 4 bytes is just padding.  This happens for
   2882   // structs that contain 3 floats.
   2883   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
   2884                             SourceOffset*8+64, getContext()))
   2885     return llvm::Type::getFloatTy(getVMContext());
   2886 
   2887   // We want to pass as <2 x float> if the LLVM IR type contains a float at
   2888   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
   2889   // case.
   2890   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
   2891       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
   2892     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
   2893 
   2894   return llvm::Type::getDoubleTy(getVMContext());
   2895 }
   2896 
   2897 
   2898 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
   2899 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
   2900 /// about the high or low part of an up-to-16-byte struct.  This routine picks
   2901 /// the best LLVM IR type to represent this, which may be i64 or may be anything
   2902 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
   2903 /// etc).
   2904 ///
   2905 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
   2906 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
   2907 /// the 8-byte value references.  PrefType may be null.
   2908 ///
   2909 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
   2910 /// an offset into this that we're processing (which is always either 0 or 8).
   2911 ///
   2912 llvm::Type *X86_64ABIInfo::
   2913 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
   2914                        QualType SourceTy, unsigned SourceOffset) const {
   2915   // If we're dealing with an un-offset LLVM IR type, then it means that we're
   2916   // returning an 8-byte unit starting with it.  See if we can safely use it.
   2917   if (IROffset == 0) {
   2918     // Pointers and int64's always fill the 8-byte unit.
   2919     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
   2920         IRType->isIntegerTy(64))
   2921       return IRType;
   2922 
   2923     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
   2924     // goodness in the source type is just tail padding.  This is allowed to
   2925     // kick in for struct {double,int} on the int, but not on
   2926     // struct{double,int,int} because we wouldn't return the second int.  We
   2927     // have to do this analysis on the source type because we can't depend on
   2928     // unions being lowered a specific way etc.
   2929     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
   2930         IRType->isIntegerTy(32) ||
   2931         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
   2932       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
   2933           cast<llvm::IntegerType>(IRType)->getBitWidth();
   2934 
   2935       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
   2936                                 SourceOffset*8+64, getContext()))
   2937         return IRType;
   2938     }
   2939   }
   2940 
   2941   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
   2942     // If this is a struct, recurse into the field at the specified offset.
   2943     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
   2944     if (IROffset < SL->getSizeInBytes()) {
   2945       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
   2946       IROffset -= SL->getElementOffset(FieldIdx);
   2947 
   2948       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
   2949                                     SourceTy, SourceOffset);
   2950     }
   2951   }
   2952 
   2953   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
   2954     llvm::Type *EltTy = ATy->getElementType();
   2955     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
   2956     unsigned EltOffset = IROffset/EltSize*EltSize;
   2957     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
   2958                                   SourceOffset);
   2959   }
   2960 
   2961   // Okay, we don't have any better idea of what to pass, so we pass this in an
   2962   // integer register that isn't too big to fit the rest of the struct.
   2963   unsigned TySizeInBytes =
   2964     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
   2965 
   2966   assert(TySizeInBytes != SourceOffset && "Empty field?");
   2967 
   2968   // It is always safe to classify this as an integer type up to i64 that
   2969   // isn't larger than the structure.
   2970   return llvm::IntegerType::get(getVMContext(),
   2971                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
   2972 }
   2973 
   2974 
   2975 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
   2976 /// be used as elements of a two register pair to pass or return, return a
   2977 /// first class aggregate to represent them.  For example, if the low part of
   2978 /// a by-value argument should be passed as i32* and the high part as float,
   2979 /// return {i32*, float}.
   2980 static llvm::Type *
   2981 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
   2982                            const llvm::DataLayout &TD) {
   2983   // In order to correctly satisfy the ABI, we need to the high part to start
   2984   // at offset 8.  If the high and low parts we inferred are both 4-byte types
   2985   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
   2986   // the second element at offset 8.  Check for this:
   2987   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
   2988   unsigned HiAlign = TD.getABITypeAlignment(Hi);
   2989   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
   2990   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
   2991 
   2992   // To handle this, we have to increase the size of the low part so that the
   2993   // second element will start at an 8 byte offset.  We can't increase the size
   2994   // of the second element because it might make us access off the end of the
   2995   // struct.
   2996   if (HiStart != 8) {
   2997     // There are usually two sorts of types the ABI generation code can produce
   2998     // for the low part of a pair that aren't 8 bytes in size: float or
   2999     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
   3000     // NaCl).
   3001     // Promote these to a larger type.
   3002     if (Lo->isFloatTy())
   3003       Lo = llvm::Type::getDoubleTy(Lo->getContext());
   3004     else {
   3005       assert((Lo->isIntegerTy() || Lo->isPointerTy())
   3006              && "Invalid/unknown lo type");
   3007       Lo = llvm::Type::getInt64Ty(Lo->getContext());
   3008     }
   3009   }
   3010 
   3011   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
   3012 
   3013 
   3014   // Verify that the second element is at an 8-byte offset.
   3015   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
   3016          "Invalid x86-64 argument pair!");
   3017   return Result;
   3018 }
   3019 
   3020 ABIArgInfo X86_64ABIInfo::
   3021 classifyReturnType(QualType RetTy) const {
   3022   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
   3023   // classification algorithm.
   3024   X86_64ABIInfo::Class Lo, Hi;
   3025   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
   3026 
   3027   // Check some invariants.
   3028   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
   3029   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
   3030 
   3031   llvm::Type *ResType = nullptr;
   3032   switch (Lo) {
   3033   case NoClass:
   3034     if (Hi == NoClass)
   3035       return ABIArgInfo::getIgnore();
   3036     // If the low part is just padding, it takes no register, leave ResType
   3037     // null.
   3038     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
   3039            "Unknown missing lo part");
   3040     break;
   3041 
   3042   case SSEUp:
   3043   case X87Up:
   3044     llvm_unreachable("Invalid classification for lo word.");
   3045 
   3046     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
   3047     // hidden argument.
   3048   case Memory:
   3049     return getIndirectReturnResult(RetTy);
   3050 
   3051     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
   3052     // available register of the sequence %rax, %rdx is used.
   3053   case Integer:
   3054     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
   3055 
   3056     // If we have a sign or zero extended integer, make sure to return Extend
   3057     // so that the parameter gets the right LLVM IR attributes.
   3058     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
   3059       // Treat an enum type as its underlying type.
   3060       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   3061         RetTy = EnumTy->getDecl()->getIntegerType();
   3062 
   3063       if (RetTy->isIntegralOrEnumerationType() &&
   3064           RetTy->isPromotableIntegerType())
   3065         return ABIArgInfo::getExtend();
   3066     }
   3067     break;
   3068 
   3069     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
   3070     // available SSE register of the sequence %xmm0, %xmm1 is used.
   3071   case SSE:
   3072     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
   3073     break;
   3074 
   3075     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
   3076     // returned on the X87 stack in %st0 as 80-bit x87 number.
   3077   case X87:
   3078     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
   3079     break;
   3080 
   3081     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
   3082     // part of the value is returned in %st0 and the imaginary part in
   3083     // %st1.
   3084   case ComplexX87:
   3085     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
   3086     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
   3087                                     llvm::Type::getX86_FP80Ty(getVMContext()),
   3088                                     nullptr);
   3089     break;
   3090   }
   3091 
   3092   llvm::Type *HighPart = nullptr;
   3093   switch (Hi) {
   3094     // Memory was handled previously and X87 should
   3095     // never occur as a hi class.
   3096   case Memory:
   3097   case X87:
   3098     llvm_unreachable("Invalid classification for hi word.");
   3099 
   3100   case ComplexX87: // Previously handled.
   3101   case NoClass:
   3102     break;
   3103 
   3104   case Integer:
   3105     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   3106     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   3107       return ABIArgInfo::getDirect(HighPart, 8);
   3108     break;
   3109   case SSE:
   3110     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   3111     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   3112       return ABIArgInfo::getDirect(HighPart, 8);
   3113     break;
   3114 
   3115     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
   3116     // is passed in the next available eightbyte chunk if the last used
   3117     // vector register.
   3118     //
   3119     // SSEUP should always be preceded by SSE, just widen.
   3120   case SSEUp:
   3121     assert(Lo == SSE && "Unexpected SSEUp classification.");
   3122     ResType = GetByteVectorType(RetTy);
   3123     break;
   3124 
   3125     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
   3126     // returned together with the previous X87 value in %st0.
   3127   case X87Up:
   3128     // If X87Up is preceded by X87, we don't need to do
   3129     // anything. However, in some cases with unions it may not be
   3130     // preceded by X87. In such situations we follow gcc and pass the
   3131     // extra bits in an SSE reg.
   3132     if (Lo != X87) {
   3133       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
   3134       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
   3135         return ABIArgInfo::getDirect(HighPart, 8);
   3136     }
   3137     break;
   3138   }
   3139 
   3140   // If a high part was specified, merge it together with the low part.  It is
   3141   // known to pass in the high eightbyte of the result.  We do this by forming a
   3142   // first class struct aggregate with the high and low part: {low, high}
   3143   if (HighPart)
   3144     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
   3145 
   3146   return ABIArgInfo::getDirect(ResType);
   3147 }
   3148 
   3149 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
   3150   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
   3151   bool isNamedArg)
   3152   const
   3153 {
   3154   Ty = useFirstFieldIfTransparentUnion(Ty);
   3155 
   3156   X86_64ABIInfo::Class Lo, Hi;
   3157   classify(Ty, 0, Lo, Hi, isNamedArg);
   3158 
   3159   // Check some invariants.
   3160   // FIXME: Enforce these by construction.
   3161   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
   3162   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
   3163 
   3164   neededInt = 0;
   3165   neededSSE = 0;
   3166   llvm::Type *ResType = nullptr;
   3167   switch (Lo) {
   3168   case NoClass:
   3169     if (Hi == NoClass)
   3170       return ABIArgInfo::getIgnore();
   3171     // If the low part is just padding, it takes no register, leave ResType
   3172     // null.
   3173     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
   3174            "Unknown missing lo part");
   3175     break;
   3176 
   3177     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
   3178     // on the stack.
   3179   case Memory:
   3180 
   3181     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
   3182     // COMPLEX_X87, it is passed in memory.
   3183   case X87:
   3184   case ComplexX87:
   3185     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
   3186       ++neededInt;
   3187     return getIndirectResult(Ty, freeIntRegs);
   3188 
   3189   case SSEUp:
   3190   case X87Up:
   3191     llvm_unreachable("Invalid classification for lo word.");
   3192 
   3193     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
   3194     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
   3195     // and %r9 is used.
   3196   case Integer:
   3197     ++neededInt;
   3198 
   3199     // Pick an 8-byte type based on the preferred type.
   3200     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
   3201 
   3202     // If we have a sign or zero extended integer, make sure to return Extend
   3203     // so that the parameter gets the right LLVM IR attributes.
   3204     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
   3205       // Treat an enum type as its underlying type.
   3206       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   3207         Ty = EnumTy->getDecl()->getIntegerType();
   3208 
   3209       if (Ty->isIntegralOrEnumerationType() &&
   3210           Ty->isPromotableIntegerType())
   3211         return ABIArgInfo::getExtend();
   3212     }
   3213 
   3214     break;
   3215 
   3216     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
   3217     // available SSE register is used, the registers are taken in the
   3218     // order from %xmm0 to %xmm7.
   3219   case SSE: {
   3220     llvm::Type *IRType = CGT.ConvertType(Ty);
   3221     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
   3222     ++neededSSE;
   3223     break;
   3224   }
   3225   }
   3226 
   3227   llvm::Type *HighPart = nullptr;
   3228   switch (Hi) {
   3229     // Memory was handled previously, ComplexX87 and X87 should
   3230     // never occur as hi classes, and X87Up must be preceded by X87,
   3231     // which is passed in memory.
   3232   case Memory:
   3233   case X87:
   3234   case ComplexX87:
   3235     llvm_unreachable("Invalid classification for hi word.");
   3236 
   3237   case NoClass: break;
   3238 
   3239   case Integer:
   3240     ++neededInt;
   3241     // Pick an 8-byte type based on the preferred type.
   3242     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
   3243 
   3244     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
   3245       return ABIArgInfo::getDirect(HighPart, 8);
   3246     break;
   3247 
   3248     // X87Up generally doesn't occur here (long double is passed in
   3249     // memory), except in situations involving unions.
   3250   case X87Up:
   3251   case SSE:
   3252     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
   3253 
   3254     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
   3255       return ABIArgInfo::getDirect(HighPart, 8);
   3256 
   3257     ++neededSSE;
   3258     break;
   3259 
   3260     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
   3261     // eightbyte is passed in the upper half of the last used SSE
   3262     // register.  This only happens when 128-bit vectors are passed.
   3263   case SSEUp:
   3264     assert(Lo == SSE && "Unexpected SSEUp classification");
   3265     ResType = GetByteVectorType(Ty);
   3266     break;
   3267   }
   3268 
   3269   // If a high part was specified, merge it together with the low part.  It is
   3270   // known to pass in the high eightbyte of the result.  We do this by forming a
   3271   // first class struct aggregate with the high and low part: {low, high}
   3272   if (HighPart)
   3273     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
   3274 
   3275   return ABIArgInfo::getDirect(ResType);
   3276 }
   3277 
   3278 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   3279 
   3280   if (!getCXXABI().classifyReturnType(FI))
   3281     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   3282 
   3283   // Keep track of the number of assigned registers.
   3284   unsigned freeIntRegs = 6, freeSSERegs = 8;
   3285 
   3286   // If the return value is indirect, then the hidden argument is consuming one
   3287   // integer register.
   3288   if (FI.getReturnInfo().isIndirect())
   3289     --freeIntRegs;
   3290 
   3291   // The chain argument effectively gives us another free register.
   3292   if (FI.isChainCall())
   3293     ++freeIntRegs;
   3294 
   3295   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
   3296   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
   3297   // get assigned (in left-to-right order) for passing as follows...
   3298   unsigned ArgNo = 0;
   3299   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
   3300        it != ie; ++it, ++ArgNo) {
   3301     bool IsNamedArg = ArgNo < NumRequiredArgs;
   3302 
   3303     unsigned neededInt, neededSSE;
   3304     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
   3305                                     neededSSE, IsNamedArg);
   3306 
   3307     // AMD64-ABI 3.2.3p3: If there are no registers available for any
   3308     // eightbyte of an argument, the whole argument is passed on the
   3309     // stack. If registers have already been assigned for some
   3310     // eightbytes of such an argument, the assignments get reverted.
   3311     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
   3312       freeIntRegs -= neededInt;
   3313       freeSSERegs -= neededSSE;
   3314     } else {
   3315       it->info = getIndirectResult(it->type, freeIntRegs);
   3316     }
   3317   }
   3318 }
   3319 
   3320 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
   3321                                          Address VAListAddr, QualType Ty) {
   3322   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
   3323       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
   3324   llvm::Value *overflow_arg_area =
   3325     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
   3326 
   3327   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
   3328   // byte boundary if alignment needed by type exceeds 8 byte boundary.
   3329   // It isn't stated explicitly in the standard, but in practice we use
   3330   // alignment greater than 16 where necessary.
   3331   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
   3332   if (Align > CharUnits::fromQuantity(8)) {
   3333     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
   3334                                                       Align);
   3335   }
   3336 
   3337   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
   3338   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
   3339   llvm::Value *Res =
   3340     CGF.Builder.CreateBitCast(overflow_arg_area,
   3341                               llvm::PointerType::getUnqual(LTy));
   3342 
   3343   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
   3344   // l->overflow_arg_area + sizeof(type).
   3345   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
   3346   // an 8 byte boundary.
   3347 
   3348   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
   3349   llvm::Value *Offset =
   3350       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
   3351   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
   3352                                             "overflow_arg_area.next");
   3353   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
   3354 
   3355   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
   3356   return Address(Res, Align);
   3357 }
   3358 
   3359 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3360                                  QualType Ty) const {
   3361   // Assume that va_list type is correct; should be pointer to LLVM type:
   3362   // struct {
   3363   //   i32 gp_offset;
   3364   //   i32 fp_offset;
   3365   //   i8* overflow_arg_area;
   3366   //   i8* reg_save_area;
   3367   // };
   3368   unsigned neededInt, neededSSE;
   3369 
   3370   Ty = getContext().getCanonicalType(Ty);
   3371   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
   3372                                        /*isNamedArg*/false);
   3373 
   3374   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
   3375   // in the registers. If not go to step 7.
   3376   if (!neededInt && !neededSSE)
   3377     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
   3378 
   3379   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
   3380   // general purpose registers needed to pass type and num_fp to hold
   3381   // the number of floating point registers needed.
   3382 
   3383   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
   3384   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
   3385   // l->fp_offset > 304 - num_fp * 16 go to step 7.
   3386   //
   3387   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
   3388   // register save space).
   3389 
   3390   llvm::Value *InRegs = nullptr;
   3391   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
   3392   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
   3393   if (neededInt) {
   3394     gp_offset_p =
   3395         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
   3396                                     "gp_offset_p");
   3397     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
   3398     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
   3399     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
   3400   }
   3401 
   3402   if (neededSSE) {
   3403     fp_offset_p =
   3404         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
   3405                                     "fp_offset_p");
   3406     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
   3407     llvm::Value *FitsInFP =
   3408       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
   3409     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
   3410     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
   3411   }
   3412 
   3413   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
   3414   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
   3415   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
   3416   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
   3417 
   3418   // Emit code to load the value if it was passed in registers.
   3419 
   3420   CGF.EmitBlock(InRegBlock);
   3421 
   3422   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
   3423   // an offset of l->gp_offset and/or l->fp_offset. This may require
   3424   // copying to a temporary location in case the parameter is passed
   3425   // in different register classes or requires an alignment greater
   3426   // than 8 for general purpose registers and 16 for XMM registers.
   3427   //
   3428   // FIXME: This really results in shameful code when we end up needing to
   3429   // collect arguments from different places; often what should result in a
   3430   // simple assembling of a structure from scattered addresses has many more
   3431   // loads than necessary. Can we clean this up?
   3432   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
   3433   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
   3434       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
   3435                                   "reg_save_area");
   3436 
   3437   Address RegAddr = Address::invalid();
   3438   if (neededInt && neededSSE) {
   3439     // FIXME: Cleanup.
   3440     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
   3441     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
   3442     Address Tmp = CGF.CreateMemTemp(Ty);
   3443     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
   3444     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
   3445     llvm::Type *TyLo = ST->getElementType(0);
   3446     llvm::Type *TyHi = ST->getElementType(1);
   3447     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
   3448            "Unexpected ABI info for mixed regs");
   3449     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
   3450     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
   3451     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
   3452     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
   3453     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
   3454     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
   3455 
   3456     // Copy the first element.
   3457     llvm::Value *V =
   3458       CGF.Builder.CreateDefaultAlignedLoad(
   3459                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
   3460     CGF.Builder.CreateStore(V,
   3461                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
   3462 
   3463     // Copy the second element.
   3464     V = CGF.Builder.CreateDefaultAlignedLoad(
   3465                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
   3466     CharUnits Offset = CharUnits::fromQuantity(
   3467                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
   3468     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
   3469 
   3470     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
   3471   } else if (neededInt) {
   3472     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
   3473                       CharUnits::fromQuantity(8));
   3474     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
   3475 
   3476     // Copy to a temporary if necessary to ensure the appropriate alignment.
   3477     std::pair<CharUnits, CharUnits> SizeAlign =
   3478         getContext().getTypeInfoInChars(Ty);
   3479     uint64_t TySize = SizeAlign.first.getQuantity();
   3480     CharUnits TyAlign = SizeAlign.second;
   3481 
   3482     // Copy into a temporary if the type is more aligned than the
   3483     // register save area.
   3484     if (TyAlign.getQuantity() > 8) {
   3485       Address Tmp = CGF.CreateMemTemp(Ty);
   3486       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
   3487       RegAddr = Tmp;
   3488     }
   3489 
   3490   } else if (neededSSE == 1) {
   3491     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
   3492                       CharUnits::fromQuantity(16));
   3493     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
   3494   } else {
   3495     assert(neededSSE == 2 && "Invalid number of needed registers!");
   3496     // SSE registers are spaced 16 bytes apart in the register save
   3497     // area, we need to collect the two eightbytes together.
   3498     // The ABI isn't explicit about this, but it seems reasonable
   3499     // to assume that the slots are 16-byte aligned, since the stack is
   3500     // naturally 16-byte aligned and the prologue is expected to store
   3501     // all the SSE registers to the RSA.
   3502     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
   3503                                 CharUnits::fromQuantity(16));
   3504     Address RegAddrHi =
   3505       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
   3506                                              CharUnits::fromQuantity(16));
   3507     llvm::Type *DoubleTy = CGF.DoubleTy;
   3508     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
   3509     llvm::Value *V;
   3510     Address Tmp = CGF.CreateMemTemp(Ty);
   3511     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
   3512     V = CGF.Builder.CreateLoad(
   3513                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
   3514     CGF.Builder.CreateStore(V,
   3515                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
   3516     V = CGF.Builder.CreateLoad(
   3517                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
   3518     CGF.Builder.CreateStore(V,
   3519           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
   3520 
   3521     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
   3522   }
   3523 
   3524   // AMD64-ABI 3.5.7p5: Step 5. Set:
   3525   // l->gp_offset = l->gp_offset + num_gp * 8
   3526   // l->fp_offset = l->fp_offset + num_fp * 16.
   3527   if (neededInt) {
   3528     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
   3529     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
   3530                             gp_offset_p);
   3531   }
   3532   if (neededSSE) {
   3533     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
   3534     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
   3535                             fp_offset_p);
   3536   }
   3537   CGF.EmitBranch(ContBlock);
   3538 
   3539   // Emit code to load the value if it was passed in memory.
   3540 
   3541   CGF.EmitBlock(InMemBlock);
   3542   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
   3543 
   3544   // Return the appropriate result.
   3545 
   3546   CGF.EmitBlock(ContBlock);
   3547   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
   3548                                  "vaarg.addr");
   3549   return ResAddr;
   3550 }
   3551 
   3552 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3553                                    QualType Ty) const {
   3554   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
   3555                           CGF.getContext().getTypeInfoInChars(Ty),
   3556                           CharUnits::fromQuantity(8),
   3557                           /*allowHigherAlign*/ false);
   3558 }
   3559 
   3560 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
   3561                                       bool IsReturnType) const {
   3562 
   3563   if (Ty->isVoidType())
   3564     return ABIArgInfo::getIgnore();
   3565 
   3566   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   3567     Ty = EnumTy->getDecl()->getIntegerType();
   3568 
   3569   TypeInfo Info = getContext().getTypeInfo(Ty);
   3570   uint64_t Width = Info.Width;
   3571   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
   3572 
   3573   const RecordType *RT = Ty->getAs<RecordType>();
   3574   if (RT) {
   3575     if (!IsReturnType) {
   3576       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
   3577         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   3578     }
   3579 
   3580     if (RT->getDecl()->hasFlexibleArrayMember())
   3581       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   3582 
   3583   }
   3584 
   3585   // vectorcall adds the concept of a homogenous vector aggregate, similar to
   3586   // other targets.
   3587   const Type *Base = nullptr;
   3588   uint64_t NumElts = 0;
   3589   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
   3590     if (FreeSSERegs >= NumElts) {
   3591       FreeSSERegs -= NumElts;
   3592       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
   3593         return ABIArgInfo::getDirect();
   3594       return ABIArgInfo::getExpand();
   3595     }
   3596     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
   3597   }
   3598 
   3599 
   3600   if (Ty->isMemberPointerType()) {
   3601     // If the member pointer is represented by an LLVM int or ptr, pass it
   3602     // directly.
   3603     llvm::Type *LLTy = CGT.ConvertType(Ty);
   3604     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
   3605       return ABIArgInfo::getDirect();
   3606   }
   3607 
   3608   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
   3609     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
   3610     // not 1, 2, 4, or 8 bytes, must be passed by reference."
   3611     if (Width > 64 || !llvm::isPowerOf2_64(Width))
   3612       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   3613 
   3614     // Otherwise, coerce it to a small integer.
   3615     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
   3616   }
   3617 
   3618   // Bool type is always extended to the ABI, other builtin types are not
   3619   // extended.
   3620   const BuiltinType *BT = Ty->getAs<BuiltinType>();
   3621   if (BT && BT->getKind() == BuiltinType::Bool)
   3622     return ABIArgInfo::getExtend();
   3623 
   3624   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
   3625   // passes them indirectly through memory.
   3626   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
   3627     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
   3628     if (LDF == &llvm::APFloat::x87DoubleExtended)
   3629       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
   3630   }
   3631 
   3632   return ABIArgInfo::getDirect();
   3633 }
   3634 
   3635 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   3636   bool IsVectorCall =
   3637       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
   3638 
   3639   // We can use up to 4 SSE return registers with vectorcall.
   3640   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
   3641   if (!getCXXABI().classifyReturnType(FI))
   3642     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
   3643 
   3644   // We can use up to 6 SSE register parameters with vectorcall.
   3645   FreeSSERegs = IsVectorCall ? 6 : 0;
   3646   for (auto &I : FI.arguments())
   3647     I.info = classify(I.type, FreeSSERegs, false);
   3648 }
   3649 
   3650 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3651                                     QualType Ty) const {
   3652   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
   3653                           CGF.getContext().getTypeInfoInChars(Ty),
   3654                           CharUnits::fromQuantity(8),
   3655                           /*allowHigherAlign*/ false);
   3656 }
   3657 
   3658 // PowerPC-32
   3659 namespace {
   3660 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
   3661 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
   3662 bool IsSoftFloatABI;
   3663 public:
   3664   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
   3665       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
   3666 
   3667   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3668                     QualType Ty) const override;
   3669 };
   3670 
   3671 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
   3672 public:
   3673   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
   3674       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
   3675 
   3676   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   3677     // This is recovered from gcc output.
   3678     return 1; // r1 is the dedicated stack pointer
   3679   }
   3680 
   3681   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3682                                llvm::Value *Address) const override;
   3683 };
   3684 
   3685 }
   3686 
   3687 // TODO: this implementation is now likely redundant with
   3688 // DefaultABIInfo::EmitVAArg.
   3689 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
   3690                                       QualType Ty) const {
   3691   const unsigned OverflowLimit = 8;
   3692   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
   3693     // TODO: Implement this. For now ignore.
   3694     (void)CTy;
   3695     return Address::invalid(); // FIXME?
   3696   }
   3697 
   3698   // struct __va_list_tag {
   3699   //   unsigned char gpr;
   3700   //   unsigned char fpr;
   3701   //   unsigned short reserved;
   3702   //   void *overflow_arg_area;
   3703   //   void *reg_save_area;
   3704   // };
   3705 
   3706   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
   3707   bool isInt =
   3708       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
   3709   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
   3710 
   3711   // All aggregates are passed indirectly?  That doesn't seem consistent
   3712   // with the argument-lowering code.
   3713   bool isIndirect = Ty->isAggregateType();
   3714 
   3715   CGBuilderTy &Builder = CGF.Builder;
   3716 
   3717   // The calling convention either uses 1-2 GPRs or 1 FPR.
   3718   Address NumRegsAddr = Address::invalid();
   3719   if (isInt || IsSoftFloatABI) {
   3720     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
   3721   } else {
   3722     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
   3723   }
   3724 
   3725   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
   3726 
   3727   // "Align" the register count when TY is i64.
   3728   if (isI64 || (isF64 && IsSoftFloatABI)) {
   3729     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
   3730     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
   3731   }
   3732 
   3733   llvm::Value *CC =
   3734       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
   3735 
   3736   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
   3737   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
   3738   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   3739 
   3740   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
   3741 
   3742   llvm::Type *DirectTy = CGF.ConvertType(Ty);
   3743   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
   3744 
   3745   // Case 1: consume registers.
   3746   Address RegAddr = Address::invalid();
   3747   {
   3748     CGF.EmitBlock(UsingRegs);
   3749 
   3750     Address RegSaveAreaPtr =
   3751       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
   3752     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
   3753                       CharUnits::fromQuantity(8));
   3754     assert(RegAddr.getElementType() == CGF.Int8Ty);
   3755 
   3756     // Floating-point registers start after the general-purpose registers.
   3757     if (!(isInt || IsSoftFloatABI)) {
   3758       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
   3759                                                    CharUnits::fromQuantity(32));
   3760     }
   3761 
   3762     // Get the address of the saved value by scaling the number of
   3763     // registers we've used by the number of
   3764     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
   3765     llvm::Value *RegOffset =
   3766       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
   3767     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
   3768                                             RegAddr.getPointer(), RegOffset),
   3769                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
   3770     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
   3771 
   3772     // Increase the used-register count.
   3773     NumRegs =
   3774       Builder.CreateAdd(NumRegs,
   3775                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
   3776     Builder.CreateStore(NumRegs, NumRegsAddr);
   3777 
   3778     CGF.EmitBranch(Cont);
   3779   }
   3780 
   3781   // Case 2: consume space in the overflow area.
   3782   Address MemAddr = Address::invalid();
   3783   {
   3784     CGF.EmitBlock(UsingOverflow);
   3785 
   3786     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
   3787 
   3788     // Everything in the overflow area is rounded up to a size of at least 4.
   3789     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
   3790 
   3791     CharUnits Size;
   3792     if (!isIndirect) {
   3793       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
   3794       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
   3795     } else {
   3796       Size = CGF.getPointerSize();
   3797     }
   3798 
   3799     Address OverflowAreaAddr =
   3800       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
   3801     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
   3802                          OverflowAreaAlign);
   3803     // Round up address of argument to alignment
   3804     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
   3805     if (Align > OverflowAreaAlign) {
   3806       llvm::Value *Ptr = OverflowArea.getPointer();
   3807       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
   3808                                                            Align);
   3809     }
   3810 
   3811     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
   3812 
   3813     // Increase the overflow area.
   3814     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
   3815     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
   3816     CGF.EmitBranch(Cont);
   3817   }
   3818 
   3819   CGF.EmitBlock(Cont);
   3820 
   3821   // Merge the cases with a phi.
   3822   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
   3823                                 "vaarg.addr");
   3824 
   3825   // Load the pointer if the argument was passed indirectly.
   3826   if (isIndirect) {
   3827     Result = Address(Builder.CreateLoad(Result, "aggr"),
   3828                      getContext().getTypeAlignInChars(Ty));
   3829   }
   3830 
   3831   return Result;
   3832 }
   3833 
   3834 bool
   3835 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3836                                                 llvm::Value *Address) const {
   3837   // This is calculated from the LLVM and GCC tables and verified
   3838   // against gcc output.  AFAIK all ABIs use the same encoding.
   3839 
   3840   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   3841 
   3842   llvm::IntegerType *i8 = CGF.Int8Ty;
   3843   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   3844   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
   3845   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
   3846 
   3847   // 0-31: r0-31, the 4-byte general-purpose registers
   3848   AssignToArrayRange(Builder, Address, Four8, 0, 31);
   3849 
   3850   // 32-63: fp0-31, the 8-byte floating-point registers
   3851   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
   3852 
   3853   // 64-76 are various 4-byte special-purpose registers:
   3854   // 64: mq
   3855   // 65: lr
   3856   // 66: ctr
   3857   // 67: ap
   3858   // 68-75 cr0-7
   3859   // 76: xer
   3860   AssignToArrayRange(Builder, Address, Four8, 64, 76);
   3861 
   3862   // 77-108: v0-31, the 16-byte vector registers
   3863   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
   3864 
   3865   // 109: vrsave
   3866   // 110: vscr
   3867   // 111: spe_acc
   3868   // 112: spefscr
   3869   // 113: sfp
   3870   AssignToArrayRange(Builder, Address, Four8, 109, 113);
   3871 
   3872   return false;
   3873 }
   3874 
   3875 // PowerPC-64
   3876 
   3877 namespace {
   3878 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
   3879 class PPC64_SVR4_ABIInfo : public ABIInfo {
   3880 public:
   3881   enum ABIKind {
   3882     ELFv1 = 0,
   3883     ELFv2
   3884   };
   3885 
   3886 private:
   3887   static const unsigned GPRBits = 64;
   3888   ABIKind Kind;
   3889   bool HasQPX;
   3890 
   3891   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
   3892   // will be passed in a QPX register.
   3893   bool IsQPXVectorTy(const Type *Ty) const {
   3894     if (!HasQPX)
   3895       return false;
   3896 
   3897     if (const VectorType *VT = Ty->getAs<VectorType>()) {
   3898       unsigned NumElements = VT->getNumElements();
   3899       if (NumElements == 1)
   3900         return false;
   3901 
   3902       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
   3903         if (getContext().getTypeSize(Ty) <= 256)
   3904           return true;
   3905       } else if (VT->getElementType()->
   3906                    isSpecificBuiltinType(BuiltinType::Float)) {
   3907         if (getContext().getTypeSize(Ty) <= 128)
   3908           return true;
   3909       }
   3910     }
   3911 
   3912     return false;
   3913   }
   3914 
   3915   bool IsQPXVectorTy(QualType Ty) const {
   3916     return IsQPXVectorTy(Ty.getTypePtr());
   3917   }
   3918 
   3919 public:
   3920   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
   3921       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
   3922 
   3923   bool isPromotableTypeForABI(QualType Ty) const;
   3924   CharUnits getParamTypeAlignment(QualType Ty) const;
   3925 
   3926   ABIArgInfo classifyReturnType(QualType RetTy) const;
   3927   ABIArgInfo classifyArgumentType(QualType Ty) const;
   3928 
   3929   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
   3930   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
   3931                                          uint64_t Members) const override;
   3932 
   3933   // TODO: We can add more logic to computeInfo to improve performance.
   3934   // Example: For aggregate arguments that fit in a register, we could
   3935   // use getDirectInReg (as is done below for structs containing a single
   3936   // floating-point value) to avoid pushing them to memory on function
   3937   // entry.  This would require changing the logic in PPCISelLowering
   3938   // when lowering the parameters in the caller and args in the callee.
   3939   void computeInfo(CGFunctionInfo &FI) const override {
   3940     if (!getCXXABI().classifyReturnType(FI))
   3941       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   3942     for (auto &I : FI.arguments()) {
   3943       // We rely on the default argument classification for the most part.
   3944       // One exception:  An aggregate containing a single floating-point
   3945       // or vector item must be passed in a register if one is available.
   3946       const Type *T = isSingleElementStruct(I.type, getContext());
   3947       if (T) {
   3948         const BuiltinType *BT = T->getAs<BuiltinType>();
   3949         if (IsQPXVectorTy(T) ||
   3950             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
   3951             (BT && BT->isFloatingPoint())) {
   3952           QualType QT(T, 0);
   3953           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
   3954           continue;
   3955         }
   3956       }
   3957       I.info = classifyArgumentType(I.type);
   3958     }
   3959   }
   3960 
   3961   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   3962                     QualType Ty) const override;
   3963 };
   3964 
   3965 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
   3966 
   3967 public:
   3968   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
   3969                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
   3970       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
   3971 
   3972   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   3973     // This is recovered from gcc output.
   3974     return 1; // r1 is the dedicated stack pointer
   3975   }
   3976 
   3977   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3978                                llvm::Value *Address) const override;
   3979 };
   3980 
   3981 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
   3982 public:
   3983   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
   3984 
   3985   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   3986     // This is recovered from gcc output.
   3987     return 1; // r1 is the dedicated stack pointer
   3988   }
   3989 
   3990   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   3991                                llvm::Value *Address) const override;
   3992 };
   3993 
   3994 }
   3995 
   3996 // Return true if the ABI requires Ty to be passed sign- or zero-
   3997 // extended to 64 bits.
   3998 bool
   3999 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
   4000   // Treat an enum type as its underlying type.
   4001   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   4002     Ty = EnumTy->getDecl()->getIntegerType();
   4003 
   4004   // Promotable integer types are required to be promoted by the ABI.
   4005   if (Ty->isPromotableIntegerType())
   4006     return true;
   4007 
   4008   // In addition to the usual promotable integer types, we also need to
   4009   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
   4010   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   4011     switch (BT->getKind()) {
   4012     case BuiltinType::Int:
   4013     case BuiltinType::UInt:
   4014       return true;
   4015     default:
   4016       break;
   4017     }
   4018 
   4019   return false;
   4020 }
   4021 
   4022 /// isAlignedParamType - Determine whether a type requires 16-byte or
   4023 /// higher alignment in the parameter area.  Always returns at least 8.
   4024 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
   4025   // Complex types are passed just like their elements.
   4026   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
   4027     Ty = CTy->getElementType();
   4028 
   4029   // Only vector types of size 16 bytes need alignment (larger types are
   4030   // passed via reference, smaller types are not aligned).
   4031   if (IsQPXVectorTy(Ty)) {
   4032     if (getContext().getTypeSize(Ty) > 128)
   4033       return CharUnits::fromQuantity(32);
   4034 
   4035     return CharUnits::fromQuantity(16);
   4036   } else if (Ty->isVectorType()) {
   4037     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
   4038   }
   4039 
   4040   // For single-element float/vector structs, we consider the whole type
   4041   // to have the same alignment requirements as its single element.
   4042   const Type *AlignAsType = nullptr;
   4043   const Type *EltType = isSingleElementStruct(Ty, getContext());
   4044   if (EltType) {
   4045     const BuiltinType *BT = EltType->getAs<BuiltinType>();
   4046     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
   4047          getContext().getTypeSize(EltType) == 128) ||
   4048         (BT && BT->isFloatingPoint()))
   4049       AlignAsType = EltType;
   4050   }
   4051 
   4052   // Likewise for ELFv2 homogeneous aggregates.
   4053   const Type *Base = nullptr;
   4054   uint64_t Members = 0;
   4055   if (!AlignAsType && Kind == ELFv2 &&
   4056       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
   4057     AlignAsType = Base;
   4058 
   4059   // With special case aggregates, only vector base types need alignment.
   4060   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
   4061     if (getContext().getTypeSize(AlignAsType) > 128)
   4062       return CharUnits::fromQuantity(32);
   4063 
   4064     return CharUnits::fromQuantity(16);
   4065   } else if (AlignAsType) {
   4066     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
   4067   }
   4068 
   4069   // Otherwise, we only need alignment for any aggregate type that
   4070   // has an alignment requirement of >= 16 bytes.
   4071   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
   4072     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
   4073       return CharUnits::fromQuantity(32);
   4074     return CharUnits::fromQuantity(16);
   4075   }
   4076 
   4077   return CharUnits::fromQuantity(8);
   4078 }
   4079 
   4080 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
   4081 /// aggregate.  Base is set to the base element type, and Members is set
   4082 /// to the number of base elements.
   4083 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
   4084                                      uint64_t &Members) const {
   4085   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   4086     uint64_t NElements = AT->getSize().getZExtValue();
   4087     if (NElements == 0)
   4088       return false;
   4089     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
   4090       return false;
   4091     Members *= NElements;
   4092   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
   4093     const RecordDecl *RD = RT->getDecl();
   4094     if (RD->hasFlexibleArrayMember())
   4095       return false;
   4096 
   4097     Members = 0;
   4098 
   4099     // If this is a C++ record, check the bases first.
   4100     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
   4101       for (const auto &I : CXXRD->bases()) {
   4102         // Ignore empty records.
   4103         if (isEmptyRecord(getContext(), I.getType(), true))
   4104           continue;
   4105 
   4106         uint64_t FldMembers;
   4107         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
   4108           return false;
   4109 
   4110         Members += FldMembers;
   4111       }
   4112     }
   4113 
   4114     for (const auto *FD : RD->fields()) {
   4115       // Ignore (non-zero arrays of) empty records.
   4116       QualType FT = FD->getType();
   4117       while (const ConstantArrayType *AT =
   4118              getContext().getAsConstantArrayType(FT)) {
   4119         if (AT->getSize().getZExtValue() == 0)
   4120           return false;
   4121         FT = AT->getElementType();
   4122       }
   4123       if (isEmptyRecord(getContext(), FT, true))
   4124         continue;
   4125 
   4126       // For compatibility with GCC, ignore empty bitfields in C++ mode.
   4127       if (getContext().getLangOpts().CPlusPlus &&
   4128           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
   4129         continue;
   4130 
   4131       uint64_t FldMembers;
   4132       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
   4133         return false;
   4134 
   4135       Members = (RD->isUnion() ?
   4136                  std::max(Members, FldMembers) : Members + FldMembers);
   4137     }
   4138 
   4139     if (!Base)
   4140       return false;
   4141 
   4142     // Ensure there is no padding.
   4143     if (getContext().getTypeSize(Base) * Members !=
   4144         getContext().getTypeSize(Ty))
   4145       return false;
   4146   } else {
   4147     Members = 1;
   4148     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
   4149       Members = 2;
   4150       Ty = CT->getElementType();
   4151     }
   4152 
   4153     // Most ABIs only support float, double, and some vector type widths.
   4154     if (!isHomogeneousAggregateBaseType(Ty))
   4155       return false;
   4156 
   4157     // The base type must be the same for all members.  Types that
   4158     // agree in both total size and mode (float vs. vector) are
   4159     // treated as being equivalent here.
   4160     const Type *TyPtr = Ty.getTypePtr();
   4161     if (!Base) {
   4162       Base = TyPtr;
   4163       // If it's a non-power-of-2 vector, its size is already a power-of-2,
   4164       // so make sure to widen it explicitly.
   4165       if (const VectorType *VT = Base->getAs<VectorType>()) {
   4166         QualType EltTy = VT->getElementType();
   4167         unsigned NumElements =
   4168             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
   4169         Base = getContext()
   4170                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
   4171                    .getTypePtr();
   4172       }
   4173     }
   4174 
   4175     if (Base->isVectorType() != TyPtr->isVectorType() ||
   4176         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
   4177       return false;
   4178   }
   4179   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
   4180 }
   4181 
   4182 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
   4183   // Homogeneous aggregates for ELFv2 must have base types of float,
   4184   // double, long double, or 128-bit vectors.
   4185   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   4186     if (BT->getKind() == BuiltinType::Float ||
   4187         BT->getKind() == BuiltinType::Double ||
   4188         BT->getKind() == BuiltinType::LongDouble)
   4189       return true;
   4190   }
   4191   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   4192     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
   4193       return true;
   4194   }
   4195   return false;
   4196 }
   4197 
   4198 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
   4199     const Type *Base, uint64_t Members) const {
   4200   // Vector types require one register, floating point types require one
   4201   // or two registers depending on their size.
   4202   uint32_t NumRegs =
   4203       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
   4204 
   4205   // Homogeneous Aggregates may occupy at most 8 registers.
   4206   return Members * NumRegs <= 8;
   4207 }
   4208 
   4209 ABIArgInfo
   4210 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
   4211   Ty = useFirstFieldIfTransparentUnion(Ty);
   4212 
   4213   if (Ty->isAnyComplexType())
   4214     return ABIArgInfo::getDirect();
   4215 
   4216   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
   4217   // or via reference (larger than 16 bytes).
   4218   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
   4219     uint64_t Size = getContext().getTypeSize(Ty);
   4220     if (Size > 128)
   4221       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   4222     else if (Size < 128) {
   4223       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
   4224       return ABIArgInfo::getDirect(CoerceTy);
   4225     }
   4226   }
   4227 
   4228   if (isAggregateTypeForABI(Ty)) {
   4229     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   4230       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   4231 
   4232     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
   4233     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
   4234 
   4235     // ELFv2 homogeneous aggregates are passed as array types.
   4236     const Type *Base = nullptr;
   4237     uint64_t Members = 0;
   4238     if (Kind == ELFv2 &&
   4239         isHomogeneousAggregate(Ty, Base, Members)) {
   4240       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
   4241       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
   4242       return ABIArgInfo::getDirect(CoerceTy);
   4243     }
   4244 
   4245     // If an aggregate may end up fully in registers, we do not
   4246     // use the ByVal method, but pass the aggregate as array.
   4247     // This is usually beneficial since we avoid forcing the
   4248     // back-end to store the argument to memory.
   4249     uint64_t Bits = getContext().getTypeSize(Ty);
   4250     if (Bits > 0 && Bits <= 8 * GPRBits) {
   4251       llvm::Type *CoerceTy;
   4252 
   4253       // Types up to 8 bytes are passed as integer type (which will be
   4254       // properly aligned in the argument save area doubleword).
   4255       if (Bits <= GPRBits)
   4256         CoerceTy =
   4257             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
   4258       // Larger types are passed as arrays, with the base type selected
   4259       // according to the required alignment in the save area.
   4260       else {
   4261         uint64_t RegBits = ABIAlign * 8;
   4262         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
   4263         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
   4264         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
   4265       }
   4266 
   4267       return ABIArgInfo::getDirect(CoerceTy);
   4268     }
   4269 
   4270     // All other aggregates are passed ByVal.
   4271     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
   4272                                    /*ByVal=*/true,
   4273                                    /*Realign=*/TyAlign > ABIAlign);
   4274   }
   4275 
   4276   return (isPromotableTypeForABI(Ty) ?
   4277           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   4278 }
   4279 
   4280 ABIArgInfo
   4281 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
   4282   if (RetTy->isVoidType())
   4283     return ABIArgInfo::getIgnore();
   4284 
   4285   if (RetTy->isAnyComplexType())
   4286     return ABIArgInfo::getDirect();
   4287 
   4288   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
   4289   // or via reference (larger than 16 bytes).
   4290   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
   4291     uint64_t Size = getContext().getTypeSize(RetTy);
   4292     if (Size > 128)
   4293       return getNaturalAlignIndirect(RetTy);
   4294     else if (Size < 128) {
   4295       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
   4296       return ABIArgInfo::getDirect(CoerceTy);
   4297     }
   4298   }
   4299 
   4300   if (isAggregateTypeForABI(RetTy)) {
   4301     // ELFv2 homogeneous aggregates are returned as array types.
   4302     const Type *Base = nullptr;
   4303     uint64_t Members = 0;
   4304     if (Kind == ELFv2 &&
   4305         isHomogeneousAggregate(RetTy, Base, Members)) {
   4306       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
   4307       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
   4308       return ABIArgInfo::getDirect(CoerceTy);
   4309     }
   4310 
   4311     // ELFv2 small aggregates are returned in up to two registers.
   4312     uint64_t Bits = getContext().getTypeSize(RetTy);
   4313     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
   4314       if (Bits == 0)
   4315         return ABIArgInfo::getIgnore();
   4316 
   4317       llvm::Type *CoerceTy;
   4318       if (Bits > GPRBits) {
   4319         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
   4320         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
   4321       } else
   4322         CoerceTy =
   4323             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
   4324       return ABIArgInfo::getDirect(CoerceTy);
   4325     }
   4326 
   4327     // All other aggregates are returned indirectly.
   4328     return getNaturalAlignIndirect(RetTy);
   4329   }
   4330 
   4331   return (isPromotableTypeForABI(RetTy) ?
   4332           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   4333 }
   4334 
   4335 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
   4336 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   4337                                       QualType Ty) const {
   4338   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
   4339   TypeInfo.second = getParamTypeAlignment(Ty);
   4340 
   4341   CharUnits SlotSize = CharUnits::fromQuantity(8);
   4342 
   4343   // If we have a complex type and the base type is smaller than 8 bytes,
   4344   // the ABI calls for the real and imaginary parts to be right-adjusted
   4345   // in separate doublewords.  However, Clang expects us to produce a
   4346   // pointer to a structure with the two parts packed tightly.  So generate
   4347   // loads of the real and imaginary parts relative to the va_list pointer,
   4348   // and store them to a temporary structure.
   4349   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
   4350     CharUnits EltSize = TypeInfo.first / 2;
   4351     if (EltSize < SlotSize) {
   4352       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
   4353                                             SlotSize * 2, SlotSize,
   4354                                             SlotSize, /*AllowHigher*/ true);
   4355 
   4356       Address RealAddr = Addr;
   4357       Address ImagAddr = RealAddr;
   4358       if (CGF.CGM.getDataLayout().isBigEndian()) {
   4359         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
   4360                                                           SlotSize - EltSize);
   4361         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
   4362                                                       2 * SlotSize - EltSize);
   4363       } else {
   4364         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
   4365       }
   4366 
   4367       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
   4368       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
   4369       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
   4370       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
   4371       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
   4372 
   4373       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
   4374       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
   4375                              /*init*/ true);
   4376       return Temp;
   4377     }
   4378   }
   4379 
   4380   // Otherwise, just use the general rule.
   4381   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
   4382                           TypeInfo, SlotSize, /*AllowHigher*/ true);
   4383 }
   4384 
   4385 static bool
   4386 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   4387                               llvm::Value *Address) {
   4388   // This is calculated from the LLVM and GCC tables and verified
   4389   // against gcc output.  AFAIK all ABIs use the same encoding.
   4390 
   4391   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   4392 
   4393   llvm::IntegerType *i8 = CGF.Int8Ty;
   4394   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   4395   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
   4396   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
   4397 
   4398   // 0-31: r0-31, the 8-byte general-purpose registers
   4399   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
   4400 
   4401   // 32-63: fp0-31, the 8-byte floating-point registers
   4402   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
   4403 
   4404   // 64-76 are various 4-byte special-purpose registers:
   4405   // 64: mq
   4406   // 65: lr
   4407   // 66: ctr
   4408   // 67: ap
   4409   // 68-75 cr0-7
   4410   // 76: xer
   4411   AssignToArrayRange(Builder, Address, Four8, 64, 76);
   4412 
   4413   // 77-108: v0-31, the 16-byte vector registers
   4414   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
   4415 
   4416   // 109: vrsave
   4417   // 110: vscr
   4418   // 111: spe_acc
   4419   // 112: spefscr
   4420   // 113: sfp
   4421   AssignToArrayRange(Builder, Address, Four8, 109, 113);
   4422 
   4423   return false;
   4424 }
   4425 
   4426 bool
   4427 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
   4428   CodeGen::CodeGenFunction &CGF,
   4429   llvm::Value *Address) const {
   4430 
   4431   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
   4432 }
   4433 
   4434 bool
   4435 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   4436                                                 llvm::Value *Address) const {
   4437 
   4438   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
   4439 }
   4440 
   4441 //===----------------------------------------------------------------------===//
   4442 // AArch64 ABI Implementation
   4443 //===----------------------------------------------------------------------===//
   4444 
   4445 namespace {
   4446 
   4447 class AArch64ABIInfo : public SwiftABIInfo {
   4448 public:
   4449   enum ABIKind {
   4450     AAPCS = 0,
   4451     DarwinPCS
   4452   };
   4453 
   4454 private:
   4455   ABIKind Kind;
   4456 
   4457 public:
   4458   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
   4459     : SwiftABIInfo(CGT), Kind(Kind) {}
   4460 
   4461 private:
   4462   ABIKind getABIKind() const { return Kind; }
   4463   bool isDarwinPCS() const { return Kind == DarwinPCS; }
   4464 
   4465   ABIArgInfo classifyReturnType(QualType RetTy) const;
   4466   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   4467   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
   4468   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
   4469                                          uint64_t Members) const override;
   4470 
   4471   bool isIllegalVectorType(QualType Ty) const;
   4472 
   4473   void computeInfo(CGFunctionInfo &FI) const override {
   4474     if (!getCXXABI().classifyReturnType(FI))
   4475       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   4476 
   4477     for (auto &it : FI.arguments())
   4478       it.info = classifyArgumentType(it.type);
   4479   }
   4480 
   4481   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
   4482                           CodeGenFunction &CGF) const;
   4483 
   4484   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
   4485                          CodeGenFunction &CGF) const;
   4486 
   4487   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   4488                     QualType Ty) const override {
   4489     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
   4490                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
   4491   }
   4492 
   4493   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
   4494                                     ArrayRef<llvm::Type*> scalars,
   4495                                     bool asReturnValue) const override {
   4496     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
   4497   }
   4498 };
   4499 
   4500 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
   4501 public:
   4502   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
   4503       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
   4504 
   4505   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
   4506     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
   4507   }
   4508 
   4509   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   4510     return 31;
   4511   }
   4512 
   4513   bool doesReturnSlotInterfereWithArgs() const override { return false; }
   4514 };
   4515 }
   4516 
   4517 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
   4518   Ty = useFirstFieldIfTransparentUnion(Ty);
   4519 
   4520   // Handle illegal vector types here.
   4521   if (isIllegalVectorType(Ty)) {
   4522     uint64_t Size = getContext().getTypeSize(Ty);
   4523     // Android promotes <2 x i8> to i16, not i32
   4524     if (isAndroid() && (Size <= 16)) {
   4525       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
   4526       return ABIArgInfo::getDirect(ResType);
   4527     }
   4528     if (Size <= 32) {
   4529       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
   4530       return ABIArgInfo::getDirect(ResType);
   4531     }
   4532     if (Size == 64) {
   4533       llvm::Type *ResType =
   4534           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
   4535       return ABIArgInfo::getDirect(ResType);
   4536     }
   4537     if (Size == 128) {
   4538       llvm::Type *ResType =
   4539           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
   4540       return ABIArgInfo::getDirect(ResType);
   4541     }
   4542     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   4543   }
   4544 
   4545   if (!isAggregateTypeForABI(Ty)) {
   4546     // Treat an enum type as its underlying type.
   4547     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   4548       Ty = EnumTy->getDecl()->getIntegerType();
   4549 
   4550     return (Ty->isPromotableIntegerType() && isDarwinPCS()
   4551                 ? ABIArgInfo::getExtend()
   4552                 : ABIArgInfo::getDirect());
   4553   }
   4554 
   4555   // Structures with either a non-trivial destructor or a non-trivial
   4556   // copy constructor are always indirect.
   4557   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
   4558     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
   4559                                      CGCXXABI::RAA_DirectInMemory);
   4560   }
   4561 
   4562   // Empty records are always ignored on Darwin, but actually passed in C++ mode
   4563   // elsewhere for GNU compatibility.
   4564   if (isEmptyRecord(getContext(), Ty, true)) {
   4565     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
   4566       return ABIArgInfo::getIgnore();
   4567 
   4568     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   4569   }
   4570 
   4571   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
   4572   const Type *Base = nullptr;
   4573   uint64_t Members = 0;
   4574   if (isHomogeneousAggregate(Ty, Base, Members)) {
   4575     return ABIArgInfo::getDirect(
   4576         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
   4577   }
   4578 
   4579   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
   4580   uint64_t Size = getContext().getTypeSize(Ty);
   4581   if (Size <= 128) {
   4582     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
   4583     // same size and alignment.
   4584     if (getTarget().isRenderScriptTarget()) {
   4585       return coerceToIntArray(Ty, getContext(), getVMContext());
   4586     }
   4587     unsigned Alignment = getContext().getTypeAlign(Ty);
   4588     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
   4589 
   4590     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
   4591     // For aggregates with 16-byte alignment, we use i128.
   4592     if (Alignment < 128 && Size == 128) {
   4593       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
   4594       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
   4595     }
   4596     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
   4597   }
   4598 
   4599   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   4600 }
   4601 
   4602 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
   4603   if (RetTy->isVoidType())
   4604     return ABIArgInfo::getIgnore();
   4605 
   4606   // Large vector types should be returned via memory.
   4607   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
   4608     return getNaturalAlignIndirect(RetTy);
   4609 
   4610   if (!isAggregateTypeForABI(RetTy)) {
   4611     // Treat an enum type as its underlying type.
   4612     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   4613       RetTy = EnumTy->getDecl()->getIntegerType();
   4614 
   4615     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
   4616                 ? ABIArgInfo::getExtend()
   4617                 : ABIArgInfo::getDirect());
   4618   }
   4619 
   4620   if (isEmptyRecord(getContext(), RetTy, true))
   4621     return ABIArgInfo::getIgnore();
   4622 
   4623   const Type *Base = nullptr;
   4624   uint64_t Members = 0;
   4625   if (isHomogeneousAggregate(RetTy, Base, Members))
   4626     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
   4627     return ABIArgInfo::getDirect();
   4628 
   4629   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
   4630   uint64_t Size = getContext().getTypeSize(RetTy);
   4631   if (Size <= 128) {
   4632     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
   4633     // same size and alignment.
   4634     if (getTarget().isRenderScriptTarget()) {
   4635       return coerceToIntArray(RetTy, getContext(), getVMContext());
   4636     }
   4637     unsigned Alignment = getContext().getTypeAlign(RetTy);
   4638     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
   4639 
   4640     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
   4641     // For aggregates with 16-byte alignment, we use i128.
   4642     if (Alignment < 128 && Size == 128) {
   4643       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
   4644       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
   4645     }
   4646     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
   4647   }
   4648 
   4649   return getNaturalAlignIndirect(RetTy);
   4650 }
   4651 
   4652 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
   4653 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
   4654   if (const VectorType *VT = Ty->getAs<VectorType>()) {
   4655     // Check whether VT is legal.
   4656     unsigned NumElements = VT->getNumElements();
   4657     uint64_t Size = getContext().getTypeSize(VT);
   4658     // NumElements should be power of 2.
   4659     if (!llvm::isPowerOf2_32(NumElements))
   4660       return true;
   4661     return Size != 64 && (Size != 128 || NumElements == 1);
   4662   }
   4663   return false;
   4664 }
   4665 
   4666 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
   4667   // Homogeneous aggregates for AAPCS64 must have base types of a floating
   4668   // point type or a short-vector type. This is the same as the 32-bit ABI,
   4669   // but with the difference that any floating-point type is allowed,
   4670   // including __fp16.
   4671   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   4672     if (BT->isFloatingPoint())
   4673       return true;
   4674   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
   4675     unsigned VecSize = getContext().getTypeSize(VT);
   4676     if (VecSize == 64 || VecSize == 128)
   4677       return true;
   4678   }
   4679   return false;
   4680 }
   4681 
   4682 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
   4683                                                        uint64_t Members) const {
   4684   return Members <= 4;
   4685 }
   4686 
   4687 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
   4688                                             QualType Ty,
   4689                                             CodeGenFunction &CGF) const {
   4690   ABIArgInfo AI = classifyArgumentType(Ty);
   4691   bool IsIndirect = AI.isIndirect();
   4692 
   4693   llvm::Type *BaseTy = CGF.ConvertType(Ty);
   4694   if (IsIndirect)
   4695     BaseTy = llvm::PointerType::getUnqual(BaseTy);
   4696   else if (AI.getCoerceToType())
   4697     BaseTy = AI.getCoerceToType();
   4698 
   4699   unsigned NumRegs = 1;
   4700   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
   4701     BaseTy = ArrTy->getElementType();
   4702     NumRegs = ArrTy->getNumElements();
   4703   }
   4704   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
   4705 
   4706   // The AArch64 va_list type and handling is specified in the Procedure Call
   4707   // Standard, section B.4:
   4708   //
   4709   // struct {
   4710   //   void *__stack;
   4711   //   void *__gr_top;
   4712   //   void *__vr_top;
   4713   //   int __gr_offs;
   4714   //   int __vr_offs;
   4715   // };
   4716 
   4717   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
   4718   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
   4719   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
   4720   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
   4721 
   4722   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   4723   CharUnits TyAlign = TyInfo.second;
   4724 
   4725   Address reg_offs_p = Address::invalid();
   4726   llvm::Value *reg_offs = nullptr;
   4727   int reg_top_index;
   4728   CharUnits reg_top_offset;
   4729   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
   4730   if (!IsFPR) {
   4731     // 3 is the field number of __gr_offs
   4732     reg_offs_p =
   4733         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
   4734                                     "gr_offs_p");
   4735     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
   4736     reg_top_index = 1; // field number for __gr_top
   4737     reg_top_offset = CharUnits::fromQuantity(8);
   4738     RegSize = llvm::alignTo(RegSize, 8);
   4739   } else {
   4740     // 4 is the field number of __vr_offs.
   4741     reg_offs_p =
   4742         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
   4743                                     "vr_offs_p");
   4744     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
   4745     reg_top_index = 2; // field number for __vr_top
   4746     reg_top_offset = CharUnits::fromQuantity(16);
   4747     RegSize = 16 * NumRegs;
   4748   }
   4749 
   4750   //=======================================
   4751   // Find out where argument was passed
   4752   //=======================================
   4753 
   4754   // If reg_offs >= 0 we're already using the stack for this type of
   4755   // argument. We don't want to keep updating reg_offs (in case it overflows,
   4756   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
   4757   // whatever they get).
   4758   llvm::Value *UsingStack = nullptr;
   4759   UsingStack = CGF.Builder.CreateICmpSGE(
   4760       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
   4761 
   4762   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
   4763 
   4764   // Otherwise, at least some kind of argument could go in these registers, the
   4765   // question is whether this particular type is too big.
   4766   CGF.EmitBlock(MaybeRegBlock);
   4767 
   4768   // Integer arguments may need to correct register alignment (for example a
   4769   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
   4770   // align __gr_offs to calculate the potential address.
   4771   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
   4772     int Align = TyAlign.getQuantity();
   4773 
   4774     reg_offs = CGF.Builder.CreateAdd(
   4775         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
   4776         "align_regoffs");
   4777     reg_offs = CGF.Builder.CreateAnd(
   4778         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
   4779         "aligned_regoffs");
   4780   }
   4781 
   4782   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
   4783   // The fact that this is done unconditionally reflects the fact that
   4784   // allocating an argument to the stack also uses up all the remaining
   4785   // registers of the appropriate kind.
   4786   llvm::Value *NewOffset = nullptr;
   4787   NewOffset = CGF.Builder.CreateAdd(
   4788       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
   4789   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
   4790 
   4791   // Now we're in a position to decide whether this argument really was in
   4792   // registers or not.
   4793   llvm::Value *InRegs = nullptr;
   4794   InRegs = CGF.Builder.CreateICmpSLE(
   4795       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
   4796 
   4797   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
   4798 
   4799   //=======================================
   4800   // Argument was in registers
   4801   //=======================================
   4802 
   4803   // Now we emit the code for if the argument was originally passed in
   4804   // registers. First start the appropriate block:
   4805   CGF.EmitBlock(InRegBlock);
   4806 
   4807   llvm::Value *reg_top = nullptr;
   4808   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
   4809                                                   reg_top_offset, "reg_top_p");
   4810   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
   4811   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
   4812                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
   4813   Address RegAddr = Address::invalid();
   4814   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
   4815 
   4816   if (IsIndirect) {
   4817     // If it's been passed indirectly (actually a struct), whatever we find from
   4818     // stored registers or on the stack will actually be a struct **.
   4819     MemTy = llvm::PointerType::getUnqual(MemTy);
   4820   }
   4821 
   4822   const Type *Base = nullptr;
   4823   uint64_t NumMembers = 0;
   4824   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
   4825   if (IsHFA && NumMembers > 1) {
   4826     // Homogeneous aggregates passed in registers will have their elements split
   4827     // and stored 16-bytes apart regardless of size (they're notionally in qN,
   4828     // qN+1, ...). We reload and store into a temporary local variable
   4829     // contiguously.
   4830     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
   4831     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
   4832     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
   4833     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
   4834     Address Tmp = CGF.CreateTempAlloca(HFATy,
   4835                                        std::max(TyAlign, BaseTyInfo.second));
   4836 
   4837     // On big-endian platforms, the value will be right-aligned in its slot.
   4838     int Offset = 0;
   4839     if (CGF.CGM.getDataLayout().isBigEndian() &&
   4840         BaseTyInfo.first.getQuantity() < 16)
   4841       Offset = 16 - BaseTyInfo.first.getQuantity();
   4842 
   4843     for (unsigned i = 0; i < NumMembers; ++i) {
   4844       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
   4845       Address LoadAddr =
   4846         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
   4847       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
   4848 
   4849       Address StoreAddr =
   4850         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
   4851 
   4852       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
   4853       CGF.Builder.CreateStore(Elem, StoreAddr);
   4854     }
   4855 
   4856     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
   4857   } else {
   4858     // Otherwise the object is contiguous in memory.
   4859 
   4860     // It might be right-aligned in its slot.
   4861     CharUnits SlotSize = BaseAddr.getAlignment();
   4862     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
   4863         (IsHFA || !isAggregateTypeForABI(Ty)) &&
   4864         TyInfo.first < SlotSize) {
   4865       CharUnits Offset = SlotSize - TyInfo.first;
   4866       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
   4867     }
   4868 
   4869     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
   4870   }
   4871 
   4872   CGF.EmitBranch(ContBlock);
   4873 
   4874   //=======================================
   4875   // Argument was on the stack
   4876   //=======================================
   4877   CGF.EmitBlock(OnStackBlock);
   4878 
   4879   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
   4880                                                 CharUnits::Zero(), "stack_p");
   4881   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
   4882 
   4883   // Again, stack arguments may need realignment. In this case both integer and
   4884   // floating-point ones might be affected.
   4885   if (!IsIndirect && TyAlign.getQuantity() > 8) {
   4886     int Align = TyAlign.getQuantity();
   4887 
   4888     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
   4889 
   4890     OnStackPtr = CGF.Builder.CreateAdd(
   4891         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
   4892         "align_stack");
   4893     OnStackPtr = CGF.Builder.CreateAnd(
   4894         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
   4895         "align_stack");
   4896 
   4897     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
   4898   }
   4899   Address OnStackAddr(OnStackPtr,
   4900                       std::max(CharUnits::fromQuantity(8), TyAlign));
   4901 
   4902   // All stack slots are multiples of 8 bytes.
   4903   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
   4904   CharUnits StackSize;
   4905   if (IsIndirect)
   4906     StackSize = StackSlotSize;
   4907   else
   4908     StackSize = TyInfo.first.alignTo(StackSlotSize);
   4909 
   4910   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
   4911   llvm::Value *NewStack =
   4912       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
   4913 
   4914   // Write the new value of __stack for the next call to va_arg
   4915   CGF.Builder.CreateStore(NewStack, stack_p);
   4916 
   4917   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
   4918       TyInfo.first < StackSlotSize) {
   4919     CharUnits Offset = StackSlotSize - TyInfo.first;
   4920     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
   4921   }
   4922 
   4923   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
   4924 
   4925   CGF.EmitBranch(ContBlock);
   4926 
   4927   //=======================================
   4928   // Tidy up
   4929   //=======================================
   4930   CGF.EmitBlock(ContBlock);
   4931 
   4932   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
   4933                                  OnStackAddr, OnStackBlock, "vaargs.addr");
   4934 
   4935   if (IsIndirect)
   4936     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
   4937                    TyInfo.second);
   4938 
   4939   return ResAddr;
   4940 }
   4941 
   4942 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
   4943                                         CodeGenFunction &CGF) const {
   4944   // The backend's lowering doesn't support va_arg for aggregates or
   4945   // illegal vector types.  Lower VAArg here for these cases and use
   4946   // the LLVM va_arg instruction for everything else.
   4947   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
   4948     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
   4949 
   4950   CharUnits SlotSize = CharUnits::fromQuantity(8);
   4951 
   4952   // Empty records are ignored for parameter passing purposes.
   4953   if (isEmptyRecord(getContext(), Ty, true)) {
   4954     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
   4955     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
   4956     return Addr;
   4957   }
   4958 
   4959   // The size of the actual thing passed, which might end up just
   4960   // being a pointer for indirect types.
   4961   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   4962 
   4963   // Arguments bigger than 16 bytes which aren't homogeneous
   4964   // aggregates should be passed indirectly.
   4965   bool IsIndirect = false;
   4966   if (TyInfo.first.getQuantity() > 16) {
   4967     const Type *Base = nullptr;
   4968     uint64_t Members = 0;
   4969     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
   4970   }
   4971 
   4972   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
   4973                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
   4974 }
   4975 
   4976 //===----------------------------------------------------------------------===//
   4977 // ARM ABI Implementation
   4978 //===----------------------------------------------------------------------===//
   4979 
   4980 namespace {
   4981 
   4982 class ARMABIInfo : public SwiftABIInfo {
   4983 public:
   4984   enum ABIKind {
   4985     APCS = 0,
   4986     AAPCS = 1,
   4987     AAPCS_VFP = 2,
   4988     AAPCS16_VFP = 3,
   4989   };
   4990 
   4991 private:
   4992   ABIKind Kind;
   4993 
   4994 public:
   4995   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
   4996       : SwiftABIInfo(CGT), Kind(_Kind) {
   4997     setCCs();
   4998   }
   4999 
   5000   bool isEABI() const {
   5001     switch (getTarget().getTriple().getEnvironment()) {
   5002     case llvm::Triple::Android:
   5003     case llvm::Triple::EABI:
   5004     case llvm::Triple::EABIHF:
   5005     case llvm::Triple::GNUEABI:
   5006     case llvm::Triple::GNUEABIHF:
   5007     case llvm::Triple::MuslEABI:
   5008     case llvm::Triple::MuslEABIHF:
   5009       return true;
   5010     default:
   5011       return false;
   5012     }
   5013   }
   5014 
   5015   bool isEABIHF() const {
   5016     switch (getTarget().getTriple().getEnvironment()) {
   5017     case llvm::Triple::EABIHF:
   5018     case llvm::Triple::GNUEABIHF:
   5019     case llvm::Triple::MuslEABIHF:
   5020       return true;
   5021     default:
   5022       return false;
   5023     }
   5024   }
   5025 
   5026   ABIKind getABIKind() const { return Kind; }
   5027 
   5028 private:
   5029   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
   5030   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
   5031   bool isIllegalVectorType(QualType Ty) const;
   5032 
   5033   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
   5034   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
   5035                                          uint64_t Members) const override;
   5036 
   5037   void computeInfo(CGFunctionInfo &FI) const override;
   5038 
   5039   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5040                     QualType Ty) const override;
   5041 
   5042   llvm::CallingConv::ID getLLVMDefaultCC() const;
   5043   llvm::CallingConv::ID getABIDefaultCC() const;
   5044   void setCCs();
   5045 
   5046   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
   5047                                     ArrayRef<llvm::Type*> scalars,
   5048                                     bool asReturnValue) const override {
   5049     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
   5050   }
   5051 };
   5052 
   5053 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
   5054 public:
   5055   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
   5056     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
   5057 
   5058   const ARMABIInfo &getABIInfo() const {
   5059     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
   5060   }
   5061 
   5062   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   5063     return 13;
   5064   }
   5065 
   5066   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
   5067     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
   5068   }
   5069 
   5070   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   5071                                llvm::Value *Address) const override {
   5072     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
   5073 
   5074     // 0-15 are the 16 integer registers.
   5075     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
   5076     return false;
   5077   }
   5078 
   5079   unsigned getSizeOfUnwindException() const override {
   5080     if (getABIInfo().isEABI()) return 88;
   5081     return TargetCodeGenInfo::getSizeOfUnwindException();
   5082   }
   5083 
   5084   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   5085                            CodeGen::CodeGenModule &CGM) const override {
   5086     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   5087     if (!FD)
   5088       return;
   5089 
   5090     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
   5091     if (!Attr)
   5092       return;
   5093 
   5094     const char *Kind;
   5095     switch (Attr->getInterrupt()) {
   5096     case ARMInterruptAttr::Generic: Kind = ""; break;
   5097     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
   5098     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
   5099     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
   5100     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
   5101     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
   5102     }
   5103 
   5104     llvm::Function *Fn = cast<llvm::Function>(GV);
   5105 
   5106     Fn->addFnAttr("interrupt", Kind);
   5107 
   5108     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
   5109     if (ABI == ARMABIInfo::APCS)
   5110       return;
   5111 
   5112     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
   5113     // however this is not necessarily true on taking any interrupt. Instruct
   5114     // the backend to perform a realignment as part of the function prologue.
   5115     llvm::AttrBuilder B;
   5116     B.addStackAlignmentAttr(8);
   5117     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
   5118                       llvm::AttributeSet::get(CGM.getLLVMContext(),
   5119                                               llvm::AttributeSet::FunctionIndex,
   5120                                               B));
   5121   }
   5122 };
   5123 
   5124 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
   5125 public:
   5126   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
   5127       : ARMTargetCodeGenInfo(CGT, K) {}
   5128 
   5129   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   5130                            CodeGen::CodeGenModule &CGM) const override;
   5131 
   5132   void getDependentLibraryOption(llvm::StringRef Lib,
   5133                                  llvm::SmallString<24> &Opt) const override {
   5134     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
   5135   }
   5136 
   5137   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
   5138                                llvm::SmallString<32> &Opt) const override {
   5139     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
   5140   }
   5141 };
   5142 
   5143 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
   5144     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
   5145   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
   5146   addStackProbeSizeTargetAttribute(D, GV, CGM);
   5147 }
   5148 }
   5149 
   5150 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
   5151   if (!getCXXABI().classifyReturnType(FI))
   5152     FI.getReturnInfo() =
   5153         classifyReturnType(FI.getReturnType(), FI.isVariadic());
   5154 
   5155   for (auto &I : FI.arguments())
   5156     I.info = classifyArgumentType(I.type, FI.isVariadic());
   5157 
   5158   // Always honor user-specified calling convention.
   5159   if (FI.getCallingConvention() != llvm::CallingConv::C)
   5160     return;
   5161 
   5162   llvm::CallingConv::ID cc = getRuntimeCC();
   5163   if (cc != llvm::CallingConv::C)
   5164     FI.setEffectiveCallingConvention(cc);
   5165 }
   5166 
   5167 /// Return the default calling convention that LLVM will use.
   5168 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
   5169   // The default calling convention that LLVM will infer.
   5170   if (isEABIHF() || getTarget().getTriple().isWatchABI())
   5171     return llvm::CallingConv::ARM_AAPCS_VFP;
   5172   else if (isEABI())
   5173     return llvm::CallingConv::ARM_AAPCS;
   5174   else
   5175     return llvm::CallingConv::ARM_APCS;
   5176 }
   5177 
   5178 /// Return the calling convention that our ABI would like us to use
   5179 /// as the C calling convention.
   5180 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
   5181   switch (getABIKind()) {
   5182   case APCS: return llvm::CallingConv::ARM_APCS;
   5183   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
   5184   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
   5185   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
   5186   }
   5187   llvm_unreachable("bad ABI kind");
   5188 }
   5189 
   5190 void ARMABIInfo::setCCs() {
   5191   assert(getRuntimeCC() == llvm::CallingConv::C);
   5192 
   5193   // Don't muddy up the IR with a ton of explicit annotations if
   5194   // they'd just match what LLVM will infer from the triple.
   5195   llvm::CallingConv::ID abiCC = getABIDefaultCC();
   5196   if (abiCC != getLLVMDefaultCC())
   5197     RuntimeCC = abiCC;
   5198 
   5199   // AAPCS apparently requires runtime support functions to be soft-float, but
   5200   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
   5201   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
   5202   switch (getABIKind()) {
   5203   case APCS:
   5204   case AAPCS16_VFP:
   5205     if (abiCC != getLLVMDefaultCC())
   5206       BuiltinCC = abiCC;
   5207     break;
   5208   case AAPCS:
   5209   case AAPCS_VFP:
   5210     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
   5211     break;
   5212   }
   5213 }
   5214 
   5215 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
   5216                                             bool isVariadic) const {
   5217   // 6.1.2.1 The following argument types are VFP CPRCs:
   5218   //   A single-precision floating-point type (including promoted
   5219   //   half-precision types); A double-precision floating-point type;
   5220   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
   5221   //   with a Base Type of a single- or double-precision floating-point type,
   5222   //   64-bit containerized vectors or 128-bit containerized vectors with one
   5223   //   to four Elements.
   5224   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
   5225 
   5226   Ty = useFirstFieldIfTransparentUnion(Ty);
   5227 
   5228   // Handle illegal vector types here.
   5229   if (isIllegalVectorType(Ty)) {
   5230     uint64_t Size = getContext().getTypeSize(Ty);
   5231     if (Size <= 32) {
   5232       llvm::Type *ResType =
   5233           llvm::Type::getInt32Ty(getVMContext());
   5234       return ABIArgInfo::getDirect(ResType);
   5235     }
   5236     if (Size == 64) {
   5237       llvm::Type *ResType = llvm::VectorType::get(
   5238           llvm::Type::getInt32Ty(getVMContext()), 2);
   5239       return ABIArgInfo::getDirect(ResType);
   5240     }
   5241     if (Size == 128) {
   5242       llvm::Type *ResType = llvm::VectorType::get(
   5243           llvm::Type::getInt32Ty(getVMContext()), 4);
   5244       return ABIArgInfo::getDirect(ResType);
   5245     }
   5246     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   5247   }
   5248 
   5249   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
   5250   // unspecified. This is not done for OpenCL as it handles the half type
   5251   // natively, and does not need to interwork with AAPCS code.
   5252   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
   5253     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
   5254       llvm::Type::getFloatTy(getVMContext()) :
   5255       llvm::Type::getInt32Ty(getVMContext());
   5256     return ABIArgInfo::getDirect(ResType);
   5257   }
   5258 
   5259   if (!isAggregateTypeForABI(Ty)) {
   5260     // Treat an enum type as its underlying type.
   5261     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
   5262       Ty = EnumTy->getDecl()->getIntegerType();
   5263     }
   5264 
   5265     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
   5266                                           : ABIArgInfo::getDirect());
   5267   }
   5268 
   5269   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
   5270     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   5271   }
   5272 
   5273   // Ignore empty records.
   5274   if (isEmptyRecord(getContext(), Ty, true))
   5275     return ABIArgInfo::getIgnore();
   5276 
   5277   if (IsEffectivelyAAPCS_VFP) {
   5278     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
   5279     // into VFP registers.
   5280     const Type *Base = nullptr;
   5281     uint64_t Members = 0;
   5282     if (isHomogeneousAggregate(Ty, Base, Members)) {
   5283       assert(Base && "Base class should be set for homogeneous aggregate");
   5284       // Base can be a floating-point or a vector.
   5285       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
   5286     }
   5287   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
   5288     // WatchOS does have homogeneous aggregates. Note that we intentionally use
   5289     // this convention even for a variadic function: the backend will use GPRs
   5290     // if needed.
   5291     const Type *Base = nullptr;
   5292     uint64_t Members = 0;
   5293     if (isHomogeneousAggregate(Ty, Base, Members)) {
   5294       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
   5295       llvm::Type *Ty =
   5296         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
   5297       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
   5298     }
   5299   }
   5300 
   5301   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
   5302       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
   5303     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
   5304     // bigger than 128-bits, they get placed in space allocated by the caller,
   5305     // and a pointer is passed.
   5306     return ABIArgInfo::getIndirect(
   5307         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
   5308   }
   5309 
   5310   // Support byval for ARM.
   5311   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
   5312   // most 8-byte. We realign the indirect argument if type alignment is bigger
   5313   // than ABI alignment.
   5314   uint64_t ABIAlign = 4;
   5315   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
   5316   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
   5317        getABIKind() == ARMABIInfo::AAPCS)
   5318     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
   5319 
   5320   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
   5321     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
   5322     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
   5323                                    /*ByVal=*/true,
   5324                                    /*Realign=*/TyAlign > ABIAlign);
   5325   }
   5326 
   5327   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
   5328   // same size and alignment.
   5329   if (getTarget().isRenderScriptTarget()) {
   5330     return coerceToIntArray(Ty, getContext(), getVMContext());
   5331   }
   5332 
   5333   // Otherwise, pass by coercing to a structure of the appropriate size.
   5334   llvm::Type* ElemTy;
   5335   unsigned SizeRegs;
   5336   // FIXME: Try to match the types of the arguments more accurately where
   5337   // we can.
   5338   if (getContext().getTypeAlign(Ty) <= 32) {
   5339     ElemTy = llvm::Type::getInt32Ty(getVMContext());
   5340     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
   5341   } else {
   5342     ElemTy = llvm::Type::getInt64Ty(getVMContext());
   5343     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
   5344   }
   5345 
   5346   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
   5347 }
   5348 
   5349 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
   5350                               llvm::LLVMContext &VMContext) {
   5351   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
   5352   // is called integer-like if its size is less than or equal to one word, and
   5353   // the offset of each of its addressable sub-fields is zero.
   5354 
   5355   uint64_t Size = Context.getTypeSize(Ty);
   5356 
   5357   // Check that the type fits in a word.
   5358   if (Size > 32)
   5359     return false;
   5360 
   5361   // FIXME: Handle vector types!
   5362   if (Ty->isVectorType())
   5363     return false;
   5364 
   5365   // Float types are never treated as "integer like".
   5366   if (Ty->isRealFloatingType())
   5367     return false;
   5368 
   5369   // If this is a builtin or pointer type then it is ok.
   5370   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
   5371     return true;
   5372 
   5373   // Small complex integer types are "integer like".
   5374   if (const ComplexType *CT = Ty->getAs<ComplexType>())
   5375     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
   5376 
   5377   // Single element and zero sized arrays should be allowed, by the definition
   5378   // above, but they are not.
   5379 
   5380   // Otherwise, it must be a record type.
   5381   const RecordType *RT = Ty->getAs<RecordType>();
   5382   if (!RT) return false;
   5383 
   5384   // Ignore records with flexible arrays.
   5385   const RecordDecl *RD = RT->getDecl();
   5386   if (RD->hasFlexibleArrayMember())
   5387     return false;
   5388 
   5389   // Check that all sub-fields are at offset 0, and are themselves "integer
   5390   // like".
   5391   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   5392 
   5393   bool HadField = false;
   5394   unsigned idx = 0;
   5395   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   5396        i != e; ++i, ++idx) {
   5397     const FieldDecl *FD = *i;
   5398 
   5399     // Bit-fields are not addressable, we only need to verify they are "integer
   5400     // like". We still have to disallow a subsequent non-bitfield, for example:
   5401     //   struct { int : 0; int x }
   5402     // is non-integer like according to gcc.
   5403     if (FD->isBitField()) {
   5404       if (!RD->isUnion())
   5405         HadField = true;
   5406 
   5407       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
   5408         return false;
   5409 
   5410       continue;
   5411     }
   5412 
   5413     // Check if this field is at offset 0.
   5414     if (Layout.getFieldOffset(idx) != 0)
   5415       return false;
   5416 
   5417     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
   5418       return false;
   5419 
   5420     // Only allow at most one field in a structure. This doesn't match the
   5421     // wording above, but follows gcc in situations with a field following an
   5422     // empty structure.
   5423     if (!RD->isUnion()) {
   5424       if (HadField)
   5425         return false;
   5426 
   5427       HadField = true;
   5428     }
   5429   }
   5430 
   5431   return true;
   5432 }
   5433 
   5434 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
   5435                                           bool isVariadic) const {
   5436   bool IsEffectivelyAAPCS_VFP =
   5437       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
   5438 
   5439   if (RetTy->isVoidType())
   5440     return ABIArgInfo::getIgnore();
   5441 
   5442   // Large vector types should be returned via memory.
   5443   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
   5444     return getNaturalAlignIndirect(RetTy);
   5445   }
   5446 
   5447   // __fp16 gets returned as if it were an int or float, but with the top 16
   5448   // bits unspecified. This is not done for OpenCL as it handles the half type
   5449   // natively, and does not need to interwork with AAPCS code.
   5450   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
   5451     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
   5452       llvm::Type::getFloatTy(getVMContext()) :
   5453       llvm::Type::getInt32Ty(getVMContext());
   5454     return ABIArgInfo::getDirect(ResType);
   5455   }
   5456 
   5457   if (!isAggregateTypeForABI(RetTy)) {
   5458     // Treat an enum type as its underlying type.
   5459     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   5460       RetTy = EnumTy->getDecl()->getIntegerType();
   5461 
   5462     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
   5463                                             : ABIArgInfo::getDirect();
   5464   }
   5465 
   5466   // Are we following APCS?
   5467   if (getABIKind() == APCS) {
   5468     if (isEmptyRecord(getContext(), RetTy, false))
   5469       return ABIArgInfo::getIgnore();
   5470 
   5471     // Complex types are all returned as packed integers.
   5472     //
   5473     // FIXME: Consider using 2 x vector types if the back end handles them
   5474     // correctly.
   5475     if (RetTy->isAnyComplexType())
   5476       return ABIArgInfo::getDirect(llvm::IntegerType::get(
   5477           getVMContext(), getContext().getTypeSize(RetTy)));
   5478 
   5479     // Integer like structures are returned in r0.
   5480     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
   5481       // Return in the smallest viable integer type.
   5482       uint64_t Size = getContext().getTypeSize(RetTy);
   5483       if (Size <= 8)
   5484         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   5485       if (Size <= 16)
   5486         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   5487       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   5488     }
   5489 
   5490     // Otherwise return in memory.
   5491     return getNaturalAlignIndirect(RetTy);
   5492   }
   5493 
   5494   // Otherwise this is an AAPCS variant.
   5495 
   5496   if (isEmptyRecord(getContext(), RetTy, true))
   5497     return ABIArgInfo::getIgnore();
   5498 
   5499   // Check for homogeneous aggregates with AAPCS-VFP.
   5500   if (IsEffectivelyAAPCS_VFP) {
   5501     const Type *Base = nullptr;
   5502     uint64_t Members = 0;
   5503     if (isHomogeneousAggregate(RetTy, Base, Members)) {
   5504       assert(Base && "Base class should be set for homogeneous aggregate");
   5505       // Homogeneous Aggregates are returned directly.
   5506       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
   5507     }
   5508   }
   5509 
   5510   // Aggregates <= 4 bytes are returned in r0; other aggregates
   5511   // are returned indirectly.
   5512   uint64_t Size = getContext().getTypeSize(RetTy);
   5513   if (Size <= 32) {
   5514     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
   5515     // same size and alignment.
   5516     if (getTarget().isRenderScriptTarget()) {
   5517       return coerceToIntArray(RetTy, getContext(), getVMContext());
   5518     }
   5519     if (getDataLayout().isBigEndian())
   5520       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
   5521       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   5522 
   5523     // Return in the smallest viable integer type.
   5524     if (Size <= 8)
   5525       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   5526     if (Size <= 16)
   5527       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   5528     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   5529   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
   5530     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
   5531     llvm::Type *CoerceTy =
   5532         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
   5533     return ABIArgInfo::getDirect(CoerceTy);
   5534   }
   5535 
   5536   return getNaturalAlignIndirect(RetTy);
   5537 }
   5538 
   5539 /// isIllegalVector - check whether Ty is an illegal vector type.
   5540 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
   5541   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
   5542     if (isAndroid()) {
   5543       // Android shipped using Clang 3.1, which supported a slightly different
   5544       // vector ABI. The primary differences were that 3-element vector types
   5545       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
   5546       // accepts that legacy behavior for Android only.
   5547       // Check whether VT is legal.
   5548       unsigned NumElements = VT->getNumElements();
   5549       // NumElements should be power of 2 or equal to 3.
   5550       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
   5551         return true;
   5552     } else {
   5553       // Check whether VT is legal.
   5554       unsigned NumElements = VT->getNumElements();
   5555       uint64_t Size = getContext().getTypeSize(VT);
   5556       // NumElements should be power of 2.
   5557       if (!llvm::isPowerOf2_32(NumElements))
   5558         return true;
   5559       // Size should be greater than 32 bits.
   5560       return Size <= 32;
   5561     }
   5562   }
   5563   return false;
   5564 }
   5565 
   5566 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
   5567   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
   5568   // double, or 64-bit or 128-bit vectors.
   5569   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
   5570     if (BT->getKind() == BuiltinType::Float ||
   5571         BT->getKind() == BuiltinType::Double ||
   5572         BT->getKind() == BuiltinType::LongDouble)
   5573       return true;
   5574   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
   5575     unsigned VecSize = getContext().getTypeSize(VT);
   5576     if (VecSize == 64 || VecSize == 128)
   5577       return true;
   5578   }
   5579   return false;
   5580 }
   5581 
   5582 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
   5583                                                    uint64_t Members) const {
   5584   return Members <= 4;
   5585 }
   5586 
   5587 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5588                               QualType Ty) const {
   5589   CharUnits SlotSize = CharUnits::fromQuantity(4);
   5590 
   5591   // Empty records are ignored for parameter passing purposes.
   5592   if (isEmptyRecord(getContext(), Ty, true)) {
   5593     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
   5594     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
   5595     return Addr;
   5596   }
   5597 
   5598   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   5599   CharUnits TyAlignForABI = TyInfo.second;
   5600 
   5601   // Use indirect if size of the illegal vector is bigger than 16 bytes.
   5602   bool IsIndirect = false;
   5603   const Type *Base = nullptr;
   5604   uint64_t Members = 0;
   5605   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
   5606     IsIndirect = true;
   5607 
   5608   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
   5609   // allocated by the caller.
   5610   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
   5611              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
   5612              !isHomogeneousAggregate(Ty, Base, Members)) {
   5613     IsIndirect = true;
   5614 
   5615   // Otherwise, bound the type's ABI alignment.
   5616   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
   5617   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
   5618   // Our callers should be prepared to handle an under-aligned address.
   5619   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
   5620              getABIKind() == ARMABIInfo::AAPCS) {
   5621     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
   5622     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
   5623   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
   5624     // ARMv7k allows type alignment up to 16 bytes.
   5625     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
   5626     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
   5627   } else {
   5628     TyAlignForABI = CharUnits::fromQuantity(4);
   5629   }
   5630   TyInfo.second = TyAlignForABI;
   5631 
   5632   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
   5633                           SlotSize, /*AllowHigherAlign*/ true);
   5634 }
   5635 
   5636 //===----------------------------------------------------------------------===//
   5637 // NVPTX ABI Implementation
   5638 //===----------------------------------------------------------------------===//
   5639 
   5640 namespace {
   5641 
   5642 class NVPTXABIInfo : public ABIInfo {
   5643 public:
   5644   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   5645 
   5646   ABIArgInfo classifyReturnType(QualType RetTy) const;
   5647   ABIArgInfo classifyArgumentType(QualType Ty) const;
   5648 
   5649   void computeInfo(CGFunctionInfo &FI) const override;
   5650   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5651                     QualType Ty) const override;
   5652 };
   5653 
   5654 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
   5655 public:
   5656   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
   5657     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
   5658 
   5659   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   5660                            CodeGen::CodeGenModule &M) const override;
   5661 private:
   5662   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
   5663   // resulting MDNode to the nvvm.annotations MDNode.
   5664   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
   5665 };
   5666 
   5667 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
   5668   if (RetTy->isVoidType())
   5669     return ABIArgInfo::getIgnore();
   5670 
   5671   // note: this is different from default ABI
   5672   if (!RetTy->isScalarType())
   5673     return ABIArgInfo::getDirect();
   5674 
   5675   // Treat an enum type as its underlying type.
   5676   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   5677     RetTy = EnumTy->getDecl()->getIntegerType();
   5678 
   5679   return (RetTy->isPromotableIntegerType() ?
   5680           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   5681 }
   5682 
   5683 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
   5684   // Treat an enum type as its underlying type.
   5685   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   5686     Ty = EnumTy->getDecl()->getIntegerType();
   5687 
   5688   // Return aggregates type as indirect by value
   5689   if (isAggregateTypeForABI(Ty))
   5690     return getNaturalAlignIndirect(Ty, /* byval */ true);
   5691 
   5692   return (Ty->isPromotableIntegerType() ?
   5693           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   5694 }
   5695 
   5696 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
   5697   if (!getCXXABI().classifyReturnType(FI))
   5698     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   5699   for (auto &I : FI.arguments())
   5700     I.info = classifyArgumentType(I.type);
   5701 
   5702   // Always honor user-specified calling convention.
   5703   if (FI.getCallingConvention() != llvm::CallingConv::C)
   5704     return;
   5705 
   5706   FI.setEffectiveCallingConvention(getRuntimeCC());
   5707 }
   5708 
   5709 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5710                                 QualType Ty) const {
   5711   llvm_unreachable("NVPTX does not support varargs");
   5712 }
   5713 
   5714 void NVPTXTargetCodeGenInfo::
   5715 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   5716                     CodeGen::CodeGenModule &M) const{
   5717   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   5718   if (!FD) return;
   5719 
   5720   llvm::Function *F = cast<llvm::Function>(GV);
   5721 
   5722   // Perform special handling in OpenCL mode
   5723   if (M.getLangOpts().OpenCL) {
   5724     // Use OpenCL function attributes to check for kernel functions
   5725     // By default, all functions are device functions
   5726     if (FD->hasAttr<OpenCLKernelAttr>()) {
   5727       // OpenCL __kernel functions get kernel metadata
   5728       // Create !{<func-ref>, metadata !"kernel", i32 1} node
   5729       addNVVMMetadata(F, "kernel", 1);
   5730       // And kernel functions are not subject to inlining
   5731       F->addFnAttr(llvm::Attribute::NoInline);
   5732     }
   5733   }
   5734 
   5735   // Perform special handling in CUDA mode.
   5736   if (M.getLangOpts().CUDA) {
   5737     // CUDA __global__ functions get a kernel metadata entry.  Since
   5738     // __global__ functions cannot be called from the device, we do not
   5739     // need to set the noinline attribute.
   5740     if (FD->hasAttr<CUDAGlobalAttr>()) {
   5741       // Create !{<func-ref>, metadata !"kernel", i32 1} node
   5742       addNVVMMetadata(F, "kernel", 1);
   5743     }
   5744     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
   5745       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
   5746       llvm::APSInt MaxThreads(32);
   5747       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
   5748       if (MaxThreads > 0)
   5749         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
   5750 
   5751       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
   5752       // not specified in __launch_bounds__ or if the user specified a 0 value,
   5753       // we don't have to add a PTX directive.
   5754       if (Attr->getMinBlocks()) {
   5755         llvm::APSInt MinBlocks(32);
   5756         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
   5757         if (MinBlocks > 0)
   5758           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
   5759           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
   5760       }
   5761     }
   5762   }
   5763 }
   5764 
   5765 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
   5766                                              int Operand) {
   5767   llvm::Module *M = F->getParent();
   5768   llvm::LLVMContext &Ctx = M->getContext();
   5769 
   5770   // Get "nvvm.annotations" metadata node
   5771   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
   5772 
   5773   llvm::Metadata *MDVals[] = {
   5774       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
   5775       llvm::ConstantAsMetadata::get(
   5776           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
   5777   // Append metadata to nvvm.annotations
   5778   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
   5779 }
   5780 }
   5781 
   5782 //===----------------------------------------------------------------------===//
   5783 // SystemZ ABI Implementation
   5784 //===----------------------------------------------------------------------===//
   5785 
   5786 namespace {
   5787 
   5788 class SystemZABIInfo : public SwiftABIInfo {
   5789   bool HasVector;
   5790 
   5791 public:
   5792   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
   5793     : SwiftABIInfo(CGT), HasVector(HV) {}
   5794 
   5795   bool isPromotableIntegerType(QualType Ty) const;
   5796   bool isCompoundType(QualType Ty) const;
   5797   bool isVectorArgumentType(QualType Ty) const;
   5798   bool isFPArgumentType(QualType Ty) const;
   5799   QualType GetSingleElementType(QualType Ty) const;
   5800 
   5801   ABIArgInfo classifyReturnType(QualType RetTy) const;
   5802   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
   5803 
   5804   void computeInfo(CGFunctionInfo &FI) const override {
   5805     if (!getCXXABI().classifyReturnType(FI))
   5806       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   5807     for (auto &I : FI.arguments())
   5808       I.info = classifyArgumentType(I.type);
   5809   }
   5810 
   5811   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5812                     QualType Ty) const override;
   5813 
   5814   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
   5815                                     ArrayRef<llvm::Type*> scalars,
   5816                                     bool asReturnValue) const override {
   5817     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
   5818   }
   5819 };
   5820 
   5821 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
   5822 public:
   5823   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
   5824     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
   5825 };
   5826 
   5827 }
   5828 
   5829 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
   5830   // Treat an enum type as its underlying type.
   5831   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   5832     Ty = EnumTy->getDecl()->getIntegerType();
   5833 
   5834   // Promotable integer types are required to be promoted by the ABI.
   5835   if (Ty->isPromotableIntegerType())
   5836     return true;
   5837 
   5838   // 32-bit values must also be promoted.
   5839   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   5840     switch (BT->getKind()) {
   5841     case BuiltinType::Int:
   5842     case BuiltinType::UInt:
   5843       return true;
   5844     default:
   5845       return false;
   5846     }
   5847   return false;
   5848 }
   5849 
   5850 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
   5851   return (Ty->isAnyComplexType() ||
   5852           Ty->isVectorType() ||
   5853           isAggregateTypeForABI(Ty));
   5854 }
   5855 
   5856 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
   5857   return (HasVector &&
   5858           Ty->isVectorType() &&
   5859           getContext().getTypeSize(Ty) <= 128);
   5860 }
   5861 
   5862 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
   5863   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
   5864     switch (BT->getKind()) {
   5865     case BuiltinType::Float:
   5866     case BuiltinType::Double:
   5867       return true;
   5868     default:
   5869       return false;
   5870     }
   5871 
   5872   return false;
   5873 }
   5874 
   5875 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
   5876   if (const RecordType *RT = Ty->getAsStructureType()) {
   5877     const RecordDecl *RD = RT->getDecl();
   5878     QualType Found;
   5879 
   5880     // If this is a C++ record, check the bases first.
   5881     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
   5882       for (const auto &I : CXXRD->bases()) {
   5883         QualType Base = I.getType();
   5884 
   5885         // Empty bases don't affect things either way.
   5886         if (isEmptyRecord(getContext(), Base, true))
   5887           continue;
   5888 
   5889         if (!Found.isNull())
   5890           return Ty;
   5891         Found = GetSingleElementType(Base);
   5892       }
   5893 
   5894     // Check the fields.
   5895     for (const auto *FD : RD->fields()) {
   5896       // For compatibility with GCC, ignore empty bitfields in C++ mode.
   5897       // Unlike isSingleElementStruct(), empty structure and array fields
   5898       // do count.  So do anonymous bitfields that aren't zero-sized.
   5899       if (getContext().getLangOpts().CPlusPlus &&
   5900           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
   5901         continue;
   5902 
   5903       // Unlike isSingleElementStruct(), arrays do not count.
   5904       // Nested structures still do though.
   5905       if (!Found.isNull())
   5906         return Ty;
   5907       Found = GetSingleElementType(FD->getType());
   5908     }
   5909 
   5910     // Unlike isSingleElementStruct(), trailing padding is allowed.
   5911     // An 8-byte aligned struct s { float f; } is passed as a double.
   5912     if (!Found.isNull())
   5913       return Found;
   5914   }
   5915 
   5916   return Ty;
   5917 }
   5918 
   5919 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   5920                                   QualType Ty) const {
   5921   // Assume that va_list type is correct; should be pointer to LLVM type:
   5922   // struct {
   5923   //   i64 __gpr;
   5924   //   i64 __fpr;
   5925   //   i8 *__overflow_arg_area;
   5926   //   i8 *__reg_save_area;
   5927   // };
   5928 
   5929   // Every non-vector argument occupies 8 bytes and is passed by preference
   5930   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
   5931   // always passed on the stack.
   5932   Ty = getContext().getCanonicalType(Ty);
   5933   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   5934   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
   5935   llvm::Type *DirectTy = ArgTy;
   5936   ABIArgInfo AI = classifyArgumentType(Ty);
   5937   bool IsIndirect = AI.isIndirect();
   5938   bool InFPRs = false;
   5939   bool IsVector = false;
   5940   CharUnits UnpaddedSize;
   5941   CharUnits DirectAlign;
   5942   if (IsIndirect) {
   5943     DirectTy = llvm::PointerType::getUnqual(DirectTy);
   5944     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
   5945   } else {
   5946     if (AI.getCoerceToType())
   5947       ArgTy = AI.getCoerceToType();
   5948     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
   5949     IsVector = ArgTy->isVectorTy();
   5950     UnpaddedSize = TyInfo.first;
   5951     DirectAlign = TyInfo.second;
   5952   }
   5953   CharUnits PaddedSize = CharUnits::fromQuantity(8);
   5954   if (IsVector && UnpaddedSize > PaddedSize)
   5955     PaddedSize = CharUnits::fromQuantity(16);
   5956   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
   5957 
   5958   CharUnits Padding = (PaddedSize - UnpaddedSize);
   5959 
   5960   llvm::Type *IndexTy = CGF.Int64Ty;
   5961   llvm::Value *PaddedSizeV =
   5962     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
   5963 
   5964   if (IsVector) {
   5965     // Work out the address of a vector argument on the stack.
   5966     // Vector arguments are always passed in the high bits of a
   5967     // single (8 byte) or double (16 byte) stack slot.
   5968     Address OverflowArgAreaPtr =
   5969       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
   5970                                   "overflow_arg_area_ptr");
   5971     Address OverflowArgArea =
   5972       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
   5973               TyInfo.second);
   5974     Address MemAddr =
   5975       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
   5976 
   5977     // Update overflow_arg_area_ptr pointer
   5978     llvm::Value *NewOverflowArgArea =
   5979       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
   5980                             "overflow_arg_area");
   5981     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
   5982 
   5983     return MemAddr;
   5984   }
   5985 
   5986   assert(PaddedSize.getQuantity() == 8);
   5987 
   5988   unsigned MaxRegs, RegCountField, RegSaveIndex;
   5989   CharUnits RegPadding;
   5990   if (InFPRs) {
   5991     MaxRegs = 4; // Maximum of 4 FPR arguments
   5992     RegCountField = 1; // __fpr
   5993     RegSaveIndex = 16; // save offset for f0
   5994     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
   5995   } else {
   5996     MaxRegs = 5; // Maximum of 5 GPR arguments
   5997     RegCountField = 0; // __gpr
   5998     RegSaveIndex = 2; // save offset for r2
   5999     RegPadding = Padding; // values are passed in the low bits of a GPR
   6000   }
   6001 
   6002   Address RegCountPtr = CGF.Builder.CreateStructGEP(
   6003       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
   6004       "reg_count_ptr");
   6005   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
   6006   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
   6007   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
   6008                                                  "fits_in_regs");
   6009 
   6010   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
   6011   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
   6012   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
   6013   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
   6014 
   6015   // Emit code to load the value if it was passed in registers.
   6016   CGF.EmitBlock(InRegBlock);
   6017 
   6018   // Work out the address of an argument register.
   6019   llvm::Value *ScaledRegCount =
   6020     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
   6021   llvm::Value *RegBase =
   6022     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
   6023                                       + RegPadding.getQuantity());
   6024   llvm::Value *RegOffset =
   6025     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
   6026   Address RegSaveAreaPtr =
   6027       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
   6028                                   "reg_save_area_ptr");
   6029   llvm::Value *RegSaveArea =
   6030     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
   6031   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
   6032                                            "raw_reg_addr"),
   6033                      PaddedSize);
   6034   Address RegAddr =
   6035     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
   6036 
   6037   // Update the register count
   6038   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
   6039   llvm::Value *NewRegCount =
   6040     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
   6041   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
   6042   CGF.EmitBranch(ContBlock);
   6043 
   6044   // Emit code to load the value if it was passed in memory.
   6045   CGF.EmitBlock(InMemBlock);
   6046 
   6047   // Work out the address of a stack argument.
   6048   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
   6049       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
   6050   Address OverflowArgArea =
   6051     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
   6052             PaddedSize);
   6053   Address RawMemAddr =
   6054     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
   6055   Address MemAddr =
   6056     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
   6057 
   6058   // Update overflow_arg_area_ptr pointer
   6059   llvm::Value *NewOverflowArgArea =
   6060     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
   6061                           "overflow_arg_area");
   6062   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
   6063   CGF.EmitBranch(ContBlock);
   6064 
   6065   // Return the appropriate result.
   6066   CGF.EmitBlock(ContBlock);
   6067   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
   6068                                  MemAddr, InMemBlock, "va_arg.addr");
   6069 
   6070   if (IsIndirect)
   6071     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
   6072                       TyInfo.second);
   6073 
   6074   return ResAddr;
   6075 }
   6076 
   6077 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
   6078   if (RetTy->isVoidType())
   6079     return ABIArgInfo::getIgnore();
   6080   if (isVectorArgumentType(RetTy))
   6081     return ABIArgInfo::getDirect();
   6082   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
   6083     return getNaturalAlignIndirect(RetTy);
   6084   return (isPromotableIntegerType(RetTy) ?
   6085           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   6086 }
   6087 
   6088 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
   6089   // Handle the generic C++ ABI.
   6090   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   6091     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   6092 
   6093   // Integers and enums are extended to full register width.
   6094   if (isPromotableIntegerType(Ty))
   6095     return ABIArgInfo::getExtend();
   6096 
   6097   // Handle vector types and vector-like structure types.  Note that
   6098   // as opposed to float-like structure types, we do not allow any
   6099   // padding for vector-like structures, so verify the sizes match.
   6100   uint64_t Size = getContext().getTypeSize(Ty);
   6101   QualType SingleElementTy = GetSingleElementType(Ty);
   6102   if (isVectorArgumentType(SingleElementTy) &&
   6103       getContext().getTypeSize(SingleElementTy) == Size)
   6104     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
   6105 
   6106   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
   6107   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
   6108     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   6109 
   6110   // Handle small structures.
   6111   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   6112     // Structures with flexible arrays have variable length, so really
   6113     // fail the size test above.
   6114     const RecordDecl *RD = RT->getDecl();
   6115     if (RD->hasFlexibleArrayMember())
   6116       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   6117 
   6118     // The structure is passed as an unextended integer, a float, or a double.
   6119     llvm::Type *PassTy;
   6120     if (isFPArgumentType(SingleElementTy)) {
   6121       assert(Size == 32 || Size == 64);
   6122       if (Size == 32)
   6123         PassTy = llvm::Type::getFloatTy(getVMContext());
   6124       else
   6125         PassTy = llvm::Type::getDoubleTy(getVMContext());
   6126     } else
   6127       PassTy = llvm::IntegerType::get(getVMContext(), Size);
   6128     return ABIArgInfo::getDirect(PassTy);
   6129   }
   6130 
   6131   // Non-structure compounds are passed indirectly.
   6132   if (isCompoundType(Ty))
   6133     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   6134 
   6135   return ABIArgInfo::getDirect(nullptr);
   6136 }
   6137 
   6138 //===----------------------------------------------------------------------===//
   6139 // MSP430 ABI Implementation
   6140 //===----------------------------------------------------------------------===//
   6141 
   6142 namespace {
   6143 
   6144 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
   6145 public:
   6146   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
   6147     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
   6148   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   6149                            CodeGen::CodeGenModule &M) const override;
   6150 };
   6151 
   6152 }
   6153 
   6154 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
   6155                                                   llvm::GlobalValue *GV,
   6156                                              CodeGen::CodeGenModule &M) const {
   6157   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
   6158     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
   6159       // Handle 'interrupt' attribute:
   6160       llvm::Function *F = cast<llvm::Function>(GV);
   6161 
   6162       // Step 1: Set ISR calling convention.
   6163       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
   6164 
   6165       // Step 2: Add attributes goodness.
   6166       F->addFnAttr(llvm::Attribute::NoInline);
   6167 
   6168       // Step 3: Emit ISR vector alias.
   6169       unsigned Num = attr->getNumber() / 2;
   6170       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
   6171                                 "__isr_" + Twine(Num), F);
   6172     }
   6173   }
   6174 }
   6175 
   6176 //===----------------------------------------------------------------------===//
   6177 // MIPS ABI Implementation.  This works for both little-endian and
   6178 // big-endian variants.
   6179 //===----------------------------------------------------------------------===//
   6180 
   6181 namespace {
   6182 class MipsABIInfo : public ABIInfo {
   6183   bool IsO32;
   6184   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
   6185   void CoerceToIntArgs(uint64_t TySize,
   6186                        SmallVectorImpl<llvm::Type *> &ArgList) const;
   6187   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
   6188   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
   6189   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
   6190 public:
   6191   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
   6192     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
   6193     StackAlignInBytes(IsO32 ? 8 : 16) {}
   6194 
   6195   ABIArgInfo classifyReturnType(QualType RetTy) const;
   6196   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
   6197   void computeInfo(CGFunctionInfo &FI) const override;
   6198   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6199                     QualType Ty) const override;
   6200   bool shouldSignExtUnsignedType(QualType Ty) const override;
   6201 };
   6202 
   6203 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
   6204   unsigned SizeOfUnwindException;
   6205 public:
   6206   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
   6207     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
   6208       SizeOfUnwindException(IsO32 ? 24 : 32) {}
   6209 
   6210   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
   6211     return 29;
   6212   }
   6213 
   6214   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   6215                            CodeGen::CodeGenModule &CGM) const override {
   6216     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   6217     if (!FD) return;
   6218     llvm::Function *Fn = cast<llvm::Function>(GV);
   6219     if (FD->hasAttr<Mips16Attr>()) {
   6220       Fn->addFnAttr("mips16");
   6221     }
   6222     else if (FD->hasAttr<NoMips16Attr>()) {
   6223       Fn->addFnAttr("nomips16");
   6224     }
   6225 
   6226     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
   6227     if (!Attr)
   6228       return;
   6229 
   6230     const char *Kind;
   6231     switch (Attr->getInterrupt()) {
   6232     case MipsInterruptAttr::eic:     Kind = "eic"; break;
   6233     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
   6234     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
   6235     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
   6236     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
   6237     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
   6238     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
   6239     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
   6240     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
   6241     }
   6242 
   6243     Fn->addFnAttr("interrupt", Kind);
   6244 
   6245   }
   6246 
   6247   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   6248                                llvm::Value *Address) const override;
   6249 
   6250   unsigned getSizeOfUnwindException() const override {
   6251     return SizeOfUnwindException;
   6252   }
   6253 };
   6254 }
   6255 
   6256 void MipsABIInfo::CoerceToIntArgs(
   6257     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
   6258   llvm::IntegerType *IntTy =
   6259     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
   6260 
   6261   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
   6262   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
   6263     ArgList.push_back(IntTy);
   6264 
   6265   // If necessary, add one more integer type to ArgList.
   6266   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
   6267 
   6268   if (R)
   6269     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
   6270 }
   6271 
   6272 // In N32/64, an aligned double precision floating point field is passed in
   6273 // a register.
   6274 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
   6275   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
   6276 
   6277   if (IsO32) {
   6278     CoerceToIntArgs(TySize, ArgList);
   6279     return llvm::StructType::get(getVMContext(), ArgList);
   6280   }
   6281 
   6282   if (Ty->isComplexType())
   6283     return CGT.ConvertType(Ty);
   6284 
   6285   const RecordType *RT = Ty->getAs<RecordType>();
   6286 
   6287   // Unions/vectors are passed in integer registers.
   6288   if (!RT || !RT->isStructureOrClassType()) {
   6289     CoerceToIntArgs(TySize, ArgList);
   6290     return llvm::StructType::get(getVMContext(), ArgList);
   6291   }
   6292 
   6293   const RecordDecl *RD = RT->getDecl();
   6294   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   6295   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
   6296 
   6297   uint64_t LastOffset = 0;
   6298   unsigned idx = 0;
   6299   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
   6300 
   6301   // Iterate over fields in the struct/class and check if there are any aligned
   6302   // double fields.
   6303   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   6304        i != e; ++i, ++idx) {
   6305     const QualType Ty = i->getType();
   6306     const BuiltinType *BT = Ty->getAs<BuiltinType>();
   6307 
   6308     if (!BT || BT->getKind() != BuiltinType::Double)
   6309       continue;
   6310 
   6311     uint64_t Offset = Layout.getFieldOffset(idx);
   6312     if (Offset % 64) // Ignore doubles that are not aligned.
   6313       continue;
   6314 
   6315     // Add ((Offset - LastOffset) / 64) args of type i64.
   6316     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
   6317       ArgList.push_back(I64);
   6318 
   6319     // Add double type.
   6320     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
   6321     LastOffset = Offset + 64;
   6322   }
   6323 
   6324   CoerceToIntArgs(TySize - LastOffset, IntArgList);
   6325   ArgList.append(IntArgList.begin(), IntArgList.end());
   6326 
   6327   return llvm::StructType::get(getVMContext(), ArgList);
   6328 }
   6329 
   6330 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
   6331                                         uint64_t Offset) const {
   6332   if (OrigOffset + MinABIStackAlignInBytes > Offset)
   6333     return nullptr;
   6334 
   6335   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
   6336 }
   6337 
   6338 ABIArgInfo
   6339 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
   6340   Ty = useFirstFieldIfTransparentUnion(Ty);
   6341 
   6342   uint64_t OrigOffset = Offset;
   6343   uint64_t TySize = getContext().getTypeSize(Ty);
   6344   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
   6345 
   6346   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
   6347                    (uint64_t)StackAlignInBytes);
   6348   unsigned CurrOffset = llvm::alignTo(Offset, Align);
   6349   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
   6350 
   6351   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
   6352     // Ignore empty aggregates.
   6353     if (TySize == 0)
   6354       return ABIArgInfo::getIgnore();
   6355 
   6356     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
   6357       Offset = OrigOffset + MinABIStackAlignInBytes;
   6358       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   6359     }
   6360 
   6361     // If we have reached here, aggregates are passed directly by coercing to
   6362     // another structure type. Padding is inserted if the offset of the
   6363     // aggregate is unaligned.
   6364     ABIArgInfo ArgInfo =
   6365         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
   6366                               getPaddingType(OrigOffset, CurrOffset));
   6367     ArgInfo.setInReg(true);
   6368     return ArgInfo;
   6369   }
   6370 
   6371   // Treat an enum type as its underlying type.
   6372   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   6373     Ty = EnumTy->getDecl()->getIntegerType();
   6374 
   6375   // All integral types are promoted to the GPR width.
   6376   if (Ty->isIntegralOrEnumerationType())
   6377     return ABIArgInfo::getExtend();
   6378 
   6379   return ABIArgInfo::getDirect(
   6380       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
   6381 }
   6382 
   6383 llvm::Type*
   6384 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
   6385   const RecordType *RT = RetTy->getAs<RecordType>();
   6386   SmallVector<llvm::Type*, 8> RTList;
   6387 
   6388   if (RT && RT->isStructureOrClassType()) {
   6389     const RecordDecl *RD = RT->getDecl();
   6390     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   6391     unsigned FieldCnt = Layout.getFieldCount();
   6392 
   6393     // N32/64 returns struct/classes in floating point registers if the
   6394     // following conditions are met:
   6395     // 1. The size of the struct/class is no larger than 128-bit.
   6396     // 2. The struct/class has one or two fields all of which are floating
   6397     //    point types.
   6398     // 3. The offset of the first field is zero (this follows what gcc does).
   6399     //
   6400     // Any other composite results are returned in integer registers.
   6401     //
   6402     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
   6403       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
   6404       for (; b != e; ++b) {
   6405         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
   6406 
   6407         if (!BT || !BT->isFloatingPoint())
   6408           break;
   6409 
   6410         RTList.push_back(CGT.ConvertType(b->getType()));
   6411       }
   6412 
   6413       if (b == e)
   6414         return llvm::StructType::get(getVMContext(), RTList,
   6415                                      RD->hasAttr<PackedAttr>());
   6416 
   6417       RTList.clear();
   6418     }
   6419   }
   6420 
   6421   CoerceToIntArgs(Size, RTList);
   6422   return llvm::StructType::get(getVMContext(), RTList);
   6423 }
   6424 
   6425 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
   6426   uint64_t Size = getContext().getTypeSize(RetTy);
   6427 
   6428   if (RetTy->isVoidType())
   6429     return ABIArgInfo::getIgnore();
   6430 
   6431   // O32 doesn't treat zero-sized structs differently from other structs.
   6432   // However, N32/N64 ignores zero sized return values.
   6433   if (!IsO32 && Size == 0)
   6434     return ABIArgInfo::getIgnore();
   6435 
   6436   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
   6437     if (Size <= 128) {
   6438       if (RetTy->isAnyComplexType())
   6439         return ABIArgInfo::getDirect();
   6440 
   6441       // O32 returns integer vectors in registers and N32/N64 returns all small
   6442       // aggregates in registers.
   6443       if (!IsO32 ||
   6444           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
   6445         ABIArgInfo ArgInfo =
   6446             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
   6447         ArgInfo.setInReg(true);
   6448         return ArgInfo;
   6449       }
   6450     }
   6451 
   6452     return getNaturalAlignIndirect(RetTy);
   6453   }
   6454 
   6455   // Treat an enum type as its underlying type.
   6456   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   6457     RetTy = EnumTy->getDecl()->getIntegerType();
   6458 
   6459   return (RetTy->isPromotableIntegerType() ?
   6460           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   6461 }
   6462 
   6463 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
   6464   ABIArgInfo &RetInfo = FI.getReturnInfo();
   6465   if (!getCXXABI().classifyReturnType(FI))
   6466     RetInfo = classifyReturnType(FI.getReturnType());
   6467 
   6468   // Check if a pointer to an aggregate is passed as a hidden argument.
   6469   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
   6470 
   6471   for (auto &I : FI.arguments())
   6472     I.info = classifyArgumentType(I.type, Offset);
   6473 }
   6474 
   6475 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6476                                QualType OrigTy) const {
   6477   QualType Ty = OrigTy;
   6478 
   6479   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
   6480   // Pointers are also promoted in the same way but this only matters for N32.
   6481   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
   6482   unsigned PtrWidth = getTarget().getPointerWidth(0);
   6483   bool DidPromote = false;
   6484   if ((Ty->isIntegerType() &&
   6485           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
   6486       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
   6487     DidPromote = true;
   6488     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
   6489                                             Ty->isSignedIntegerType());
   6490   }
   6491 
   6492   auto TyInfo = getContext().getTypeInfoInChars(Ty);
   6493 
   6494   // The alignment of things in the argument area is never larger than
   6495   // StackAlignInBytes.
   6496   TyInfo.second =
   6497     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
   6498 
   6499   // MinABIStackAlignInBytes is the size of argument slots on the stack.
   6500   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
   6501 
   6502   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
   6503                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
   6504 
   6505 
   6506   // If there was a promotion, "unpromote" into a temporary.
   6507   // TODO: can we just use a pointer into a subset of the original slot?
   6508   if (DidPromote) {
   6509     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
   6510     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
   6511 
   6512     // Truncate down to the right width.
   6513     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
   6514                                                  : CGF.IntPtrTy);
   6515     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
   6516     if (OrigTy->isPointerType())
   6517       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
   6518 
   6519     CGF.Builder.CreateStore(V, Temp);
   6520     Addr = Temp;
   6521   }
   6522 
   6523   return Addr;
   6524 }
   6525 
   6526 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
   6527   int TySize = getContext().getTypeSize(Ty);
   6528 
   6529   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
   6530   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
   6531     return true;
   6532 
   6533   return false;
   6534 }
   6535 
   6536 bool
   6537 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   6538                                                llvm::Value *Address) const {
   6539   // This information comes from gcc's implementation, which seems to
   6540   // as canonical as it gets.
   6541 
   6542   // Everything on MIPS is 4 bytes.  Double-precision FP registers
   6543   // are aliased to pairs of single-precision FP registers.
   6544   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
   6545 
   6546   // 0-31 are the general purpose registers, $0 - $31.
   6547   // 32-63 are the floating-point registers, $f0 - $f31.
   6548   // 64 and 65 are the multiply/divide registers, $hi and $lo.
   6549   // 66 is the (notional, I think) register for signal-handler return.
   6550   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
   6551 
   6552   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
   6553   // They are one bit wide and ignored here.
   6554 
   6555   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
   6556   // (coprocessor 1 is the FP unit)
   6557   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
   6558   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
   6559   // 176-181 are the DSP accumulator registers.
   6560   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
   6561   return false;
   6562 }
   6563 
   6564 //===----------------------------------------------------------------------===//
   6565 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
   6566 // Currently subclassed only to implement custom OpenCL C function attribute
   6567 // handling.
   6568 //===----------------------------------------------------------------------===//
   6569 
   6570 namespace {
   6571 
   6572 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
   6573 public:
   6574   TCETargetCodeGenInfo(CodeGenTypes &CGT)
   6575     : DefaultTargetCodeGenInfo(CGT) {}
   6576 
   6577   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   6578                            CodeGen::CodeGenModule &M) const override;
   6579 };
   6580 
   6581 void TCETargetCodeGenInfo::setTargetAttributes(
   6582     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
   6583   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   6584   if (!FD) return;
   6585 
   6586   llvm::Function *F = cast<llvm::Function>(GV);
   6587 
   6588   if (M.getLangOpts().OpenCL) {
   6589     if (FD->hasAttr<OpenCLKernelAttr>()) {
   6590       // OpenCL C Kernel functions are not subject to inlining
   6591       F->addFnAttr(llvm::Attribute::NoInline);
   6592       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
   6593       if (Attr) {
   6594         // Convert the reqd_work_group_size() attributes to metadata.
   6595         llvm::LLVMContext &Context = F->getContext();
   6596         llvm::NamedMDNode *OpenCLMetadata =
   6597             M.getModule().getOrInsertNamedMetadata(
   6598                 "opencl.kernel_wg_size_info");
   6599 
   6600         SmallVector<llvm::Metadata *, 5> Operands;
   6601         Operands.push_back(llvm::ConstantAsMetadata::get(F));
   6602 
   6603         Operands.push_back(
   6604             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
   6605                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
   6606         Operands.push_back(
   6607             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
   6608                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
   6609         Operands.push_back(
   6610             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
   6611                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
   6612 
   6613         // Add a boolean constant operand for "required" (true) or "hint"
   6614         // (false) for implementing the work_group_size_hint attr later.
   6615         // Currently always true as the hint is not yet implemented.
   6616         Operands.push_back(
   6617             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
   6618         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
   6619       }
   6620     }
   6621   }
   6622 }
   6623 
   6624 }
   6625 
   6626 //===----------------------------------------------------------------------===//
   6627 // Hexagon ABI Implementation
   6628 //===----------------------------------------------------------------------===//
   6629 
   6630 namespace {
   6631 
   6632 class HexagonABIInfo : public ABIInfo {
   6633 
   6634 
   6635 public:
   6636   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   6637 
   6638 private:
   6639 
   6640   ABIArgInfo classifyReturnType(QualType RetTy) const;
   6641   ABIArgInfo classifyArgumentType(QualType RetTy) const;
   6642 
   6643   void computeInfo(CGFunctionInfo &FI) const override;
   6644 
   6645   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6646                     QualType Ty) const override;
   6647 };
   6648 
   6649 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
   6650 public:
   6651   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
   6652     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
   6653 
   6654   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   6655     return 29;
   6656   }
   6657 };
   6658 
   6659 }
   6660 
   6661 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
   6662   if (!getCXXABI().classifyReturnType(FI))
   6663     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   6664   for (auto &I : FI.arguments())
   6665     I.info = classifyArgumentType(I.type);
   6666 }
   6667 
   6668 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
   6669   if (!isAggregateTypeForABI(Ty)) {
   6670     // Treat an enum type as its underlying type.
   6671     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   6672       Ty = EnumTy->getDecl()->getIntegerType();
   6673 
   6674     return (Ty->isPromotableIntegerType() ?
   6675             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   6676   }
   6677 
   6678   // Ignore empty records.
   6679   if (isEmptyRecord(getContext(), Ty, true))
   6680     return ABIArgInfo::getIgnore();
   6681 
   6682   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   6683     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   6684 
   6685   uint64_t Size = getContext().getTypeSize(Ty);
   6686   if (Size > 64)
   6687     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
   6688     // Pass in the smallest viable integer type.
   6689   else if (Size > 32)
   6690       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
   6691   else if (Size > 16)
   6692       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   6693   else if (Size > 8)
   6694       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   6695   else
   6696       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   6697 }
   6698 
   6699 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
   6700   if (RetTy->isVoidType())
   6701     return ABIArgInfo::getIgnore();
   6702 
   6703   // Large vector types should be returned via memory.
   6704   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
   6705     return getNaturalAlignIndirect(RetTy);
   6706 
   6707   if (!isAggregateTypeForABI(RetTy)) {
   6708     // Treat an enum type as its underlying type.
   6709     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
   6710       RetTy = EnumTy->getDecl()->getIntegerType();
   6711 
   6712     return (RetTy->isPromotableIntegerType() ?
   6713             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
   6714   }
   6715 
   6716   if (isEmptyRecord(getContext(), RetTy, true))
   6717     return ABIArgInfo::getIgnore();
   6718 
   6719   // Aggregates <= 8 bytes are returned in r0; other aggregates
   6720   // are returned indirectly.
   6721   uint64_t Size = getContext().getTypeSize(RetTy);
   6722   if (Size <= 64) {
   6723     // Return in the smallest viable integer type.
   6724     if (Size <= 8)
   6725       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
   6726     if (Size <= 16)
   6727       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
   6728     if (Size <= 32)
   6729       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
   6730     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
   6731   }
   6732 
   6733   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
   6734 }
   6735 
   6736 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6737                                   QualType Ty) const {
   6738   // FIXME: Someone needs to audit that this handle alignment correctly.
   6739   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
   6740                           getContext().getTypeInfoInChars(Ty),
   6741                           CharUnits::fromQuantity(4),
   6742                           /*AllowHigherAlign*/ true);
   6743 }
   6744 
   6745 //===----------------------------------------------------------------------===//
   6746 // Lanai ABI Implementation
   6747 //===----------------------------------------------------------------------===//
   6748 
   6749 namespace {
   6750 class LanaiABIInfo : public DefaultABIInfo {
   6751 public:
   6752   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
   6753 
   6754   bool shouldUseInReg(QualType Ty, CCState &State) const;
   6755 
   6756   void computeInfo(CGFunctionInfo &FI) const override {
   6757     CCState State(FI.getCallingConvention());
   6758     // Lanai uses 4 registers to pass arguments unless the function has the
   6759     // regparm attribute set.
   6760     if (FI.getHasRegParm()) {
   6761       State.FreeRegs = FI.getRegParm();
   6762     } else {
   6763       State.FreeRegs = 4;
   6764     }
   6765 
   6766     if (!getCXXABI().classifyReturnType(FI))
   6767       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   6768     for (auto &I : FI.arguments())
   6769       I.info = classifyArgumentType(I.type, State);
   6770   }
   6771 
   6772   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
   6773   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
   6774 };
   6775 } // end anonymous namespace
   6776 
   6777 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
   6778   unsigned Size = getContext().getTypeSize(Ty);
   6779   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
   6780 
   6781   if (SizeInRegs == 0)
   6782     return false;
   6783 
   6784   if (SizeInRegs > State.FreeRegs) {
   6785     State.FreeRegs = 0;
   6786     return false;
   6787   }
   6788 
   6789   State.FreeRegs -= SizeInRegs;
   6790 
   6791   return true;
   6792 }
   6793 
   6794 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
   6795                                            CCState &State) const {
   6796   if (!ByVal) {
   6797     if (State.FreeRegs) {
   6798       --State.FreeRegs; // Non-byval indirects just use one pointer.
   6799       return getNaturalAlignIndirectInReg(Ty);
   6800     }
   6801     return getNaturalAlignIndirect(Ty, false);
   6802   }
   6803 
   6804   // Compute the byval alignment.
   6805   const unsigned MinABIStackAlignInBytes = 4;
   6806   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
   6807   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
   6808                                  /*Realign=*/TypeAlign >
   6809                                      MinABIStackAlignInBytes);
   6810 }
   6811 
   6812 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
   6813                                               CCState &State) const {
   6814   // Check with the C++ ABI first.
   6815   const RecordType *RT = Ty->getAs<RecordType>();
   6816   if (RT) {
   6817     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
   6818     if (RAA == CGCXXABI::RAA_Indirect) {
   6819       return getIndirectResult(Ty, /*ByVal=*/false, State);
   6820     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
   6821       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
   6822     }
   6823   }
   6824 
   6825   if (isAggregateTypeForABI(Ty)) {
   6826     // Structures with flexible arrays are always indirect.
   6827     if (RT && RT->getDecl()->hasFlexibleArrayMember())
   6828       return getIndirectResult(Ty, /*ByVal=*/true, State);
   6829 
   6830     // Ignore empty structs/unions.
   6831     if (isEmptyRecord(getContext(), Ty, true))
   6832       return ABIArgInfo::getIgnore();
   6833 
   6834     llvm::LLVMContext &LLVMContext = getVMContext();
   6835     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
   6836     if (SizeInRegs <= State.FreeRegs) {
   6837       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
   6838       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
   6839       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
   6840       State.FreeRegs -= SizeInRegs;
   6841       return ABIArgInfo::getDirectInReg(Result);
   6842     } else {
   6843       State.FreeRegs = 0;
   6844     }
   6845     return getIndirectResult(Ty, true, State);
   6846   }
   6847 
   6848   // Treat an enum type as its underlying type.
   6849   if (const auto *EnumTy = Ty->getAs<EnumType>())
   6850     Ty = EnumTy->getDecl()->getIntegerType();
   6851 
   6852   bool InReg = shouldUseInReg(Ty, State);
   6853   if (Ty->isPromotableIntegerType()) {
   6854     if (InReg)
   6855       return ABIArgInfo::getDirectInReg();
   6856     return ABIArgInfo::getExtend();
   6857   }
   6858   if (InReg)
   6859     return ABIArgInfo::getDirectInReg();
   6860   return ABIArgInfo::getDirect();
   6861 }
   6862 
   6863 namespace {
   6864 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
   6865 public:
   6866   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
   6867       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
   6868 };
   6869 }
   6870 
   6871 //===----------------------------------------------------------------------===//
   6872 // AMDGPU ABI Implementation
   6873 //===----------------------------------------------------------------------===//
   6874 
   6875 namespace {
   6876 
   6877 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
   6878 public:
   6879   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
   6880     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
   6881   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
   6882                            CodeGen::CodeGenModule &M) const override;
   6883   unsigned getOpenCLKernelCallingConv() const override;
   6884 };
   6885 
   6886 }
   6887 
   6888 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
   6889   const Decl *D,
   6890   llvm::GlobalValue *GV,
   6891   CodeGen::CodeGenModule &M) const {
   6892   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
   6893   if (!FD)
   6894     return;
   6895 
   6896   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
   6897     llvm::Function *F = cast<llvm::Function>(GV);
   6898     uint32_t NumVGPR = Attr->getNumVGPR();
   6899     if (NumVGPR != 0)
   6900       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
   6901   }
   6902 
   6903   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
   6904     llvm::Function *F = cast<llvm::Function>(GV);
   6905     unsigned NumSGPR = Attr->getNumSGPR();
   6906     if (NumSGPR != 0)
   6907       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
   6908   }
   6909 }
   6910 
   6911 
   6912 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
   6913   return llvm::CallingConv::AMDGPU_KERNEL;
   6914 }
   6915 
   6916 //===----------------------------------------------------------------------===//
   6917 // SPARC v8 ABI Implementation.
   6918 // Based on the SPARC Compliance Definition version 2.4.1.
   6919 //
   6920 // Ensures that complex values are passed in registers.
   6921 //
   6922 namespace {
   6923 class SparcV8ABIInfo : public DefaultABIInfo {
   6924 public:
   6925   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
   6926 
   6927 private:
   6928   ABIArgInfo classifyReturnType(QualType RetTy) const;
   6929   void computeInfo(CGFunctionInfo &FI) const override;
   6930 };
   6931 } // end anonymous namespace
   6932 
   6933 
   6934 ABIArgInfo
   6935 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
   6936   if (Ty->isAnyComplexType()) {
   6937     return ABIArgInfo::getDirect();
   6938   }
   6939   else {
   6940     return DefaultABIInfo::classifyReturnType(Ty);
   6941   }
   6942 }
   6943 
   6944 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   6945 
   6946   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
   6947   for (auto &Arg : FI.arguments())
   6948     Arg.info = classifyArgumentType(Arg.type);
   6949 }
   6950 
   6951 namespace {
   6952 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
   6953 public:
   6954   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
   6955     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
   6956 };
   6957 } // end anonymous namespace
   6958 
   6959 //===----------------------------------------------------------------------===//
   6960 // SPARC v9 ABI Implementation.
   6961 // Based on the SPARC Compliance Definition version 2.4.1.
   6962 //
   6963 // Function arguments a mapped to a nominal "parameter array" and promoted to
   6964 // registers depending on their type. Each argument occupies 8 or 16 bytes in
   6965 // the array, structs larger than 16 bytes are passed indirectly.
   6966 //
   6967 // One case requires special care:
   6968 //
   6969 //   struct mixed {
   6970 //     int i;
   6971 //     float f;
   6972 //   };
   6973 //
   6974 // When a struct mixed is passed by value, it only occupies 8 bytes in the
   6975 // parameter array, but the int is passed in an integer register, and the float
   6976 // is passed in a floating point register. This is represented as two arguments
   6977 // with the LLVM IR inreg attribute:
   6978 //
   6979 //   declare void f(i32 inreg %i, float inreg %f)
   6980 //
   6981 // The code generator will only allocate 4 bytes from the parameter array for
   6982 // the inreg arguments. All other arguments are allocated a multiple of 8
   6983 // bytes.
   6984 //
   6985 namespace {
   6986 class SparcV9ABIInfo : public ABIInfo {
   6987 public:
   6988   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
   6989 
   6990 private:
   6991   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
   6992   void computeInfo(CGFunctionInfo &FI) const override;
   6993   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   6994                     QualType Ty) const override;
   6995 
   6996   // Coercion type builder for structs passed in registers. The coercion type
   6997   // serves two purposes:
   6998   //
   6999   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
   7000   //    in registers.
   7001   // 2. Expose aligned floating point elements as first-level elements, so the
   7002   //    code generator knows to pass them in floating point registers.
   7003   //
   7004   // We also compute the InReg flag which indicates that the struct contains
   7005   // aligned 32-bit floats.
   7006   //
   7007   struct CoerceBuilder {
   7008     llvm::LLVMContext &Context;
   7009     const llvm::DataLayout &DL;
   7010     SmallVector<llvm::Type*, 8> Elems;
   7011     uint64_t Size;
   7012     bool InReg;
   7013 
   7014     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
   7015       : Context(c), DL(dl), Size(0), InReg(false) {}
   7016 
   7017     // Pad Elems with integers until Size is ToSize.
   7018     void pad(uint64_t ToSize) {
   7019       assert(ToSize >= Size && "Cannot remove elements");
   7020       if (ToSize == Size)
   7021         return;
   7022 
   7023       // Finish the current 64-bit word.
   7024       uint64_t Aligned = llvm::alignTo(Size, 64);
   7025       if (Aligned > Size && Aligned <= ToSize) {
   7026         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
   7027         Size = Aligned;
   7028       }
   7029 
   7030       // Add whole 64-bit words.
   7031       while (Size + 64 <= ToSize) {
   7032         Elems.push_back(llvm::Type::getInt64Ty(Context));
   7033         Size += 64;
   7034       }
   7035 
   7036       // Final in-word padding.
   7037       if (Size < ToSize) {
   7038         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
   7039         Size = ToSize;
   7040       }
   7041     }
   7042 
   7043     // Add a floating point element at Offset.
   7044     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
   7045       // Unaligned floats are treated as integers.
   7046       if (Offset % Bits)
   7047         return;
   7048       // The InReg flag is only required if there are any floats < 64 bits.
   7049       if (Bits < 64)
   7050         InReg = true;
   7051       pad(Offset);
   7052       Elems.push_back(Ty);
   7053       Size = Offset + Bits;
   7054     }
   7055 
   7056     // Add a struct type to the coercion type, starting at Offset (in bits).
   7057     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
   7058       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
   7059       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
   7060         llvm::Type *ElemTy = StrTy->getElementType(i);
   7061         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
   7062         switch (ElemTy->getTypeID()) {
   7063         case llvm::Type::StructTyID:
   7064           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
   7065           break;
   7066         case llvm::Type::FloatTyID:
   7067           addFloat(ElemOffset, ElemTy, 32);
   7068           break;
   7069         case llvm::Type::DoubleTyID:
   7070           addFloat(ElemOffset, ElemTy, 64);
   7071           break;
   7072         case llvm::Type::FP128TyID:
   7073           addFloat(ElemOffset, ElemTy, 128);
   7074           break;
   7075         case llvm::Type::PointerTyID:
   7076           if (ElemOffset % 64 == 0) {
   7077             pad(ElemOffset);
   7078             Elems.push_back(ElemTy);
   7079             Size += 64;
   7080           }
   7081           break;
   7082         default:
   7083           break;
   7084         }
   7085       }
   7086     }
   7087 
   7088     // Check if Ty is a usable substitute for the coercion type.
   7089     bool isUsableType(llvm::StructType *Ty) const {
   7090       return llvm::makeArrayRef(Elems) == Ty->elements();
   7091     }
   7092 
   7093     // Get the coercion type as a literal struct type.
   7094     llvm::Type *getType() const {
   7095       if (Elems.size() == 1)
   7096         return Elems.front();
   7097       else
   7098         return llvm::StructType::get(Context, Elems);
   7099     }
   7100   };
   7101 };
   7102 } // end anonymous namespace
   7103 
   7104 ABIArgInfo
   7105 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
   7106   if (Ty->isVoidType())
   7107     return ABIArgInfo::getIgnore();
   7108 
   7109   uint64_t Size = getContext().getTypeSize(Ty);
   7110 
   7111   // Anything too big to fit in registers is passed with an explicit indirect
   7112   // pointer / sret pointer.
   7113   if (Size > SizeLimit)
   7114     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
   7115 
   7116   // Treat an enum type as its underlying type.
   7117   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
   7118     Ty = EnumTy->getDecl()->getIntegerType();
   7119 
   7120   // Integer types smaller than a register are extended.
   7121   if (Size < 64 && Ty->isIntegerType())
   7122     return ABIArgInfo::getExtend();
   7123 
   7124   // Other non-aggregates go in registers.
   7125   if (!isAggregateTypeForABI(Ty))
   7126     return ABIArgInfo::getDirect();
   7127 
   7128   // If a C++ object has either a non-trivial copy constructor or a non-trivial
   7129   // destructor, it is passed with an explicit indirect pointer / sret pointer.
   7130   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
   7131     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
   7132 
   7133   // This is a small aggregate type that should be passed in registers.
   7134   // Build a coercion type from the LLVM struct type.
   7135   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
   7136   if (!StrTy)
   7137     return ABIArgInfo::getDirect();
   7138 
   7139   CoerceBuilder CB(getVMContext(), getDataLayout());
   7140   CB.addStruct(0, StrTy);
   7141   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
   7142 
   7143   // Try to use the original type for coercion.
   7144   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
   7145 
   7146   if (CB.InReg)
   7147     return ABIArgInfo::getDirectInReg(CoerceTy);
   7148   else
   7149     return ABIArgInfo::getDirect(CoerceTy);
   7150 }
   7151 
   7152 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   7153                                   QualType Ty) const {
   7154   ABIArgInfo AI = classifyType(Ty, 16 * 8);
   7155   llvm::Type *ArgTy = CGT.ConvertType(Ty);
   7156   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
   7157     AI.setCoerceToType(ArgTy);
   7158 
   7159   CharUnits SlotSize = CharUnits::fromQuantity(8);
   7160 
   7161   CGBuilderTy &Builder = CGF.Builder;
   7162   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
   7163   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
   7164 
   7165   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
   7166 
   7167   Address ArgAddr = Address::invalid();
   7168   CharUnits Stride;
   7169   switch (AI.getKind()) {
   7170   case ABIArgInfo::Expand:
   7171   case ABIArgInfo::CoerceAndExpand:
   7172   case ABIArgInfo::InAlloca:
   7173     llvm_unreachable("Unsupported ABI kind for va_arg");
   7174 
   7175   case ABIArgInfo::Extend: {
   7176     Stride = SlotSize;
   7177     CharUnits Offset = SlotSize - TypeInfo.first;
   7178     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
   7179     break;
   7180   }
   7181 
   7182   case ABIArgInfo::Direct: {
   7183     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
   7184     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
   7185     ArgAddr = Addr;
   7186     break;
   7187   }
   7188 
   7189   case ABIArgInfo::Indirect:
   7190     Stride = SlotSize;
   7191     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
   7192     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
   7193                       TypeInfo.second);
   7194     break;
   7195 
   7196   case ABIArgInfo::Ignore:
   7197     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
   7198   }
   7199 
   7200   // Update VAList.
   7201   llvm::Value *NextPtr =
   7202     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
   7203   Builder.CreateStore(NextPtr, VAListAddr);
   7204 
   7205   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
   7206 }
   7207 
   7208 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
   7209   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
   7210   for (auto &I : FI.arguments())
   7211     I.info = classifyType(I.type, 16 * 8);
   7212 }
   7213 
   7214 namespace {
   7215 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
   7216 public:
   7217   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
   7218     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
   7219 
   7220   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
   7221     return 14;
   7222   }
   7223 
   7224   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   7225                                llvm::Value *Address) const override;
   7226 };
   7227 } // end anonymous namespace
   7228 
   7229 bool
   7230 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
   7231                                                 llvm::Value *Address) const {
   7232   // This is calculated from the LLVM and GCC tables and verified
   7233   // against gcc output.  AFAIK all ABIs use the same encoding.
   7234 
   7235   CodeGen::CGBuilderTy &Builder = CGF.Builder;
   7236 
   7237   llvm::IntegerType *i8 = CGF.Int8Ty;
   7238   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
   7239   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
   7240 
   7241   // 0-31: the 8-byte general-purpose registers
   7242   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
   7243 
   7244   // 32-63: f0-31, the 4-byte floating-point registers
   7245   AssignToArrayRange(Builder, Address, Four8, 32, 63);
   7246 
   7247   //   Y   = 64
   7248   //   PSR = 65
   7249   //   WIM = 66
   7250   //   TBR = 67
   7251   //   PC  = 68
   7252   //   NPC = 69
   7253   //   FSR = 70
   7254   //   CSR = 71
   7255   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
   7256 
   7257   // 72-87: d0-15, the 8-byte floating-point registers
   7258   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
   7259 
   7260   return false;
   7261 }
   7262 
   7263 
   7264 //===----------------------------------------------------------------------===//
   7265 // XCore ABI Implementation
   7266 //===----------------------------------------------------------------------===//
   7267 
   7268 namespace {
   7269 
   7270 /// A SmallStringEnc instance is used to build up the TypeString by passing
   7271 /// it by reference between functions that append to it.
   7272 typedef llvm::SmallString<128> SmallStringEnc;
   7273 
   7274 /// TypeStringCache caches the meta encodings of Types.
   7275 ///
   7276 /// The reason for caching TypeStrings is two fold:
   7277 ///   1. To cache a type's encoding for later uses;
   7278 ///   2. As a means to break recursive member type inclusion.
   7279 ///
   7280 /// A cache Entry can have a Status of:
   7281 ///   NonRecursive:   The type encoding is not recursive;
   7282 ///   Recursive:      The type encoding is recursive;
   7283 ///   Incomplete:     An incomplete TypeString;
   7284 ///   IncompleteUsed: An incomplete TypeString that has been used in a
   7285 ///                   Recursive type encoding.
   7286 ///
   7287 /// A NonRecursive entry will have all of its sub-members expanded as fully
   7288 /// as possible. Whilst it may contain types which are recursive, the type
   7289 /// itself is not recursive and thus its encoding may be safely used whenever
   7290 /// the type is encountered.
   7291 ///
   7292 /// A Recursive entry will have all of its sub-members expanded as fully as
   7293 /// possible. The type itself is recursive and it may contain other types which
   7294 /// are recursive. The Recursive encoding must not be used during the expansion
   7295 /// of a recursive type's recursive branch. For simplicity the code uses
   7296 /// IncompleteCount to reject all usage of Recursive encodings for member types.
   7297 ///
   7298 /// An Incomplete entry is always a RecordType and only encodes its
   7299 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
   7300 /// are placed into the cache during type expansion as a means to identify and
   7301 /// handle recursive inclusion of types as sub-members. If there is recursion
   7302 /// the entry becomes IncompleteUsed.
   7303 ///
   7304 /// During the expansion of a RecordType's members:
   7305 ///
   7306 ///   If the cache contains a NonRecursive encoding for the member type, the
   7307 ///   cached encoding is used;
   7308 ///
   7309 ///   If the cache contains a Recursive encoding for the member type, the
   7310 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
   7311 ///
   7312 ///   If the member is a RecordType, an Incomplete encoding is placed into the
   7313 ///   cache to break potential recursive inclusion of itself as a sub-member;
   7314 ///
   7315 ///   Once a member RecordType has been expanded, its temporary incomplete
   7316 ///   entry is removed from the cache. If a Recursive encoding was swapped out
   7317 ///   it is swapped back in;
   7318 ///
   7319 ///   If an incomplete entry is used to expand a sub-member, the incomplete
   7320 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
   7321 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
   7322 ///
   7323 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
   7324 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
   7325 ///   Else the member is part of a recursive type and thus the recursion has
   7326 ///   been exited too soon for the encoding to be correct for the member.
   7327 ///
   7328 class TypeStringCache {
   7329   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
   7330   struct Entry {
   7331     std::string Str;     // The encoded TypeString for the type.
   7332     enum Status State;   // Information about the encoding in 'Str'.
   7333     std::string Swapped; // A temporary place holder for a Recursive encoding
   7334                          // during the expansion of RecordType's members.
   7335   };
   7336   std::map<const IdentifierInfo *, struct Entry> Map;
   7337   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
   7338   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
   7339 public:
   7340   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
   7341   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
   7342   bool removeIncomplete(const IdentifierInfo *ID);
   7343   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
   7344                      bool IsRecursive);
   7345   StringRef lookupStr(const IdentifierInfo *ID);
   7346 };
   7347 
   7348 /// TypeString encodings for enum & union fields must be order.
   7349 /// FieldEncoding is a helper for this ordering process.
   7350 class FieldEncoding {
   7351   bool HasName;
   7352   std::string Enc;
   7353 public:
   7354   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
   7355   StringRef str() {return Enc.c_str();}
   7356   bool operator<(const FieldEncoding &rhs) const {
   7357     if (HasName != rhs.HasName) return HasName;
   7358     return Enc < rhs.Enc;
   7359   }
   7360 };
   7361 
   7362 class XCoreABIInfo : public DefaultABIInfo {
   7363 public:
   7364   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
   7365   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   7366                     QualType Ty) const override;
   7367 };
   7368 
   7369 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
   7370   mutable TypeStringCache TSC;
   7371 public:
   7372   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
   7373     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
   7374   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
   7375                     CodeGen::CodeGenModule &M) const override;
   7376 };
   7377 
   7378 } // End anonymous namespace.
   7379 
   7380 // TODO: this implementation is likely now redundant with the default
   7381 // EmitVAArg.
   7382 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
   7383                                 QualType Ty) const {
   7384   CGBuilderTy &Builder = CGF.Builder;
   7385 
   7386   // Get the VAList.
   7387   CharUnits SlotSize = CharUnits::fromQuantity(4);
   7388   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
   7389 
   7390   // Handle the argument.
   7391   ABIArgInfo AI = classifyArgumentType(Ty);
   7392   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
   7393   llvm::Type *ArgTy = CGT.ConvertType(Ty);
   7394   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
   7395     AI.setCoerceToType(ArgTy);
   7396   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
   7397 
   7398   Address Val = Address::invalid();
   7399   CharUnits ArgSize = CharUnits::Zero();
   7400   switch (AI.getKind()) {
   7401   case ABIArgInfo::Expand:
   7402   case ABIArgInfo::CoerceAndExpand:
   7403   case ABIArgInfo::InAlloca:
   7404     llvm_unreachable("Unsupported ABI kind for va_arg");
   7405   case ABIArgInfo::Ignore:
   7406     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
   7407     ArgSize = CharUnits::Zero();
   7408     break;
   7409   case ABIArgInfo::Extend:
   7410   case ABIArgInfo::Direct:
   7411     Val = Builder.CreateBitCast(AP, ArgPtrTy);
   7412     ArgSize = CharUnits::fromQuantity(
   7413                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
   7414     ArgSize = ArgSize.alignTo(SlotSize);
   7415     break;
   7416   case ABIArgInfo::Indirect:
   7417     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
   7418     Val = Address(Builder.CreateLoad(Val), TypeAlign);
   7419     ArgSize = SlotSize;
   7420     break;
   7421   }
   7422 
   7423   // Increment the VAList.
   7424   if (!ArgSize.isZero()) {
   7425     llvm::Value *APN =
   7426       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
   7427     Builder.CreateStore(APN, VAListAddr);
   7428   }
   7429 
   7430   return Val;
   7431 }
   7432 
   7433 /// During the expansion of a RecordType, an incomplete TypeString is placed
   7434 /// into the cache as a means to identify and break recursion.
   7435 /// If there is a Recursive encoding in the cache, it is swapped out and will
   7436 /// be reinserted by removeIncomplete().
   7437 /// All other types of encoding should have been used rather than arriving here.
   7438 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
   7439                                     std::string StubEnc) {
   7440   if (!ID)
   7441     return;
   7442   Entry &E = Map[ID];
   7443   assert( (E.Str.empty() || E.State == Recursive) &&
   7444          "Incorrectly use of addIncomplete");
   7445   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
   7446   E.Swapped.swap(E.Str); // swap out the Recursive
   7447   E.Str.swap(StubEnc);
   7448   E.State = Incomplete;
   7449   ++IncompleteCount;
   7450 }
   7451 
   7452 /// Once the RecordType has been expanded, the temporary incomplete TypeString
   7453 /// must be removed from the cache.
   7454 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
   7455 /// Returns true if the RecordType was defined recursively.
   7456 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
   7457   if (!ID)
   7458     return false;
   7459   auto I = Map.find(ID);
   7460   assert(I != Map.end() && "Entry not present");
   7461   Entry &E = I->second;
   7462   assert( (E.State == Incomplete ||
   7463            E.State == IncompleteUsed) &&
   7464          "Entry must be an incomplete type");
   7465   bool IsRecursive = false;
   7466   if (E.State == IncompleteUsed) {
   7467     // We made use of our Incomplete encoding, thus we are recursive.
   7468     IsRecursive = true;
   7469     --IncompleteUsedCount;
   7470   }
   7471   if (E.Swapped.empty())
   7472     Map.erase(I);
   7473   else {
   7474     // Swap the Recursive back.
   7475     E.Swapped.swap(E.Str);
   7476     E.Swapped.clear();
   7477     E.State = Recursive;
   7478   }
   7479   --IncompleteCount;
   7480   return IsRecursive;
   7481 }
   7482 
   7483 /// Add the encoded TypeString to the cache only if it is NonRecursive or
   7484 /// Recursive (viz: all sub-members were expanded as fully as possible).
   7485 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
   7486                                     bool IsRecursive) {
   7487   if (!ID || IncompleteUsedCount)
   7488     return; // No key or it is is an incomplete sub-type so don't add.
   7489   Entry &E = Map[ID];
   7490   if (IsRecursive && !E.Str.empty()) {
   7491     assert(E.State==Recursive && E.Str.size() == Str.size() &&
   7492            "This is not the same Recursive entry");
   7493     // The parent container was not recursive after all, so we could have used
   7494     // this Recursive sub-member entry after all, but we assumed the worse when
   7495     // we started viz: IncompleteCount!=0.
   7496     return;
   7497   }
   7498   assert(E.Str.empty() && "Entry already present");
   7499   E.Str = Str.str();
   7500   E.State = IsRecursive? Recursive : NonRecursive;
   7501 }
   7502 
   7503 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
   7504 /// are recursively expanding a type (IncompleteCount != 0) and the cached
   7505 /// encoding is Recursive, return an empty StringRef.
   7506 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
   7507   if (!ID)
   7508     return StringRef();   // We have no key.
   7509   auto I = Map.find(ID);
   7510   if (I == Map.end())
   7511     return StringRef();   // We have no encoding.
   7512   Entry &E = I->second;
   7513   if (E.State == Recursive && IncompleteCount)
   7514     return StringRef();   // We don't use Recursive encodings for member types.
   7515 
   7516   if (E.State == Incomplete) {
   7517     // The incomplete type is being used to break out of recursion.
   7518     E.State = IncompleteUsed;
   7519     ++IncompleteUsedCount;
   7520   }
   7521   return E.Str.c_str();
   7522 }
   7523 
   7524 /// The XCore ABI includes a type information section that communicates symbol
   7525 /// type information to the linker. The linker uses this information to verify
   7526 /// safety/correctness of things such as array bound and pointers et al.
   7527 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
   7528 /// This type information (TypeString) is emitted into meta data for all global
   7529 /// symbols: definitions, declarations, functions & variables.
   7530 ///
   7531 /// The TypeString carries type, qualifier, name, size & value details.
   7532 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
   7533 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
   7534 /// The output is tested by test/CodeGen/xcore-stringtype.c.
   7535 ///
   7536 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
   7537                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
   7538 
   7539 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
   7540 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
   7541                                           CodeGen::CodeGenModule &CGM) const {
   7542   SmallStringEnc Enc;
   7543   if (getTypeString(Enc, D, CGM, TSC)) {
   7544     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
   7545     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
   7546                                 llvm::MDString::get(Ctx, Enc.str())};
   7547     llvm::NamedMDNode *MD =
   7548       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
   7549     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
   7550   }
   7551 }
   7552 
   7553 //===----------------------------------------------------------------------===//
   7554 // SPIR ABI Implementation
   7555 //===----------------------------------------------------------------------===//
   7556 
   7557 namespace {
   7558 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
   7559 public:
   7560   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
   7561     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
   7562   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
   7563                     CodeGen::CodeGenModule &M) const override;
   7564   unsigned getOpenCLKernelCallingConv() const override;
   7565 };
   7566 } // End anonymous namespace.
   7567 
   7568 /// Emit SPIR specific metadata: OpenCL and SPIR version.
   7569 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
   7570                                          CodeGen::CodeGenModule &CGM) const {
   7571   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
   7572   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
   7573   llvm::Module &M = CGM.getModule();
   7574   // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
   7575   // opencl.spir.version named metadata.
   7576   llvm::Metadata *SPIRVerElts[] = {
   7577       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)),
   7578       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))};
   7579   llvm::NamedMDNode *SPIRVerMD =
   7580       M.getOrInsertNamedMetadata("opencl.spir.version");
   7581   SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
   7582   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
   7583   // opencl.ocl.version named metadata node.
   7584   llvm::Metadata *OCLVerElts[] = {
   7585       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
   7586           Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)),
   7587       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
   7588           Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))};
   7589   llvm::NamedMDNode *OCLVerMD =
   7590       M.getOrInsertNamedMetadata("opencl.ocl.version");
   7591   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
   7592 }
   7593 
   7594 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
   7595   return llvm::CallingConv::SPIR_KERNEL;
   7596 }
   7597 
   7598 static bool appendType(SmallStringEnc &Enc, QualType QType,
   7599                        const CodeGen::CodeGenModule &CGM,
   7600                        TypeStringCache &TSC);
   7601 
   7602 /// Helper function for appendRecordType().
   7603 /// Builds a SmallVector containing the encoded field types in declaration
   7604 /// order.
   7605 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
   7606                              const RecordDecl *RD,
   7607                              const CodeGen::CodeGenModule &CGM,
   7608                              TypeStringCache &TSC) {
   7609   for (const auto *Field : RD->fields()) {
   7610     SmallStringEnc Enc;
   7611     Enc += "m(";
   7612     Enc += Field->getName();
   7613     Enc += "){";
   7614     if (Field->isBitField()) {
   7615       Enc += "b(";
   7616       llvm::raw_svector_ostream OS(Enc);
   7617       OS << Field->getBitWidthValue(CGM.getContext());
   7618       Enc += ':';
   7619     }
   7620     if (!appendType(Enc, Field->getType(), CGM, TSC))
   7621       return false;
   7622     if (Field->isBitField())
   7623       Enc += ')';
   7624     Enc += '}';
   7625     FE.emplace_back(!Field->getName().empty(), Enc);
   7626   }
   7627   return true;
   7628 }
   7629 
   7630 /// Appends structure and union types to Enc and adds encoding to cache.
   7631 /// Recursively calls appendType (via extractFieldType) for each field.
   7632 /// Union types have their fields ordered according to the ABI.
   7633 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
   7634                              const CodeGen::CodeGenModule &CGM,
   7635                              TypeStringCache &TSC, const IdentifierInfo *ID) {
   7636   // Append the cached TypeString if we have one.
   7637   StringRef TypeString = TSC.lookupStr(ID);
   7638   if (!TypeString.empty()) {
   7639     Enc += TypeString;
   7640     return true;
   7641   }
   7642 
   7643   // Start to emit an incomplete TypeString.
   7644   size_t Start = Enc.size();
   7645   Enc += (RT->isUnionType()? 'u' : 's');
   7646   Enc += '(';
   7647   if (ID)
   7648     Enc += ID->getName();
   7649   Enc += "){";
   7650 
   7651   // We collect all encoded fields and order as necessary.
   7652   bool IsRecursive = false;
   7653   const RecordDecl *RD = RT->getDecl()->getDefinition();
   7654   if (RD && !RD->field_empty()) {
   7655     // An incomplete TypeString stub is placed in the cache for this RecordType
   7656     // so that recursive calls to this RecordType will use it whilst building a
   7657     // complete TypeString for this RecordType.
   7658     SmallVector<FieldEncoding, 16> FE;
   7659     std::string StubEnc(Enc.substr(Start).str());
   7660     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
   7661     TSC.addIncomplete(ID, std::move(StubEnc));
   7662     if (!extractFieldType(FE, RD, CGM, TSC)) {
   7663       (void) TSC.removeIncomplete(ID);
   7664       return false;
   7665     }
   7666     IsRecursive = TSC.removeIncomplete(ID);
   7667     // The ABI requires unions to be sorted but not structures.
   7668     // See FieldEncoding::operator< for sort algorithm.
   7669     if (RT->isUnionType())
   7670       std::sort(FE.begin(), FE.end());
   7671     // We can now complete the TypeString.
   7672     unsigned E = FE.size();
   7673     for (unsigned I = 0; I != E; ++I) {
   7674       if (I)
   7675         Enc += ',';
   7676       Enc += FE[I].str();
   7677     }
   7678   }
   7679   Enc += '}';
   7680   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
   7681   return true;
   7682 }
   7683 
   7684 /// Appends enum types to Enc and adds the encoding to the cache.
   7685 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
   7686                            TypeStringCache &TSC,
   7687                            const IdentifierInfo *ID) {
   7688   // Append the cached TypeString if we have one.
   7689   StringRef TypeString = TSC.lookupStr(ID);
   7690   if (!TypeString.empty()) {
   7691     Enc += TypeString;
   7692     return true;
   7693   }
   7694 
   7695   size_t Start = Enc.size();
   7696   Enc += "e(";
   7697   if (ID)
   7698     Enc += ID->getName();
   7699   Enc += "){";
   7700 
   7701   // We collect all encoded enumerations and order them alphanumerically.
   7702   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
   7703     SmallVector<FieldEncoding, 16> FE;
   7704     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
   7705          ++I) {
   7706       SmallStringEnc EnumEnc;
   7707       EnumEnc += "m(";
   7708       EnumEnc += I->getName();
   7709       EnumEnc += "){";
   7710       I->getInitVal().toString(EnumEnc);
   7711       EnumEnc += '}';
   7712       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
   7713     }
   7714     std::sort(FE.begin(), FE.end());
   7715     unsigned E = FE.size();
   7716     for (unsigned I = 0; I != E; ++I) {
   7717       if (I)
   7718         Enc += ',';
   7719       Enc += FE[I].str();
   7720     }
   7721   }
   7722   Enc += '}';
   7723   TSC.addIfComplete(ID, Enc.substr(Start), false);
   7724   return true;
   7725 }
   7726 
   7727 /// Appends type's qualifier to Enc.
   7728 /// This is done prior to appending the type's encoding.
   7729 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
   7730   // Qualifiers are emitted in alphabetical order.
   7731   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
   7732   int Lookup = 0;
   7733   if (QT.isConstQualified())
   7734     Lookup += 1<<0;
   7735   if (QT.isRestrictQualified())
   7736     Lookup += 1<<1;
   7737   if (QT.isVolatileQualified())
   7738     Lookup += 1<<2;
   7739   Enc += Table[Lookup];
   7740 }
   7741 
   7742 /// Appends built-in types to Enc.
   7743 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
   7744   const char *EncType;
   7745   switch (BT->getKind()) {
   7746     case BuiltinType::Void:
   7747       EncType = "0";
   7748       break;
   7749     case BuiltinType::Bool:
   7750       EncType = "b";
   7751       break;
   7752     case BuiltinType::Char_U:
   7753       EncType = "uc";
   7754       break;
   7755     case BuiltinType::UChar:
   7756       EncType = "uc";
   7757       break;
   7758     case BuiltinType::SChar:
   7759       EncType = "sc";
   7760       break;
   7761     case BuiltinType::UShort:
   7762       EncType = "us";
   7763       break;
   7764     case BuiltinType::Short:
   7765       EncType = "ss";
   7766       break;
   7767     case BuiltinType::UInt:
   7768       EncType = "ui";
   7769       break;
   7770     case BuiltinType::Int:
   7771       EncType = "si";
   7772       break;
   7773     case BuiltinType::ULong:
   7774       EncType = "ul";
   7775       break;
   7776     case BuiltinType::Long:
   7777       EncType = "sl";
   7778       break;
   7779     case BuiltinType::ULongLong:
   7780       EncType = "ull";
   7781       break;
   7782     case BuiltinType::LongLong:
   7783       EncType = "sll";
   7784       break;
   7785     case BuiltinType::Float:
   7786       EncType = "ft";
   7787       break;
   7788     case BuiltinType::Double:
   7789       EncType = "d";
   7790       break;
   7791     case BuiltinType::LongDouble:
   7792       EncType = "ld";
   7793       break;
   7794     default:
   7795       return false;
   7796   }
   7797   Enc += EncType;
   7798   return true;
   7799 }
   7800 
   7801 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
   7802 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
   7803                               const CodeGen::CodeGenModule &CGM,
   7804                               TypeStringCache &TSC) {
   7805   Enc += "p(";
   7806   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
   7807     return false;
   7808   Enc += ')';
   7809   return true;
   7810 }
   7811 
   7812 /// Appends array encoding to Enc before calling appendType for the element.
   7813 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
   7814                             const ArrayType *AT,
   7815                             const CodeGen::CodeGenModule &CGM,
   7816                             TypeStringCache &TSC, StringRef NoSizeEnc) {
   7817   if (AT->getSizeModifier() != ArrayType::Normal)
   7818     return false;
   7819   Enc += "a(";
   7820   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
   7821     CAT->getSize().toStringUnsigned(Enc);
   7822   else
   7823     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
   7824   Enc += ':';
   7825   // The Qualifiers should be attached to the type rather than the array.
   7826   appendQualifier(Enc, QT);
   7827   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
   7828     return false;
   7829   Enc += ')';
   7830   return true;
   7831 }
   7832 
   7833 /// Appends a function encoding to Enc, calling appendType for the return type
   7834 /// and the arguments.
   7835 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
   7836                              const CodeGen::CodeGenModule &CGM,
   7837                              TypeStringCache &TSC) {
   7838   Enc += "f{";
   7839   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
   7840     return false;
   7841   Enc += "}(";
   7842   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
   7843     // N.B. we are only interested in the adjusted param types.
   7844     auto I = FPT->param_type_begin();
   7845     auto E = FPT->param_type_end();
   7846     if (I != E) {
   7847       do {
   7848         if (!appendType(Enc, *I, CGM, TSC))
   7849           return false;
   7850         ++I;
   7851         if (I != E)
   7852           Enc += ',';
   7853       } while (I != E);
   7854       if (FPT->isVariadic())
   7855         Enc += ",va";
   7856     } else {
   7857       if (FPT->isVariadic())
   7858         Enc += "va";
   7859       else
   7860         Enc += '0';
   7861     }
   7862   }
   7863   Enc += ')';
   7864   return true;
   7865 }
   7866 
   7867 /// Handles the type's qualifier before dispatching a call to handle specific
   7868 /// type encodings.
   7869 static bool appendType(SmallStringEnc &Enc, QualType QType,
   7870                        const CodeGen::CodeGenModule &CGM,
   7871                        TypeStringCache &TSC) {
   7872 
   7873   QualType QT = QType.getCanonicalType();
   7874 
   7875   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
   7876     // The Qualifiers should be attached to the type rather than the array.
   7877     // Thus we don't call appendQualifier() here.
   7878     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
   7879 
   7880   appendQualifier(Enc, QT);
   7881 
   7882   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
   7883     return appendBuiltinType(Enc, BT);
   7884 
   7885   if (const PointerType *PT = QT->getAs<PointerType>())
   7886     return appendPointerType(Enc, PT, CGM, TSC);
   7887 
   7888   if (const EnumType *ET = QT->getAs<EnumType>())
   7889     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
   7890 
   7891   if (const RecordType *RT = QT->getAsStructureType())
   7892     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
   7893 
   7894   if (const RecordType *RT = QT->getAsUnionType())
   7895     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
   7896 
   7897   if (const FunctionType *FT = QT->getAs<FunctionType>())
   7898     return appendFunctionType(Enc, FT, CGM, TSC);
   7899 
   7900   return false;
   7901 }
   7902 
   7903 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
   7904                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
   7905   if (!D)
   7906     return false;
   7907 
   7908   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   7909     if (FD->getLanguageLinkage() != CLanguageLinkage)
   7910       return false;
   7911     return appendType(Enc, FD->getType(), CGM, TSC);
   7912   }
   7913 
   7914   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   7915     if (VD->getLanguageLinkage() != CLanguageLinkage)
   7916       return false;
   7917     QualType QT = VD->getType().getCanonicalType();
   7918     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
   7919       // Global ArrayTypes are given a size of '*' if the size is unknown.
   7920       // The Qualifiers should be attached to the type rather than the array.
   7921       // Thus we don't call appendQualifier() here.
   7922       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
   7923     }
   7924     return appendType(Enc, QT, CGM, TSC);
   7925   }
   7926   return false;
   7927 }
   7928 
   7929 
   7930 //===----------------------------------------------------------------------===//
   7931 // Driver code
   7932 //===----------------------------------------------------------------------===//
   7933 
   7934 const llvm::Triple &CodeGenModule::getTriple() const {
   7935   return getTarget().getTriple();
   7936 }
   7937 
   7938 bool CodeGenModule::supportsCOMDAT() const {
   7939   return getTriple().supportsCOMDAT();
   7940 }
   7941 
   7942 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
   7943   if (TheTargetCodeGenInfo)
   7944     return *TheTargetCodeGenInfo;
   7945 
   7946   // Helper to set the unique_ptr while still keeping the return value.
   7947   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
   7948     this->TheTargetCodeGenInfo.reset(P);
   7949     return *P;
   7950   };
   7951 
   7952   const llvm::Triple &Triple = getTarget().getTriple();
   7953   switch (Triple.getArch()) {
   7954   default:
   7955     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
   7956 
   7957   case llvm::Triple::le32:
   7958     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
   7959   case llvm::Triple::mips:
   7960   case llvm::Triple::mipsel:
   7961     if (Triple.getOS() == llvm::Triple::NaCl)
   7962       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
   7963     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
   7964 
   7965   case llvm::Triple::mips64:
   7966   case llvm::Triple::mips64el:
   7967     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
   7968 
   7969   case llvm::Triple::aarch64:
   7970   case llvm::Triple::aarch64_be: {
   7971     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
   7972     if (getTarget().getABI() == "darwinpcs")
   7973       Kind = AArch64ABIInfo::DarwinPCS;
   7974 
   7975     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
   7976   }
   7977 
   7978   case llvm::Triple::wasm32:
   7979   case llvm::Triple::wasm64:
   7980     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
   7981 
   7982   case llvm::Triple::arm:
   7983   case llvm::Triple::armeb:
   7984   case llvm::Triple::thumb:
   7985   case llvm::Triple::thumbeb: {
   7986     if (Triple.getOS() == llvm::Triple::Win32) {
   7987       return SetCGInfo(
   7988           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
   7989     }
   7990 
   7991     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
   7992     StringRef ABIStr = getTarget().getABI();
   7993     if (ABIStr == "apcs-gnu")
   7994       Kind = ARMABIInfo::APCS;
   7995     else if (ABIStr == "aapcs16")
   7996       Kind = ARMABIInfo::AAPCS16_VFP;
   7997     else if (CodeGenOpts.FloatABI == "hard" ||
   7998              (CodeGenOpts.FloatABI != "soft" &&
   7999               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
   8000                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
   8001                Triple.getEnvironment() == llvm::Triple::EABIHF)))
   8002       Kind = ARMABIInfo::AAPCS_VFP;
   8003 
   8004     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
   8005   }
   8006 
   8007   case llvm::Triple::ppc:
   8008     return SetCGInfo(
   8009         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
   8010   case llvm::Triple::ppc64:
   8011     if (Triple.isOSBinFormatELF()) {
   8012       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
   8013       if (getTarget().getABI() == "elfv2")
   8014         Kind = PPC64_SVR4_ABIInfo::ELFv2;
   8015       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
   8016 
   8017       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
   8018     } else
   8019       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
   8020   case llvm::Triple::ppc64le: {
   8021     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
   8022     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
   8023     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
   8024       Kind = PPC64_SVR4_ABIInfo::ELFv1;
   8025     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
   8026 
   8027     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
   8028   }
   8029 
   8030   case llvm::Triple::nvptx:
   8031   case llvm::Triple::nvptx64:
   8032     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
   8033 
   8034   case llvm::Triple::msp430:
   8035     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
   8036 
   8037   case llvm::Triple::systemz: {
   8038     bool HasVector = getTarget().getABI() == "vector";
   8039     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
   8040   }
   8041 
   8042   case llvm::Triple::tce:
   8043     return SetCGInfo(new TCETargetCodeGenInfo(Types));
   8044 
   8045   case llvm::Triple::x86: {
   8046     bool IsDarwinVectorABI = Triple.isOSDarwin();
   8047     bool RetSmallStructInRegABI =
   8048         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
   8049     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
   8050 
   8051     if (Triple.getOS() == llvm::Triple::Win32) {
   8052       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
   8053           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
   8054           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
   8055     } else {
   8056       return SetCGInfo(new X86_32TargetCodeGenInfo(
   8057           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
   8058           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
   8059           CodeGenOpts.FloatABI == "soft"));
   8060     }
   8061   }
   8062 
   8063   case llvm::Triple::x86_64: {
   8064     StringRef ABI = getTarget().getABI();
   8065     X86AVXABILevel AVXLevel =
   8066         (ABI == "avx512"
   8067              ? X86AVXABILevel::AVX512
   8068              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
   8069 
   8070     switch (Triple.getOS()) {
   8071     case llvm::Triple::Win32:
   8072       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
   8073     case llvm::Triple::PS4:
   8074       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
   8075     default:
   8076       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
   8077     }
   8078   }
   8079   case llvm::Triple::hexagon:
   8080     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
   8081   case llvm::Triple::lanai:
   8082     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
   8083   case llvm::Triple::r600:
   8084     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
   8085   case llvm::Triple::amdgcn:
   8086     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
   8087   case llvm::Triple::sparc:
   8088     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
   8089   case llvm::Triple::sparcv9:
   8090     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
   8091   case llvm::Triple::xcore:
   8092     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
   8093   case llvm::Triple::spir:
   8094   case llvm::Triple::spir64:
   8095     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
   8096   }
   8097 }
   8098