Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SystemZSelectionDAGInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZTargetMachine.h"
     15 #include "llvm/CodeGen/SelectionDAG.h"
     16 
     17 using namespace llvm;
     18 
     19 #define DEBUG_TYPE "systemz-selectiondag-info"
     20 
     21 // Decide whether it is best to use a loop or straight-line code for
     22 // a block operation of Size bytes with source address Src and destination
     23 // address Dest.  Sequence is the opcode to use for straight-line code
     24 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
     25 // Return the chain for the completed operation.
     26 static SDValue emitMemMem(SelectionDAG &DAG, const SDLoc &DL, unsigned Sequence,
     27                           unsigned Loop, SDValue Chain, SDValue Dst,
     28                           SDValue Src, uint64_t Size) {
     29   EVT PtrVT = Src.getValueType();
     30   // The heuristic we use is to prefer loops for anything that would
     31   // require 7 or more MVCs.  With these kinds of sizes there isn't
     32   // much to choose between straight-line code and looping code,
     33   // since the time will be dominated by the MVCs themselves.
     34   // However, the loop has 4 or 5 instructions (depending on whether
     35   // the base addresses can be proved equal), so there doesn't seem
     36   // much point using a loop for 5 * 256 bytes or fewer.  Anything in
     37   // the range (5 * 256, 6 * 256) will need another instruction after
     38   // the loop, so it doesn't seem worth using a loop then either.
     39   // The next value up, 6 * 256, can be implemented in the same
     40   // number of straight-line MVCs as 6 * 256 - 1.
     41   if (Size > 6 * 256)
     42     return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
     43                        DAG.getConstant(Size, DL, PtrVT),
     44                        DAG.getConstant(Size / 256, DL, PtrVT));
     45   return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
     46                      DAG.getConstant(Size, DL, PtrVT));
     47 }
     48 
     49 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemcpy(
     50     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst, SDValue Src,
     51     SDValue Size, unsigned Align, bool IsVolatile, bool AlwaysInline,
     52     MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
     53   if (IsVolatile)
     54     return SDValue();
     55 
     56   if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
     57     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
     58                       Chain, Dst, Src, CSize->getZExtValue());
     59   return SDValue();
     60 }
     61 
     62 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
     63 // Chain, Dst, ByteVal and Size.  These cases are expected to use
     64 // MVI, MVHHI, MVHI and MVGHI respectively.
     65 static SDValue memsetStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
     66                            SDValue Dst, uint64_t ByteVal, uint64_t Size,
     67                            unsigned Align, MachinePointerInfo DstPtrInfo) {
     68   uint64_t StoreVal = ByteVal;
     69   for (unsigned I = 1; I < Size; ++I)
     70     StoreVal |= ByteVal << (I * 8);
     71   return DAG.getStore(Chain, DL,
     72                       DAG.getConstant(StoreVal, DL,
     73                                       MVT::getIntegerVT(Size * 8)),
     74                       Dst, DstPtrInfo, false, false, Align);
     75 }
     76 
     77 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemset(
     78     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst,
     79     SDValue Byte, SDValue Size, unsigned Align, bool IsVolatile,
     80     MachinePointerInfo DstPtrInfo) const {
     81   EVT PtrVT = Dst.getValueType();
     82 
     83   if (IsVolatile)
     84     return SDValue();
     85 
     86   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
     87     uint64_t Bytes = CSize->getZExtValue();
     88     if (Bytes == 0)
     89       return SDValue();
     90     if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) {
     91       // Handle cases that can be done using at most two of
     92       // MVI, MVHI, MVHHI and MVGHI.  The latter two can only be
     93       // used if ByteVal is all zeros or all ones; in other casees,
     94       // we can move at most 2 halfwords.
     95       uint64_t ByteVal = CByte->getZExtValue();
     96       if (ByteVal == 0 || ByteVal == 255 ?
     97           Bytes <= 16 && countPopulation(Bytes) <= 2 :
     98           Bytes <= 4) {
     99         unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
    100         unsigned Size2 = Bytes - Size1;
    101         SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
    102                                      Align, DstPtrInfo);
    103         if (Size2 == 0)
    104           return Chain1;
    105         Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
    106                           DAG.getConstant(Size1, DL, PtrVT));
    107         DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
    108         SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2,
    109                                      std::min(Align, Size1), DstPtrInfo);
    110         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
    111       }
    112     } else {
    113       // Handle one and two bytes using STC.
    114       if (Bytes <= 2) {
    115         SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
    116                                       false, false, Align);
    117         if (Bytes == 1)
    118           return Chain1;
    119         SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
    120                                    DAG.getConstant(1, DL, PtrVT));
    121         SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2,
    122                                       DstPtrInfo.getWithOffset(1),
    123                                       false, false, 1);
    124         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
    125       }
    126     }
    127     assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");
    128 
    129     // Handle the special case of a memset of 0, which can use XC.
    130     auto *CByte = dyn_cast<ConstantSDNode>(Byte);
    131     if (CByte && CByte->getZExtValue() == 0)
    132       return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
    133                         Chain, Dst, Dst, Bytes);
    134 
    135     // Copy the byte to the first location and then use MVC to copy
    136     // it to the rest.
    137     Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
    138                          false, false, Align);
    139     SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
    140                                    DAG.getConstant(1, DL, PtrVT));
    141     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
    142                       Chain, DstPlus1, Dst, Bytes - 1);
    143   }
    144   return SDValue();
    145 }
    146 
    147 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
    148 // deciding whether to use a loop or straight-line code.
    149 static SDValue emitCLC(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
    150                        SDValue Src1, SDValue Src2, uint64_t Size) {
    151   SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
    152   EVT PtrVT = Src1.getValueType();
    153   // A two-CLC sequence is a clear win over a loop, not least because it
    154   // needs only one branch.  A three-CLC sequence needs the same number
    155   // of branches as a loop (i.e. 2), but is shorter.  That brings us to
    156   // lengths greater than 768 bytes.  It seems relatively likely that
    157   // a difference will be found within the first 768 bytes, so we just
    158   // optimize for the smallest number of branch instructions, in order
    159   // to avoid polluting the prediction buffer too much.  A loop only ever
    160   // needs 2 branches, whereas a straight-line sequence would need 3 or more.
    161   if (Size > 3 * 256)
    162     return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
    163                        DAG.getConstant(Size, DL, PtrVT),
    164                        DAG.getConstant(Size / 256, DL, PtrVT));
    165   return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
    166                      DAG.getConstant(Size, DL, PtrVT));
    167 }
    168 
    169 // Convert the current CC value into an integer that is 0 if CC == 0,
    170 // less than zero if CC == 1 and greater than zero if CC >= 2.
    171 // The sequence starts with IPM, which puts CC into bits 29 and 28
    172 // of an integer and clears bits 30 and 31.
    173 static SDValue addIPMSequence(const SDLoc &DL, SDValue Glue,
    174                               SelectionDAG &DAG) {
    175   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
    176   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
    177                             DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
    178   SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL,
    179                              DAG.getConstant(31, DL, MVT::i32));
    180   return ROTL;
    181 }
    182 
    183 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemcmp(
    184     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
    185     SDValue Src2, SDValue Size, MachinePointerInfo Op1PtrInfo,
    186     MachinePointerInfo Op2PtrInfo) const {
    187   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
    188     uint64_t Bytes = CSize->getZExtValue();
    189     assert(Bytes > 0 && "Caller should have handled 0-size case");
    190     Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes);
    191     SDValue Glue = Chain.getValue(1);
    192     return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
    193   }
    194   return std::make_pair(SDValue(), SDValue());
    195 }
    196 
    197 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemchr(
    198     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
    199     SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const {
    200   // Use SRST to find the character.  End is its address on success.
    201   EVT PtrVT = Src.getValueType();
    202   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
    203   Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
    204   Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
    205   Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
    206                      DAG.getConstant(255, DL, MVT::i32));
    207   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
    208   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
    209                             Limit, Src, Char);
    210   Chain = End.getValue(1);
    211   SDValue Glue = End.getValue(2);
    212 
    213   // Now select between End and null, depending on whether the character
    214   // was found.
    215   SDValue Ops[] = {End, DAG.getConstant(0, DL, PtrVT),
    216                    DAG.getConstant(SystemZ::CCMASK_SRST, DL, MVT::i32),
    217                    DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32),
    218                    Glue};
    219   VTs = DAG.getVTList(PtrVT, MVT::Glue);
    220   End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
    221   return std::make_pair(End, Chain);
    222 }
    223 
    224 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcpy(
    225     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest,
    226     SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo,
    227     bool isStpcpy) const {
    228   SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
    229   SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
    230                                 DAG.getConstant(0, DL, MVT::i32));
    231   return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
    232 }
    233 
    234 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcmp(
    235     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1,
    236     SDValue Src2, MachinePointerInfo Op1PtrInfo,
    237     MachinePointerInfo Op2PtrInfo) const {
    238   SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue);
    239   SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2,
    240                                DAG.getConstant(0, DL, MVT::i32));
    241   Chain = Unused.getValue(1);
    242   SDValue Glue = Chain.getValue(2);
    243   return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
    244 }
    245 
    246 // Search from Src for a null character, stopping once Src reaches Limit.
    247 // Return a pair of values, the first being the number of nonnull characters
    248 // and the second being the out chain.
    249 //
    250 // This can be used for strlen by setting Limit to 0.
    251 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG,
    252                                                     const SDLoc &DL,
    253                                                     SDValue Chain, SDValue Src,
    254                                                     SDValue Limit) {
    255   EVT PtrVT = Src.getValueType();
    256   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
    257   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
    258                             Limit, Src, DAG.getConstant(0, DL, MVT::i32));
    259   Chain = End.getValue(1);
    260   SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
    261   return std::make_pair(Len, Chain);
    262 }
    263 
    264 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrlen(
    265     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
    266     MachinePointerInfo SrcPtrInfo) const {
    267   EVT PtrVT = Src.getValueType();
    268   return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT));
    269 }
    270 
    271 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrnlen(
    272     SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src,
    273     SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const {
    274   EVT PtrVT = Src.getValueType();
    275   MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
    276   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
    277   return getBoundedStrlen(DAG, DL, Chain, Src, Limit);
    278 }
    279