Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SystemZTargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZISelLowering.h"
     15 #include "SystemZCallingConv.h"
     16 #include "SystemZConstantPoolValue.h"
     17 #include "SystemZMachineFunctionInfo.h"
     18 #include "SystemZTargetMachine.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     23 #include "llvm/IR/Intrinsics.h"
     24 #include <cctype>
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "systemz-lower"
     29 
     30 namespace {
     31 // Represents a sequence for extracting a 0/1 value from an IPM result:
     32 // (((X ^ XORValue) + AddValue) >> Bit)
     33 struct IPMConversion {
     34   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
     35     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
     36 
     37   int64_t XORValue;
     38   int64_t AddValue;
     39   unsigned Bit;
     40 };
     41 
     42 // Represents information about a comparison.
     43 struct Comparison {
     44   Comparison(SDValue Op0In, SDValue Op1In)
     45     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
     46 
     47   // The operands to the comparison.
     48   SDValue Op0, Op1;
     49 
     50   // The opcode that should be used to compare Op0 and Op1.
     51   unsigned Opcode;
     52 
     53   // A SystemZICMP value.  Only used for integer comparisons.
     54   unsigned ICmpType;
     55 
     56   // The mask of CC values that Opcode can produce.
     57   unsigned CCValid;
     58 
     59   // The mask of CC values for which the original condition is true.
     60   unsigned CCMask;
     61 };
     62 } // end anonymous namespace
     63 
     64 // Classify VT as either 32 or 64 bit.
     65 static bool is32Bit(EVT VT) {
     66   switch (VT.getSimpleVT().SimpleTy) {
     67   case MVT::i32:
     68     return true;
     69   case MVT::i64:
     70     return false;
     71   default:
     72     llvm_unreachable("Unsupported type");
     73   }
     74 }
     75 
     76 // Return a version of MachineOperand that can be safely used before the
     77 // final use.
     78 static MachineOperand earlyUseOperand(MachineOperand Op) {
     79   if (Op.isReg())
     80     Op.setIsKill(false);
     81   return Op;
     82 }
     83 
     84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
     85                                              const SystemZSubtarget &STI)
     86     : TargetLowering(TM), Subtarget(STI) {
     87   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
     88 
     89   // Set up the register classes.
     90   if (Subtarget.hasHighWord())
     91     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
     92   else
     93     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
     94   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
     95   if (Subtarget.hasVector()) {
     96     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
     97     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
     98   } else {
     99     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
    100     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
    101   }
    102   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
    103 
    104   if (Subtarget.hasVector()) {
    105     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
    106     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
    107     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
    108     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
    109     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
    110     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
    111   }
    112 
    113   // Compute derived properties from the register classes
    114   computeRegisterProperties(Subtarget.getRegisterInfo());
    115 
    116   // Set up special registers.
    117   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
    118 
    119   // TODO: It may be better to default to latency-oriented scheduling, however
    120   // LLVM's current latency-oriented scheduler can't handle physreg definitions
    121   // such as SystemZ has with CC, so set this to the register-pressure
    122   // scheduler, because it can.
    123   setSchedulingPreference(Sched::RegPressure);
    124 
    125   setBooleanContents(ZeroOrOneBooleanContent);
    126   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    127 
    128   // Instructions are strings of 2-byte aligned 2-byte values.
    129   setMinFunctionAlignment(2);
    130 
    131   // Handle operations that are handled in a similar way for all types.
    132   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
    133        I <= MVT::LAST_FP_VALUETYPE;
    134        ++I) {
    135     MVT VT = MVT::SimpleValueType(I);
    136     if (isTypeLegal(VT)) {
    137       // Lower SET_CC into an IPM-based sequence.
    138       setOperationAction(ISD::SETCC, VT, Custom);
    139 
    140       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
    141       setOperationAction(ISD::SELECT, VT, Expand);
    142 
    143       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
    144       setOperationAction(ISD::SELECT_CC, VT, Custom);
    145       setOperationAction(ISD::BR_CC,     VT, Custom);
    146     }
    147   }
    148 
    149   // Expand jump table branches as address arithmetic followed by an
    150   // indirect jump.
    151   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
    152 
    153   // Expand BRCOND into a BR_CC (see above).
    154   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    155 
    156   // Handle integer types.
    157   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
    158        I <= MVT::LAST_INTEGER_VALUETYPE;
    159        ++I) {
    160     MVT VT = MVT::SimpleValueType(I);
    161     if (isTypeLegal(VT)) {
    162       // Expand individual DIV and REMs into DIVREMs.
    163       setOperationAction(ISD::SDIV, VT, Expand);
    164       setOperationAction(ISD::UDIV, VT, Expand);
    165       setOperationAction(ISD::SREM, VT, Expand);
    166       setOperationAction(ISD::UREM, VT, Expand);
    167       setOperationAction(ISD::SDIVREM, VT, Custom);
    168       setOperationAction(ISD::UDIVREM, VT, Custom);
    169 
    170       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
    171       // stores, putting a serialization instruction after the stores.
    172       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
    173       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
    174 
    175       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
    176       // available, or if the operand is constant.
    177       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
    178 
    179       // Use POPCNT on z196 and above.
    180       if (Subtarget.hasPopulationCount())
    181         setOperationAction(ISD::CTPOP, VT, Custom);
    182       else
    183         setOperationAction(ISD::CTPOP, VT, Expand);
    184 
    185       // No special instructions for these.
    186       setOperationAction(ISD::CTTZ,            VT, Expand);
    187       setOperationAction(ISD::ROTR,            VT, Expand);
    188 
    189       // Use *MUL_LOHI where possible instead of MULH*.
    190       setOperationAction(ISD::MULHS, VT, Expand);
    191       setOperationAction(ISD::MULHU, VT, Expand);
    192       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
    193       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
    194 
    195       // Only z196 and above have native support for conversions to unsigned.
    196       if (!Subtarget.hasFPExtension())
    197         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    198     }
    199   }
    200 
    201   // Type legalization will convert 8- and 16-bit atomic operations into
    202   // forms that operate on i32s (but still keeping the original memory VT).
    203   // Lower them into full i32 operations.
    204   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
    205   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
    206   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
    207   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
    208   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
    209   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
    210   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
    211   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
    212   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
    213   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
    214   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
    215   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
    216 
    217   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
    218 
    219   // Traps are legal, as we will convert them to "j .+2".
    220   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    221 
    222   // z10 has instructions for signed but not unsigned FP conversion.
    223   // Handle unsigned 32-bit types as signed 64-bit types.
    224   if (!Subtarget.hasFPExtension()) {
    225     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
    226     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    227   }
    228 
    229   // We have native support for a 64-bit CTLZ, via FLOGR.
    230   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
    231   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
    232 
    233   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
    234   setOperationAction(ISD::OR, MVT::i64, Custom);
    235 
    236   // FIXME: Can we support these natively?
    237   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
    238   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
    239   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
    240 
    241   // We have native instructions for i8, i16 and i32 extensions, but not i1.
    242   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    243   for (MVT VT : MVT::integer_valuetypes()) {
    244     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    245     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    246     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
    247   }
    248 
    249   // Handle the various types of symbolic address.
    250   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
    251   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
    252   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
    253   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
    254   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
    255 
    256   // We need to handle dynamic allocations specially because of the
    257   // 160-byte area at the bottom of the stack.
    258   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
    259   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
    260 
    261   // Use custom expanders so that we can force the function to use
    262   // a frame pointer.
    263   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
    264   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
    265 
    266   // Handle prefetches with PFD or PFDRL.
    267   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
    268 
    269   for (MVT VT : MVT::vector_valuetypes()) {
    270     // Assume by default that all vector operations need to be expanded.
    271     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
    272       if (getOperationAction(Opcode, VT) == Legal)
    273         setOperationAction(Opcode, VT, Expand);
    274 
    275     // Likewise all truncating stores and extending loads.
    276     for (MVT InnerVT : MVT::vector_valuetypes()) {
    277       setTruncStoreAction(VT, InnerVT, Expand);
    278       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    279       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    280       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    281     }
    282 
    283     if (isTypeLegal(VT)) {
    284       // These operations are legal for anything that can be stored in a
    285       // vector register, even if there is no native support for the format
    286       // as such.  In particular, we can do these for v4f32 even though there
    287       // are no specific instructions for that format.
    288       setOperationAction(ISD::LOAD, VT, Legal);
    289       setOperationAction(ISD::STORE, VT, Legal);
    290       setOperationAction(ISD::VSELECT, VT, Legal);
    291       setOperationAction(ISD::BITCAST, VT, Legal);
    292       setOperationAction(ISD::UNDEF, VT, Legal);
    293 
    294       // Likewise, except that we need to replace the nodes with something
    295       // more specific.
    296       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
    297       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
    298     }
    299   }
    300 
    301   // Handle integer vector types.
    302   for (MVT VT : MVT::integer_vector_valuetypes()) {
    303     if (isTypeLegal(VT)) {
    304       // These operations have direct equivalents.
    305       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
    306       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
    307       setOperationAction(ISD::ADD, VT, Legal);
    308       setOperationAction(ISD::SUB, VT, Legal);
    309       if (VT != MVT::v2i64)
    310         setOperationAction(ISD::MUL, VT, Legal);
    311       setOperationAction(ISD::AND, VT, Legal);
    312       setOperationAction(ISD::OR, VT, Legal);
    313       setOperationAction(ISD::XOR, VT, Legal);
    314       setOperationAction(ISD::CTPOP, VT, Custom);
    315       setOperationAction(ISD::CTTZ, VT, Legal);
    316       setOperationAction(ISD::CTLZ, VT, Legal);
    317 
    318       // Convert a GPR scalar to a vector by inserting it into element 0.
    319       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
    320 
    321       // Use a series of unpacks for extensions.
    322       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
    323       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
    324 
    325       // Detect shifts by a scalar amount and convert them into
    326       // V*_BY_SCALAR.
    327       setOperationAction(ISD::SHL, VT, Custom);
    328       setOperationAction(ISD::SRA, VT, Custom);
    329       setOperationAction(ISD::SRL, VT, Custom);
    330 
    331       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
    332       // converted into ROTL.
    333       setOperationAction(ISD::ROTL, VT, Expand);
    334       setOperationAction(ISD::ROTR, VT, Expand);
    335 
    336       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
    337       // and inverting the result as necessary.
    338       setOperationAction(ISD::SETCC, VT, Custom);
    339     }
    340   }
    341 
    342   if (Subtarget.hasVector()) {
    343     // There should be no need to check for float types other than v2f64
    344     // since <2 x f32> isn't a legal type.
    345     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
    346     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
    347     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
    348     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
    349   }
    350 
    351   // Handle floating-point types.
    352   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
    353        I <= MVT::LAST_FP_VALUETYPE;
    354        ++I) {
    355     MVT VT = MVT::SimpleValueType(I);
    356     if (isTypeLegal(VT)) {
    357       // We can use FI for FRINT.
    358       setOperationAction(ISD::FRINT, VT, Legal);
    359 
    360       // We can use the extended form of FI for other rounding operations.
    361       if (Subtarget.hasFPExtension()) {
    362         setOperationAction(ISD::FNEARBYINT, VT, Legal);
    363         setOperationAction(ISD::FFLOOR, VT, Legal);
    364         setOperationAction(ISD::FCEIL, VT, Legal);
    365         setOperationAction(ISD::FTRUNC, VT, Legal);
    366         setOperationAction(ISD::FROUND, VT, Legal);
    367       }
    368 
    369       // No special instructions for these.
    370       setOperationAction(ISD::FSIN, VT, Expand);
    371       setOperationAction(ISD::FCOS, VT, Expand);
    372       setOperationAction(ISD::FSINCOS, VT, Expand);
    373       setOperationAction(ISD::FREM, VT, Expand);
    374       setOperationAction(ISD::FPOW, VT, Expand);
    375     }
    376   }
    377 
    378   // Handle floating-point vector types.
    379   if (Subtarget.hasVector()) {
    380     // Scalar-to-vector conversion is just a subreg.
    381     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    382     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
    383 
    384     // Some insertions and extractions can be done directly but others
    385     // need to go via integers.
    386     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
    387     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
    388     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    389     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    390 
    391     // These operations have direct equivalents.
    392     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
    393     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
    394     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
    395     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
    396     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
    397     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
    398     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
    399     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
    400     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
    401     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
    402     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
    403     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
    404     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
    405     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
    406   }
    407 
    408   // We have fused multiply-addition for f32 and f64 but not f128.
    409   setOperationAction(ISD::FMA, MVT::f32,  Legal);
    410   setOperationAction(ISD::FMA, MVT::f64,  Legal);
    411   setOperationAction(ISD::FMA, MVT::f128, Expand);
    412 
    413   // Needed so that we don't try to implement f128 constant loads using
    414   // a load-and-extend of a f80 constant (in cases where the constant
    415   // would fit in an f80).
    416   for (MVT VT : MVT::fp_valuetypes())
    417     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
    418 
    419   // Floating-point truncation and stores need to be done separately.
    420   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
    421   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
    422   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
    423 
    424   // We have 64-bit FPR<->GPR moves, but need special handling for
    425   // 32-bit forms.
    426   if (!Subtarget.hasVector()) {
    427     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
    428     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
    429   }
    430 
    431   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
    432   // structure, but VAEND is a no-op.
    433   setOperationAction(ISD::VASTART, MVT::Other, Custom);
    434   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
    435   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
    436 
    437   // Codes for which we want to perform some z-specific combinations.
    438   setTargetDAGCombine(ISD::SIGN_EXTEND);
    439   setTargetDAGCombine(ISD::STORE);
    440   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
    441   setTargetDAGCombine(ISD::FP_ROUND);
    442   setTargetDAGCombine(ISD::BSWAP);
    443   setTargetDAGCombine(ISD::SHL);
    444   setTargetDAGCombine(ISD::SRA);
    445   setTargetDAGCombine(ISD::SRL);
    446   setTargetDAGCombine(ISD::ROTL);
    447 
    448   // Handle intrinsics.
    449   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
    450   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    451 
    452   // We want to use MVC in preference to even a single load/store pair.
    453   MaxStoresPerMemcpy = 0;
    454   MaxStoresPerMemcpyOptSize = 0;
    455 
    456   // The main memset sequence is a byte store followed by an MVC.
    457   // Two STC or MV..I stores win over that, but the kind of fused stores
    458   // generated by target-independent code don't when the byte value is
    459   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
    460   // than "STC;MVC".  Handle the choice in target-specific code instead.
    461   MaxStoresPerMemset = 0;
    462   MaxStoresPerMemsetOptSize = 0;
    463 }
    464 
    465 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
    466                                               LLVMContext &, EVT VT) const {
    467   if (!VT.isVector())
    468     return MVT::i32;
    469   return VT.changeVectorElementTypeToInteger();
    470 }
    471 
    472 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
    473   VT = VT.getScalarType();
    474 
    475   if (!VT.isSimple())
    476     return false;
    477 
    478   switch (VT.getSimpleVT().SimpleTy) {
    479   case MVT::f32:
    480   case MVT::f64:
    481     return true;
    482   case MVT::f128:
    483     return false;
    484   default:
    485     break;
    486   }
    487 
    488   return false;
    489 }
    490 
    491 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
    492   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
    493   return Imm.isZero() || Imm.isNegZero();
    494 }
    495 
    496 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
    497   // We can use CGFI or CLGFI.
    498   return isInt<32>(Imm) || isUInt<32>(Imm);
    499 }
    500 
    501 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
    502   // We can use ALGFI or SLGFI.
    503   return isUInt<32>(Imm) || isUInt<32>(-Imm);
    504 }
    505 
    506 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
    507                                                            unsigned,
    508                                                            unsigned,
    509                                                            bool *Fast) const {
    510   // Unaligned accesses should never be slower than the expanded version.
    511   // We check specifically for aligned accesses in the few cases where
    512   // they are required.
    513   if (Fast)
    514     *Fast = true;
    515   return true;
    516 }
    517 
    518 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
    519                                                   const AddrMode &AM, Type *Ty,
    520                                                   unsigned AS) const {
    521   // Punt on globals for now, although they can be used in limited
    522   // RELATIVE LONG cases.
    523   if (AM.BaseGV)
    524     return false;
    525 
    526   // Require a 20-bit signed offset.
    527   if (!isInt<20>(AM.BaseOffs))
    528     return false;
    529 
    530   // Indexing is OK but no scale factor can be applied.
    531   return AM.Scale == 0 || AM.Scale == 1;
    532 }
    533 
    534 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
    535   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
    536     return false;
    537   unsigned FromBits = FromType->getPrimitiveSizeInBits();
    538   unsigned ToBits = ToType->getPrimitiveSizeInBits();
    539   return FromBits > ToBits;
    540 }
    541 
    542 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
    543   if (!FromVT.isInteger() || !ToVT.isInteger())
    544     return false;
    545   unsigned FromBits = FromVT.getSizeInBits();
    546   unsigned ToBits = ToVT.getSizeInBits();
    547   return FromBits > ToBits;
    548 }
    549 
    550 //===----------------------------------------------------------------------===//
    551 // Inline asm support
    552 //===----------------------------------------------------------------------===//
    553 
    554 TargetLowering::ConstraintType
    555 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
    556   if (Constraint.size() == 1) {
    557     switch (Constraint[0]) {
    558     case 'a': // Address register
    559     case 'd': // Data register (equivalent to 'r')
    560     case 'f': // Floating-point register
    561     case 'h': // High-part register
    562     case 'r': // General-purpose register
    563       return C_RegisterClass;
    564 
    565     case 'Q': // Memory with base and unsigned 12-bit displacement
    566     case 'R': // Likewise, plus an index
    567     case 'S': // Memory with base and signed 20-bit displacement
    568     case 'T': // Likewise, plus an index
    569     case 'm': // Equivalent to 'T'.
    570       return C_Memory;
    571 
    572     case 'I': // Unsigned 8-bit constant
    573     case 'J': // Unsigned 12-bit constant
    574     case 'K': // Signed 16-bit constant
    575     case 'L': // Signed 20-bit displacement (on all targets we support)
    576     case 'M': // 0x7fffffff
    577       return C_Other;
    578 
    579     default:
    580       break;
    581     }
    582   }
    583   return TargetLowering::getConstraintType(Constraint);
    584 }
    585 
    586 TargetLowering::ConstraintWeight SystemZTargetLowering::
    587 getSingleConstraintMatchWeight(AsmOperandInfo &info,
    588                                const char *constraint) const {
    589   ConstraintWeight weight = CW_Invalid;
    590   Value *CallOperandVal = info.CallOperandVal;
    591   // If we don't have a value, we can't do a match,
    592   // but allow it at the lowest weight.
    593   if (!CallOperandVal)
    594     return CW_Default;
    595   Type *type = CallOperandVal->getType();
    596   // Look at the constraint type.
    597   switch (*constraint) {
    598   default:
    599     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    600     break;
    601 
    602   case 'a': // Address register
    603   case 'd': // Data register (equivalent to 'r')
    604   case 'h': // High-part register
    605   case 'r': // General-purpose register
    606     if (CallOperandVal->getType()->isIntegerTy())
    607       weight = CW_Register;
    608     break;
    609 
    610   case 'f': // Floating-point register
    611     if (type->isFloatingPointTy())
    612       weight = CW_Register;
    613     break;
    614 
    615   case 'I': // Unsigned 8-bit constant
    616     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    617       if (isUInt<8>(C->getZExtValue()))
    618         weight = CW_Constant;
    619     break;
    620 
    621   case 'J': // Unsigned 12-bit constant
    622     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    623       if (isUInt<12>(C->getZExtValue()))
    624         weight = CW_Constant;
    625     break;
    626 
    627   case 'K': // Signed 16-bit constant
    628     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    629       if (isInt<16>(C->getSExtValue()))
    630         weight = CW_Constant;
    631     break;
    632 
    633   case 'L': // Signed 20-bit displacement (on all targets we support)
    634     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    635       if (isInt<20>(C->getSExtValue()))
    636         weight = CW_Constant;
    637     break;
    638 
    639   case 'M': // 0x7fffffff
    640     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    641       if (C->getZExtValue() == 0x7fffffff)
    642         weight = CW_Constant;
    643     break;
    644   }
    645   return weight;
    646 }
    647 
    648 // Parse a "{tNNN}" register constraint for which the register type "t"
    649 // has already been verified.  MC is the class associated with "t" and
    650 // Map maps 0-based register numbers to LLVM register numbers.
    651 static std::pair<unsigned, const TargetRegisterClass *>
    652 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
    653                     const unsigned *Map) {
    654   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
    655   if (isdigit(Constraint[2])) {
    656     unsigned Index;
    657     bool Failed =
    658         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
    659     if (!Failed && Index < 16 && Map[Index])
    660       return std::make_pair(Map[Index], RC);
    661   }
    662   return std::make_pair(0U, nullptr);
    663 }
    664 
    665 std::pair<unsigned, const TargetRegisterClass *>
    666 SystemZTargetLowering::getRegForInlineAsmConstraint(
    667     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
    668   if (Constraint.size() == 1) {
    669     // GCC Constraint Letters
    670     switch (Constraint[0]) {
    671     default: break;
    672     case 'd': // Data register (equivalent to 'r')
    673     case 'r': // General-purpose register
    674       if (VT == MVT::i64)
    675         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
    676       else if (VT == MVT::i128)
    677         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
    678       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
    679 
    680     case 'a': // Address register
    681       if (VT == MVT::i64)
    682         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
    683       else if (VT == MVT::i128)
    684         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
    685       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
    686 
    687     case 'h': // High-part register (an LLVM extension)
    688       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
    689 
    690     case 'f': // Floating-point register
    691       if (VT == MVT::f64)
    692         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
    693       else if (VT == MVT::f128)
    694         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
    695       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
    696     }
    697   }
    698   if (Constraint.size() > 0 && Constraint[0] == '{') {
    699     // We need to override the default register parsing for GPRs and FPRs
    700     // because the interpretation depends on VT.  The internal names of
    701     // the registers are also different from the external names
    702     // (F0D and F0S instead of F0, etc.).
    703     if (Constraint[1] == 'r') {
    704       if (VT == MVT::i32)
    705         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
    706                                    SystemZMC::GR32Regs);
    707       if (VT == MVT::i128)
    708         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
    709                                    SystemZMC::GR128Regs);
    710       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
    711                                  SystemZMC::GR64Regs);
    712     }
    713     if (Constraint[1] == 'f') {
    714       if (VT == MVT::f32)
    715         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
    716                                    SystemZMC::FP32Regs);
    717       if (VT == MVT::f128)
    718         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
    719                                    SystemZMC::FP128Regs);
    720       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
    721                                  SystemZMC::FP64Regs);
    722     }
    723   }
    724   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
    725 }
    726 
    727 void SystemZTargetLowering::
    728 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
    729                              std::vector<SDValue> &Ops,
    730                              SelectionDAG &DAG) const {
    731   // Only support length 1 constraints for now.
    732   if (Constraint.length() == 1) {
    733     switch (Constraint[0]) {
    734     case 'I': // Unsigned 8-bit constant
    735       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    736         if (isUInt<8>(C->getZExtValue()))
    737           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
    738                                               Op.getValueType()));
    739       return;
    740 
    741     case 'J': // Unsigned 12-bit constant
    742       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    743         if (isUInt<12>(C->getZExtValue()))
    744           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
    745                                               Op.getValueType()));
    746       return;
    747 
    748     case 'K': // Signed 16-bit constant
    749       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    750         if (isInt<16>(C->getSExtValue()))
    751           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
    752                                               Op.getValueType()));
    753       return;
    754 
    755     case 'L': // Signed 20-bit displacement (on all targets we support)
    756       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    757         if (isInt<20>(C->getSExtValue()))
    758           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
    759                                               Op.getValueType()));
    760       return;
    761 
    762     case 'M': // 0x7fffffff
    763       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    764         if (C->getZExtValue() == 0x7fffffff)
    765           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
    766                                               Op.getValueType()));
    767       return;
    768     }
    769   }
    770   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
    771 }
    772 
    773 //===----------------------------------------------------------------------===//
    774 // Calling conventions
    775 //===----------------------------------------------------------------------===//
    776 
    777 #include "SystemZGenCallingConv.inc"
    778 
    779 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
    780                                                      Type *ToType) const {
    781   return isTruncateFree(FromType, ToType);
    782 }
    783 
    784 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
    785   return CI->isTailCall();
    786 }
    787 
    788 // We do not yet support 128-bit single-element vector types.  If the user
    789 // attempts to use such types as function argument or return type, prefer
    790 // to error out instead of emitting code violating the ABI.
    791 static void VerifyVectorType(MVT VT, EVT ArgVT) {
    792   if (ArgVT.isVector() && !VT.isVector())
    793     report_fatal_error("Unsupported vector argument or return type");
    794 }
    795 
    796 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
    797   for (unsigned i = 0; i < Ins.size(); ++i)
    798     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
    799 }
    800 
    801 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
    802   for (unsigned i = 0; i < Outs.size(); ++i)
    803     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
    804 }
    805 
    806 // Value is a value that has been passed to us in the location described by VA
    807 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
    808 // any loads onto Chain.
    809 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
    810                                    CCValAssign &VA, SDValue Chain,
    811                                    SDValue Value) {
    812   // If the argument has been promoted from a smaller type, insert an
    813   // assertion to capture this.
    814   if (VA.getLocInfo() == CCValAssign::SExt)
    815     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
    816                         DAG.getValueType(VA.getValVT()));
    817   else if (VA.getLocInfo() == CCValAssign::ZExt)
    818     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
    819                         DAG.getValueType(VA.getValVT()));
    820 
    821   if (VA.isExtInLoc())
    822     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
    823   else if (VA.getLocInfo() == CCValAssign::BCvt) {
    824     // If this is a short vector argument loaded from the stack,
    825     // extend from i64 to full vector size and then bitcast.
    826     assert(VA.getLocVT() == MVT::i64);
    827     assert(VA.getValVT().isVector());
    828     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
    829     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
    830   } else
    831     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
    832   return Value;
    833 }
    834 
    835 // Value is a value of type VA.getValVT() that we need to copy into
    836 // the location described by VA.  Return a copy of Value converted to
    837 // VA.getValVT().  The caller is responsible for handling indirect values.
    838 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
    839                                    CCValAssign &VA, SDValue Value) {
    840   switch (VA.getLocInfo()) {
    841   case CCValAssign::SExt:
    842     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
    843   case CCValAssign::ZExt:
    844     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
    845   case CCValAssign::AExt:
    846     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
    847   case CCValAssign::BCvt:
    848     // If this is a short vector argument to be stored to the stack,
    849     // bitcast to v2i64 and then extract first element.
    850     assert(VA.getLocVT() == MVT::i64);
    851     assert(VA.getValVT().isVector());
    852     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
    853     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
    854                        DAG.getConstant(0, DL, MVT::i32));
    855   case CCValAssign::Full:
    856     return Value;
    857   default:
    858     llvm_unreachable("Unhandled getLocInfo()");
    859   }
    860 }
    861 
    862 SDValue SystemZTargetLowering::LowerFormalArguments(
    863     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    864     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    865     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    866   MachineFunction &MF = DAG.getMachineFunction();
    867   MachineFrameInfo *MFI = MF.getFrameInfo();
    868   MachineRegisterInfo &MRI = MF.getRegInfo();
    869   SystemZMachineFunctionInfo *FuncInfo =
    870       MF.getInfo<SystemZMachineFunctionInfo>();
    871   auto *TFL =
    872       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
    873   EVT PtrVT = getPointerTy(DAG.getDataLayout());
    874 
    875   // Detect unsupported vector argument types.
    876   if (Subtarget.hasVector())
    877     VerifyVectorTypes(Ins);
    878 
    879   // Assign locations to all of the incoming arguments.
    880   SmallVector<CCValAssign, 16> ArgLocs;
    881   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
    882   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
    883 
    884   unsigned NumFixedGPRs = 0;
    885   unsigned NumFixedFPRs = 0;
    886   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    887     SDValue ArgValue;
    888     CCValAssign &VA = ArgLocs[I];
    889     EVT LocVT = VA.getLocVT();
    890     if (VA.isRegLoc()) {
    891       // Arguments passed in registers
    892       const TargetRegisterClass *RC;
    893       switch (LocVT.getSimpleVT().SimpleTy) {
    894       default:
    895         // Integers smaller than i64 should be promoted to i64.
    896         llvm_unreachable("Unexpected argument type");
    897       case MVT::i32:
    898         NumFixedGPRs += 1;
    899         RC = &SystemZ::GR32BitRegClass;
    900         break;
    901       case MVT::i64:
    902         NumFixedGPRs += 1;
    903         RC = &SystemZ::GR64BitRegClass;
    904         break;
    905       case MVT::f32:
    906         NumFixedFPRs += 1;
    907         RC = &SystemZ::FP32BitRegClass;
    908         break;
    909       case MVT::f64:
    910         NumFixedFPRs += 1;
    911         RC = &SystemZ::FP64BitRegClass;
    912         break;
    913       case MVT::v16i8:
    914       case MVT::v8i16:
    915       case MVT::v4i32:
    916       case MVT::v2i64:
    917       case MVT::v4f32:
    918       case MVT::v2f64:
    919         RC = &SystemZ::VR128BitRegClass;
    920         break;
    921       }
    922 
    923       unsigned VReg = MRI.createVirtualRegister(RC);
    924       MRI.addLiveIn(VA.getLocReg(), VReg);
    925       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
    926     } else {
    927       assert(VA.isMemLoc() && "Argument not register or memory");
    928 
    929       // Create the frame index object for this incoming parameter.
    930       int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
    931                                       VA.getLocMemOffset(), true);
    932 
    933       // Create the SelectionDAG nodes corresponding to a load
    934       // from this parameter.  Unpromoted ints and floats are
    935       // passed as right-justified 8-byte values.
    936       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
    937       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
    938         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
    939                           DAG.getIntPtrConstant(4, DL));
    940       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
    941                              MachinePointerInfo::getFixedStack(MF, FI), false,
    942                              false, false, 0);
    943     }
    944 
    945     // Convert the value of the argument register into the value that's
    946     // being passed.
    947     if (VA.getLocInfo() == CCValAssign::Indirect) {
    948       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain,
    949                                    ArgValue, MachinePointerInfo(),
    950                                    false, false, false, 0));
    951       // If the original argument was split (e.g. i128), we need
    952       // to load all parts of it here (using the same address).
    953       unsigned ArgIndex = Ins[I].OrigArgIndex;
    954       assert (Ins[I].PartOffset == 0);
    955       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
    956         CCValAssign &PartVA = ArgLocs[I + 1];
    957         unsigned PartOffset = Ins[I + 1].PartOffset;
    958         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
    959                                       DAG.getIntPtrConstant(PartOffset, DL));
    960         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain,
    961                                      Address, MachinePointerInfo(),
    962                                      false, false, false, 0));
    963         ++I;
    964       }
    965     } else
    966       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
    967   }
    968 
    969   if (IsVarArg) {
    970     // Save the number of non-varargs registers for later use by va_start, etc.
    971     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
    972     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
    973 
    974     // Likewise the address (in the form of a frame index) of where the
    975     // first stack vararg would be.  The 1-byte size here is arbitrary.
    976     int64_t StackSize = CCInfo.getNextStackOffset();
    977     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
    978 
    979     // ...and a similar frame index for the caller-allocated save area
    980     // that will be used to store the incoming registers.
    981     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
    982     unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
    983     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
    984 
    985     // Store the FPR varargs in the reserved frame slots.  (We store the
    986     // GPRs as part of the prologue.)
    987     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
    988       SDValue MemOps[SystemZ::NumArgFPRs];
    989       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
    990         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
    991         int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
    992         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
    993         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
    994                                      &SystemZ::FP64BitRegClass);
    995         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
    996         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
    997                                  MachinePointerInfo::getFixedStack(MF, FI),
    998                                  false, false, 0);
    999       }
   1000       // Join the stores, which are independent of one another.
   1001       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   1002                           makeArrayRef(&MemOps[NumFixedFPRs],
   1003                                        SystemZ::NumArgFPRs-NumFixedFPRs));
   1004     }
   1005   }
   1006 
   1007   return Chain;
   1008 }
   1009 
   1010 static bool canUseSiblingCall(const CCState &ArgCCInfo,
   1011                               SmallVectorImpl<CCValAssign> &ArgLocs,
   1012                               SmallVectorImpl<ISD::OutputArg> &Outs) {
   1013   // Punt if there are any indirect or stack arguments, or if the call
   1014   // needs the callee-saved argument register R6, or if the call uses
   1015   // the callee-saved register arguments SwiftSelf and SwiftError.
   1016   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
   1017     CCValAssign &VA = ArgLocs[I];
   1018     if (VA.getLocInfo() == CCValAssign::Indirect)
   1019       return false;
   1020     if (!VA.isRegLoc())
   1021       return false;
   1022     unsigned Reg = VA.getLocReg();
   1023     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
   1024       return false;
   1025     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
   1026       return false;
   1027   }
   1028   return true;
   1029 }
   1030 
   1031 SDValue
   1032 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
   1033                                  SmallVectorImpl<SDValue> &InVals) const {
   1034   SelectionDAG &DAG = CLI.DAG;
   1035   SDLoc &DL = CLI.DL;
   1036   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1037   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
   1038   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
   1039   SDValue Chain = CLI.Chain;
   1040   SDValue Callee = CLI.Callee;
   1041   bool &IsTailCall = CLI.IsTailCall;
   1042   CallingConv::ID CallConv = CLI.CallConv;
   1043   bool IsVarArg = CLI.IsVarArg;
   1044   MachineFunction &MF = DAG.getMachineFunction();
   1045   EVT PtrVT = getPointerTy(MF.getDataLayout());
   1046 
   1047   // Detect unsupported vector argument and return types.
   1048   if (Subtarget.hasVector()) {
   1049     VerifyVectorTypes(Outs);
   1050     VerifyVectorTypes(Ins);
   1051   }
   1052 
   1053   // Analyze the operands of the call, assigning locations to each operand.
   1054   SmallVector<CCValAssign, 16> ArgLocs;
   1055   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
   1056   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
   1057 
   1058   // We don't support GuaranteedTailCallOpt, only automatically-detected
   1059   // sibling calls.
   1060   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
   1061     IsTailCall = false;
   1062 
   1063   // Get a count of how many bytes are to be pushed on the stack.
   1064   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
   1065 
   1066   // Mark the start of the call.
   1067   if (!IsTailCall)
   1068     Chain = DAG.getCALLSEQ_START(Chain,
   1069                                  DAG.getConstant(NumBytes, DL, PtrVT, true),
   1070                                  DL);
   1071 
   1072   // Copy argument values to their designated locations.
   1073   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
   1074   SmallVector<SDValue, 8> MemOpChains;
   1075   SDValue StackPtr;
   1076   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
   1077     CCValAssign &VA = ArgLocs[I];
   1078     SDValue ArgValue = OutVals[I];
   1079 
   1080     if (VA.getLocInfo() == CCValAssign::Indirect) {
   1081       // Store the argument in a stack slot and pass its address.
   1082       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
   1083       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
   1084       MemOpChains.push_back(DAG.getStore(
   1085           Chain, DL, ArgValue, SpillSlot,
   1086           MachinePointerInfo::getFixedStack(MF, FI), false, false, 0));
   1087       // If the original argument was split (e.g. i128), we need
   1088       // to store all parts of it here (and pass just one address).
   1089       unsigned ArgIndex = Outs[I].OrigArgIndex;
   1090       assert (Outs[I].PartOffset == 0);
   1091       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
   1092         SDValue PartValue = OutVals[I + 1];
   1093         unsigned PartOffset = Outs[I + 1].PartOffset;
   1094         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
   1095                                       DAG.getIntPtrConstant(PartOffset, DL));
   1096         MemOpChains.push_back(DAG.getStore(
   1097             Chain, DL, PartValue, Address,
   1098             MachinePointerInfo::getFixedStack(MF, FI), false, false, 0));
   1099         ++I;
   1100       }
   1101       ArgValue = SpillSlot;
   1102     } else
   1103       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
   1104 
   1105     if (VA.isRegLoc())
   1106       // Queue up the argument copies and emit them at the end.
   1107       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
   1108     else {
   1109       assert(VA.isMemLoc() && "Argument not register or memory");
   1110 
   1111       // Work out the address of the stack slot.  Unpromoted ints and
   1112       // floats are passed as right-justified 8-byte values.
   1113       if (!StackPtr.getNode())
   1114         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
   1115       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
   1116       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
   1117         Offset += 4;
   1118       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
   1119                                     DAG.getIntPtrConstant(Offset, DL));
   1120 
   1121       // Emit the store.
   1122       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
   1123                                          MachinePointerInfo(),
   1124                                          false, false, 0));
   1125     }
   1126   }
   1127 
   1128   // Join the stores, which are independent of one another.
   1129   if (!MemOpChains.empty())
   1130     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
   1131 
   1132   // Accept direct calls by converting symbolic call addresses to the
   1133   // associated Target* opcodes.  Force %r1 to be used for indirect
   1134   // tail calls.
   1135   SDValue Glue;
   1136   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1137     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
   1138     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
   1139   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1140     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
   1141     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
   1142   } else if (IsTailCall) {
   1143     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
   1144     Glue = Chain.getValue(1);
   1145     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
   1146   }
   1147 
   1148   // Build a sequence of copy-to-reg nodes, chained and glued together.
   1149   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
   1150     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
   1151                              RegsToPass[I].second, Glue);
   1152     Glue = Chain.getValue(1);
   1153   }
   1154 
   1155   // The first call operand is the chain and the second is the target address.
   1156   SmallVector<SDValue, 8> Ops;
   1157   Ops.push_back(Chain);
   1158   Ops.push_back(Callee);
   1159 
   1160   // Add argument registers to the end of the list so that they are
   1161   // known live into the call.
   1162   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
   1163     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
   1164                                   RegsToPass[I].second.getValueType()));
   1165 
   1166   // Add a register mask operand representing the call-preserved registers.
   1167   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   1168   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
   1169   assert(Mask && "Missing call preserved mask for calling convention");
   1170   Ops.push_back(DAG.getRegisterMask(Mask));
   1171 
   1172   // Glue the call to the argument copies, if any.
   1173   if (Glue.getNode())
   1174     Ops.push_back(Glue);
   1175 
   1176   // Emit the call.
   1177   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1178   if (IsTailCall)
   1179     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
   1180   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
   1181   Glue = Chain.getValue(1);
   1182 
   1183   // Mark the end of the call, which is glued to the call itself.
   1184   Chain = DAG.getCALLSEQ_END(Chain,
   1185                              DAG.getConstant(NumBytes, DL, PtrVT, true),
   1186                              DAG.getConstant(0, DL, PtrVT, true),
   1187                              Glue, DL);
   1188   Glue = Chain.getValue(1);
   1189 
   1190   // Assign locations to each value returned by this call.
   1191   SmallVector<CCValAssign, 16> RetLocs;
   1192   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
   1193   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
   1194 
   1195   // Copy all of the result registers out of their specified physreg.
   1196   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
   1197     CCValAssign &VA = RetLocs[I];
   1198 
   1199     // Copy the value out, gluing the copy to the end of the call sequence.
   1200     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
   1201                                           VA.getLocVT(), Glue);
   1202     Chain = RetValue.getValue(1);
   1203     Glue = RetValue.getValue(2);
   1204 
   1205     // Convert the value of the return register into the value that's
   1206     // being returned.
   1207     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
   1208   }
   1209 
   1210   return Chain;
   1211 }
   1212 
   1213 bool SystemZTargetLowering::
   1214 CanLowerReturn(CallingConv::ID CallConv,
   1215                MachineFunction &MF, bool isVarArg,
   1216                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1217                LLVMContext &Context) const {
   1218   // Detect unsupported vector return types.
   1219   if (Subtarget.hasVector())
   1220     VerifyVectorTypes(Outs);
   1221 
   1222   // Special case that we cannot easily detect in RetCC_SystemZ since
   1223   // i128 is not a legal type.
   1224   for (auto &Out : Outs)
   1225     if (Out.ArgVT == MVT::i128)
   1226       return false;
   1227 
   1228   SmallVector<CCValAssign, 16> RetLocs;
   1229   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
   1230   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
   1231 }
   1232 
   1233 SDValue
   1234 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   1235                                    bool IsVarArg,
   1236                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
   1237                                    const SmallVectorImpl<SDValue> &OutVals,
   1238                                    const SDLoc &DL, SelectionDAG &DAG) const {
   1239   MachineFunction &MF = DAG.getMachineFunction();
   1240 
   1241   // Detect unsupported vector return types.
   1242   if (Subtarget.hasVector())
   1243     VerifyVectorTypes(Outs);
   1244 
   1245   // Assign locations to each returned value.
   1246   SmallVector<CCValAssign, 16> RetLocs;
   1247   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
   1248   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
   1249 
   1250   // Quick exit for void returns
   1251   if (RetLocs.empty())
   1252     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
   1253 
   1254   // Copy the result values into the output registers.
   1255   SDValue Glue;
   1256   SmallVector<SDValue, 4> RetOps;
   1257   RetOps.push_back(Chain);
   1258   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
   1259     CCValAssign &VA = RetLocs[I];
   1260     SDValue RetValue = OutVals[I];
   1261 
   1262     // Make the return register live on exit.
   1263     assert(VA.isRegLoc() && "Can only return in registers!");
   1264 
   1265     // Promote the value as required.
   1266     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
   1267 
   1268     // Chain and glue the copies together.
   1269     unsigned Reg = VA.getLocReg();
   1270     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
   1271     Glue = Chain.getValue(1);
   1272     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
   1273   }
   1274 
   1275   // Update chain and glue.
   1276   RetOps[0] = Chain;
   1277   if (Glue.getNode())
   1278     RetOps.push_back(Glue);
   1279 
   1280   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
   1281 }
   1282 
   1283 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad(
   1284     SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const {
   1285   return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
   1286 }
   1287 
   1288 // Return true if Op is an intrinsic node with chain that returns the CC value
   1289 // as its only (other) argument.  Provide the associated SystemZISD opcode and
   1290 // the mask of valid CC values if so.
   1291 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
   1292                                       unsigned &CCValid) {
   1293   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   1294   switch (Id) {
   1295   case Intrinsic::s390_tbegin:
   1296     Opcode = SystemZISD::TBEGIN;
   1297     CCValid = SystemZ::CCMASK_TBEGIN;
   1298     return true;
   1299 
   1300   case Intrinsic::s390_tbegin_nofloat:
   1301     Opcode = SystemZISD::TBEGIN_NOFLOAT;
   1302     CCValid = SystemZ::CCMASK_TBEGIN;
   1303     return true;
   1304 
   1305   case Intrinsic::s390_tend:
   1306     Opcode = SystemZISD::TEND;
   1307     CCValid = SystemZ::CCMASK_TEND;
   1308     return true;
   1309 
   1310   default:
   1311     return false;
   1312   }
   1313 }
   1314 
   1315 // Return true if Op is an intrinsic node without chain that returns the
   1316 // CC value as its final argument.  Provide the associated SystemZISD
   1317 // opcode and the mask of valid CC values if so.
   1318 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
   1319   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1320   switch (Id) {
   1321   case Intrinsic::s390_vpkshs:
   1322   case Intrinsic::s390_vpksfs:
   1323   case Intrinsic::s390_vpksgs:
   1324     Opcode = SystemZISD::PACKS_CC;
   1325     CCValid = SystemZ::CCMASK_VCMP;
   1326     return true;
   1327 
   1328   case Intrinsic::s390_vpklshs:
   1329   case Intrinsic::s390_vpklsfs:
   1330   case Intrinsic::s390_vpklsgs:
   1331     Opcode = SystemZISD::PACKLS_CC;
   1332     CCValid = SystemZ::CCMASK_VCMP;
   1333     return true;
   1334 
   1335   case Intrinsic::s390_vceqbs:
   1336   case Intrinsic::s390_vceqhs:
   1337   case Intrinsic::s390_vceqfs:
   1338   case Intrinsic::s390_vceqgs:
   1339     Opcode = SystemZISD::VICMPES;
   1340     CCValid = SystemZ::CCMASK_VCMP;
   1341     return true;
   1342 
   1343   case Intrinsic::s390_vchbs:
   1344   case Intrinsic::s390_vchhs:
   1345   case Intrinsic::s390_vchfs:
   1346   case Intrinsic::s390_vchgs:
   1347     Opcode = SystemZISD::VICMPHS;
   1348     CCValid = SystemZ::CCMASK_VCMP;
   1349     return true;
   1350 
   1351   case Intrinsic::s390_vchlbs:
   1352   case Intrinsic::s390_vchlhs:
   1353   case Intrinsic::s390_vchlfs:
   1354   case Intrinsic::s390_vchlgs:
   1355     Opcode = SystemZISD::VICMPHLS;
   1356     CCValid = SystemZ::CCMASK_VCMP;
   1357     return true;
   1358 
   1359   case Intrinsic::s390_vtm:
   1360     Opcode = SystemZISD::VTM;
   1361     CCValid = SystemZ::CCMASK_VCMP;
   1362     return true;
   1363 
   1364   case Intrinsic::s390_vfaebs:
   1365   case Intrinsic::s390_vfaehs:
   1366   case Intrinsic::s390_vfaefs:
   1367     Opcode = SystemZISD::VFAE_CC;
   1368     CCValid = SystemZ::CCMASK_ANY;
   1369     return true;
   1370 
   1371   case Intrinsic::s390_vfaezbs:
   1372   case Intrinsic::s390_vfaezhs:
   1373   case Intrinsic::s390_vfaezfs:
   1374     Opcode = SystemZISD::VFAEZ_CC;
   1375     CCValid = SystemZ::CCMASK_ANY;
   1376     return true;
   1377 
   1378   case Intrinsic::s390_vfeebs:
   1379   case Intrinsic::s390_vfeehs:
   1380   case Intrinsic::s390_vfeefs:
   1381     Opcode = SystemZISD::VFEE_CC;
   1382     CCValid = SystemZ::CCMASK_ANY;
   1383     return true;
   1384 
   1385   case Intrinsic::s390_vfeezbs:
   1386   case Intrinsic::s390_vfeezhs:
   1387   case Intrinsic::s390_vfeezfs:
   1388     Opcode = SystemZISD::VFEEZ_CC;
   1389     CCValid = SystemZ::CCMASK_ANY;
   1390     return true;
   1391 
   1392   case Intrinsic::s390_vfenebs:
   1393   case Intrinsic::s390_vfenehs:
   1394   case Intrinsic::s390_vfenefs:
   1395     Opcode = SystemZISD::VFENE_CC;
   1396     CCValid = SystemZ::CCMASK_ANY;
   1397     return true;
   1398 
   1399   case Intrinsic::s390_vfenezbs:
   1400   case Intrinsic::s390_vfenezhs:
   1401   case Intrinsic::s390_vfenezfs:
   1402     Opcode = SystemZISD::VFENEZ_CC;
   1403     CCValid = SystemZ::CCMASK_ANY;
   1404     return true;
   1405 
   1406   case Intrinsic::s390_vistrbs:
   1407   case Intrinsic::s390_vistrhs:
   1408   case Intrinsic::s390_vistrfs:
   1409     Opcode = SystemZISD::VISTR_CC;
   1410     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
   1411     return true;
   1412 
   1413   case Intrinsic::s390_vstrcbs:
   1414   case Intrinsic::s390_vstrchs:
   1415   case Intrinsic::s390_vstrcfs:
   1416     Opcode = SystemZISD::VSTRC_CC;
   1417     CCValid = SystemZ::CCMASK_ANY;
   1418     return true;
   1419 
   1420   case Intrinsic::s390_vstrczbs:
   1421   case Intrinsic::s390_vstrczhs:
   1422   case Intrinsic::s390_vstrczfs:
   1423     Opcode = SystemZISD::VSTRCZ_CC;
   1424     CCValid = SystemZ::CCMASK_ANY;
   1425     return true;
   1426 
   1427   case Intrinsic::s390_vfcedbs:
   1428     Opcode = SystemZISD::VFCMPES;
   1429     CCValid = SystemZ::CCMASK_VCMP;
   1430     return true;
   1431 
   1432   case Intrinsic::s390_vfchdbs:
   1433     Opcode = SystemZISD::VFCMPHS;
   1434     CCValid = SystemZ::CCMASK_VCMP;
   1435     return true;
   1436 
   1437   case Intrinsic::s390_vfchedbs:
   1438     Opcode = SystemZISD::VFCMPHES;
   1439     CCValid = SystemZ::CCMASK_VCMP;
   1440     return true;
   1441 
   1442   case Intrinsic::s390_vftcidb:
   1443     Opcode = SystemZISD::VFTCI;
   1444     CCValid = SystemZ::CCMASK_VCMP;
   1445     return true;
   1446 
   1447   case Intrinsic::s390_tdc:
   1448     Opcode = SystemZISD::TDC;
   1449     CCValid = SystemZ::CCMASK_TDC;
   1450     return true;
   1451 
   1452   default:
   1453     return false;
   1454   }
   1455 }
   1456 
   1457 // Emit an intrinsic with chain with a glued value instead of its CC result.
   1458 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
   1459                                              unsigned Opcode) {
   1460   // Copy all operands except the intrinsic ID.
   1461   unsigned NumOps = Op.getNumOperands();
   1462   SmallVector<SDValue, 6> Ops;
   1463   Ops.reserve(NumOps - 1);
   1464   Ops.push_back(Op.getOperand(0));
   1465   for (unsigned I = 2; I < NumOps; ++I)
   1466     Ops.push_back(Op.getOperand(I));
   1467 
   1468   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
   1469   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1470   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
   1471   SDValue OldChain = SDValue(Op.getNode(), 1);
   1472   SDValue NewChain = SDValue(Intr.getNode(), 0);
   1473   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
   1474   return Intr;
   1475 }
   1476 
   1477 // Emit an intrinsic with a glued value instead of its CC result.
   1478 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
   1479                                      unsigned Opcode) {
   1480   // Copy all operands except the intrinsic ID.
   1481   unsigned NumOps = Op.getNumOperands();
   1482   SmallVector<SDValue, 6> Ops;
   1483   Ops.reserve(NumOps - 1);
   1484   for (unsigned I = 1; I < NumOps; ++I)
   1485     Ops.push_back(Op.getOperand(I));
   1486 
   1487   if (Op->getNumValues() == 1)
   1488     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
   1489   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
   1490   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
   1491   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
   1492 }
   1493 
   1494 // CC is a comparison that will be implemented using an integer or
   1495 // floating-point comparison.  Return the condition code mask for
   1496 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
   1497 // unsigned comparisons and clear for signed ones.  In the floating-point
   1498 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
   1499 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
   1500 #define CONV(X) \
   1501   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
   1502   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
   1503   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
   1504 
   1505   switch (CC) {
   1506   default:
   1507     llvm_unreachable("Invalid integer condition!");
   1508 
   1509   CONV(EQ);
   1510   CONV(NE);
   1511   CONV(GT);
   1512   CONV(GE);
   1513   CONV(LT);
   1514   CONV(LE);
   1515 
   1516   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
   1517   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
   1518   }
   1519 #undef CONV
   1520 }
   1521 
   1522 // Return a sequence for getting a 1 from an IPM result when CC has a
   1523 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
   1524 // The handling of CC values outside CCValid doesn't matter.
   1525 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
   1526   // Deal with cases where the result can be taken directly from a bit
   1527   // of the IPM result.
   1528   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
   1529     return IPMConversion(0, 0, SystemZ::IPM_CC);
   1530   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
   1531     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
   1532 
   1533   // Deal with cases where we can add a value to force the sign bit
   1534   // to contain the right value.  Putting the bit in 31 means we can
   1535   // use SRL rather than RISBG(L), and also makes it easier to get a
   1536   // 0/-1 value, so it has priority over the other tests below.
   1537   //
   1538   // These sequences rely on the fact that the upper two bits of the
   1539   // IPM result are zero.
   1540   uint64_t TopBit = uint64_t(1) << 31;
   1541   if (CCMask == (CCValid & SystemZ::CCMASK_0))
   1542     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
   1543   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
   1544     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
   1545   if (CCMask == (CCValid & (SystemZ::CCMASK_0
   1546                             | SystemZ::CCMASK_1
   1547                             | SystemZ::CCMASK_2)))
   1548     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
   1549   if (CCMask == (CCValid & SystemZ::CCMASK_3))
   1550     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
   1551   if (CCMask == (CCValid & (SystemZ::CCMASK_1
   1552                             | SystemZ::CCMASK_2
   1553                             | SystemZ::CCMASK_3)))
   1554     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
   1555 
   1556   // Next try inverting the value and testing a bit.  0/1 could be
   1557   // handled this way too, but we dealt with that case above.
   1558   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
   1559     return IPMConversion(-1, 0, SystemZ::IPM_CC);
   1560 
   1561   // Handle cases where adding a value forces a non-sign bit to contain
   1562   // the right value.
   1563   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
   1564     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
   1565   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
   1566     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
   1567 
   1568   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
   1569   // can be done by inverting the low CC bit and applying one of the
   1570   // sign-based extractions above.
   1571   if (CCMask == (CCValid & SystemZ::CCMASK_1))
   1572     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
   1573   if (CCMask == (CCValid & SystemZ::CCMASK_2))
   1574     return IPMConversion(1 << SystemZ::IPM_CC,
   1575                          TopBit - (3 << SystemZ::IPM_CC), 31);
   1576   if (CCMask == (CCValid & (SystemZ::CCMASK_0
   1577                             | SystemZ::CCMASK_1
   1578                             | SystemZ::CCMASK_3)))
   1579     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
   1580   if (CCMask == (CCValid & (SystemZ::CCMASK_0
   1581                             | SystemZ::CCMASK_2
   1582                             | SystemZ::CCMASK_3)))
   1583     return IPMConversion(1 << SystemZ::IPM_CC,
   1584                          TopBit - (1 << SystemZ::IPM_CC), 31);
   1585 
   1586   llvm_unreachable("Unexpected CC combination");
   1587 }
   1588 
   1589 // If C can be converted to a comparison against zero, adjust the operands
   1590 // as necessary.
   1591 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
   1592   if (C.ICmpType == SystemZICMP::UnsignedOnly)
   1593     return;
   1594 
   1595   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
   1596   if (!ConstOp1)
   1597     return;
   1598 
   1599   int64_t Value = ConstOp1->getSExtValue();
   1600   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
   1601       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
   1602       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
   1603       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
   1604     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
   1605     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
   1606   }
   1607 }
   1608 
   1609 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
   1610 // adjust the operands as necessary.
   1611 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
   1612                              Comparison &C) {
   1613   // For us to make any changes, it must a comparison between a single-use
   1614   // load and a constant.
   1615   if (!C.Op0.hasOneUse() ||
   1616       C.Op0.getOpcode() != ISD::LOAD ||
   1617       C.Op1.getOpcode() != ISD::Constant)
   1618     return;
   1619 
   1620   // We must have an 8- or 16-bit load.
   1621   auto *Load = cast<LoadSDNode>(C.Op0);
   1622   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
   1623   if (NumBits != 8 && NumBits != 16)
   1624     return;
   1625 
   1626   // The load must be an extending one and the constant must be within the
   1627   // range of the unextended value.
   1628   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
   1629   uint64_t Value = ConstOp1->getZExtValue();
   1630   uint64_t Mask = (1 << NumBits) - 1;
   1631   if (Load->getExtensionType() == ISD::SEXTLOAD) {
   1632     // Make sure that ConstOp1 is in range of C.Op0.
   1633     int64_t SignedValue = ConstOp1->getSExtValue();
   1634     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
   1635       return;
   1636     if (C.ICmpType != SystemZICMP::SignedOnly) {
   1637       // Unsigned comparison between two sign-extended values is equivalent
   1638       // to unsigned comparison between two zero-extended values.
   1639       Value &= Mask;
   1640     } else if (NumBits == 8) {
   1641       // Try to treat the comparison as unsigned, so that we can use CLI.
   1642       // Adjust CCMask and Value as necessary.
   1643       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
   1644         // Test whether the high bit of the byte is set.
   1645         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
   1646       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
   1647         // Test whether the high bit of the byte is clear.
   1648         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
   1649       else
   1650         // No instruction exists for this combination.
   1651         return;
   1652       C.ICmpType = SystemZICMP::UnsignedOnly;
   1653     }
   1654   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
   1655     if (Value > Mask)
   1656       return;
   1657     // If the constant is in range, we can use any comparison.
   1658     C.ICmpType = SystemZICMP::Any;
   1659   } else
   1660     return;
   1661 
   1662   // Make sure that the first operand is an i32 of the right extension type.
   1663   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
   1664                               ISD::SEXTLOAD :
   1665                               ISD::ZEXTLOAD);
   1666   if (C.Op0.getValueType() != MVT::i32 ||
   1667       Load->getExtensionType() != ExtType)
   1668     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
   1669                            Load->getChain(), Load->getBasePtr(),
   1670                            Load->getPointerInfo(), Load->getMemoryVT(),
   1671                            Load->isVolatile(), Load->isNonTemporal(),
   1672                            Load->isInvariant(), Load->getAlignment());
   1673 
   1674   // Make sure that the second operand is an i32 with the right value.
   1675   if (C.Op1.getValueType() != MVT::i32 ||
   1676       Value != ConstOp1->getZExtValue())
   1677     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
   1678 }
   1679 
   1680 // Return true if Op is either an unextended load, or a load suitable
   1681 // for integer register-memory comparisons of type ICmpType.
   1682 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
   1683   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
   1684   if (Load) {
   1685     // There are no instructions to compare a register with a memory byte.
   1686     if (Load->getMemoryVT() == MVT::i8)
   1687       return false;
   1688     // Otherwise decide on extension type.
   1689     switch (Load->getExtensionType()) {
   1690     case ISD::NON_EXTLOAD:
   1691       return true;
   1692     case ISD::SEXTLOAD:
   1693       return ICmpType != SystemZICMP::UnsignedOnly;
   1694     case ISD::ZEXTLOAD:
   1695       return ICmpType != SystemZICMP::SignedOnly;
   1696     default:
   1697       break;
   1698     }
   1699   }
   1700   return false;
   1701 }
   1702 
   1703 // Return true if it is better to swap the operands of C.
   1704 static bool shouldSwapCmpOperands(const Comparison &C) {
   1705   // Leave f128 comparisons alone, since they have no memory forms.
   1706   if (C.Op0.getValueType() == MVT::f128)
   1707     return false;
   1708 
   1709   // Always keep a floating-point constant second, since comparisons with
   1710   // zero can use LOAD TEST and comparisons with other constants make a
   1711   // natural memory operand.
   1712   if (isa<ConstantFPSDNode>(C.Op1))
   1713     return false;
   1714 
   1715   // Never swap comparisons with zero since there are many ways to optimize
   1716   // those later.
   1717   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
   1718   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
   1719     return false;
   1720 
   1721   // Also keep natural memory operands second if the loaded value is
   1722   // only used here.  Several comparisons have memory forms.
   1723   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
   1724     return false;
   1725 
   1726   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
   1727   // In that case we generally prefer the memory to be second.
   1728   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
   1729     // The only exceptions are when the second operand is a constant and
   1730     // we can use things like CHHSI.
   1731     if (!ConstOp1)
   1732       return true;
   1733     // The unsigned memory-immediate instructions can handle 16-bit
   1734     // unsigned integers.
   1735     if (C.ICmpType != SystemZICMP::SignedOnly &&
   1736         isUInt<16>(ConstOp1->getZExtValue()))
   1737       return false;
   1738     // The signed memory-immediate instructions can handle 16-bit
   1739     // signed integers.
   1740     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
   1741         isInt<16>(ConstOp1->getSExtValue()))
   1742       return false;
   1743     return true;
   1744   }
   1745 
   1746   // Try to promote the use of CGFR and CLGFR.
   1747   unsigned Opcode0 = C.Op0.getOpcode();
   1748   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
   1749     return true;
   1750   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
   1751     return true;
   1752   if (C.ICmpType != SystemZICMP::SignedOnly &&
   1753       Opcode0 == ISD::AND &&
   1754       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
   1755       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
   1756     return true;
   1757 
   1758   return false;
   1759 }
   1760 
   1761 // Return a version of comparison CC mask CCMask in which the LT and GT
   1762 // actions are swapped.
   1763 static unsigned reverseCCMask(unsigned CCMask) {
   1764   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
   1765           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
   1766           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
   1767           (CCMask & SystemZ::CCMASK_CMP_UO));
   1768 }
   1769 
   1770 // Check whether C tests for equality between X and Y and whether X - Y
   1771 // or Y - X is also computed.  In that case it's better to compare the
   1772 // result of the subtraction against zero.
   1773 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
   1774                                  Comparison &C) {
   1775   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
   1776       C.CCMask == SystemZ::CCMASK_CMP_NE) {
   1777     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
   1778       SDNode *N = *I;
   1779       if (N->getOpcode() == ISD::SUB &&
   1780           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
   1781            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
   1782         C.Op0 = SDValue(N, 0);
   1783         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
   1784         return;
   1785       }
   1786     }
   1787   }
   1788 }
   1789 
   1790 // Check whether C compares a floating-point value with zero and if that
   1791 // floating-point value is also negated.  In this case we can use the
   1792 // negation to set CC, so avoiding separate LOAD AND TEST and
   1793 // LOAD (NEGATIVE/COMPLEMENT) instructions.
   1794 static void adjustForFNeg(Comparison &C) {
   1795   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
   1796   if (C1 && C1->isZero()) {
   1797     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
   1798       SDNode *N = *I;
   1799       if (N->getOpcode() == ISD::FNEG) {
   1800         C.Op0 = SDValue(N, 0);
   1801         C.CCMask = reverseCCMask(C.CCMask);
   1802         return;
   1803       }
   1804     }
   1805   }
   1806 }
   1807 
   1808 // Check whether C compares (shl X, 32) with 0 and whether X is
   1809 // also sign-extended.  In that case it is better to test the result
   1810 // of the sign extension using LTGFR.
   1811 //
   1812 // This case is important because InstCombine transforms a comparison
   1813 // with (sext (trunc X)) into a comparison with (shl X, 32).
   1814 static void adjustForLTGFR(Comparison &C) {
   1815   // Check for a comparison between (shl X, 32) and 0.
   1816   if (C.Op0.getOpcode() == ISD::SHL &&
   1817       C.Op0.getValueType() == MVT::i64 &&
   1818       C.Op1.getOpcode() == ISD::Constant &&
   1819       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   1820     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
   1821     if (C1 && C1->getZExtValue() == 32) {
   1822       SDValue ShlOp0 = C.Op0.getOperand(0);
   1823       // See whether X has any SIGN_EXTEND_INREG uses.
   1824       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
   1825         SDNode *N = *I;
   1826         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1827             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
   1828           C.Op0 = SDValue(N, 0);
   1829           return;
   1830         }
   1831       }
   1832     }
   1833   }
   1834 }
   1835 
   1836 // If C compares the truncation of an extending load, try to compare
   1837 // the untruncated value instead.  This exposes more opportunities to
   1838 // reuse CC.
   1839 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
   1840                                Comparison &C) {
   1841   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
   1842       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
   1843       C.Op1.getOpcode() == ISD::Constant &&
   1844       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   1845     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
   1846     if (L->getMemoryVT().getStoreSizeInBits()
   1847         <= C.Op0.getValueType().getSizeInBits()) {
   1848       unsigned Type = L->getExtensionType();
   1849       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
   1850           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
   1851         C.Op0 = C.Op0.getOperand(0);
   1852         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
   1853       }
   1854     }
   1855   }
   1856 }
   1857 
   1858 // Return true if shift operation N has an in-range constant shift value.
   1859 // Store it in ShiftVal if so.
   1860 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
   1861   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
   1862   if (!Shift)
   1863     return false;
   1864 
   1865   uint64_t Amount = Shift->getZExtValue();
   1866   if (Amount >= N.getValueType().getSizeInBits())
   1867     return false;
   1868 
   1869   ShiftVal = Amount;
   1870   return true;
   1871 }
   1872 
   1873 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
   1874 // instruction and whether the CC value is descriptive enough to handle
   1875 // a comparison of type Opcode between the AND result and CmpVal.
   1876 // CCMask says which comparison result is being tested and BitSize is
   1877 // the number of bits in the operands.  If TEST UNDER MASK can be used,
   1878 // return the corresponding CC mask, otherwise return 0.
   1879 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
   1880                                      uint64_t Mask, uint64_t CmpVal,
   1881                                      unsigned ICmpType) {
   1882   assert(Mask != 0 && "ANDs with zero should have been removed by now");
   1883 
   1884   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
   1885   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
   1886       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
   1887     return 0;
   1888 
   1889   // Work out the masks for the lowest and highest bits.
   1890   unsigned HighShift = 63 - countLeadingZeros(Mask);
   1891   uint64_t High = uint64_t(1) << HighShift;
   1892   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
   1893 
   1894   // Signed ordered comparisons are effectively unsigned if the sign
   1895   // bit is dropped.
   1896   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
   1897 
   1898   // Check for equality comparisons with 0, or the equivalent.
   1899   if (CmpVal == 0) {
   1900     if (CCMask == SystemZ::CCMASK_CMP_EQ)
   1901       return SystemZ::CCMASK_TM_ALL_0;
   1902     if (CCMask == SystemZ::CCMASK_CMP_NE)
   1903       return SystemZ::CCMASK_TM_SOME_1;
   1904   }
   1905   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
   1906     if (CCMask == SystemZ::CCMASK_CMP_LT)
   1907       return SystemZ::CCMASK_TM_ALL_0;
   1908     if (CCMask == SystemZ::CCMASK_CMP_GE)
   1909       return SystemZ::CCMASK_TM_SOME_1;
   1910   }
   1911   if (EffectivelyUnsigned && CmpVal < Low) {
   1912     if (CCMask == SystemZ::CCMASK_CMP_LE)
   1913       return SystemZ::CCMASK_TM_ALL_0;
   1914     if (CCMask == SystemZ::CCMASK_CMP_GT)
   1915       return SystemZ::CCMASK_TM_SOME_1;
   1916   }
   1917 
   1918   // Check for equality comparisons with the mask, or the equivalent.
   1919   if (CmpVal == Mask) {
   1920     if (CCMask == SystemZ::CCMASK_CMP_EQ)
   1921       return SystemZ::CCMASK_TM_ALL_1;
   1922     if (CCMask == SystemZ::CCMASK_CMP_NE)
   1923       return SystemZ::CCMASK_TM_SOME_0;
   1924   }
   1925   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
   1926     if (CCMask == SystemZ::CCMASK_CMP_GT)
   1927       return SystemZ::CCMASK_TM_ALL_1;
   1928     if (CCMask == SystemZ::CCMASK_CMP_LE)
   1929       return SystemZ::CCMASK_TM_SOME_0;
   1930   }
   1931   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
   1932     if (CCMask == SystemZ::CCMASK_CMP_GE)
   1933       return SystemZ::CCMASK_TM_ALL_1;
   1934     if (CCMask == SystemZ::CCMASK_CMP_LT)
   1935       return SystemZ::CCMASK_TM_SOME_0;
   1936   }
   1937 
   1938   // Check for ordered comparisons with the top bit.
   1939   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
   1940     if (CCMask == SystemZ::CCMASK_CMP_LE)
   1941       return SystemZ::CCMASK_TM_MSB_0;
   1942     if (CCMask == SystemZ::CCMASK_CMP_GT)
   1943       return SystemZ::CCMASK_TM_MSB_1;
   1944   }
   1945   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
   1946     if (CCMask == SystemZ::CCMASK_CMP_LT)
   1947       return SystemZ::CCMASK_TM_MSB_0;
   1948     if (CCMask == SystemZ::CCMASK_CMP_GE)
   1949       return SystemZ::CCMASK_TM_MSB_1;
   1950   }
   1951 
   1952   // If there are just two bits, we can do equality checks for Low and High
   1953   // as well.
   1954   if (Mask == Low + High) {
   1955     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
   1956       return SystemZ::CCMASK_TM_MIXED_MSB_0;
   1957     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
   1958       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
   1959     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
   1960       return SystemZ::CCMASK_TM_MIXED_MSB_1;
   1961     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
   1962       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
   1963   }
   1964 
   1965   // Looks like we've exhausted our options.
   1966   return 0;
   1967 }
   1968 
   1969 // See whether C can be implemented as a TEST UNDER MASK instruction.
   1970 // Update the arguments with the TM version if so.
   1971 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
   1972                                    Comparison &C) {
   1973   // Check that we have a comparison with a constant.
   1974   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
   1975   if (!ConstOp1)
   1976     return;
   1977   uint64_t CmpVal = ConstOp1->getZExtValue();
   1978 
   1979   // Check whether the nonconstant input is an AND with a constant mask.
   1980   Comparison NewC(C);
   1981   uint64_t MaskVal;
   1982   ConstantSDNode *Mask = nullptr;
   1983   if (C.Op0.getOpcode() == ISD::AND) {
   1984     NewC.Op0 = C.Op0.getOperand(0);
   1985     NewC.Op1 = C.Op0.getOperand(1);
   1986     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
   1987     if (!Mask)
   1988       return;
   1989     MaskVal = Mask->getZExtValue();
   1990   } else {
   1991     // There is no instruction to compare with a 64-bit immediate
   1992     // so use TMHH instead if possible.  We need an unsigned ordered
   1993     // comparison with an i64 immediate.
   1994     if (NewC.Op0.getValueType() != MVT::i64 ||
   1995         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
   1996         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
   1997         NewC.ICmpType == SystemZICMP::SignedOnly)
   1998       return;
   1999     // Convert LE and GT comparisons into LT and GE.
   2000     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
   2001         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
   2002       if (CmpVal == uint64_t(-1))
   2003         return;
   2004       CmpVal += 1;
   2005       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
   2006     }
   2007     // If the low N bits of Op1 are zero than the low N bits of Op0 can
   2008     // be masked off without changing the result.
   2009     MaskVal = -(CmpVal & -CmpVal);
   2010     NewC.ICmpType = SystemZICMP::UnsignedOnly;
   2011   }
   2012   if (!MaskVal)
   2013     return;
   2014 
   2015   // Check whether the combination of mask, comparison value and comparison
   2016   // type are suitable.
   2017   unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
   2018   unsigned NewCCMask, ShiftVal;
   2019   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
   2020       NewC.Op0.getOpcode() == ISD::SHL &&
   2021       isSimpleShift(NewC.Op0, ShiftVal) &&
   2022       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
   2023                                         MaskVal >> ShiftVal,
   2024                                         CmpVal >> ShiftVal,
   2025                                         SystemZICMP::Any))) {
   2026     NewC.Op0 = NewC.Op0.getOperand(0);
   2027     MaskVal >>= ShiftVal;
   2028   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
   2029              NewC.Op0.getOpcode() == ISD::SRL &&
   2030              isSimpleShift(NewC.Op0, ShiftVal) &&
   2031              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
   2032                                                MaskVal << ShiftVal,
   2033                                                CmpVal << ShiftVal,
   2034                                                SystemZICMP::UnsignedOnly))) {
   2035     NewC.Op0 = NewC.Op0.getOperand(0);
   2036     MaskVal <<= ShiftVal;
   2037   } else {
   2038     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
   2039                                      NewC.ICmpType);
   2040     if (!NewCCMask)
   2041       return;
   2042   }
   2043 
   2044   // Go ahead and make the change.
   2045   C.Opcode = SystemZISD::TM;
   2046   C.Op0 = NewC.Op0;
   2047   if (Mask && Mask->getZExtValue() == MaskVal)
   2048     C.Op1 = SDValue(Mask, 0);
   2049   else
   2050     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
   2051   C.CCValid = SystemZ::CCMASK_TM;
   2052   C.CCMask = NewCCMask;
   2053 }
   2054 
   2055 // Return a Comparison that tests the condition-code result of intrinsic
   2056 // node Call against constant integer CC using comparison code Cond.
   2057 // Opcode is the opcode of the SystemZISD operation for the intrinsic
   2058 // and CCValid is the set of possible condition-code results.
   2059 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
   2060                                   SDValue Call, unsigned CCValid, uint64_t CC,
   2061                                   ISD::CondCode Cond) {
   2062   Comparison C(Call, SDValue());
   2063   C.Opcode = Opcode;
   2064   C.CCValid = CCValid;
   2065   if (Cond == ISD::SETEQ)
   2066     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
   2067     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
   2068   else if (Cond == ISD::SETNE)
   2069     // ...and the inverse of that.
   2070     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
   2071   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
   2072     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
   2073     // always true for CC>3.
   2074     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
   2075   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
   2076     // ...and the inverse of that.
   2077     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
   2078   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
   2079     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
   2080     // always true for CC>3.
   2081     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
   2082   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
   2083     // ...and the inverse of that.
   2084     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
   2085   else
   2086     llvm_unreachable("Unexpected integer comparison type");
   2087   C.CCMask &= CCValid;
   2088   return C;
   2089 }
   2090 
   2091 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
   2092 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
   2093                          ISD::CondCode Cond, const SDLoc &DL) {
   2094   if (CmpOp1.getOpcode() == ISD::Constant) {
   2095     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
   2096     unsigned Opcode, CCValid;
   2097     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   2098         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
   2099         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
   2100       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
   2101     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   2102         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
   2103         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
   2104       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
   2105   }
   2106   Comparison C(CmpOp0, CmpOp1);
   2107   C.CCMask = CCMaskForCondCode(Cond);
   2108   if (C.Op0.getValueType().isFloatingPoint()) {
   2109     C.CCValid = SystemZ::CCMASK_FCMP;
   2110     C.Opcode = SystemZISD::FCMP;
   2111     adjustForFNeg(C);
   2112   } else {
   2113     C.CCValid = SystemZ::CCMASK_ICMP;
   2114     C.Opcode = SystemZISD::ICMP;
   2115     // Choose the type of comparison.  Equality and inequality tests can
   2116     // use either signed or unsigned comparisons.  The choice also doesn't
   2117     // matter if both sign bits are known to be clear.  In those cases we
   2118     // want to give the main isel code the freedom to choose whichever
   2119     // form fits best.
   2120     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
   2121         C.CCMask == SystemZ::CCMASK_CMP_NE ||
   2122         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
   2123       C.ICmpType = SystemZICMP::Any;
   2124     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
   2125       C.ICmpType = SystemZICMP::UnsignedOnly;
   2126     else
   2127       C.ICmpType = SystemZICMP::SignedOnly;
   2128     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
   2129     adjustZeroCmp(DAG, DL, C);
   2130     adjustSubwordCmp(DAG, DL, C);
   2131     adjustForSubtraction(DAG, DL, C);
   2132     adjustForLTGFR(C);
   2133     adjustICmpTruncate(DAG, DL, C);
   2134   }
   2135 
   2136   if (shouldSwapCmpOperands(C)) {
   2137     std::swap(C.Op0, C.Op1);
   2138     C.CCMask = reverseCCMask(C.CCMask);
   2139   }
   2140 
   2141   adjustForTestUnderMask(DAG, DL, C);
   2142   return C;
   2143 }
   2144 
   2145 // Emit the comparison instruction described by C.
   2146 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
   2147   if (!C.Op1.getNode()) {
   2148     SDValue Op;
   2149     switch (C.Op0.getOpcode()) {
   2150     case ISD::INTRINSIC_W_CHAIN:
   2151       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
   2152       break;
   2153     case ISD::INTRINSIC_WO_CHAIN:
   2154       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
   2155       break;
   2156     default:
   2157       llvm_unreachable("Invalid comparison operands");
   2158     }
   2159     return SDValue(Op.getNode(), Op->getNumValues() - 1);
   2160   }
   2161   if (C.Opcode == SystemZISD::ICMP)
   2162     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
   2163                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
   2164   if (C.Opcode == SystemZISD::TM) {
   2165     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
   2166                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
   2167     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
   2168                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
   2169   }
   2170   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
   2171 }
   2172 
   2173 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
   2174 // 64 bits.  Extend is the extension type to use.  Store the high part
   2175 // in Hi and the low part in Lo.
   2176 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
   2177                             SDValue Op0, SDValue Op1, SDValue &Hi,
   2178                             SDValue &Lo) {
   2179   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
   2180   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
   2181   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
   2182   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
   2183                    DAG.getConstant(32, DL, MVT::i64));
   2184   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
   2185   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
   2186 }
   2187 
   2188 // Lower a binary operation that produces two VT results, one in each
   2189 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
   2190 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
   2191 // on the extended Op0 and (unextended) Op1.  Store the even register result
   2192 // in Even and the odd register result in Odd.
   2193 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
   2194                              unsigned Extend, unsigned Opcode, SDValue Op0,
   2195                              SDValue Op1, SDValue &Even, SDValue &Odd) {
   2196   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
   2197   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
   2198                                SDValue(In128, 0), Op1);
   2199   bool Is32Bit = is32Bit(VT);
   2200   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
   2201   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
   2202 }
   2203 
   2204 // Return an i32 value that is 1 if the CC value produced by Glue is
   2205 // in the mask CCMask and 0 otherwise.  CC is known to have a value
   2206 // in CCValid, so other values can be ignored.
   2207 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
   2208                          unsigned CCValid, unsigned CCMask) {
   2209   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
   2210   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
   2211 
   2212   if (Conversion.XORValue)
   2213     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
   2214                          DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
   2215 
   2216   if (Conversion.AddValue)
   2217     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
   2218                          DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
   2219 
   2220   // The SHR/AND sequence should get optimized to an RISBG.
   2221   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
   2222                        DAG.getConstant(Conversion.Bit, DL, MVT::i32));
   2223   if (Conversion.Bit != 31)
   2224     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
   2225                          DAG.getConstant(1, DL, MVT::i32));
   2226   return Result;
   2227 }
   2228 
   2229 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
   2230 // be done directly.  IsFP is true if CC is for a floating-point rather than
   2231 // integer comparison.
   2232 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
   2233   switch (CC) {
   2234   case ISD::SETOEQ:
   2235   case ISD::SETEQ:
   2236     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
   2237 
   2238   case ISD::SETOGE:
   2239   case ISD::SETGE:
   2240     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
   2241 
   2242   case ISD::SETOGT:
   2243   case ISD::SETGT:
   2244     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
   2245 
   2246   case ISD::SETUGT:
   2247     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
   2248 
   2249   default:
   2250     return 0;
   2251   }
   2252 }
   2253 
   2254 // Return the SystemZISD vector comparison operation for CC or its inverse,
   2255 // or 0 if neither can be done directly.  Indicate in Invert whether the
   2256 // result is for the inverse of CC.  IsFP is true if CC is for a
   2257 // floating-point rather than integer comparison.
   2258 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
   2259                                             bool &Invert) {
   2260   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
   2261     Invert = false;
   2262     return Opcode;
   2263   }
   2264 
   2265   CC = ISD::getSetCCInverse(CC, !IsFP);
   2266   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
   2267     Invert = true;
   2268     return Opcode;
   2269   }
   2270 
   2271   return 0;
   2272 }
   2273 
   2274 // Return a v2f64 that contains the extended form of elements Start and Start+1
   2275 // of v4f32 value Op.
   2276 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
   2277                                   SDValue Op) {
   2278   int Mask[] = { Start, -1, Start + 1, -1 };
   2279   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
   2280   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
   2281 }
   2282 
   2283 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
   2284 // producing a result of type VT.
   2285 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL,
   2286                             EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
   2287   // There is no hardware support for v4f32, so extend the vector into
   2288   // two v2f64s and compare those.
   2289   if (CmpOp0.getValueType() == MVT::v4f32) {
   2290     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
   2291     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
   2292     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
   2293     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
   2294     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
   2295     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
   2296     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
   2297   }
   2298   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
   2299 }
   2300 
   2301 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
   2302 // an integer mask of type VT.
   2303 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
   2304                                 ISD::CondCode CC, SDValue CmpOp0,
   2305                                 SDValue CmpOp1) {
   2306   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
   2307   bool Invert = false;
   2308   SDValue Cmp;
   2309   switch (CC) {
   2310     // Handle tests for order using (or (ogt y x) (oge x y)).
   2311   case ISD::SETUO:
   2312     Invert = true;
   2313   case ISD::SETO: {
   2314     assert(IsFP && "Unexpected integer comparison");
   2315     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
   2316     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
   2317     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
   2318     break;
   2319   }
   2320 
   2321     // Handle <> tests using (or (ogt y x) (ogt x y)).
   2322   case ISD::SETUEQ:
   2323     Invert = true;
   2324   case ISD::SETONE: {
   2325     assert(IsFP && "Unexpected integer comparison");
   2326     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
   2327     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
   2328     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
   2329     break;
   2330   }
   2331 
   2332     // Otherwise a single comparison is enough.  It doesn't really
   2333     // matter whether we try the inversion or the swap first, since
   2334     // there are no cases where both work.
   2335   default:
   2336     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
   2337       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
   2338     else {
   2339       CC = ISD::getSetCCSwappedOperands(CC);
   2340       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
   2341         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
   2342       else
   2343         llvm_unreachable("Unhandled comparison");
   2344     }
   2345     break;
   2346   }
   2347   if (Invert) {
   2348     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
   2349                                DAG.getConstant(65535, DL, MVT::i32));
   2350     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
   2351     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
   2352   }
   2353   return Cmp;
   2354 }
   2355 
   2356 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
   2357                                           SelectionDAG &DAG) const {
   2358   SDValue CmpOp0   = Op.getOperand(0);
   2359   SDValue CmpOp1   = Op.getOperand(1);
   2360   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   2361   SDLoc DL(Op);
   2362   EVT VT = Op.getValueType();
   2363   if (VT.isVector())
   2364     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
   2365 
   2366   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
   2367   SDValue Glue = emitCmp(DAG, DL, C);
   2368   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
   2369 }
   2370 
   2371 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   2372   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   2373   SDValue CmpOp0   = Op.getOperand(2);
   2374   SDValue CmpOp1   = Op.getOperand(3);
   2375   SDValue Dest     = Op.getOperand(4);
   2376   SDLoc DL(Op);
   2377 
   2378   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
   2379   SDValue Glue = emitCmp(DAG, DL, C);
   2380   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
   2381                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
   2382                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
   2383 }
   2384 
   2385 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
   2386 // allowing Pos and Neg to be wider than CmpOp.
   2387 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
   2388   return (Neg.getOpcode() == ISD::SUB &&
   2389           Neg.getOperand(0).getOpcode() == ISD::Constant &&
   2390           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
   2391           Neg.getOperand(1) == Pos &&
   2392           (Pos == CmpOp ||
   2393            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
   2394             Pos.getOperand(0) == CmpOp)));
   2395 }
   2396 
   2397 // Return the absolute or negative absolute of Op; IsNegative decides which.
   2398 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
   2399                            bool IsNegative) {
   2400   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
   2401   if (IsNegative)
   2402     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
   2403                      DAG.getConstant(0, DL, Op.getValueType()), Op);
   2404   return Op;
   2405 }
   2406 
   2407 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
   2408                                               SelectionDAG &DAG) const {
   2409   SDValue CmpOp0   = Op.getOperand(0);
   2410   SDValue CmpOp1   = Op.getOperand(1);
   2411   SDValue TrueOp   = Op.getOperand(2);
   2412   SDValue FalseOp  = Op.getOperand(3);
   2413   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   2414   SDLoc DL(Op);
   2415 
   2416   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
   2417 
   2418   // Check for absolute and negative-absolute selections, including those
   2419   // where the comparison value is sign-extended (for LPGFR and LNGFR).
   2420   // This check supplements the one in DAGCombiner.
   2421   if (C.Opcode == SystemZISD::ICMP &&
   2422       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
   2423       C.CCMask != SystemZ::CCMASK_CMP_NE &&
   2424       C.Op1.getOpcode() == ISD::Constant &&
   2425       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   2426     if (isAbsolute(C.Op0, TrueOp, FalseOp))
   2427       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
   2428     if (isAbsolute(C.Op0, FalseOp, TrueOp))
   2429       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
   2430   }
   2431 
   2432   SDValue Glue = emitCmp(DAG, DL, C);
   2433 
   2434   // Special case for handling -1/0 results.  The shifts we use here
   2435   // should get optimized with the IPM conversion sequence.
   2436   auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
   2437   auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
   2438   if (TrueC && FalseC) {
   2439     int64_t TrueVal = TrueC->getSExtValue();
   2440     int64_t FalseVal = FalseC->getSExtValue();
   2441     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
   2442       // Invert the condition if we want -1 on false.
   2443       if (TrueVal == 0)
   2444         C.CCMask ^= C.CCValid;
   2445       SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
   2446       EVT VT = Op.getValueType();
   2447       // Extend the result to VT.  Upper bits are ignored.
   2448       if (!is32Bit(VT))
   2449         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
   2450       // Sign-extend from the low bit.
   2451       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
   2452       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
   2453       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
   2454     }
   2455   }
   2456 
   2457   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
   2458                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
   2459 
   2460   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   2461   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
   2462 }
   2463 
   2464 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
   2465                                                   SelectionDAG &DAG) const {
   2466   SDLoc DL(Node);
   2467   const GlobalValue *GV = Node->getGlobal();
   2468   int64_t Offset = Node->getOffset();
   2469   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2470   CodeModel::Model CM = DAG.getTarget().getCodeModel();
   2471 
   2472   SDValue Result;
   2473   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
   2474     // Assign anchors at 1<<12 byte boundaries.
   2475     uint64_t Anchor = Offset & ~uint64_t(0xfff);
   2476     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
   2477     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2478 
   2479     // The offset can be folded into the address if it is aligned to a halfword.
   2480     Offset -= Anchor;
   2481     if (Offset != 0 && (Offset & 1) == 0) {
   2482       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
   2483       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
   2484       Offset = 0;
   2485     }
   2486   } else {
   2487     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
   2488     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2489     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   2490                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2491                          false, false, false, 0);
   2492   }
   2493 
   2494   // If there was a non-zero offset that we didn't fold, create an explicit
   2495   // addition for it.
   2496   if (Offset != 0)
   2497     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
   2498                          DAG.getConstant(Offset, DL, PtrVT));
   2499 
   2500   return Result;
   2501 }
   2502 
   2503 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
   2504                                                  SelectionDAG &DAG,
   2505                                                  unsigned Opcode,
   2506                                                  SDValue GOTOffset) const {
   2507   SDLoc DL(Node);
   2508   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2509   SDValue Chain = DAG.getEntryNode();
   2510   SDValue Glue;
   2511 
   2512   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
   2513   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
   2514   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
   2515   Glue = Chain.getValue(1);
   2516   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
   2517   Glue = Chain.getValue(1);
   2518 
   2519   // The first call operand is the chain and the second is the TLS symbol.
   2520   SmallVector<SDValue, 8> Ops;
   2521   Ops.push_back(Chain);
   2522   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
   2523                                            Node->getValueType(0),
   2524                                            0, 0));
   2525 
   2526   // Add argument registers to the end of the list so that they are
   2527   // known live into the call.
   2528   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
   2529   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
   2530 
   2531   // Add a register mask operand representing the call-preserved registers.
   2532   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   2533   const uint32_t *Mask =
   2534       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
   2535   assert(Mask && "Missing call preserved mask for calling convention");
   2536   Ops.push_back(DAG.getRegisterMask(Mask));
   2537 
   2538   // Glue the call to the argument copies.
   2539   Ops.push_back(Glue);
   2540 
   2541   // Emit the call.
   2542   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2543   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
   2544   Glue = Chain.getValue(1);
   2545 
   2546   // Copy the return value from %r2.
   2547   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
   2548 }
   2549 
   2550 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
   2551                                                   SelectionDAG &DAG) const {
   2552   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2553 
   2554   // The high part of the thread pointer is in access register 0.
   2555   SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
   2556                              DAG.getConstant(0, DL, MVT::i32));
   2557   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
   2558 
   2559   // The low part of the thread pointer is in access register 1.
   2560   SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
   2561                              DAG.getConstant(1, DL, MVT::i32));
   2562   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
   2563 
   2564   // Merge them into a single 64-bit address.
   2565   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
   2566                                     DAG.getConstant(32, DL, PtrVT));
   2567   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
   2568 }
   2569 
   2570 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
   2571                                                      SelectionDAG &DAG) const {
   2572   if (DAG.getTarget().Options.EmulatedTLS)
   2573     return LowerToTLSEmulatedModel(Node, DAG);
   2574   SDLoc DL(Node);
   2575   const GlobalValue *GV = Node->getGlobal();
   2576   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2577   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
   2578 
   2579   SDValue TP = lowerThreadPointer(DL, DAG);
   2580 
   2581   // Get the offset of GA from the thread pointer, based on the TLS model.
   2582   SDValue Offset;
   2583   switch (model) {
   2584     case TLSModel::GeneralDynamic: {
   2585       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
   2586       SystemZConstantPoolValue *CPV =
   2587         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
   2588 
   2589       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2590       Offset = DAG.getLoad(
   2591           PtrVT, DL, DAG.getEntryNode(), Offset,
   2592           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2593           false, false, 0);
   2594 
   2595       // Call __tls_get_offset to retrieve the offset.
   2596       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
   2597       break;
   2598     }
   2599 
   2600     case TLSModel::LocalDynamic: {
   2601       // Load the GOT offset of the module ID.
   2602       SystemZConstantPoolValue *CPV =
   2603         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
   2604 
   2605       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2606       Offset = DAG.getLoad(
   2607           PtrVT, DL, DAG.getEntryNode(), Offset,
   2608           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2609           false, false, 0);
   2610 
   2611       // Call __tls_get_offset to retrieve the module base offset.
   2612       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
   2613 
   2614       // Note: The SystemZLDCleanupPass will remove redundant computations
   2615       // of the module base offset.  Count total number of local-dynamic
   2616       // accesses to trigger execution of that pass.
   2617       SystemZMachineFunctionInfo* MFI =
   2618         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
   2619       MFI->incNumLocalDynamicTLSAccesses();
   2620 
   2621       // Add the per-symbol offset.
   2622       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
   2623 
   2624       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
   2625       DTPOffset = DAG.getLoad(
   2626           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
   2627           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2628           false, false, 0);
   2629 
   2630       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
   2631       break;
   2632     }
   2633 
   2634     case TLSModel::InitialExec: {
   2635       // Load the offset from the GOT.
   2636       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   2637                                           SystemZII::MO_INDNTPOFF);
   2638       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
   2639       Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
   2640                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2641                            false, false, false, 0);
   2642       break;
   2643     }
   2644 
   2645     case TLSModel::LocalExec: {
   2646       // Force the offset into the constant pool and load it from there.
   2647       SystemZConstantPoolValue *CPV =
   2648         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
   2649 
   2650       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2651       Offset = DAG.getLoad(
   2652           PtrVT, DL, DAG.getEntryNode(), Offset,
   2653           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2654           false, false, 0);
   2655       break;
   2656     }
   2657   }
   2658 
   2659   // Add the base and offset together.
   2660   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
   2661 }
   2662 
   2663 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
   2664                                                  SelectionDAG &DAG) const {
   2665   SDLoc DL(Node);
   2666   const BlockAddress *BA = Node->getBlockAddress();
   2667   int64_t Offset = Node->getOffset();
   2668   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2669 
   2670   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
   2671   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2672   return Result;
   2673 }
   2674 
   2675 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
   2676                                               SelectionDAG &DAG) const {
   2677   SDLoc DL(JT);
   2678   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2679   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   2680 
   2681   // Use LARL to load the address of the table.
   2682   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2683 }
   2684 
   2685 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
   2686                                                  SelectionDAG &DAG) const {
   2687   SDLoc DL(CP);
   2688   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2689 
   2690   SDValue Result;
   2691   if (CP->isMachineConstantPoolEntry())
   2692     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2693                                        CP->getAlignment());
   2694   else
   2695     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2696                                        CP->getAlignment(), CP->getOffset());
   2697 
   2698   // Use LARL to load the address of the constant pool entry.
   2699   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2700 }
   2701 
   2702 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
   2703                                               SelectionDAG &DAG) const {
   2704   MachineFunction &MF = DAG.getMachineFunction();
   2705   MachineFrameInfo *MFI = MF.getFrameInfo();
   2706   MFI->setFrameAddressIsTaken(true);
   2707 
   2708   SDLoc DL(Op);
   2709   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2710   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2711 
   2712   // If the back chain frame index has not been allocated yet, do so.
   2713   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
   2714   int BackChainIdx = FI->getFramePointerSaveIndex();
   2715   if (!BackChainIdx) {
   2716     // By definition, the frame address is the address of the back chain.
   2717     BackChainIdx = MFI->CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
   2718     FI->setFramePointerSaveIndex(BackChainIdx);
   2719   }
   2720   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
   2721 
   2722   // FIXME The frontend should detect this case.
   2723   if (Depth > 0) {
   2724     report_fatal_error("Unsupported stack frame traversal count");
   2725   }
   2726 
   2727   return BackChain;
   2728 }
   2729 
   2730 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
   2731                                                SelectionDAG &DAG) const {
   2732   MachineFunction &MF = DAG.getMachineFunction();
   2733   MachineFrameInfo *MFI = MF.getFrameInfo();
   2734   MFI->setReturnAddressIsTaken(true);
   2735 
   2736   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   2737     return SDValue();
   2738 
   2739   SDLoc DL(Op);
   2740   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2741   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2742 
   2743   // FIXME The frontend should detect this case.
   2744   if (Depth > 0) {
   2745     report_fatal_error("Unsupported stack frame traversal count");
   2746   }
   2747 
   2748   // Return R14D, which has the return address. Mark it an implicit live-in.
   2749   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
   2750   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
   2751 }
   2752 
   2753 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
   2754                                             SelectionDAG &DAG) const {
   2755   SDLoc DL(Op);
   2756   SDValue In = Op.getOperand(0);
   2757   EVT InVT = In.getValueType();
   2758   EVT ResVT = Op.getValueType();
   2759 
   2760   // Convert loads directly.  This is normally done by DAGCombiner,
   2761   // but we need this case for bitcasts that are created during lowering
   2762   // and which are then lowered themselves.
   2763   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
   2764     return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
   2765                        LoadN->getMemOperand());
   2766 
   2767   if (InVT == MVT::i32 && ResVT == MVT::f32) {
   2768     SDValue In64;
   2769     if (Subtarget.hasHighWord()) {
   2770       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
   2771                                        MVT::i64);
   2772       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
   2773                                        MVT::i64, SDValue(U64, 0), In);
   2774     } else {
   2775       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
   2776       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
   2777                          DAG.getConstant(32, DL, MVT::i64));
   2778     }
   2779     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
   2780     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
   2781                                       DL, MVT::f32, Out64);
   2782   }
   2783   if (InVT == MVT::f32 && ResVT == MVT::i32) {
   2784     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
   2785     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
   2786                                              MVT::f64, SDValue(U64, 0), In);
   2787     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
   2788     if (Subtarget.hasHighWord())
   2789       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
   2790                                         MVT::i32, Out64);
   2791     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
   2792                                 DAG.getConstant(32, DL, MVT::i64));
   2793     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
   2794   }
   2795   llvm_unreachable("Unexpected bitcast combination");
   2796 }
   2797 
   2798 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
   2799                                             SelectionDAG &DAG) const {
   2800   MachineFunction &MF = DAG.getMachineFunction();
   2801   SystemZMachineFunctionInfo *FuncInfo =
   2802     MF.getInfo<SystemZMachineFunctionInfo>();
   2803   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2804 
   2805   SDValue Chain   = Op.getOperand(0);
   2806   SDValue Addr    = Op.getOperand(1);
   2807   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2808   SDLoc DL(Op);
   2809 
   2810   // The initial values of each field.
   2811   const unsigned NumFields = 4;
   2812   SDValue Fields[NumFields] = {
   2813     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
   2814     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
   2815     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
   2816     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
   2817   };
   2818 
   2819   // Store each field into its respective slot.
   2820   SDValue MemOps[NumFields];
   2821   unsigned Offset = 0;
   2822   for (unsigned I = 0; I < NumFields; ++I) {
   2823     SDValue FieldAddr = Addr;
   2824     if (Offset != 0)
   2825       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
   2826                               DAG.getIntPtrConstant(Offset, DL));
   2827     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
   2828                              MachinePointerInfo(SV, Offset),
   2829                              false, false, 0);
   2830     Offset += 8;
   2831   }
   2832   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
   2833 }
   2834 
   2835 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
   2836                                            SelectionDAG &DAG) const {
   2837   SDValue Chain      = Op.getOperand(0);
   2838   SDValue DstPtr     = Op.getOperand(1);
   2839   SDValue SrcPtr     = Op.getOperand(2);
   2840   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   2841   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   2842   SDLoc DL(Op);
   2843 
   2844   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
   2845                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
   2846                        /*isTailCall*/false,
   2847                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   2848 }
   2849 
   2850 SDValue SystemZTargetLowering::
   2851 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   2852   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
   2853   MachineFunction &MF = DAG.getMachineFunction();
   2854   bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack");
   2855   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
   2856 
   2857   SDValue Chain = Op.getOperand(0);
   2858   SDValue Size  = Op.getOperand(1);
   2859   SDValue Align = Op.getOperand(2);
   2860   SDLoc DL(Op);
   2861 
   2862   // If user has set the no alignment function attribute, ignore
   2863   // alloca alignments.
   2864   uint64_t AlignVal = (RealignOpt ?
   2865                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
   2866 
   2867   uint64_t StackAlign = TFI->getStackAlignment();
   2868   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
   2869   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
   2870 
   2871   unsigned SPReg = getStackPointerRegisterToSaveRestore();
   2872   SDValue NeededSpace = Size;
   2873 
   2874   // Get a reference to the stack pointer.
   2875   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
   2876 
   2877   // If we need a backchain, save it now.
   2878   SDValue Backchain;
   2879   if (StoreBackchain)
   2880     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo(),
   2881                             false, false, false, 0);
   2882 
   2883   // Add extra space for alignment if needed.
   2884   if (ExtraAlignSpace)
   2885     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
   2886                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
   2887 
   2888   // Get the new stack pointer value.
   2889   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
   2890 
   2891   // Copy the new stack pointer back.
   2892   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
   2893 
   2894   // The allocated data lives above the 160 bytes allocated for the standard
   2895   // frame, plus any outgoing stack arguments.  We don't know how much that
   2896   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
   2897   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
   2898   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
   2899 
   2900   // Dynamically realign if needed.
   2901   if (RequiredAlign > StackAlign) {
   2902     Result =
   2903       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
   2904                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
   2905     Result =
   2906       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
   2907                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
   2908   }
   2909 
   2910   if (StoreBackchain)
   2911     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo(),
   2912                          false, false, 0);
   2913 
   2914   SDValue Ops[2] = { Result, Chain };
   2915   return DAG.getMergeValues(Ops, DL);
   2916 }
   2917 
   2918 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
   2919     SDValue Op, SelectionDAG &DAG) const {
   2920   SDLoc DL(Op);
   2921 
   2922   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
   2923 }
   2924 
   2925 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
   2926                                               SelectionDAG &DAG) const {
   2927   EVT VT = Op.getValueType();
   2928   SDLoc DL(Op);
   2929   SDValue Ops[2];
   2930   if (is32Bit(VT))
   2931     // Just do a normal 64-bit multiplication and extract the results.
   2932     // We define this so that it can be used for constant division.
   2933     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
   2934                     Op.getOperand(1), Ops[1], Ops[0]);
   2935   else {
   2936     // Do a full 128-bit multiplication based on UMUL_LOHI64:
   2937     //
   2938     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
   2939     //
   2940     // but using the fact that the upper halves are either all zeros
   2941     // or all ones:
   2942     //
   2943     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
   2944     //
   2945     // and grouping the right terms together since they are quicker than the
   2946     // multiplication:
   2947     //
   2948     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
   2949     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
   2950     SDValue LL = Op.getOperand(0);
   2951     SDValue RL = Op.getOperand(1);
   2952     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
   2953     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
   2954     // UMUL_LOHI64 returns the low result in the odd register and the high
   2955     // result in the even register.  SMUL_LOHI is defined to return the
   2956     // low half first, so the results are in reverse order.
   2957     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
   2958                      LL, RL, Ops[1], Ops[0]);
   2959     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
   2960     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
   2961     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
   2962     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
   2963   }
   2964   return DAG.getMergeValues(Ops, DL);
   2965 }
   2966 
   2967 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
   2968                                               SelectionDAG &DAG) const {
   2969   EVT VT = Op.getValueType();
   2970   SDLoc DL(Op);
   2971   SDValue Ops[2];
   2972   if (is32Bit(VT))
   2973     // Just do a normal 64-bit multiplication and extract the results.
   2974     // We define this so that it can be used for constant division.
   2975     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
   2976                     Op.getOperand(1), Ops[1], Ops[0]);
   2977   else
   2978     // UMUL_LOHI64 returns the low result in the odd register and the high
   2979     // result in the even register.  UMUL_LOHI is defined to return the
   2980     // low half first, so the results are in reverse order.
   2981     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
   2982                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   2983   return DAG.getMergeValues(Ops, DL);
   2984 }
   2985 
   2986 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
   2987                                             SelectionDAG &DAG) const {
   2988   SDValue Op0 = Op.getOperand(0);
   2989   SDValue Op1 = Op.getOperand(1);
   2990   EVT VT = Op.getValueType();
   2991   SDLoc DL(Op);
   2992   unsigned Opcode;
   2993 
   2994   // We use DSGF for 32-bit division.
   2995   if (is32Bit(VT)) {
   2996     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
   2997     Opcode = SystemZISD::SDIVREM32;
   2998   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
   2999     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
   3000     Opcode = SystemZISD::SDIVREM32;
   3001   } else
   3002     Opcode = SystemZISD::SDIVREM64;
   3003 
   3004   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
   3005   // input is "don't care".  The instruction returns the remainder in
   3006   // the even register and the quotient in the odd register.
   3007   SDValue Ops[2];
   3008   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
   3009                    Op0, Op1, Ops[1], Ops[0]);
   3010   return DAG.getMergeValues(Ops, DL);
   3011 }
   3012 
   3013 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
   3014                                             SelectionDAG &DAG) const {
   3015   EVT VT = Op.getValueType();
   3016   SDLoc DL(Op);
   3017 
   3018   // DL(G) uses a double-width dividend, so we need to clear the even
   3019   // register in the GR128 input.  The instruction returns the remainder
   3020   // in the even register and the quotient in the odd register.
   3021   SDValue Ops[2];
   3022   if (is32Bit(VT))
   3023     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
   3024                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   3025   else
   3026     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
   3027                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   3028   return DAG.getMergeValues(Ops, DL);
   3029 }
   3030 
   3031 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
   3032   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
   3033 
   3034   // Get the known-zero masks for each operand.
   3035   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
   3036   APInt KnownZero[2], KnownOne[2];
   3037   DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
   3038   DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
   3039 
   3040   // See if the upper 32 bits of one operand and the lower 32 bits of the
   3041   // other are known zero.  They are the low and high operands respectively.
   3042   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
   3043                        KnownZero[1].getZExtValue() };
   3044   unsigned High, Low;
   3045   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
   3046     High = 1, Low = 0;
   3047   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
   3048     High = 0, Low = 1;
   3049   else
   3050     return Op;
   3051 
   3052   SDValue LowOp = Ops[Low];
   3053   SDValue HighOp = Ops[High];
   3054 
   3055   // If the high part is a constant, we're better off using IILH.
   3056   if (HighOp.getOpcode() == ISD::Constant)
   3057     return Op;
   3058 
   3059   // If the low part is a constant that is outside the range of LHI,
   3060   // then we're better off using IILF.
   3061   if (LowOp.getOpcode() == ISD::Constant) {
   3062     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
   3063     if (!isInt<16>(Value))
   3064       return Op;
   3065   }
   3066 
   3067   // Check whether the high part is an AND that doesn't change the
   3068   // high 32 bits and just masks out low bits.  We can skip it if so.
   3069   if (HighOp.getOpcode() == ISD::AND &&
   3070       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
   3071     SDValue HighOp0 = HighOp.getOperand(0);
   3072     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
   3073     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
   3074       HighOp = HighOp0;
   3075   }
   3076 
   3077   // Take advantage of the fact that all GR32 operations only change the
   3078   // low 32 bits by truncating Low to an i32 and inserting it directly
   3079   // using a subreg.  The interesting cases are those where the truncation
   3080   // can be folded.
   3081   SDLoc DL(Op);
   3082   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
   3083   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
   3084                                    MVT::i64, HighOp, Low32);
   3085 }
   3086 
   3087 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
   3088                                           SelectionDAG &DAG) const {
   3089   EVT VT = Op.getValueType();
   3090   SDLoc DL(Op);
   3091   Op = Op.getOperand(0);
   3092 
   3093   // Handle vector types via VPOPCT.
   3094   if (VT.isVector()) {
   3095     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
   3096     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
   3097     switch (VT.getVectorElementType().getSizeInBits()) {
   3098     case 8:
   3099       break;
   3100     case 16: {
   3101       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
   3102       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
   3103       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
   3104       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
   3105       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
   3106       break;
   3107     }
   3108     case 32: {
   3109       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
   3110                                 DAG.getConstant(0, DL, MVT::i32));
   3111       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
   3112       break;
   3113     }
   3114     case 64: {
   3115       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
   3116                                 DAG.getConstant(0, DL, MVT::i32));
   3117       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
   3118       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
   3119       break;
   3120     }
   3121     default:
   3122       llvm_unreachable("Unexpected type");
   3123     }
   3124     return Op;
   3125   }
   3126 
   3127   // Get the known-zero mask for the operand.
   3128   APInt KnownZero, KnownOne;
   3129   DAG.computeKnownBits(Op, KnownZero, KnownOne);
   3130   unsigned NumSignificantBits = (~KnownZero).getActiveBits();
   3131   if (NumSignificantBits == 0)
   3132     return DAG.getConstant(0, DL, VT);
   3133 
   3134   // Skip known-zero high parts of the operand.
   3135   int64_t OrigBitSize = VT.getSizeInBits();
   3136   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
   3137   BitSize = std::min(BitSize, OrigBitSize);
   3138 
   3139   // The POPCNT instruction counts the number of bits in each byte.
   3140   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
   3141   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
   3142   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
   3143 
   3144   // Add up per-byte counts in a binary tree.  All bits of Op at
   3145   // position larger than BitSize remain zero throughout.
   3146   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
   3147     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
   3148     if (BitSize != OrigBitSize)
   3149       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
   3150                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
   3151     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
   3152   }
   3153 
   3154   // Extract overall result from high byte.
   3155   if (BitSize > 8)
   3156     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
   3157                      DAG.getConstant(BitSize - 8, DL, VT));
   3158 
   3159   return Op;
   3160 }
   3161 
   3162 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
   3163                                                  SelectionDAG &DAG) const {
   3164   SDLoc DL(Op);
   3165   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
   3166     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
   3167   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
   3168     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
   3169 
   3170   // The only fence that needs an instruction is a sequentially-consistent
   3171   // cross-thread fence.
   3172   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
   3173       FenceScope == CrossThread) {
   3174     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
   3175                                       Op.getOperand(0)),
   3176                    0);
   3177   }
   3178 
   3179   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
   3180   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
   3181 }
   3182 
   3183 // Op is an atomic load.  Lower it into a normal volatile load.
   3184 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
   3185                                                 SelectionDAG &DAG) const {
   3186   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3187   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
   3188                         Node->getChain(), Node->getBasePtr(),
   3189                         Node->getMemoryVT(), Node->getMemOperand());
   3190 }
   3191 
   3192 // Op is an atomic store.  Lower it into a normal volatile store followed
   3193 // by a serialization.
   3194 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
   3195                                                  SelectionDAG &DAG) const {
   3196   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3197   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
   3198                                     Node->getBasePtr(), Node->getMemoryVT(),
   3199                                     Node->getMemOperand());
   3200   return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
   3201                                     Chain), 0);
   3202 }
   3203 
   3204 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
   3205 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
   3206 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
   3207                                                    SelectionDAG &DAG,
   3208                                                    unsigned Opcode) const {
   3209   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3210 
   3211   // 32-bit operations need no code outside the main loop.
   3212   EVT NarrowVT = Node->getMemoryVT();
   3213   EVT WideVT = MVT::i32;
   3214   if (NarrowVT == WideVT)
   3215     return Op;
   3216 
   3217   int64_t BitSize = NarrowVT.getSizeInBits();
   3218   SDValue ChainIn = Node->getChain();
   3219   SDValue Addr = Node->getBasePtr();
   3220   SDValue Src2 = Node->getVal();
   3221   MachineMemOperand *MMO = Node->getMemOperand();
   3222   SDLoc DL(Node);
   3223   EVT PtrVT = Addr.getValueType();
   3224 
   3225   // Convert atomic subtracts of constants into additions.
   3226   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
   3227     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
   3228       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
   3229       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
   3230     }
   3231 
   3232   // Get the address of the containing word.
   3233   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
   3234                                     DAG.getConstant(-4, DL, PtrVT));
   3235 
   3236   // Get the number of bits that the word must be rotated left in order
   3237   // to bring the field to the top bits of a GR32.
   3238   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
   3239                                  DAG.getConstant(3, DL, PtrVT));
   3240   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
   3241 
   3242   // Get the complementing shift amount, for rotating a field in the top
   3243   // bits back to its proper position.
   3244   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
   3245                                     DAG.getConstant(0, DL, WideVT), BitShift);
   3246 
   3247   // Extend the source operand to 32 bits and prepare it for the inner loop.
   3248   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
   3249   // operations require the source to be shifted in advance.  (This shift
   3250   // can be folded if the source is constant.)  For AND and NAND, the lower
   3251   // bits must be set, while for other opcodes they should be left clear.
   3252   if (Opcode != SystemZISD::ATOMIC_SWAPW)
   3253     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
   3254                        DAG.getConstant(32 - BitSize, DL, WideVT));
   3255   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
   3256       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
   3257     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
   3258                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
   3259 
   3260   // Construct the ATOMIC_LOADW_* node.
   3261   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
   3262   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
   3263                     DAG.getConstant(BitSize, DL, WideVT) };
   3264   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
   3265                                              NarrowVT, MMO);
   3266 
   3267   // Rotate the result of the final CS so that the field is in the lower
   3268   // bits of a GR32, then truncate it.
   3269   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
   3270                                     DAG.getConstant(BitSize, DL, WideVT));
   3271   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
   3272 
   3273   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
   3274   return DAG.getMergeValues(RetOps, DL);
   3275 }
   3276 
   3277 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
   3278 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
   3279 // operations into additions.
   3280 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
   3281                                                     SelectionDAG &DAG) const {
   3282   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3283   EVT MemVT = Node->getMemoryVT();
   3284   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
   3285     // A full-width operation.
   3286     assert(Op.getValueType() == MemVT && "Mismatched VTs");
   3287     SDValue Src2 = Node->getVal();
   3288     SDValue NegSrc2;
   3289     SDLoc DL(Src2);
   3290 
   3291     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
   3292       // Use an addition if the operand is constant and either LAA(G) is
   3293       // available or the negative value is in the range of A(G)FHI.
   3294       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
   3295       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
   3296         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
   3297     } else if (Subtarget.hasInterlockedAccess1())
   3298       // Use LAA(G) if available.
   3299       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
   3300                             Src2);
   3301 
   3302     if (NegSrc2.getNode())
   3303       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
   3304                            Node->getChain(), Node->getBasePtr(), NegSrc2,
   3305                            Node->getMemOperand(), Node->getOrdering(),
   3306                            Node->getSynchScope());
   3307 
   3308     // Use the node as-is.
   3309     return Op;
   3310   }
   3311 
   3312   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
   3313 }
   3314 
   3315 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
   3316 // into a fullword ATOMIC_CMP_SWAPW operation.
   3317 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
   3318                                                     SelectionDAG &DAG) const {
   3319   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3320 
   3321   // We have native support for 32-bit compare and swap.
   3322   EVT NarrowVT = Node->getMemoryVT();
   3323   EVT WideVT = MVT::i32;
   3324   if (NarrowVT == WideVT)
   3325     return Op;
   3326 
   3327   int64_t BitSize = NarrowVT.getSizeInBits();
   3328   SDValue ChainIn = Node->getOperand(0);
   3329   SDValue Addr = Node->getOperand(1);
   3330   SDValue CmpVal = Node->getOperand(2);
   3331   SDValue SwapVal = Node->getOperand(3);
   3332   MachineMemOperand *MMO = Node->getMemOperand();
   3333   SDLoc DL(Node);
   3334   EVT PtrVT = Addr.getValueType();
   3335 
   3336   // Get the address of the containing word.
   3337   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
   3338                                     DAG.getConstant(-4, DL, PtrVT));
   3339 
   3340   // Get the number of bits that the word must be rotated left in order
   3341   // to bring the field to the top bits of a GR32.
   3342   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
   3343                                  DAG.getConstant(3, DL, PtrVT));
   3344   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
   3345 
   3346   // Get the complementing shift amount, for rotating a field in the top
   3347   // bits back to its proper position.
   3348   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
   3349                                     DAG.getConstant(0, DL, WideVT), BitShift);
   3350 
   3351   // Construct the ATOMIC_CMP_SWAPW node.
   3352   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
   3353   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
   3354                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
   3355   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
   3356                                              VTList, Ops, NarrowVT, MMO);
   3357   return AtomicOp;
   3358 }
   3359 
   3360 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
   3361                                               SelectionDAG &DAG) const {
   3362   MachineFunction &MF = DAG.getMachineFunction();
   3363   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
   3364   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
   3365                             SystemZ::R15D, Op.getValueType());
   3366 }
   3367 
   3368 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
   3369                                                  SelectionDAG &DAG) const {
   3370   MachineFunction &MF = DAG.getMachineFunction();
   3371   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
   3372   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
   3373 
   3374   SDValue Chain = Op.getOperand(0);
   3375   SDValue NewSP = Op.getOperand(1);
   3376   SDValue Backchain;
   3377   SDLoc DL(Op);
   3378 
   3379   if (StoreBackchain) {
   3380     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
   3381     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo(),
   3382                             false, false, false, 0);
   3383   }
   3384 
   3385   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
   3386 
   3387   if (StoreBackchain)
   3388     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo(),
   3389                          false, false, 0);
   3390 
   3391   return Chain;
   3392 }
   3393 
   3394 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
   3395                                              SelectionDAG &DAG) const {
   3396   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   3397   if (!IsData)
   3398     // Just preserve the chain.
   3399     return Op.getOperand(0);
   3400 
   3401   SDLoc DL(Op);
   3402   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   3403   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
   3404   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
   3405   SDValue Ops[] = {
   3406     Op.getOperand(0),
   3407     DAG.getConstant(Code, DL, MVT::i32),
   3408     Op.getOperand(1)
   3409   };
   3410   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
   3411                                  Node->getVTList(), Ops,
   3412                                  Node->getMemoryVT(), Node->getMemOperand());
   3413 }
   3414 
   3415 // Return an i32 that contains the value of CC immediately after After,
   3416 // whose final operand must be MVT::Glue.
   3417 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
   3418   SDLoc DL(After);
   3419   SDValue Glue = SDValue(After, After->getNumValues() - 1);
   3420   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
   3421   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
   3422                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
   3423 }
   3424 
   3425 SDValue
   3426 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
   3427                                               SelectionDAG &DAG) const {
   3428   unsigned Opcode, CCValid;
   3429   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
   3430     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
   3431     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
   3432     SDValue CC = getCCResult(DAG, Glued.getNode());
   3433     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
   3434     return SDValue();
   3435   }
   3436 
   3437   return SDValue();
   3438 }
   3439 
   3440 SDValue
   3441 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
   3442                                                SelectionDAG &DAG) const {
   3443   unsigned Opcode, CCValid;
   3444   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
   3445     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
   3446     SDValue CC = getCCResult(DAG, Glued.getNode());
   3447     if (Op->getNumValues() == 1)
   3448       return CC;
   3449     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
   3450     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
   3451                        CC);
   3452   }
   3453 
   3454   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3455   switch (Id) {
   3456   case Intrinsic::thread_pointer:
   3457     return lowerThreadPointer(SDLoc(Op), DAG);
   3458 
   3459   case Intrinsic::s390_vpdi:
   3460     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
   3461                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   3462 
   3463   case Intrinsic::s390_vperm:
   3464     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
   3465                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   3466 
   3467   case Intrinsic::s390_vuphb:
   3468   case Intrinsic::s390_vuphh:
   3469   case Intrinsic::s390_vuphf:
   3470     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
   3471                        Op.getOperand(1));
   3472 
   3473   case Intrinsic::s390_vuplhb:
   3474   case Intrinsic::s390_vuplhh:
   3475   case Intrinsic::s390_vuplhf:
   3476     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
   3477                        Op.getOperand(1));
   3478 
   3479   case Intrinsic::s390_vuplb:
   3480   case Intrinsic::s390_vuplhw:
   3481   case Intrinsic::s390_vuplf:
   3482     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
   3483                        Op.getOperand(1));
   3484 
   3485   case Intrinsic::s390_vupllb:
   3486   case Intrinsic::s390_vupllh:
   3487   case Intrinsic::s390_vupllf:
   3488     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
   3489                        Op.getOperand(1));
   3490 
   3491   case Intrinsic::s390_vsumb:
   3492   case Intrinsic::s390_vsumh:
   3493   case Intrinsic::s390_vsumgh:
   3494   case Intrinsic::s390_vsumgf:
   3495   case Intrinsic::s390_vsumqf:
   3496   case Intrinsic::s390_vsumqg:
   3497     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
   3498                        Op.getOperand(1), Op.getOperand(2));
   3499   }
   3500 
   3501   return SDValue();
   3502 }
   3503 
   3504 namespace {
   3505 // Says that SystemZISD operation Opcode can be used to perform the equivalent
   3506 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
   3507 // Operand is the constant third operand, otherwise it is the number of
   3508 // bytes in each element of the result.
   3509 struct Permute {
   3510   unsigned Opcode;
   3511   unsigned Operand;
   3512   unsigned char Bytes[SystemZ::VectorBytes];
   3513 };
   3514 }
   3515 
   3516 static const Permute PermuteForms[] = {
   3517   // VMRHG
   3518   { SystemZISD::MERGE_HIGH, 8,
   3519     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
   3520   // VMRHF
   3521   { SystemZISD::MERGE_HIGH, 4,
   3522     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
   3523   // VMRHH
   3524   { SystemZISD::MERGE_HIGH, 2,
   3525     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
   3526   // VMRHB
   3527   { SystemZISD::MERGE_HIGH, 1,
   3528     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
   3529   // VMRLG
   3530   { SystemZISD::MERGE_LOW, 8,
   3531     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
   3532   // VMRLF
   3533   { SystemZISD::MERGE_LOW, 4,
   3534     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
   3535   // VMRLH
   3536   { SystemZISD::MERGE_LOW, 2,
   3537     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
   3538   // VMRLB
   3539   { SystemZISD::MERGE_LOW, 1,
   3540     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
   3541   // VPKG
   3542   { SystemZISD::PACK, 4,
   3543     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
   3544   // VPKF
   3545   { SystemZISD::PACK, 2,
   3546     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
   3547   // VPKH
   3548   { SystemZISD::PACK, 1,
   3549     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
   3550   // VPDI V1, V2, 4  (low half of V1, high half of V2)
   3551   { SystemZISD::PERMUTE_DWORDS, 4,
   3552     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
   3553   // VPDI V1, V2, 1  (high half of V1, low half of V2)
   3554   { SystemZISD::PERMUTE_DWORDS, 1,
   3555     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
   3556 };
   3557 
   3558 // Called after matching a vector shuffle against a particular pattern.
   3559 // Both the original shuffle and the pattern have two vector operands.
   3560 // OpNos[0] is the operand of the original shuffle that should be used for
   3561 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
   3562 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
   3563 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
   3564 // for operands 0 and 1 of the pattern.
   3565 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
   3566   if (OpNos[0] < 0) {
   3567     if (OpNos[1] < 0)
   3568       return false;
   3569     OpNo0 = OpNo1 = OpNos[1];
   3570   } else if (OpNos[1] < 0) {
   3571     OpNo0 = OpNo1 = OpNos[0];
   3572   } else {
   3573     OpNo0 = OpNos[0];
   3574     OpNo1 = OpNos[1];
   3575   }
   3576   return true;
   3577 }
   3578 
   3579 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3580 // undefined bytes.  Return true if the VPERM can be implemented using P.
   3581 // When returning true set OpNo0 to the VPERM operand that should be
   3582 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
   3583 //
   3584 // For example, if swapping the VPERM operands allows P to match, OpNo0
   3585 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
   3586 // operand, but rewriting it to use two duplicated operands allows it to
   3587 // match P, then OpNo0 and OpNo1 will be the same.
   3588 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
   3589                          unsigned &OpNo0, unsigned &OpNo1) {
   3590   int OpNos[] = { -1, -1 };
   3591   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
   3592     int Elt = Bytes[I];
   3593     if (Elt >= 0) {
   3594       // Make sure that the two permute vectors use the same suboperand
   3595       // byte number.  Only the operand numbers (the high bits) are
   3596       // allowed to differ.
   3597       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
   3598         return false;
   3599       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
   3600       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
   3601       // Make sure that the operand mappings are consistent with previous
   3602       // elements.
   3603       if (OpNos[ModelOpNo] == 1 - RealOpNo)
   3604         return false;
   3605       OpNos[ModelOpNo] = RealOpNo;
   3606     }
   3607   }
   3608   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
   3609 }
   3610 
   3611 // As above, but search for a matching permute.
   3612 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
   3613                                    unsigned &OpNo0, unsigned &OpNo1) {
   3614   for (auto &P : PermuteForms)
   3615     if (matchPermute(Bytes, P, OpNo0, OpNo1))
   3616       return &P;
   3617   return nullptr;
   3618 }
   3619 
   3620 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3621 // undefined bytes.  This permute is an operand of an outer permute.
   3622 // See whether redistributing the -1 bytes gives a shuffle that can be
   3623 // implemented using P.  If so, set Transform to a VPERM-like permute vector
   3624 // that, when applied to the result of P, gives the original permute in Bytes.
   3625 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
   3626                                const Permute &P,
   3627                                SmallVectorImpl<int> &Transform) {
   3628   unsigned To = 0;
   3629   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
   3630     int Elt = Bytes[From];
   3631     if (Elt < 0)
   3632       // Byte number From of the result is undefined.
   3633       Transform[From] = -1;
   3634     else {
   3635       while (P.Bytes[To] != Elt) {
   3636         To += 1;
   3637         if (To == SystemZ::VectorBytes)
   3638           return false;
   3639       }
   3640       Transform[From] = To;
   3641     }
   3642   }
   3643   return true;
   3644 }
   3645 
   3646 // As above, but search for a matching permute.
   3647 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
   3648                                          SmallVectorImpl<int> &Transform) {
   3649   for (auto &P : PermuteForms)
   3650     if (matchDoublePermute(Bytes, P, Transform))
   3651       return &P;
   3652   return nullptr;
   3653 }
   3654 
   3655 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
   3656 // as if it had type vNi8.
   3657 static void getVPermMask(ShuffleVectorSDNode *VSN,
   3658                          SmallVectorImpl<int> &Bytes) {
   3659   EVT VT = VSN->getValueType(0);
   3660   unsigned NumElements = VT.getVectorNumElements();
   3661   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
   3662   Bytes.resize(NumElements * BytesPerElement, -1);
   3663   for (unsigned I = 0; I < NumElements; ++I) {
   3664     int Index = VSN->getMaskElt(I);
   3665     if (Index >= 0)
   3666       for (unsigned J = 0; J < BytesPerElement; ++J)
   3667         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
   3668   }
   3669 }
   3670 
   3671 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3672 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
   3673 // the result come from a contiguous sequence of bytes from one input.
   3674 // Set Base to the selector for the first byte if so.
   3675 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
   3676                             unsigned BytesPerElement, int &Base) {
   3677   Base = -1;
   3678   for (unsigned I = 0; I < BytesPerElement; ++I) {
   3679     if (Bytes[Start + I] >= 0) {
   3680       unsigned Elem = Bytes[Start + I];
   3681       if (Base < 0) {
   3682         Base = Elem - I;
   3683         // Make sure the bytes would come from one input operand.
   3684         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
   3685           return false;
   3686       } else if (unsigned(Base) != Elem - I)
   3687         return false;
   3688     }
   3689   }
   3690   return true;
   3691 }
   3692 
   3693 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3694 // undefined bytes.  Return true if it can be performed using VSLDI.
   3695 // When returning true, set StartIndex to the shift amount and OpNo0
   3696 // and OpNo1 to the VPERM operands that should be used as the first
   3697 // and second shift operand respectively.
   3698 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
   3699                                unsigned &StartIndex, unsigned &OpNo0,
   3700                                unsigned &OpNo1) {
   3701   int OpNos[] = { -1, -1 };
   3702   int Shift = -1;
   3703   for (unsigned I = 0; I < 16; ++I) {
   3704     int Index = Bytes[I];
   3705     if (Index >= 0) {
   3706       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
   3707       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
   3708       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
   3709       if (Shift < 0)
   3710         Shift = ExpectedShift;
   3711       else if (Shift != ExpectedShift)
   3712         return false;
   3713       // Make sure that the operand mappings are consistent with previous
   3714       // elements.
   3715       if (OpNos[ModelOpNo] == 1 - RealOpNo)
   3716         return false;
   3717       OpNos[ModelOpNo] = RealOpNo;
   3718     }
   3719   }
   3720   StartIndex = Shift;
   3721   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
   3722 }
   3723 
   3724 // Create a node that performs P on operands Op0 and Op1, casting the
   3725 // operands to the appropriate type.  The type of the result is determined by P.
   3726 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
   3727                               const Permute &P, SDValue Op0, SDValue Op1) {
   3728   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
   3729   // elements of a PACK are twice as wide as the outputs.
   3730   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
   3731                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
   3732                       P.Operand);
   3733   // Cast both operands to the appropriate type.
   3734   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
   3735                               SystemZ::VectorBytes / InBytes);
   3736   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
   3737   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
   3738   SDValue Op;
   3739   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
   3740     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
   3741     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
   3742   } else if (P.Opcode == SystemZISD::PACK) {
   3743     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
   3744                                  SystemZ::VectorBytes / P.Operand);
   3745     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
   3746   } else {
   3747     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
   3748   }
   3749   return Op;
   3750 }
   3751 
   3752 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3753 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
   3754 // VSLDI or VPERM.
   3755 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
   3756                                      SDValue *Ops,
   3757                                      const SmallVectorImpl<int> &Bytes) {
   3758   for (unsigned I = 0; I < 2; ++I)
   3759     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
   3760 
   3761   // First see whether VSLDI can be used.
   3762   unsigned StartIndex, OpNo0, OpNo1;
   3763   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
   3764     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
   3765                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
   3766 
   3767   // Fall back on VPERM.  Construct an SDNode for the permute vector.
   3768   SDValue IndexNodes[SystemZ::VectorBytes];
   3769   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
   3770     if (Bytes[I] >= 0)
   3771       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
   3772     else
   3773       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
   3774   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
   3775   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
   3776 }
   3777 
   3778 namespace {
   3779 // Describes a general N-operand vector shuffle.
   3780 struct GeneralShuffle {
   3781   GeneralShuffle(EVT vt) : VT(vt) {}
   3782   void addUndef();
   3783   void add(SDValue, unsigned);
   3784   SDValue getNode(SelectionDAG &, const SDLoc &);
   3785 
   3786   // The operands of the shuffle.
   3787   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
   3788 
   3789   // Index I is -1 if byte I of the result is undefined.  Otherwise the
   3790   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
   3791   // Bytes[I] / SystemZ::VectorBytes.
   3792   SmallVector<int, SystemZ::VectorBytes> Bytes;
   3793 
   3794   // The type of the shuffle result.
   3795   EVT VT;
   3796 };
   3797 }
   3798 
   3799 // Add an extra undefined element to the shuffle.
   3800 void GeneralShuffle::addUndef() {
   3801   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
   3802   for (unsigned I = 0; I < BytesPerElement; ++I)
   3803     Bytes.push_back(-1);
   3804 }
   3805 
   3806 // Add an extra element to the shuffle, taking it from element Elem of Op.
   3807 // A null Op indicates a vector input whose value will be calculated later;
   3808 // there is at most one such input per shuffle and it always has the same
   3809 // type as the result.
   3810 void GeneralShuffle::add(SDValue Op, unsigned Elem) {
   3811   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
   3812 
   3813   // The source vector can have wider elements than the result,
   3814   // either through an explicit TRUNCATE or because of type legalization.
   3815   // We want the least significant part.
   3816   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
   3817   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
   3818   assert(FromBytesPerElement >= BytesPerElement &&
   3819          "Invalid EXTRACT_VECTOR_ELT");
   3820   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
   3821                    (FromBytesPerElement - BytesPerElement));
   3822 
   3823   // Look through things like shuffles and bitcasts.
   3824   while (Op.getNode()) {
   3825     if (Op.getOpcode() == ISD::BITCAST)
   3826       Op = Op.getOperand(0);
   3827     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
   3828       // See whether the bytes we need come from a contiguous part of one
   3829       // operand.
   3830       SmallVector<int, SystemZ::VectorBytes> OpBytes;
   3831       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
   3832       int NewByte;
   3833       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
   3834         break;
   3835       if (NewByte < 0) {
   3836         addUndef();
   3837         return;
   3838       }
   3839       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
   3840       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
   3841     } else if (Op.isUndef()) {
   3842       addUndef();
   3843       return;
   3844     } else
   3845       break;
   3846   }
   3847 
   3848   // Make sure that the source of the extraction is in Ops.
   3849   unsigned OpNo = 0;
   3850   for (; OpNo < Ops.size(); ++OpNo)
   3851     if (Ops[OpNo] == Op)
   3852       break;
   3853   if (OpNo == Ops.size())
   3854     Ops.push_back(Op);
   3855 
   3856   // Add the element to Bytes.
   3857   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
   3858   for (unsigned I = 0; I < BytesPerElement; ++I)
   3859     Bytes.push_back(Base + I);
   3860 }
   3861 
   3862 // Return SDNodes for the completed shuffle.
   3863 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
   3864   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
   3865 
   3866   if (Ops.size() == 0)
   3867     return DAG.getUNDEF(VT);
   3868 
   3869   // Make sure that there are at least two shuffle operands.
   3870   if (Ops.size() == 1)
   3871     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
   3872 
   3873   // Create a tree of shuffles, deferring root node until after the loop.
   3874   // Try to redistribute the undefined elements of non-root nodes so that
   3875   // the non-root shuffles match something like a pack or merge, then adjust
   3876   // the parent node's permute vector to compensate for the new order.
   3877   // Among other things, this copes with vectors like <2 x i16> that were
   3878   // padded with undefined elements during type legalization.
   3879   //
   3880   // In the best case this redistribution will lead to the whole tree
   3881   // using packs and merges.  It should rarely be a loss in other cases.
   3882   unsigned Stride = 1;
   3883   for (; Stride * 2 < Ops.size(); Stride *= 2) {
   3884     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
   3885       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
   3886 
   3887       // Create a mask for just these two operands.
   3888       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
   3889       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
   3890         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
   3891         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
   3892         if (OpNo == I)
   3893           NewBytes[J] = Byte;
   3894         else if (OpNo == I + Stride)
   3895           NewBytes[J] = SystemZ::VectorBytes + Byte;
   3896         else
   3897           NewBytes[J] = -1;
   3898       }
   3899       // See if it would be better to reorganize NewMask to avoid using VPERM.
   3900       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
   3901       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
   3902         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
   3903         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
   3904         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
   3905           if (NewBytes[J] >= 0) {
   3906             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
   3907                    "Invalid double permute");
   3908             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
   3909           } else
   3910             assert(NewBytesMap[J] < 0 && "Invalid double permute");
   3911         }
   3912       } else {
   3913         // Just use NewBytes on the operands.
   3914         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
   3915         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
   3916           if (NewBytes[J] >= 0)
   3917             Bytes[J] = I * SystemZ::VectorBytes + J;
   3918       }
   3919     }
   3920   }
   3921 
   3922   // Now we just have 2 inputs.  Put the second operand in Ops[1].
   3923   if (Stride > 1) {
   3924     Ops[1] = Ops[Stride];
   3925     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
   3926       if (Bytes[I] >= int(SystemZ::VectorBytes))
   3927         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
   3928   }
   3929 
   3930   // Look for an instruction that can do the permute without resorting
   3931   // to VPERM.
   3932   unsigned OpNo0, OpNo1;
   3933   SDValue Op;
   3934   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
   3935     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
   3936   else
   3937     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
   3938   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   3939 }
   3940 
   3941 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
   3942 static bool isScalarToVector(SDValue Op) {
   3943   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
   3944     if (!Op.getOperand(I).isUndef())
   3945       return false;
   3946   return true;
   3947 }
   3948 
   3949 // Return a vector of type VT that contains Value in the first element.
   3950 // The other elements don't matter.
   3951 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
   3952                                    SDValue Value) {
   3953   // If we have a constant, replicate it to all elements and let the
   3954   // BUILD_VECTOR lowering take care of it.
   3955   if (Value.getOpcode() == ISD::Constant ||
   3956       Value.getOpcode() == ISD::ConstantFP) {
   3957     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
   3958     return DAG.getBuildVector(VT, DL, Ops);
   3959   }
   3960   if (Value.isUndef())
   3961     return DAG.getUNDEF(VT);
   3962   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
   3963 }
   3964 
   3965 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
   3966 // element 1.  Used for cases in which replication is cheap.
   3967 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
   3968                                  SDValue Op0, SDValue Op1) {
   3969   if (Op0.isUndef()) {
   3970     if (Op1.isUndef())
   3971       return DAG.getUNDEF(VT);
   3972     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
   3973   }
   3974   if (Op1.isUndef())
   3975     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
   3976   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
   3977                      buildScalarToVector(DAG, DL, VT, Op0),
   3978                      buildScalarToVector(DAG, DL, VT, Op1));
   3979 }
   3980 
   3981 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
   3982 // vector for them.
   3983 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
   3984                           SDValue Op1) {
   3985   if (Op0.isUndef() && Op1.isUndef())
   3986     return DAG.getUNDEF(MVT::v2i64);
   3987   // If one of the two inputs is undefined then replicate the other one,
   3988   // in order to avoid using another register unnecessarily.
   3989   if (Op0.isUndef())
   3990     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
   3991   else if (Op1.isUndef())
   3992     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
   3993   else {
   3994     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
   3995     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
   3996   }
   3997   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
   3998 }
   3999 
   4000 // Try to represent constant BUILD_VECTOR node BVN using a
   4001 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
   4002 // on success.
   4003 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
   4004   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
   4005   unsigned BytesPerElement = ElemVT.getStoreSize();
   4006   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
   4007     SDValue Op = BVN->getOperand(I);
   4008     if (!Op.isUndef()) {
   4009       uint64_t Value;
   4010       if (Op.getOpcode() == ISD::Constant)
   4011         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
   4012       else if (Op.getOpcode() == ISD::ConstantFP)
   4013         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
   4014                  .getZExtValue());
   4015       else
   4016         return false;
   4017       for (unsigned J = 0; J < BytesPerElement; ++J) {
   4018         uint64_t Byte = (Value >> (J * 8)) & 0xff;
   4019         if (Byte == 0xff)
   4020           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
   4021         else if (Byte != 0)
   4022           return false;
   4023       }
   4024     }
   4025   }
   4026   return true;
   4027 }
   4028 
   4029 // Try to load a vector constant in which BitsPerElement-bit value Value
   4030 // is replicated to fill the vector.  VT is the type of the resulting
   4031 // constant, which may have elements of a different size from BitsPerElement.
   4032 // Return the SDValue of the constant on success, otherwise return
   4033 // an empty value.
   4034 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
   4035                                        const SystemZInstrInfo *TII,
   4036                                        const SDLoc &DL, EVT VT, uint64_t Value,
   4037                                        unsigned BitsPerElement) {
   4038   // Signed 16-bit values can be replicated using VREPI.
   4039   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
   4040   if (isInt<16>(SignedValue)) {
   4041     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
   4042                                  SystemZ::VectorBits / BitsPerElement);
   4043     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
   4044                              DAG.getConstant(SignedValue, DL, MVT::i32));
   4045     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   4046   }
   4047   // See whether rotating the constant left some N places gives a value that
   4048   // is one less than a power of 2 (i.e. all zeros followed by all ones).
   4049   // If so we can use VGM.
   4050   unsigned Start, End;
   4051   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
   4052     // isRxSBGMask returns the bit numbers for a full 64-bit value,
   4053     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
   4054     // bit numbers for an BitsPerElement value, so that 0 denotes
   4055     // 1 << (BitsPerElement-1).
   4056     Start -= 64 - BitsPerElement;
   4057     End -= 64 - BitsPerElement;
   4058     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
   4059                                  SystemZ::VectorBits / BitsPerElement);
   4060     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
   4061                              DAG.getConstant(Start, DL, MVT::i32),
   4062                              DAG.getConstant(End, DL, MVT::i32));
   4063     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   4064   }
   4065   return SDValue();
   4066 }
   4067 
   4068 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
   4069 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
   4070 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
   4071 // would benefit from this representation and return it if so.
   4072 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
   4073                                      BuildVectorSDNode *BVN) {
   4074   EVT VT = BVN->getValueType(0);
   4075   unsigned NumElements = VT.getVectorNumElements();
   4076 
   4077   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
   4078   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
   4079   // need a BUILD_VECTOR, add an additional placeholder operand for that
   4080   // BUILD_VECTOR and store its operands in ResidueOps.
   4081   GeneralShuffle GS(VT);
   4082   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
   4083   bool FoundOne = false;
   4084   for (unsigned I = 0; I < NumElements; ++I) {
   4085     SDValue Op = BVN->getOperand(I);
   4086     if (Op.getOpcode() == ISD::TRUNCATE)
   4087       Op = Op.getOperand(0);
   4088     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   4089         Op.getOperand(1).getOpcode() == ISD::Constant) {
   4090       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   4091       GS.add(Op.getOperand(0), Elem);
   4092       FoundOne = true;
   4093     } else if (Op.isUndef()) {
   4094       GS.addUndef();
   4095     } else {
   4096       GS.add(SDValue(), ResidueOps.size());
   4097       ResidueOps.push_back(BVN->getOperand(I));
   4098     }
   4099   }
   4100 
   4101   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
   4102   if (!FoundOne)
   4103     return SDValue();
   4104 
   4105   // Create the BUILD_VECTOR for the remaining elements, if any.
   4106   if (!ResidueOps.empty()) {
   4107     while (ResidueOps.size() < NumElements)
   4108       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
   4109     for (auto &Op : GS.Ops) {
   4110       if (!Op.getNode()) {
   4111         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
   4112         break;
   4113       }
   4114     }
   4115   }
   4116   return GS.getNode(DAG, SDLoc(BVN));
   4117 }
   4118 
   4119 // Combine GPR scalar values Elems into a vector of type VT.
   4120 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
   4121                            SmallVectorImpl<SDValue> &Elems) {
   4122   // See whether there is a single replicated value.
   4123   SDValue Single;
   4124   unsigned int NumElements = Elems.size();
   4125   unsigned int Count = 0;
   4126   for (auto Elem : Elems) {
   4127     if (!Elem.isUndef()) {
   4128       if (!Single.getNode())
   4129         Single = Elem;
   4130       else if (Elem != Single) {
   4131         Single = SDValue();
   4132         break;
   4133       }
   4134       Count += 1;
   4135     }
   4136   }
   4137   // There are three cases here:
   4138   //
   4139   // - if the only defined element is a loaded one, the best sequence
   4140   //   is a replicating load.
   4141   //
   4142   // - otherwise, if the only defined element is an i64 value, we will
   4143   //   end up with the same VLVGP sequence regardless of whether we short-cut
   4144   //   for replication or fall through to the later code.
   4145   //
   4146   // - otherwise, if the only defined element is an i32 or smaller value,
   4147   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
   4148   //   This is only a win if the single defined element is used more than once.
   4149   //   In other cases we're better off using a single VLVGx.
   4150   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
   4151     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
   4152 
   4153   // The best way of building a v2i64 from two i64s is to use VLVGP.
   4154   if (VT == MVT::v2i64)
   4155     return joinDwords(DAG, DL, Elems[0], Elems[1]);
   4156 
   4157   // Use a 64-bit merge high to combine two doubles.
   4158   if (VT == MVT::v2f64)
   4159     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
   4160 
   4161   // Build v4f32 values directly from the FPRs:
   4162   //
   4163   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
   4164   //         V              V         VMRHF
   4165   //      <ABxx>         <CDxx>
   4166   //                V                 VMRHG
   4167   //              <ABCD>
   4168   if (VT == MVT::v4f32) {
   4169     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
   4170     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
   4171     // Avoid unnecessary undefs by reusing the other operand.
   4172     if (Op01.isUndef())
   4173       Op01 = Op23;
   4174     else if (Op23.isUndef())
   4175       Op23 = Op01;
   4176     // Merging identical replications is a no-op.
   4177     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
   4178       return Op01;
   4179     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
   4180     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
   4181     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
   4182                              DL, MVT::v2i64, Op01, Op23);
   4183     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   4184   }
   4185 
   4186   // Collect the constant terms.
   4187   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
   4188   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
   4189 
   4190   unsigned NumConstants = 0;
   4191   for (unsigned I = 0; I < NumElements; ++I) {
   4192     SDValue Elem = Elems[I];
   4193     if (Elem.getOpcode() == ISD::Constant ||
   4194         Elem.getOpcode() == ISD::ConstantFP) {
   4195       NumConstants += 1;
   4196       Constants[I] = Elem;
   4197       Done[I] = true;
   4198     }
   4199   }
   4200   // If there was at least one constant, fill in the other elements of
   4201   // Constants with undefs to get a full vector constant and use that
   4202   // as the starting point.
   4203   SDValue Result;
   4204   if (NumConstants > 0) {
   4205     for (unsigned I = 0; I < NumElements; ++I)
   4206       if (!Constants[I].getNode())
   4207         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
   4208     Result = DAG.getBuildVector(VT, DL, Constants);
   4209   } else {
   4210     // Otherwise try to use VLVGP to start the sequence in order to
   4211     // avoid a false dependency on any previous contents of the vector
   4212     // register.  This only makes sense if one of the associated elements
   4213     // is defined.
   4214     unsigned I1 = NumElements / 2 - 1;
   4215     unsigned I2 = NumElements - 1;
   4216     bool Def1 = !Elems[I1].isUndef();
   4217     bool Def2 = !Elems[I2].isUndef();
   4218     if (Def1 || Def2) {
   4219       SDValue Elem1 = Elems[Def1 ? I1 : I2];
   4220       SDValue Elem2 = Elems[Def2 ? I2 : I1];
   4221       Result = DAG.getNode(ISD::BITCAST, DL, VT,
   4222                            joinDwords(DAG, DL, Elem1, Elem2));
   4223       Done[I1] = true;
   4224       Done[I2] = true;
   4225     } else
   4226       Result = DAG.getUNDEF(VT);
   4227   }
   4228 
   4229   // Use VLVGx to insert the other elements.
   4230   for (unsigned I = 0; I < NumElements; ++I)
   4231     if (!Done[I] && !Elems[I].isUndef())
   4232       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
   4233                            DAG.getConstant(I, DL, MVT::i32));
   4234   return Result;
   4235 }
   4236 
   4237 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
   4238                                                  SelectionDAG &DAG) const {
   4239   const SystemZInstrInfo *TII =
   4240     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   4241   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
   4242   SDLoc DL(Op);
   4243   EVT VT = Op.getValueType();
   4244 
   4245   if (BVN->isConstant()) {
   4246     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
   4247     // preferred way of creating all-zero and all-one vectors so give it
   4248     // priority over other methods below.
   4249     uint64_t Mask = 0;
   4250     if (tryBuildVectorByteMask(BVN, Mask)) {
   4251       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
   4252                                DAG.getConstant(Mask, DL, MVT::i32));
   4253       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   4254     }
   4255 
   4256     // Try using some form of replication.
   4257     APInt SplatBits, SplatUndef;
   4258     unsigned SplatBitSize;
   4259     bool HasAnyUndefs;
   4260     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
   4261                              8, true) &&
   4262         SplatBitSize <= 64) {
   4263       // First try assuming that any undefined bits above the highest set bit
   4264       // and below the lowest set bit are 1s.  This increases the likelihood of
   4265       // being able to use a sign-extended element value in VECTOR REPLICATE
   4266       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
   4267       uint64_t SplatBitsZ = SplatBits.getZExtValue();
   4268       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
   4269       uint64_t Lower = (SplatUndefZ
   4270                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
   4271       uint64_t Upper = (SplatUndefZ
   4272                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
   4273       uint64_t Value = SplatBitsZ | Upper | Lower;
   4274       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
   4275                                            SplatBitSize);
   4276       if (Op.getNode())
   4277         return Op;
   4278 
   4279       // Now try assuming that any undefined bits between the first and
   4280       // last defined set bits are set.  This increases the chances of
   4281       // using a non-wraparound mask.
   4282       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
   4283       Value = SplatBitsZ | Middle;
   4284       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
   4285       if (Op.getNode())
   4286         return Op;
   4287     }
   4288 
   4289     // Fall back to loading it from memory.
   4290     return SDValue();
   4291   }
   4292 
   4293   // See if we should use shuffles to construct the vector from other vectors.
   4294   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
   4295     return Res;
   4296 
   4297   // Detect SCALAR_TO_VECTOR conversions.
   4298   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
   4299     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
   4300 
   4301   // Otherwise use buildVector to build the vector up from GPRs.
   4302   unsigned NumElements = Op.getNumOperands();
   4303   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
   4304   for (unsigned I = 0; I < NumElements; ++I)
   4305     Ops[I] = Op.getOperand(I);
   4306   return buildVector(DAG, DL, VT, Ops);
   4307 }
   4308 
   4309 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
   4310                                                    SelectionDAG &DAG) const {
   4311   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
   4312   SDLoc DL(Op);
   4313   EVT VT = Op.getValueType();
   4314   unsigned NumElements = VT.getVectorNumElements();
   4315 
   4316   if (VSN->isSplat()) {
   4317     SDValue Op0 = Op.getOperand(0);
   4318     unsigned Index = VSN->getSplatIndex();
   4319     assert(Index < VT.getVectorNumElements() &&
   4320            "Splat index should be defined and in first operand");
   4321     // See whether the value we're splatting is directly available as a scalar.
   4322     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
   4323         Op0.getOpcode() == ISD::BUILD_VECTOR)
   4324       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
   4325     // Otherwise keep it as a vector-to-vector operation.
   4326     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
   4327                        DAG.getConstant(Index, DL, MVT::i32));
   4328   }
   4329 
   4330   GeneralShuffle GS(VT);
   4331   for (unsigned I = 0; I < NumElements; ++I) {
   4332     int Elt = VSN->getMaskElt(I);
   4333     if (Elt < 0)
   4334       GS.addUndef();
   4335     else
   4336       GS.add(Op.getOperand(unsigned(Elt) / NumElements),
   4337              unsigned(Elt) % NumElements);
   4338   }
   4339   return GS.getNode(DAG, SDLoc(VSN));
   4340 }
   4341 
   4342 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
   4343                                                      SelectionDAG &DAG) const {
   4344   SDLoc DL(Op);
   4345   // Just insert the scalar into element 0 of an undefined vector.
   4346   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
   4347                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
   4348                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
   4349 }
   4350 
   4351 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
   4352                                                       SelectionDAG &DAG) const {
   4353   // Handle insertions of floating-point values.
   4354   SDLoc DL(Op);
   4355   SDValue Op0 = Op.getOperand(0);
   4356   SDValue Op1 = Op.getOperand(1);
   4357   SDValue Op2 = Op.getOperand(2);
   4358   EVT VT = Op.getValueType();
   4359 
   4360   // Insertions into constant indices of a v2f64 can be done using VPDI.
   4361   // However, if the inserted value is a bitcast or a constant then it's
   4362   // better to use GPRs, as below.
   4363   if (VT == MVT::v2f64 &&
   4364       Op1.getOpcode() != ISD::BITCAST &&
   4365       Op1.getOpcode() != ISD::ConstantFP &&
   4366       Op2.getOpcode() == ISD::Constant) {
   4367     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
   4368     unsigned Mask = VT.getVectorNumElements() - 1;
   4369     if (Index <= Mask)
   4370       return Op;
   4371   }
   4372 
   4373   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
   4374   MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
   4375   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
   4376   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
   4377                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
   4378                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
   4379   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
   4380 }
   4381 
   4382 SDValue
   4383 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
   4384                                                SelectionDAG &DAG) const {
   4385   // Handle extractions of floating-point values.
   4386   SDLoc DL(Op);
   4387   SDValue Op0 = Op.getOperand(0);
   4388   SDValue Op1 = Op.getOperand(1);
   4389   EVT VT = Op.getValueType();
   4390   EVT VecVT = Op0.getValueType();
   4391 
   4392   // Extractions of constant indices can be done directly.
   4393   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
   4394     uint64_t Index = CIndexN->getZExtValue();
   4395     unsigned Mask = VecVT.getVectorNumElements() - 1;
   4396     if (Index <= Mask)
   4397       return Op;
   4398   }
   4399 
   4400   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
   4401   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
   4402   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
   4403   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
   4404                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
   4405   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
   4406 }
   4407 
   4408 SDValue
   4409 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
   4410                                               unsigned UnpackHigh) const {
   4411   SDValue PackedOp = Op.getOperand(0);
   4412   EVT OutVT = Op.getValueType();
   4413   EVT InVT = PackedOp.getValueType();
   4414   unsigned ToBits = OutVT.getVectorElementType().getSizeInBits();
   4415   unsigned FromBits = InVT.getVectorElementType().getSizeInBits();
   4416   do {
   4417     FromBits *= 2;
   4418     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
   4419                                  SystemZ::VectorBits / FromBits);
   4420     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
   4421   } while (FromBits != ToBits);
   4422   return PackedOp;
   4423 }
   4424 
   4425 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
   4426                                           unsigned ByScalar) const {
   4427   // Look for cases where a vector shift can use the *_BY_SCALAR form.
   4428   SDValue Op0 = Op.getOperand(0);
   4429   SDValue Op1 = Op.getOperand(1);
   4430   SDLoc DL(Op);
   4431   EVT VT = Op.getValueType();
   4432   unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
   4433 
   4434   // See whether the shift vector is a splat represented as BUILD_VECTOR.
   4435   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
   4436     APInt SplatBits, SplatUndef;
   4437     unsigned SplatBitSize;
   4438     bool HasAnyUndefs;
   4439     // Check for constant splats.  Use ElemBitSize as the minimum element
   4440     // width and reject splats that need wider elements.
   4441     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
   4442                              ElemBitSize, true) &&
   4443         SplatBitSize == ElemBitSize) {
   4444       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
   4445                                       DL, MVT::i32);
   4446       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
   4447     }
   4448     // Check for variable splats.
   4449     BitVector UndefElements;
   4450     SDValue Splat = BVN->getSplatValue(&UndefElements);
   4451     if (Splat) {
   4452       // Since i32 is the smallest legal type, we either need a no-op
   4453       // or a truncation.
   4454       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
   4455       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
   4456     }
   4457   }
   4458 
   4459   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
   4460   // and the shift amount is directly available in a GPR.
   4461   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
   4462     if (VSN->isSplat()) {
   4463       SDValue VSNOp0 = VSN->getOperand(0);
   4464       unsigned Index = VSN->getSplatIndex();
   4465       assert(Index < VT.getVectorNumElements() &&
   4466              "Splat index should be defined and in first operand");
   4467       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
   4468           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
   4469         // Since i32 is the smallest legal type, we either need a no-op
   4470         // or a truncation.
   4471         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
   4472                                     VSNOp0.getOperand(Index));
   4473         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
   4474       }
   4475     }
   4476   }
   4477 
   4478   // Otherwise just treat the current form as legal.
   4479   return Op;
   4480 }
   4481 
   4482 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
   4483                                               SelectionDAG &DAG) const {
   4484   switch (Op.getOpcode()) {
   4485   case ISD::FRAMEADDR:
   4486     return lowerFRAMEADDR(Op, DAG);
   4487   case ISD::RETURNADDR:
   4488     return lowerRETURNADDR(Op, DAG);
   4489   case ISD::BR_CC:
   4490     return lowerBR_CC(Op, DAG);
   4491   case ISD::SELECT_CC:
   4492     return lowerSELECT_CC(Op, DAG);
   4493   case ISD::SETCC:
   4494     return lowerSETCC(Op, DAG);
   4495   case ISD::GlobalAddress:
   4496     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
   4497   case ISD::GlobalTLSAddress:
   4498     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
   4499   case ISD::BlockAddress:
   4500     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
   4501   case ISD::JumpTable:
   4502     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
   4503   case ISD::ConstantPool:
   4504     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
   4505   case ISD::BITCAST:
   4506     return lowerBITCAST(Op, DAG);
   4507   case ISD::VASTART:
   4508     return lowerVASTART(Op, DAG);
   4509   case ISD::VACOPY:
   4510     return lowerVACOPY(Op, DAG);
   4511   case ISD::DYNAMIC_STACKALLOC:
   4512     return lowerDYNAMIC_STACKALLOC(Op, DAG);
   4513   case ISD::GET_DYNAMIC_AREA_OFFSET:
   4514     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
   4515   case ISD::SMUL_LOHI:
   4516     return lowerSMUL_LOHI(Op, DAG);
   4517   case ISD::UMUL_LOHI:
   4518     return lowerUMUL_LOHI(Op, DAG);
   4519   case ISD::SDIVREM:
   4520     return lowerSDIVREM(Op, DAG);
   4521   case ISD::UDIVREM:
   4522     return lowerUDIVREM(Op, DAG);
   4523   case ISD::OR:
   4524     return lowerOR(Op, DAG);
   4525   case ISD::CTPOP:
   4526     return lowerCTPOP(Op, DAG);
   4527   case ISD::ATOMIC_FENCE:
   4528     return lowerATOMIC_FENCE(Op, DAG);
   4529   case ISD::ATOMIC_SWAP:
   4530     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
   4531   case ISD::ATOMIC_STORE:
   4532     return lowerATOMIC_STORE(Op, DAG);
   4533   case ISD::ATOMIC_LOAD:
   4534     return lowerATOMIC_LOAD(Op, DAG);
   4535   case ISD::ATOMIC_LOAD_ADD:
   4536     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
   4537   case ISD::ATOMIC_LOAD_SUB:
   4538     return lowerATOMIC_LOAD_SUB(Op, DAG);
   4539   case ISD::ATOMIC_LOAD_AND:
   4540     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
   4541   case ISD::ATOMIC_LOAD_OR:
   4542     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
   4543   case ISD::ATOMIC_LOAD_XOR:
   4544     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
   4545   case ISD::ATOMIC_LOAD_NAND:
   4546     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
   4547   case ISD::ATOMIC_LOAD_MIN:
   4548     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
   4549   case ISD::ATOMIC_LOAD_MAX:
   4550     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
   4551   case ISD::ATOMIC_LOAD_UMIN:
   4552     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
   4553   case ISD::ATOMIC_LOAD_UMAX:
   4554     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
   4555   case ISD::ATOMIC_CMP_SWAP:
   4556     return lowerATOMIC_CMP_SWAP(Op, DAG);
   4557   case ISD::STACKSAVE:
   4558     return lowerSTACKSAVE(Op, DAG);
   4559   case ISD::STACKRESTORE:
   4560     return lowerSTACKRESTORE(Op, DAG);
   4561   case ISD::PREFETCH:
   4562     return lowerPREFETCH(Op, DAG);
   4563   case ISD::INTRINSIC_W_CHAIN:
   4564     return lowerINTRINSIC_W_CHAIN(Op, DAG);
   4565   case ISD::INTRINSIC_WO_CHAIN:
   4566     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
   4567   case ISD::BUILD_VECTOR:
   4568     return lowerBUILD_VECTOR(Op, DAG);
   4569   case ISD::VECTOR_SHUFFLE:
   4570     return lowerVECTOR_SHUFFLE(Op, DAG);
   4571   case ISD::SCALAR_TO_VECTOR:
   4572     return lowerSCALAR_TO_VECTOR(Op, DAG);
   4573   case ISD::INSERT_VECTOR_ELT:
   4574     return lowerINSERT_VECTOR_ELT(Op, DAG);
   4575   case ISD::EXTRACT_VECTOR_ELT:
   4576     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
   4577   case ISD::SIGN_EXTEND_VECTOR_INREG:
   4578     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
   4579   case ISD::ZERO_EXTEND_VECTOR_INREG:
   4580     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
   4581   case ISD::SHL:
   4582     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
   4583   case ISD::SRL:
   4584     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
   4585   case ISD::SRA:
   4586     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
   4587   default:
   4588     llvm_unreachable("Unexpected node to lower");
   4589   }
   4590 }
   4591 
   4592 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
   4593 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
   4594   switch ((SystemZISD::NodeType)Opcode) {
   4595     case SystemZISD::FIRST_NUMBER: break;
   4596     OPCODE(RET_FLAG);
   4597     OPCODE(CALL);
   4598     OPCODE(SIBCALL);
   4599     OPCODE(TLS_GDCALL);
   4600     OPCODE(TLS_LDCALL);
   4601     OPCODE(PCREL_WRAPPER);
   4602     OPCODE(PCREL_OFFSET);
   4603     OPCODE(IABS);
   4604     OPCODE(ICMP);
   4605     OPCODE(FCMP);
   4606     OPCODE(TM);
   4607     OPCODE(BR_CCMASK);
   4608     OPCODE(SELECT_CCMASK);
   4609     OPCODE(ADJDYNALLOC);
   4610     OPCODE(EXTRACT_ACCESS);
   4611     OPCODE(POPCNT);
   4612     OPCODE(UMUL_LOHI64);
   4613     OPCODE(SDIVREM32);
   4614     OPCODE(SDIVREM64);
   4615     OPCODE(UDIVREM32);
   4616     OPCODE(UDIVREM64);
   4617     OPCODE(MVC);
   4618     OPCODE(MVC_LOOP);
   4619     OPCODE(NC);
   4620     OPCODE(NC_LOOP);
   4621     OPCODE(OC);
   4622     OPCODE(OC_LOOP);
   4623     OPCODE(XC);
   4624     OPCODE(XC_LOOP);
   4625     OPCODE(CLC);
   4626     OPCODE(CLC_LOOP);
   4627     OPCODE(STPCPY);
   4628     OPCODE(STRCMP);
   4629     OPCODE(SEARCH_STRING);
   4630     OPCODE(IPM);
   4631     OPCODE(SERIALIZE);
   4632     OPCODE(MEMBARRIER);
   4633     OPCODE(TBEGIN);
   4634     OPCODE(TBEGIN_NOFLOAT);
   4635     OPCODE(TEND);
   4636     OPCODE(BYTE_MASK);
   4637     OPCODE(ROTATE_MASK);
   4638     OPCODE(REPLICATE);
   4639     OPCODE(JOIN_DWORDS);
   4640     OPCODE(SPLAT);
   4641     OPCODE(MERGE_HIGH);
   4642     OPCODE(MERGE_LOW);
   4643     OPCODE(SHL_DOUBLE);
   4644     OPCODE(PERMUTE_DWORDS);
   4645     OPCODE(PERMUTE);
   4646     OPCODE(PACK);
   4647     OPCODE(PACKS_CC);
   4648     OPCODE(PACKLS_CC);
   4649     OPCODE(UNPACK_HIGH);
   4650     OPCODE(UNPACKL_HIGH);
   4651     OPCODE(UNPACK_LOW);
   4652     OPCODE(UNPACKL_LOW);
   4653     OPCODE(VSHL_BY_SCALAR);
   4654     OPCODE(VSRL_BY_SCALAR);
   4655     OPCODE(VSRA_BY_SCALAR);
   4656     OPCODE(VSUM);
   4657     OPCODE(VICMPE);
   4658     OPCODE(VICMPH);
   4659     OPCODE(VICMPHL);
   4660     OPCODE(VICMPES);
   4661     OPCODE(VICMPHS);
   4662     OPCODE(VICMPHLS);
   4663     OPCODE(VFCMPE);
   4664     OPCODE(VFCMPH);
   4665     OPCODE(VFCMPHE);
   4666     OPCODE(VFCMPES);
   4667     OPCODE(VFCMPHS);
   4668     OPCODE(VFCMPHES);
   4669     OPCODE(VFTCI);
   4670     OPCODE(VEXTEND);
   4671     OPCODE(VROUND);
   4672     OPCODE(VTM);
   4673     OPCODE(VFAE_CC);
   4674     OPCODE(VFAEZ_CC);
   4675     OPCODE(VFEE_CC);
   4676     OPCODE(VFEEZ_CC);
   4677     OPCODE(VFENE_CC);
   4678     OPCODE(VFENEZ_CC);
   4679     OPCODE(VISTR_CC);
   4680     OPCODE(VSTRC_CC);
   4681     OPCODE(VSTRCZ_CC);
   4682     OPCODE(TDC);
   4683     OPCODE(ATOMIC_SWAPW);
   4684     OPCODE(ATOMIC_LOADW_ADD);
   4685     OPCODE(ATOMIC_LOADW_SUB);
   4686     OPCODE(ATOMIC_LOADW_AND);
   4687     OPCODE(ATOMIC_LOADW_OR);
   4688     OPCODE(ATOMIC_LOADW_XOR);
   4689     OPCODE(ATOMIC_LOADW_NAND);
   4690     OPCODE(ATOMIC_LOADW_MIN);
   4691     OPCODE(ATOMIC_LOADW_MAX);
   4692     OPCODE(ATOMIC_LOADW_UMIN);
   4693     OPCODE(ATOMIC_LOADW_UMAX);
   4694     OPCODE(ATOMIC_CMP_SWAPW);
   4695     OPCODE(LRV);
   4696     OPCODE(STRV);
   4697     OPCODE(PREFETCH);
   4698   }
   4699   return nullptr;
   4700 #undef OPCODE
   4701 }
   4702 
   4703 // Return true if VT is a vector whose elements are a whole number of bytes
   4704 // in width.
   4705 static bool canTreatAsByteVector(EVT VT) {
   4706   return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0;
   4707 }
   4708 
   4709 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
   4710 // producing a result of type ResVT.  Op is a possibly bitcast version
   4711 // of the input vector and Index is the index (based on type VecVT) that
   4712 // should be extracted.  Return the new extraction if a simplification
   4713 // was possible or if Force is true.
   4714 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
   4715                                               EVT VecVT, SDValue Op,
   4716                                               unsigned Index,
   4717                                               DAGCombinerInfo &DCI,
   4718                                               bool Force) const {
   4719   SelectionDAG &DAG = DCI.DAG;
   4720 
   4721   // The number of bytes being extracted.
   4722   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
   4723 
   4724   for (;;) {
   4725     unsigned Opcode = Op.getOpcode();
   4726     if (Opcode == ISD::BITCAST)
   4727       // Look through bitcasts.
   4728       Op = Op.getOperand(0);
   4729     else if (Opcode == ISD::VECTOR_SHUFFLE &&
   4730              canTreatAsByteVector(Op.getValueType())) {
   4731       // Get a VPERM-like permute mask and see whether the bytes covered
   4732       // by the extracted element are a contiguous sequence from one
   4733       // source operand.
   4734       SmallVector<int, SystemZ::VectorBytes> Bytes;
   4735       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
   4736       int First;
   4737       if (!getShuffleInput(Bytes, Index * BytesPerElement,
   4738                            BytesPerElement, First))
   4739         break;
   4740       if (First < 0)
   4741         return DAG.getUNDEF(ResVT);
   4742       // Make sure the contiguous sequence starts at a multiple of the
   4743       // original element size.
   4744       unsigned Byte = unsigned(First) % Bytes.size();
   4745       if (Byte % BytesPerElement != 0)
   4746         break;
   4747       // We can get the extracted value directly from an input.
   4748       Index = Byte / BytesPerElement;
   4749       Op = Op.getOperand(unsigned(First) / Bytes.size());
   4750       Force = true;
   4751     } else if (Opcode == ISD::BUILD_VECTOR &&
   4752                canTreatAsByteVector(Op.getValueType())) {
   4753       // We can only optimize this case if the BUILD_VECTOR elements are
   4754       // at least as wide as the extracted value.
   4755       EVT OpVT = Op.getValueType();
   4756       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
   4757       if (OpBytesPerElement < BytesPerElement)
   4758         break;
   4759       // Make sure that the least-significant bit of the extracted value
   4760       // is the least significant bit of an input.
   4761       unsigned End = (Index + 1) * BytesPerElement;
   4762       if (End % OpBytesPerElement != 0)
   4763         break;
   4764       // We're extracting the low part of one operand of the BUILD_VECTOR.
   4765       Op = Op.getOperand(End / OpBytesPerElement - 1);
   4766       if (!Op.getValueType().isInteger()) {
   4767         EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits());
   4768         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
   4769         DCI.AddToWorklist(Op.getNode());
   4770       }
   4771       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
   4772       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
   4773       if (VT != ResVT) {
   4774         DCI.AddToWorklist(Op.getNode());
   4775         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
   4776       }
   4777       return Op;
   4778     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
   4779                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
   4780                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
   4781                canTreatAsByteVector(Op.getValueType()) &&
   4782                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
   4783       // Make sure that only the unextended bits are significant.
   4784       EVT ExtVT = Op.getValueType();
   4785       EVT OpVT = Op.getOperand(0).getValueType();
   4786       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
   4787       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
   4788       unsigned Byte = Index * BytesPerElement;
   4789       unsigned SubByte = Byte % ExtBytesPerElement;
   4790       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
   4791       if (SubByte < MinSubByte ||
   4792           SubByte + BytesPerElement > ExtBytesPerElement)
   4793         break;
   4794       // Get the byte offset of the unextended element
   4795       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
   4796       // ...then add the byte offset relative to that element.
   4797       Byte += SubByte - MinSubByte;
   4798       if (Byte % BytesPerElement != 0)
   4799         break;
   4800       Op = Op.getOperand(0);
   4801       Index = Byte / BytesPerElement;
   4802       Force = true;
   4803     } else
   4804       break;
   4805   }
   4806   if (Force) {
   4807     if (Op.getValueType() != VecVT) {
   4808       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
   4809       DCI.AddToWorklist(Op.getNode());
   4810     }
   4811     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
   4812                        DAG.getConstant(Index, DL, MVT::i32));
   4813   }
   4814   return SDValue();
   4815 }
   4816 
   4817 // Optimize vector operations in scalar value Op on the basis that Op
   4818 // is truncated to TruncVT.
   4819 SDValue SystemZTargetLowering::combineTruncateExtract(
   4820     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
   4821   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
   4822   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
   4823   // of type TruncVT.
   4824   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   4825       TruncVT.getSizeInBits() % 8 == 0) {
   4826     SDValue Vec = Op.getOperand(0);
   4827     EVT VecVT = Vec.getValueType();
   4828     if (canTreatAsByteVector(VecVT)) {
   4829       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   4830         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
   4831         unsigned TruncBytes = TruncVT.getStoreSize();
   4832         if (BytesPerElement % TruncBytes == 0) {
   4833           // Calculate the value of Y' in the above description.  We are
   4834           // splitting the original elements into Scale equal-sized pieces
   4835           // and for truncation purposes want the last (least-significant)
   4836           // of these pieces for IndexN.  This is easiest to do by calculating
   4837           // the start index of the following element and then subtracting 1.
   4838           unsigned Scale = BytesPerElement / TruncBytes;
   4839           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
   4840 
   4841           // Defer the creation of the bitcast from X to combineExtract,
   4842           // which might be able to optimize the extraction.
   4843           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
   4844                                    VecVT.getStoreSize() / TruncBytes);
   4845           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
   4846           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
   4847         }
   4848       }
   4849     }
   4850   }
   4851   return SDValue();
   4852 }
   4853 
   4854 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
   4855     SDNode *N, DAGCombinerInfo &DCI) const {
   4856   // Convert (sext (ashr (shl X, C1), C2)) to
   4857   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
   4858   // cheap as narrower ones.
   4859   SelectionDAG &DAG = DCI.DAG;
   4860   SDValue N0 = N->getOperand(0);
   4861   EVT VT = N->getValueType(0);
   4862   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
   4863     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
   4864     SDValue Inner = N0.getOperand(0);
   4865     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
   4866       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
   4867         unsigned Extra = (VT.getSizeInBits() -
   4868                           N0.getValueType().getSizeInBits());
   4869         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
   4870         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
   4871         EVT ShiftVT = N0.getOperand(1).getValueType();
   4872         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
   4873                                   Inner.getOperand(0));
   4874         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
   4875                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
   4876                                                   ShiftVT));
   4877         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
   4878                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
   4879       }
   4880     }
   4881   }
   4882   return SDValue();
   4883 }
   4884 
   4885 SDValue SystemZTargetLowering::combineMERGE(
   4886     SDNode *N, DAGCombinerInfo &DCI) const {
   4887   SelectionDAG &DAG = DCI.DAG;
   4888   unsigned Opcode = N->getOpcode();
   4889   SDValue Op0 = N->getOperand(0);
   4890   SDValue Op1 = N->getOperand(1);
   4891   if (Op0.getOpcode() == ISD::BITCAST)
   4892     Op0 = Op0.getOperand(0);
   4893   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
   4894       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
   4895     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
   4896     // for v4f32.
   4897     if (Op1 == N->getOperand(0))
   4898       return Op1;
   4899     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
   4900     EVT VT = Op1.getValueType();
   4901     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
   4902     if (ElemBytes <= 4) {
   4903       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
   4904                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
   4905       EVT InVT = VT.changeVectorElementTypeToInteger();
   4906       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
   4907                                    SystemZ::VectorBytes / ElemBytes / 2);
   4908       if (VT != InVT) {
   4909         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
   4910         DCI.AddToWorklist(Op1.getNode());
   4911       }
   4912       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
   4913       DCI.AddToWorklist(Op.getNode());
   4914       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
   4915     }
   4916   }
   4917   return SDValue();
   4918 }
   4919 
   4920 SDValue SystemZTargetLowering::combineSTORE(
   4921     SDNode *N, DAGCombinerInfo &DCI) const {
   4922   SelectionDAG &DAG = DCI.DAG;
   4923   auto *SN = cast<StoreSDNode>(N);
   4924   auto &Op1 = N->getOperand(1);
   4925   EVT MemVT = SN->getMemoryVT();
   4926   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
   4927   // for the extraction to be done on a vMiN value, so that we can use VSTE.
   4928   // If X has wider elements then convert it to:
   4929   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
   4930   if (MemVT.isInteger()) {
   4931     if (SDValue Value =
   4932             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
   4933       DCI.AddToWorklist(Value.getNode());
   4934 
   4935       // Rewrite the store with the new form of stored value.
   4936       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
   4937                                SN->getBasePtr(), SN->getMemoryVT(),
   4938                                SN->getMemOperand());
   4939     }
   4940   }
   4941   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
   4942   // See comment in combineBSWAP about volatile accesses.
   4943   if (!SN->isVolatile() &&
   4944       Op1.getOpcode() == ISD::BSWAP &&
   4945       Op1.getNode()->hasOneUse() &&
   4946       (Op1.getValueType() == MVT::i16 ||
   4947        Op1.getValueType() == MVT::i32 ||
   4948        Op1.getValueType() == MVT::i64)) {
   4949 
   4950       SDValue BSwapOp = Op1.getOperand(0);
   4951 
   4952       if (BSwapOp.getValueType() == MVT::i16)
   4953         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
   4954 
   4955       SDValue Ops[] = {
   4956         N->getOperand(0), BSwapOp, N->getOperand(2),
   4957         DAG.getValueType(Op1.getValueType())
   4958       };
   4959 
   4960       return
   4961         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
   4962                                 Ops, MemVT, SN->getMemOperand());
   4963     }
   4964   return SDValue();
   4965 }
   4966 
   4967 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
   4968     SDNode *N, DAGCombinerInfo &DCI) const {
   4969   // Try to simplify a vector extraction.
   4970   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
   4971     SDValue Op0 = N->getOperand(0);
   4972     EVT VecVT = Op0.getValueType();
   4973     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
   4974                           IndexN->getZExtValue(), DCI, false);
   4975   }
   4976   return SDValue();
   4977 }
   4978 
   4979 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
   4980     SDNode *N, DAGCombinerInfo &DCI) const {
   4981   SelectionDAG &DAG = DCI.DAG;
   4982   // (join_dwords X, X) == (replicate X)
   4983   if (N->getOperand(0) == N->getOperand(1))
   4984     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
   4985                        N->getOperand(0));
   4986   return SDValue();
   4987 }
   4988 
   4989 SDValue SystemZTargetLowering::combineFP_ROUND(
   4990     SDNode *N, DAGCombinerInfo &DCI) const {
   4991   // (fround (extract_vector_elt X 0))
   4992   // (fround (extract_vector_elt X 1)) ->
   4993   // (extract_vector_elt (VROUND X) 0)
   4994   // (extract_vector_elt (VROUND X) 1)
   4995   //
   4996   // This is a special case since the target doesn't really support v2f32s.
   4997   SelectionDAG &DAG = DCI.DAG;
   4998   SDValue Op0 = N->getOperand(0);
   4999   if (N->getValueType(0) == MVT::f32 &&
   5000       Op0.hasOneUse() &&
   5001       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   5002       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
   5003       Op0.getOperand(1).getOpcode() == ISD::Constant &&
   5004       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
   5005     SDValue Vec = Op0.getOperand(0);
   5006     for (auto *U : Vec->uses()) {
   5007       if (U != Op0.getNode() &&
   5008           U->hasOneUse() &&
   5009           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   5010           U->getOperand(0) == Vec &&
   5011           U->getOperand(1).getOpcode() == ISD::Constant &&
   5012           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
   5013         SDValue OtherRound = SDValue(*U->use_begin(), 0);
   5014         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
   5015             OtherRound.getOperand(0) == SDValue(U, 0) &&
   5016             OtherRound.getValueType() == MVT::f32) {
   5017           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
   5018                                        MVT::v4f32, Vec);
   5019           DCI.AddToWorklist(VRound.getNode());
   5020           SDValue Extract1 =
   5021             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
   5022                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
   5023           DCI.AddToWorklist(Extract1.getNode());
   5024           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
   5025           SDValue Extract0 =
   5026             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
   5027                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
   5028           return Extract0;
   5029         }
   5030       }
   5031     }
   5032   }
   5033   return SDValue();
   5034 }
   5035 
   5036 SDValue SystemZTargetLowering::combineBSWAP(
   5037     SDNode *N, DAGCombinerInfo &DCI) const {
   5038   SelectionDAG &DAG = DCI.DAG;
   5039   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
   5040   // These loads are allowed to access memory multiple times, and so we must check
   5041   // that the loads are not volatile before performing the combine.
   5042   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   5043       N->getOperand(0).hasOneUse() &&
   5044       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
   5045        N->getValueType(0) == MVT::i64) &&
   5046        !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
   5047       SDValue Load = N->getOperand(0);
   5048       LoadSDNode *LD = cast<LoadSDNode>(Load);
   5049 
   5050       // Create the byte-swapping load.
   5051       SDValue Ops[] = {
   5052         LD->getChain(),    // Chain
   5053         LD->getBasePtr(),  // Ptr
   5054         DAG.getValueType(N->getValueType(0)) // VT
   5055       };
   5056       SDValue BSLoad =
   5057         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
   5058                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
   5059                                               MVT::i64 : MVT::i32, MVT::Other),
   5060                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
   5061 
   5062       // If this is an i16 load, insert the truncate.
   5063       SDValue ResVal = BSLoad;
   5064       if (N->getValueType(0) == MVT::i16)
   5065         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
   5066 
   5067       // First, combine the bswap away.  This makes the value produced by the
   5068       // load dead.
   5069       DCI.CombineTo(N, ResVal);
   5070 
   5071       // Next, combine the load away, we give it a bogus result value but a real
   5072       // chain result.  The result value is dead because the bswap is dead.
   5073       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   5074 
   5075       // Return N so it doesn't get rechecked!
   5076       return SDValue(N, 0);
   5077     }
   5078   return SDValue();
   5079 }
   5080 
   5081 SDValue SystemZTargetLowering::combineSHIFTROT(
   5082     SDNode *N, DAGCombinerInfo &DCI) const {
   5083 
   5084   SelectionDAG &DAG = DCI.DAG;
   5085 
   5086   // Shift/rotate instructions only use the last 6 bits of the second operand
   5087   // register. If the second operand is the result of an AND with an immediate
   5088   // value that has its last 6 bits set, we can safely remove the AND operation.
   5089   SDValue N1 = N->getOperand(1);
   5090   if (N1.getOpcode() == ISD::AND) {
   5091     auto *AndMask = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   5092 
   5093     // The AND mask is constant
   5094     if (AndMask) {
   5095       auto AmtVal = AndMask->getZExtValue();
   5096 
   5097       // Bottom 6 bits are set
   5098       if ((AmtVal & 0x3f) == 0x3f) {
   5099         SDValue AndOp = N1->getOperand(0);
   5100 
   5101         // This is the only use, so remove the node
   5102         if (N1.hasOneUse()) {
   5103           // Combine the AND away
   5104           DCI.CombineTo(N1.getNode(), AndOp);
   5105 
   5106           // Return N so it isn't rechecked
   5107           return SDValue(N, 0);
   5108 
   5109         // The node will be reused, so create a new node for this one use
   5110         } else {
   5111           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
   5112                                         N->getValueType(0), N->getOperand(0),
   5113                                         AndOp);
   5114           DCI.AddToWorklist(Replace.getNode());
   5115 
   5116           return Replace;
   5117         }
   5118       }
   5119     }
   5120   }
   5121 
   5122   return SDValue();
   5123 }
   5124 
   5125 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
   5126                                                  DAGCombinerInfo &DCI) const {
   5127   switch(N->getOpcode()) {
   5128   default: break;
   5129   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
   5130   case SystemZISD::MERGE_HIGH:
   5131   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
   5132   case ISD::STORE:              return combineSTORE(N, DCI);
   5133   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
   5134   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
   5135   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
   5136   case ISD::BSWAP:              return combineBSWAP(N, DCI);
   5137   case ISD::SHL:
   5138   case ISD::SRA:
   5139   case ISD::SRL:
   5140   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
   5141   }
   5142 
   5143   return SDValue();
   5144 }
   5145 
   5146 //===----------------------------------------------------------------------===//
   5147 // Custom insertion
   5148 //===----------------------------------------------------------------------===//
   5149 
   5150 // Create a new basic block after MBB.
   5151 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
   5152   MachineFunction &MF = *MBB->getParent();
   5153   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
   5154   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
   5155   return NewMBB;
   5156 }
   5157 
   5158 // Split MBB after MI and return the new block (the one that contains
   5159 // instructions after MI).
   5160 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
   5161                                           MachineBasicBlock *MBB) {
   5162   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
   5163   NewMBB->splice(NewMBB->begin(), MBB,
   5164                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   5165   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
   5166   return NewMBB;
   5167 }
   5168 
   5169 // Split MBB before MI and return the new block (the one that contains MI).
   5170 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
   5171                                            MachineBasicBlock *MBB) {
   5172   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
   5173   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
   5174   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
   5175   return NewMBB;
   5176 }
   5177 
   5178 // Force base value Base into a register before MI.  Return the register.
   5179 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
   5180                          const SystemZInstrInfo *TII) {
   5181   if (Base.isReg())
   5182     return Base.getReg();
   5183 
   5184   MachineBasicBlock *MBB = MI.getParent();
   5185   MachineFunction &MF = *MBB->getParent();
   5186   MachineRegisterInfo &MRI = MF.getRegInfo();
   5187 
   5188   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
   5189   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
   5190       .addOperand(Base)
   5191       .addImm(0)
   5192       .addReg(0);
   5193   return Reg;
   5194 }
   5195 
   5196 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
   5197 MachineBasicBlock *
   5198 SystemZTargetLowering::emitSelect(MachineInstr &MI,
   5199                                   MachineBasicBlock *MBB) const {
   5200   const SystemZInstrInfo *TII =
   5201       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5202 
   5203   unsigned DestReg = MI.getOperand(0).getReg();
   5204   unsigned TrueReg = MI.getOperand(1).getReg();
   5205   unsigned FalseReg = MI.getOperand(2).getReg();
   5206   unsigned CCValid = MI.getOperand(3).getImm();
   5207   unsigned CCMask = MI.getOperand(4).getImm();
   5208   DebugLoc DL = MI.getDebugLoc();
   5209 
   5210   MachineBasicBlock *StartMBB = MBB;
   5211   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
   5212   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
   5213 
   5214   //  StartMBB:
   5215   //   BRC CCMask, JoinMBB
   5216   //   # fallthrough to FalseMBB
   5217   MBB = StartMBB;
   5218   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5219     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
   5220   MBB->addSuccessor(JoinMBB);
   5221   MBB->addSuccessor(FalseMBB);
   5222 
   5223   //  FalseMBB:
   5224   //   # fallthrough to JoinMBB
   5225   MBB = FalseMBB;
   5226   MBB->addSuccessor(JoinMBB);
   5227 
   5228   //  JoinMBB:
   5229   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
   5230   //  ...
   5231   MBB = JoinMBB;
   5232   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
   5233     .addReg(TrueReg).addMBB(StartMBB)
   5234     .addReg(FalseReg).addMBB(FalseMBB);
   5235 
   5236   MI.eraseFromParent();
   5237   return JoinMBB;
   5238 }
   5239 
   5240 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
   5241 // StoreOpcode is the store to use and Invert says whether the store should
   5242 // happen when the condition is false rather than true.  If a STORE ON
   5243 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
   5244 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
   5245                                                         MachineBasicBlock *MBB,
   5246                                                         unsigned StoreOpcode,
   5247                                                         unsigned STOCOpcode,
   5248                                                         bool Invert) const {
   5249   const SystemZInstrInfo *TII =
   5250       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5251 
   5252   unsigned SrcReg = MI.getOperand(0).getReg();
   5253   MachineOperand Base = MI.getOperand(1);
   5254   int64_t Disp = MI.getOperand(2).getImm();
   5255   unsigned IndexReg = MI.getOperand(3).getReg();
   5256   unsigned CCValid = MI.getOperand(4).getImm();
   5257   unsigned CCMask = MI.getOperand(5).getImm();
   5258   DebugLoc DL = MI.getDebugLoc();
   5259 
   5260   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
   5261 
   5262   // Use STOCOpcode if possible.  We could use different store patterns in
   5263   // order to avoid matching the index register, but the performance trade-offs
   5264   // might be more complicated in that case.
   5265   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
   5266     if (Invert)
   5267       CCMask ^= CCValid;
   5268     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
   5269       .addReg(SrcReg).addOperand(Base).addImm(Disp)
   5270       .addImm(CCValid).addImm(CCMask);
   5271     MI.eraseFromParent();
   5272     return MBB;
   5273   }
   5274 
   5275   // Get the condition needed to branch around the store.
   5276   if (!Invert)
   5277     CCMask ^= CCValid;
   5278 
   5279   MachineBasicBlock *StartMBB = MBB;
   5280   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
   5281   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
   5282 
   5283   //  StartMBB:
   5284   //   BRC CCMask, JoinMBB
   5285   //   # fallthrough to FalseMBB
   5286   MBB = StartMBB;
   5287   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5288     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
   5289   MBB->addSuccessor(JoinMBB);
   5290   MBB->addSuccessor(FalseMBB);
   5291 
   5292   //  FalseMBB:
   5293   //   store %SrcReg, %Disp(%Index,%Base)
   5294   //   # fallthrough to JoinMBB
   5295   MBB = FalseMBB;
   5296   BuildMI(MBB, DL, TII->get(StoreOpcode))
   5297     .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
   5298   MBB->addSuccessor(JoinMBB);
   5299 
   5300   MI.eraseFromParent();
   5301   return JoinMBB;
   5302 }
   5303 
   5304 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
   5305 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
   5306 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
   5307 // BitSize is the width of the field in bits, or 0 if this is a partword
   5308 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
   5309 // is one of the operands.  Invert says whether the field should be
   5310 // inverted after performing BinOpcode (e.g. for NAND).
   5311 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
   5312     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
   5313     unsigned BitSize, bool Invert) const {
   5314   MachineFunction &MF = *MBB->getParent();
   5315   const SystemZInstrInfo *TII =
   5316       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5317   MachineRegisterInfo &MRI = MF.getRegInfo();
   5318   bool IsSubWord = (BitSize < 32);
   5319 
   5320   // Extract the operands.  Base can be a register or a frame index.
   5321   // Src2 can be a register or immediate.
   5322   unsigned Dest = MI.getOperand(0).getReg();
   5323   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
   5324   int64_t Disp = MI.getOperand(2).getImm();
   5325   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
   5326   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
   5327   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
   5328   DebugLoc DL = MI.getDebugLoc();
   5329   if (IsSubWord)
   5330     BitSize = MI.getOperand(6).getImm();
   5331 
   5332   // Subword operations use 32-bit registers.
   5333   const TargetRegisterClass *RC = (BitSize <= 32 ?
   5334                                    &SystemZ::GR32BitRegClass :
   5335                                    &SystemZ::GR64BitRegClass);
   5336   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
   5337   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
   5338 
   5339   // Get the right opcodes for the displacement.
   5340   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
   5341   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
   5342   assert(LOpcode && CSOpcode && "Displacement out of range");
   5343 
   5344   // Create virtual registers for temporary results.
   5345   unsigned OrigVal       = MRI.createVirtualRegister(RC);
   5346   unsigned OldVal        = MRI.createVirtualRegister(RC);
   5347   unsigned NewVal        = (BinOpcode || IsSubWord ?
   5348                             MRI.createVirtualRegister(RC) : Src2.getReg());
   5349   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
   5350   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
   5351 
   5352   // Insert a basic block for the main loop.
   5353   MachineBasicBlock *StartMBB = MBB;
   5354   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
   5355   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
   5356 
   5357   //  StartMBB:
   5358   //   ...
   5359   //   %OrigVal = L Disp(%Base)
   5360   //   # fall through to LoopMMB
   5361   MBB = StartMBB;
   5362   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
   5363     .addOperand(Base).addImm(Disp).addReg(0);
   5364   MBB->addSuccessor(LoopMBB);
   5365 
   5366   //  LoopMBB:
   5367   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
   5368   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
   5369   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
   5370   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
   5371   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
   5372   //   JNE LoopMBB
   5373   //   # fall through to DoneMMB
   5374   MBB = LoopMBB;
   5375   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   5376     .addReg(OrigVal).addMBB(StartMBB)
   5377     .addReg(Dest).addMBB(LoopMBB);
   5378   if (IsSubWord)
   5379     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
   5380       .addReg(OldVal).addReg(BitShift).addImm(0);
   5381   if (Invert) {
   5382     // Perform the operation normally and then invert every bit of the field.
   5383     unsigned Tmp = MRI.createVirtualRegister(RC);
   5384     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
   5385       .addReg(RotatedOldVal).addOperand(Src2);
   5386     if (BitSize <= 32)
   5387       // XILF with the upper BitSize bits set.
   5388       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
   5389         .addReg(Tmp).addImm(-1U << (32 - BitSize));
   5390     else {
   5391       // Use LCGR and add -1 to the result, which is more compact than
   5392       // an XILF, XILH pair.
   5393       unsigned Tmp2 = MRI.createVirtualRegister(RC);
   5394       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
   5395       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
   5396         .addReg(Tmp2).addImm(-1);
   5397     }
   5398   } else if (BinOpcode)
   5399     // A simply binary operation.
   5400     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
   5401       .addReg(RotatedOldVal).addOperand(Src2);
   5402   else if (IsSubWord)
   5403     // Use RISBG to rotate Src2 into position and use it to replace the
   5404     // field in RotatedOldVal.
   5405     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
   5406       .addReg(RotatedOldVal).addReg(Src2.getReg())
   5407       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
   5408   if (IsSubWord)
   5409     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
   5410       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
   5411   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
   5412     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
   5413   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5414     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   5415   MBB->addSuccessor(LoopMBB);
   5416   MBB->addSuccessor(DoneMBB);
   5417 
   5418   MI.eraseFromParent();
   5419   return DoneMBB;
   5420 }
   5421 
   5422 // Implement EmitInstrWithCustomInserter for pseudo
   5423 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
   5424 // instruction that should be used to compare the current field with the
   5425 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
   5426 // for when the current field should be kept.  BitSize is the width of
   5427 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
   5428 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
   5429     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
   5430     unsigned KeepOldMask, unsigned BitSize) const {
   5431   MachineFunction &MF = *MBB->getParent();
   5432   const SystemZInstrInfo *TII =
   5433       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5434   MachineRegisterInfo &MRI = MF.getRegInfo();
   5435   bool IsSubWord = (BitSize < 32);
   5436 
   5437   // Extract the operands.  Base can be a register or a frame index.
   5438   unsigned Dest = MI.getOperand(0).getReg();
   5439   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
   5440   int64_t Disp = MI.getOperand(2).getImm();
   5441   unsigned Src2 = MI.getOperand(3).getReg();
   5442   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
   5443   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
   5444   DebugLoc DL = MI.getDebugLoc();
   5445   if (IsSubWord)
   5446     BitSize = MI.getOperand(6).getImm();
   5447 
   5448   // Subword operations use 32-bit registers.
   5449   const TargetRegisterClass *RC = (BitSize <= 32 ?
   5450                                    &SystemZ::GR32BitRegClass :
   5451                                    &SystemZ::GR64BitRegClass);
   5452   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
   5453   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
   5454 
   5455   // Get the right opcodes for the displacement.
   5456   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
   5457   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
   5458   assert(LOpcode && CSOpcode && "Displacement out of range");
   5459 
   5460   // Create virtual registers for temporary results.
   5461   unsigned OrigVal       = MRI.createVirtualRegister(RC);
   5462   unsigned OldVal        = MRI.createVirtualRegister(RC);
   5463   unsigned NewVal        = MRI.createVirtualRegister(RC);
   5464   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
   5465   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
   5466   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
   5467 
   5468   // Insert 3 basic blocks for the loop.
   5469   MachineBasicBlock *StartMBB  = MBB;
   5470   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
   5471   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
   5472   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
   5473   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
   5474 
   5475   //  StartMBB:
   5476   //   ...
   5477   //   %OrigVal     = L Disp(%Base)
   5478   //   # fall through to LoopMMB
   5479   MBB = StartMBB;
   5480   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
   5481     .addOperand(Base).addImm(Disp).addReg(0);
   5482   MBB->addSuccessor(LoopMBB);
   5483 
   5484   //  LoopMBB:
   5485   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
   5486   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
   5487   //   CompareOpcode %RotatedOldVal, %Src2
   5488   //   BRC KeepOldMask, UpdateMBB
   5489   MBB = LoopMBB;
   5490   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   5491     .addReg(OrigVal).addMBB(StartMBB)
   5492     .addReg(Dest).addMBB(UpdateMBB);
   5493   if (IsSubWord)
   5494     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
   5495       .addReg(OldVal).addReg(BitShift).addImm(0);
   5496   BuildMI(MBB, DL, TII->get(CompareOpcode))
   5497     .addReg(RotatedOldVal).addReg(Src2);
   5498   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5499     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
   5500   MBB->addSuccessor(UpdateMBB);
   5501   MBB->addSuccessor(UseAltMBB);
   5502 
   5503   //  UseAltMBB:
   5504   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
   5505   //   # fall through to UpdateMMB
   5506   MBB = UseAltMBB;
   5507   if (IsSubWord)
   5508     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
   5509       .addReg(RotatedOldVal).addReg(Src2)
   5510       .addImm(32).addImm(31 + BitSize).addImm(0);
   5511   MBB->addSuccessor(UpdateMBB);
   5512 
   5513   //  UpdateMBB:
   5514   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
   5515   //                        [ %RotatedAltVal, UseAltMBB ]
   5516   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
   5517   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
   5518   //   JNE LoopMBB
   5519   //   # fall through to DoneMMB
   5520   MBB = UpdateMBB;
   5521   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
   5522     .addReg(RotatedOldVal).addMBB(LoopMBB)
   5523     .addReg(RotatedAltVal).addMBB(UseAltMBB);
   5524   if (IsSubWord)
   5525     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
   5526       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
   5527   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
   5528     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
   5529   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5530     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   5531   MBB->addSuccessor(LoopMBB);
   5532   MBB->addSuccessor(DoneMBB);
   5533 
   5534   MI.eraseFromParent();
   5535   return DoneMBB;
   5536 }
   5537 
   5538 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
   5539 // instruction MI.
   5540 MachineBasicBlock *
   5541 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
   5542                                           MachineBasicBlock *MBB) const {
   5543 
   5544   MachineFunction &MF = *MBB->getParent();
   5545   const SystemZInstrInfo *TII =
   5546       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5547   MachineRegisterInfo &MRI = MF.getRegInfo();
   5548 
   5549   // Extract the operands.  Base can be a register or a frame index.
   5550   unsigned Dest = MI.getOperand(0).getReg();
   5551   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
   5552   int64_t Disp = MI.getOperand(2).getImm();
   5553   unsigned OrigCmpVal = MI.getOperand(3).getReg();
   5554   unsigned OrigSwapVal = MI.getOperand(4).getReg();
   5555   unsigned BitShift = MI.getOperand(5).getReg();
   5556   unsigned NegBitShift = MI.getOperand(6).getReg();
   5557   int64_t BitSize = MI.getOperand(7).getImm();
   5558   DebugLoc DL = MI.getDebugLoc();
   5559 
   5560   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
   5561 
   5562   // Get the right opcodes for the displacement.
   5563   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
   5564   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
   5565   assert(LOpcode && CSOpcode && "Displacement out of range");
   5566 
   5567   // Create virtual registers for temporary results.
   5568   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
   5569   unsigned OldVal       = MRI.createVirtualRegister(RC);
   5570   unsigned CmpVal       = MRI.createVirtualRegister(RC);
   5571   unsigned SwapVal      = MRI.createVirtualRegister(RC);
   5572   unsigned StoreVal     = MRI.createVirtualRegister(RC);
   5573   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
   5574   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
   5575   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
   5576 
   5577   // Insert 2 basic blocks for the loop.
   5578   MachineBasicBlock *StartMBB = MBB;
   5579   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
   5580   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
   5581   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
   5582 
   5583   //  StartMBB:
   5584   //   ...
   5585   //   %OrigOldVal     = L Disp(%Base)
   5586   //   # fall through to LoopMMB
   5587   MBB = StartMBB;
   5588   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
   5589     .addOperand(Base).addImm(Disp).addReg(0);
   5590   MBB->addSuccessor(LoopMBB);
   5591 
   5592   //  LoopMBB:
   5593   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
   5594   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
   5595   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
   5596   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
   5597   //                      ^^ The low BitSize bits contain the field
   5598   //                         of interest.
   5599   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
   5600   //                      ^^ Replace the upper 32-BitSize bits of the
   5601   //                         comparison value with those that we loaded,
   5602   //                         so that we can use a full word comparison.
   5603   //   CR %Dest, %RetryCmpVal
   5604   //   JNE DoneMBB
   5605   //   # Fall through to SetMBB
   5606   MBB = LoopMBB;
   5607   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   5608     .addReg(OrigOldVal).addMBB(StartMBB)
   5609     .addReg(RetryOldVal).addMBB(SetMBB);
   5610   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
   5611     .addReg(OrigCmpVal).addMBB(StartMBB)
   5612     .addReg(RetryCmpVal).addMBB(SetMBB);
   5613   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
   5614     .addReg(OrigSwapVal).addMBB(StartMBB)
   5615     .addReg(RetrySwapVal).addMBB(SetMBB);
   5616   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
   5617     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
   5618   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
   5619     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
   5620   BuildMI(MBB, DL, TII->get(SystemZ::CR))
   5621     .addReg(Dest).addReg(RetryCmpVal);
   5622   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5623     .addImm(SystemZ::CCMASK_ICMP)
   5624     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
   5625   MBB->addSuccessor(DoneMBB);
   5626   MBB->addSuccessor(SetMBB);
   5627 
   5628   //  SetMBB:
   5629   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
   5630   //                      ^^ Replace the upper 32-BitSize bits of the new
   5631   //                         value with those that we loaded.
   5632   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
   5633   //                      ^^ Rotate the new field to its proper position.
   5634   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
   5635   //   JNE LoopMBB
   5636   //   # fall through to ExitMMB
   5637   MBB = SetMBB;
   5638   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
   5639     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
   5640   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
   5641     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
   5642   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
   5643     .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
   5644   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5645     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   5646   MBB->addSuccessor(LoopMBB);
   5647   MBB->addSuccessor(DoneMBB);
   5648 
   5649   MI.eraseFromParent();
   5650   return DoneMBB;
   5651 }
   5652 
   5653 // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
   5654 // if the high register of the GR128 value must be cleared or false if
   5655 // it's "don't care".  SubReg is subreg_l32 when extending a GR32
   5656 // and subreg_l64 when extending a GR64.
   5657 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
   5658                                                      MachineBasicBlock *MBB,
   5659                                                      bool ClearEven,
   5660                                                      unsigned SubReg) const {
   5661   MachineFunction &MF = *MBB->getParent();
   5662   const SystemZInstrInfo *TII =
   5663       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5664   MachineRegisterInfo &MRI = MF.getRegInfo();
   5665   DebugLoc DL = MI.getDebugLoc();
   5666 
   5667   unsigned Dest = MI.getOperand(0).getReg();
   5668   unsigned Src = MI.getOperand(1).getReg();
   5669   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
   5670 
   5671   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
   5672   if (ClearEven) {
   5673     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
   5674     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
   5675 
   5676     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
   5677       .addImm(0);
   5678     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
   5679       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
   5680     In128 = NewIn128;
   5681   }
   5682   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
   5683     .addReg(In128).addReg(Src).addImm(SubReg);
   5684 
   5685   MI.eraseFromParent();
   5686   return MBB;
   5687 }
   5688 
   5689 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
   5690     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
   5691   MachineFunction &MF = *MBB->getParent();
   5692   const SystemZInstrInfo *TII =
   5693       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5694   MachineRegisterInfo &MRI = MF.getRegInfo();
   5695   DebugLoc DL = MI.getDebugLoc();
   5696 
   5697   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
   5698   uint64_t DestDisp = MI.getOperand(1).getImm();
   5699   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
   5700   uint64_t SrcDisp = MI.getOperand(3).getImm();
   5701   uint64_t Length = MI.getOperand(4).getImm();
   5702 
   5703   // When generating more than one CLC, all but the last will need to
   5704   // branch to the end when a difference is found.
   5705   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
   5706                                splitBlockAfter(MI, MBB) : nullptr);
   5707 
   5708   // Check for the loop form, in which operand 5 is the trip count.
   5709   if (MI.getNumExplicitOperands() > 5) {
   5710     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
   5711 
   5712     uint64_t StartCountReg = MI.getOperand(5).getReg();
   5713     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
   5714     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
   5715                               forceReg(MI, DestBase, TII));
   5716 
   5717     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
   5718     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
   5719     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
   5720                             MRI.createVirtualRegister(RC));
   5721     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
   5722     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
   5723                             MRI.createVirtualRegister(RC));
   5724 
   5725     RC = &SystemZ::GR64BitRegClass;
   5726     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
   5727     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
   5728 
   5729     MachineBasicBlock *StartMBB = MBB;
   5730     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
   5731     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
   5732     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
   5733 
   5734     //  StartMBB:
   5735     //   # fall through to LoopMMB
   5736     MBB->addSuccessor(LoopMBB);
   5737 
   5738     //  LoopMBB:
   5739     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
   5740     //                      [ %NextDestReg, NextMBB ]
   5741     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
   5742     //                     [ %NextSrcReg, NextMBB ]
   5743     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
   5744     //                       [ %NextCountReg, NextMBB ]
   5745     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
   5746     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
   5747     //   ( JLH EndMBB )
   5748     //
   5749     // The prefetch is used only for MVC.  The JLH is used only for CLC.
   5750     MBB = LoopMBB;
   5751 
   5752     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
   5753       .addReg(StartDestReg).addMBB(StartMBB)
   5754       .addReg(NextDestReg).addMBB(NextMBB);
   5755     if (!HaveSingleBase)
   5756       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
   5757         .addReg(StartSrcReg).addMBB(StartMBB)
   5758         .addReg(NextSrcReg).addMBB(NextMBB);
   5759     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
   5760       .addReg(StartCountReg).addMBB(StartMBB)
   5761       .addReg(NextCountReg).addMBB(NextMBB);
   5762     if (Opcode == SystemZ::MVC)
   5763       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
   5764         .addImm(SystemZ::PFD_WRITE)
   5765         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
   5766     BuildMI(MBB, DL, TII->get(Opcode))
   5767       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
   5768       .addReg(ThisSrcReg).addImm(SrcDisp);
   5769     if (EndMBB) {
   5770       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5771         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
   5772         .addMBB(EndMBB);
   5773       MBB->addSuccessor(EndMBB);
   5774       MBB->addSuccessor(NextMBB);
   5775     }
   5776 
   5777     // NextMBB:
   5778     //   %NextDestReg = LA 256(%ThisDestReg)
   5779     //   %NextSrcReg = LA 256(%ThisSrcReg)
   5780     //   %NextCountReg = AGHI %ThisCountReg, -1
   5781     //   CGHI %NextCountReg, 0
   5782     //   JLH LoopMBB
   5783     //   # fall through to DoneMMB
   5784     //
   5785     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
   5786     MBB = NextMBB;
   5787 
   5788     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
   5789       .addReg(ThisDestReg).addImm(256).addReg(0);
   5790     if (!HaveSingleBase)
   5791       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
   5792         .addReg(ThisSrcReg).addImm(256).addReg(0);
   5793     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
   5794       .addReg(ThisCountReg).addImm(-1);
   5795     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
   5796       .addReg(NextCountReg).addImm(0);
   5797     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5798       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
   5799       .addMBB(LoopMBB);
   5800     MBB->addSuccessor(LoopMBB);
   5801     MBB->addSuccessor(DoneMBB);
   5802 
   5803     DestBase = MachineOperand::CreateReg(NextDestReg, false);
   5804     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
   5805     Length &= 255;
   5806     MBB = DoneMBB;
   5807   }
   5808   // Handle any remaining bytes with straight-line code.
   5809   while (Length > 0) {
   5810     uint64_t ThisLength = std::min(Length, uint64_t(256));
   5811     // The previous iteration might have created out-of-range displacements.
   5812     // Apply them using LAY if so.
   5813     if (!isUInt<12>(DestDisp)) {
   5814       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
   5815       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
   5816           .addOperand(DestBase)
   5817           .addImm(DestDisp)
   5818           .addReg(0);
   5819       DestBase = MachineOperand::CreateReg(Reg, false);
   5820       DestDisp = 0;
   5821     }
   5822     if (!isUInt<12>(SrcDisp)) {
   5823       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
   5824       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
   5825           .addOperand(SrcBase)
   5826           .addImm(SrcDisp)
   5827           .addReg(0);
   5828       SrcBase = MachineOperand::CreateReg(Reg, false);
   5829       SrcDisp = 0;
   5830     }
   5831     BuildMI(*MBB, MI, DL, TII->get(Opcode))
   5832       .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
   5833       .addOperand(SrcBase).addImm(SrcDisp);
   5834     DestDisp += ThisLength;
   5835     SrcDisp += ThisLength;
   5836     Length -= ThisLength;
   5837     // If there's another CLC to go, branch to the end if a difference
   5838     // was found.
   5839     if (EndMBB && Length > 0) {
   5840       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
   5841       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5842         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
   5843         .addMBB(EndMBB);
   5844       MBB->addSuccessor(EndMBB);
   5845       MBB->addSuccessor(NextMBB);
   5846       MBB = NextMBB;
   5847     }
   5848   }
   5849   if (EndMBB) {
   5850     MBB->addSuccessor(EndMBB);
   5851     MBB = EndMBB;
   5852     MBB->addLiveIn(SystemZ::CC);
   5853   }
   5854 
   5855   MI.eraseFromParent();
   5856   return MBB;
   5857 }
   5858 
   5859 // Decompose string pseudo-instruction MI into a loop that continually performs
   5860 // Opcode until CC != 3.
   5861 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
   5862     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
   5863   MachineFunction &MF = *MBB->getParent();
   5864   const SystemZInstrInfo *TII =
   5865       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5866   MachineRegisterInfo &MRI = MF.getRegInfo();
   5867   DebugLoc DL = MI.getDebugLoc();
   5868 
   5869   uint64_t End1Reg = MI.getOperand(0).getReg();
   5870   uint64_t Start1Reg = MI.getOperand(1).getReg();
   5871   uint64_t Start2Reg = MI.getOperand(2).getReg();
   5872   uint64_t CharReg = MI.getOperand(3).getReg();
   5873 
   5874   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
   5875   uint64_t This1Reg = MRI.createVirtualRegister(RC);
   5876   uint64_t This2Reg = MRI.createVirtualRegister(RC);
   5877   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
   5878 
   5879   MachineBasicBlock *StartMBB = MBB;
   5880   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
   5881   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
   5882 
   5883   //  StartMBB:
   5884   //   # fall through to LoopMMB
   5885   MBB->addSuccessor(LoopMBB);
   5886 
   5887   //  LoopMBB:
   5888   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
   5889   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
   5890   //   R0L = %CharReg
   5891   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
   5892   //   JO LoopMBB
   5893   //   # fall through to DoneMMB
   5894   //
   5895   // The load of R0L can be hoisted by post-RA LICM.
   5896   MBB = LoopMBB;
   5897 
   5898   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
   5899     .addReg(Start1Reg).addMBB(StartMBB)
   5900     .addReg(End1Reg).addMBB(LoopMBB);
   5901   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
   5902     .addReg(Start2Reg).addMBB(StartMBB)
   5903     .addReg(End2Reg).addMBB(LoopMBB);
   5904   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
   5905   BuildMI(MBB, DL, TII->get(Opcode))
   5906     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
   5907     .addReg(This1Reg).addReg(This2Reg);
   5908   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5909     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
   5910   MBB->addSuccessor(LoopMBB);
   5911   MBB->addSuccessor(DoneMBB);
   5912 
   5913   DoneMBB->addLiveIn(SystemZ::CC);
   5914 
   5915   MI.eraseFromParent();
   5916   return DoneMBB;
   5917 }
   5918 
   5919 // Update TBEGIN instruction with final opcode and register clobbers.
   5920 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
   5921     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
   5922     bool NoFloat) const {
   5923   MachineFunction &MF = *MBB->getParent();
   5924   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
   5925   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
   5926 
   5927   // Update opcode.
   5928   MI.setDesc(TII->get(Opcode));
   5929 
   5930   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
   5931   // Make sure to add the corresponding GRSM bits if they are missing.
   5932   uint64_t Control = MI.getOperand(2).getImm();
   5933   static const unsigned GPRControlBit[16] = {
   5934     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
   5935     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
   5936   };
   5937   Control |= GPRControlBit[15];
   5938   if (TFI->hasFP(MF))
   5939     Control |= GPRControlBit[11];
   5940   MI.getOperand(2).setImm(Control);
   5941 
   5942   // Add GPR clobbers.
   5943   for (int I = 0; I < 16; I++) {
   5944     if ((Control & GPRControlBit[I]) == 0) {
   5945       unsigned Reg = SystemZMC::GR64Regs[I];
   5946       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
   5947     }
   5948   }
   5949 
   5950   // Add FPR/VR clobbers.
   5951   if (!NoFloat && (Control & 4) != 0) {
   5952     if (Subtarget.hasVector()) {
   5953       for (int I = 0; I < 32; I++) {
   5954         unsigned Reg = SystemZMC::VR128Regs[I];
   5955         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
   5956       }
   5957     } else {
   5958       for (int I = 0; I < 16; I++) {
   5959         unsigned Reg = SystemZMC::FP64Regs[I];
   5960         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
   5961       }
   5962     }
   5963   }
   5964 
   5965   return MBB;
   5966 }
   5967 
   5968 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
   5969     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
   5970   MachineFunction &MF = *MBB->getParent();
   5971   MachineRegisterInfo *MRI = &MF.getRegInfo();
   5972   const SystemZInstrInfo *TII =
   5973       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5974   DebugLoc DL = MI.getDebugLoc();
   5975 
   5976   unsigned SrcReg = MI.getOperand(0).getReg();
   5977 
   5978   // Create new virtual register of the same class as source.
   5979   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
   5980   unsigned DstReg = MRI->createVirtualRegister(RC);
   5981 
   5982   // Replace pseudo with a normal load-and-test that models the def as
   5983   // well.
   5984   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
   5985     .addReg(SrcReg);
   5986   MI.eraseFromParent();
   5987 
   5988   return MBB;
   5989 }
   5990 
   5991 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
   5992     MachineInstr &MI, MachineBasicBlock *MBB) const {
   5993   switch (MI.getOpcode()) {
   5994   case SystemZ::Select32Mux:
   5995   case SystemZ::Select32:
   5996   case SystemZ::SelectF32:
   5997   case SystemZ::Select64:
   5998   case SystemZ::SelectF64:
   5999   case SystemZ::SelectF128:
   6000     return emitSelect(MI, MBB);
   6001 
   6002   case SystemZ::CondStore8Mux:
   6003     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
   6004   case SystemZ::CondStore8MuxInv:
   6005     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
   6006   case SystemZ::CondStore16Mux:
   6007     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
   6008   case SystemZ::CondStore16MuxInv:
   6009     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
   6010   case SystemZ::CondStore8:
   6011     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
   6012   case SystemZ::CondStore8Inv:
   6013     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
   6014   case SystemZ::CondStore16:
   6015     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
   6016   case SystemZ::CondStore16Inv:
   6017     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
   6018   case SystemZ::CondStore32:
   6019     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
   6020   case SystemZ::CondStore32Inv:
   6021     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
   6022   case SystemZ::CondStore64:
   6023     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
   6024   case SystemZ::CondStore64Inv:
   6025     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
   6026   case SystemZ::CondStoreF32:
   6027     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
   6028   case SystemZ::CondStoreF32Inv:
   6029     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
   6030   case SystemZ::CondStoreF64:
   6031     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
   6032   case SystemZ::CondStoreF64Inv:
   6033     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
   6034 
   6035   case SystemZ::AEXT128_64:
   6036     return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
   6037   case SystemZ::ZEXT128_32:
   6038     return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
   6039   case SystemZ::ZEXT128_64:
   6040     return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
   6041 
   6042   case SystemZ::ATOMIC_SWAPW:
   6043     return emitAtomicLoadBinary(MI, MBB, 0, 0);
   6044   case SystemZ::ATOMIC_SWAP_32:
   6045     return emitAtomicLoadBinary(MI, MBB, 0, 32);
   6046   case SystemZ::ATOMIC_SWAP_64:
   6047     return emitAtomicLoadBinary(MI, MBB, 0, 64);
   6048 
   6049   case SystemZ::ATOMIC_LOADW_AR:
   6050     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
   6051   case SystemZ::ATOMIC_LOADW_AFI:
   6052     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
   6053   case SystemZ::ATOMIC_LOAD_AR:
   6054     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
   6055   case SystemZ::ATOMIC_LOAD_AHI:
   6056     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
   6057   case SystemZ::ATOMIC_LOAD_AFI:
   6058     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
   6059   case SystemZ::ATOMIC_LOAD_AGR:
   6060     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
   6061   case SystemZ::ATOMIC_LOAD_AGHI:
   6062     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
   6063   case SystemZ::ATOMIC_LOAD_AGFI:
   6064     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
   6065 
   6066   case SystemZ::ATOMIC_LOADW_SR:
   6067     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
   6068   case SystemZ::ATOMIC_LOAD_SR:
   6069     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
   6070   case SystemZ::ATOMIC_LOAD_SGR:
   6071     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
   6072 
   6073   case SystemZ::ATOMIC_LOADW_NR:
   6074     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
   6075   case SystemZ::ATOMIC_LOADW_NILH:
   6076     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
   6077   case SystemZ::ATOMIC_LOAD_NR:
   6078     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
   6079   case SystemZ::ATOMIC_LOAD_NILL:
   6080     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
   6081   case SystemZ::ATOMIC_LOAD_NILH:
   6082     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
   6083   case SystemZ::ATOMIC_LOAD_NILF:
   6084     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
   6085   case SystemZ::ATOMIC_LOAD_NGR:
   6086     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
   6087   case SystemZ::ATOMIC_LOAD_NILL64:
   6088     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
   6089   case SystemZ::ATOMIC_LOAD_NILH64:
   6090     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
   6091   case SystemZ::ATOMIC_LOAD_NIHL64:
   6092     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
   6093   case SystemZ::ATOMIC_LOAD_NIHH64:
   6094     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
   6095   case SystemZ::ATOMIC_LOAD_NILF64:
   6096     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
   6097   case SystemZ::ATOMIC_LOAD_NIHF64:
   6098     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
   6099 
   6100   case SystemZ::ATOMIC_LOADW_OR:
   6101     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
   6102   case SystemZ::ATOMIC_LOADW_OILH:
   6103     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
   6104   case SystemZ::ATOMIC_LOAD_OR:
   6105     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
   6106   case SystemZ::ATOMIC_LOAD_OILL:
   6107     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
   6108   case SystemZ::ATOMIC_LOAD_OILH:
   6109     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
   6110   case SystemZ::ATOMIC_LOAD_OILF:
   6111     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
   6112   case SystemZ::ATOMIC_LOAD_OGR:
   6113     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
   6114   case SystemZ::ATOMIC_LOAD_OILL64:
   6115     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
   6116   case SystemZ::ATOMIC_LOAD_OILH64:
   6117     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
   6118   case SystemZ::ATOMIC_LOAD_OIHL64:
   6119     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
   6120   case SystemZ::ATOMIC_LOAD_OIHH64:
   6121     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
   6122   case SystemZ::ATOMIC_LOAD_OILF64:
   6123     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
   6124   case SystemZ::ATOMIC_LOAD_OIHF64:
   6125     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
   6126 
   6127   case SystemZ::ATOMIC_LOADW_XR:
   6128     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
   6129   case SystemZ::ATOMIC_LOADW_XILF:
   6130     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
   6131   case SystemZ::ATOMIC_LOAD_XR:
   6132     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
   6133   case SystemZ::ATOMIC_LOAD_XILF:
   6134     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
   6135   case SystemZ::ATOMIC_LOAD_XGR:
   6136     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
   6137   case SystemZ::ATOMIC_LOAD_XILF64:
   6138     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
   6139   case SystemZ::ATOMIC_LOAD_XIHF64:
   6140     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
   6141 
   6142   case SystemZ::ATOMIC_LOADW_NRi:
   6143     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
   6144   case SystemZ::ATOMIC_LOADW_NILHi:
   6145     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
   6146   case SystemZ::ATOMIC_LOAD_NRi:
   6147     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
   6148   case SystemZ::ATOMIC_LOAD_NILLi:
   6149     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
   6150   case SystemZ::ATOMIC_LOAD_NILHi:
   6151     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
   6152   case SystemZ::ATOMIC_LOAD_NILFi:
   6153     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
   6154   case SystemZ::ATOMIC_LOAD_NGRi:
   6155     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
   6156   case SystemZ::ATOMIC_LOAD_NILL64i:
   6157     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
   6158   case SystemZ::ATOMIC_LOAD_NILH64i:
   6159     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
   6160   case SystemZ::ATOMIC_LOAD_NIHL64i:
   6161     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
   6162   case SystemZ::ATOMIC_LOAD_NIHH64i:
   6163     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
   6164   case SystemZ::ATOMIC_LOAD_NILF64i:
   6165     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
   6166   case SystemZ::ATOMIC_LOAD_NIHF64i:
   6167     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
   6168 
   6169   case SystemZ::ATOMIC_LOADW_MIN:
   6170     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   6171                                 SystemZ::CCMASK_CMP_LE, 0);
   6172   case SystemZ::ATOMIC_LOAD_MIN_32:
   6173     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   6174                                 SystemZ::CCMASK_CMP_LE, 32);
   6175   case SystemZ::ATOMIC_LOAD_MIN_64:
   6176     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
   6177                                 SystemZ::CCMASK_CMP_LE, 64);
   6178 
   6179   case SystemZ::ATOMIC_LOADW_MAX:
   6180     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   6181                                 SystemZ::CCMASK_CMP_GE, 0);
   6182   case SystemZ::ATOMIC_LOAD_MAX_32:
   6183     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   6184                                 SystemZ::CCMASK_CMP_GE, 32);
   6185   case SystemZ::ATOMIC_LOAD_MAX_64:
   6186     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
   6187                                 SystemZ::CCMASK_CMP_GE, 64);
   6188 
   6189   case SystemZ::ATOMIC_LOADW_UMIN:
   6190     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   6191                                 SystemZ::CCMASK_CMP_LE, 0);
   6192   case SystemZ::ATOMIC_LOAD_UMIN_32:
   6193     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   6194                                 SystemZ::CCMASK_CMP_LE, 32);
   6195   case SystemZ::ATOMIC_LOAD_UMIN_64:
   6196     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
   6197                                 SystemZ::CCMASK_CMP_LE, 64);
   6198 
   6199   case SystemZ::ATOMIC_LOADW_UMAX:
   6200     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   6201                                 SystemZ::CCMASK_CMP_GE, 0);
   6202   case SystemZ::ATOMIC_LOAD_UMAX_32:
   6203     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   6204                                 SystemZ::CCMASK_CMP_GE, 32);
   6205   case SystemZ::ATOMIC_LOAD_UMAX_64:
   6206     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
   6207                                 SystemZ::CCMASK_CMP_GE, 64);
   6208 
   6209   case SystemZ::ATOMIC_CMP_SWAPW:
   6210     return emitAtomicCmpSwapW(MI, MBB);
   6211   case SystemZ::MVCSequence:
   6212   case SystemZ::MVCLoop:
   6213     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
   6214   case SystemZ::NCSequence:
   6215   case SystemZ::NCLoop:
   6216     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
   6217   case SystemZ::OCSequence:
   6218   case SystemZ::OCLoop:
   6219     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
   6220   case SystemZ::XCSequence:
   6221   case SystemZ::XCLoop:
   6222     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
   6223   case SystemZ::CLCSequence:
   6224   case SystemZ::CLCLoop:
   6225     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
   6226   case SystemZ::CLSTLoop:
   6227     return emitStringWrapper(MI, MBB, SystemZ::CLST);
   6228   case SystemZ::MVSTLoop:
   6229     return emitStringWrapper(MI, MBB, SystemZ::MVST);
   6230   case SystemZ::SRSTLoop:
   6231     return emitStringWrapper(MI, MBB, SystemZ::SRST);
   6232   case SystemZ::TBEGIN:
   6233     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
   6234   case SystemZ::TBEGIN_nofloat:
   6235     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
   6236   case SystemZ::TBEGINC:
   6237     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
   6238   case SystemZ::LTEBRCompare_VecPseudo:
   6239     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
   6240   case SystemZ::LTDBRCompare_VecPseudo:
   6241     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
   6242   case SystemZ::LTXBRCompare_VecPseudo:
   6243     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
   6244 
   6245   default:
   6246     llvm_unreachable("Unexpected instr type to insert");
   6247   }
   6248 }
   6249