Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/CodeGen/CallingConvLower.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/IR/DataLayout.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/GlobalVariable.h"
     26 #include "llvm/IR/LLVMContext.h"
     27 #include "llvm/MC/MCAsmInfo.h"
     28 #include "llvm/MC/MCExpr.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/MathExtras.h"
     31 #include "llvm/Target/TargetLoweringObjectFile.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include "llvm/Target/TargetSubtargetInfo.h"
     35 #include <cctype>
     36 using namespace llvm;
     37 
     38 /// NOTE: The TargetMachine owns TLOF.
     39 TargetLowering::TargetLowering(const TargetMachine &tm)
     40   : TargetLoweringBase(tm) {}
     41 
     42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
     43   return nullptr;
     44 }
     45 
     46 bool TargetLowering::isPositionIndependent() const {
     47   return getTargetMachine().isPositionIndependent();
     48 }
     49 
     50 /// Check whether a given call node is in tail position within its function. If
     51 /// so, it sets Chain to the input chain of the tail call.
     52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
     53                                           SDValue &Chain) const {
     54   const Function *F = DAG.getMachineFunction().getFunction();
     55 
     56   // Conservatively require the attributes of the call to match those of
     57   // the return. Ignore noalias because it doesn't affect the call sequence.
     58   AttributeSet CallerAttrs = F->getAttributes();
     59   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
     60       .removeAttribute(Attribute::NoAlias).hasAttributes())
     61     return false;
     62 
     63   // It's not safe to eliminate the sign / zero extension of the return value.
     64   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
     65       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
     66     return false;
     67 
     68   // Check if the only use is a function return node.
     69   return isUsedByReturnOnly(Node, Chain);
     70 }
     71 
     72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
     73     const uint32_t *CallerPreservedMask,
     74     const SmallVectorImpl<CCValAssign> &ArgLocs,
     75     const SmallVectorImpl<SDValue> &OutVals) const {
     76   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
     77     const CCValAssign &ArgLoc = ArgLocs[I];
     78     if (!ArgLoc.isRegLoc())
     79       continue;
     80     unsigned Reg = ArgLoc.getLocReg();
     81     // Only look at callee saved registers.
     82     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
     83       continue;
     84     // Check that we pass the value used for the caller.
     85     // (We look for a CopyFromReg reading a virtual register that is used
     86     //  for the function live-in value of register Reg)
     87     SDValue Value = OutVals[I];
     88     if (Value->getOpcode() != ISD::CopyFromReg)
     89       return false;
     90     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
     91     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
     92       return false;
     93   }
     94   return true;
     95 }
     96 
     97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
     98 /// and called function attributes.
     99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
    100                                                  unsigned AttrIdx) {
    101   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
    102   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
    103   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
    104   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
    105   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
    106   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
    107   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
    108   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
    109   isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
    110   isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
    111   Alignment  = CS->getParamAlignment(AttrIdx);
    112 }
    113 
    114 /// Generate a libcall taking the given operands as arguments and returning a
    115 /// result of type RetVT.
    116 std::pair<SDValue, SDValue>
    117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
    118                             ArrayRef<SDValue> Ops, bool isSigned,
    119                             const SDLoc &dl, bool doesNotReturn,
    120                             bool isReturnValueUsed) const {
    121   TargetLowering::ArgListTy Args;
    122   Args.reserve(Ops.size());
    123 
    124   TargetLowering::ArgListEntry Entry;
    125   for (SDValue Op : Ops) {
    126     Entry.Node = Op;
    127     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
    128     Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
    129     Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
    130     Args.push_back(Entry);
    131   }
    132 
    133   if (LC == RTLIB::UNKNOWN_LIBCALL)
    134     report_fatal_error("Unsupported library call operation!");
    135   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
    136                                          getPointerTy(DAG.getDataLayout()));
    137 
    138   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
    139   TargetLowering::CallLoweringInfo CLI(DAG);
    140   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
    141   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
    142     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
    143     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
    144     .setSExtResult(signExtend).setZExtResult(!signExtend);
    145   return LowerCallTo(CLI);
    146 }
    147 
    148 /// Soften the operands of a comparison. This code is shared among BR_CC,
    149 /// SELECT_CC, and SETCC handlers.
    150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
    151                                          SDValue &NewLHS, SDValue &NewRHS,
    152                                          ISD::CondCode &CCCode,
    153                                          const SDLoc &dl) const {
    154   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
    155          && "Unsupported setcc type!");
    156 
    157   // Expand into one or more soft-fp libcall(s).
    158   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
    159   bool ShouldInvertCC = false;
    160   switch (CCCode) {
    161   case ISD::SETEQ:
    162   case ISD::SETOEQ:
    163     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    164           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
    165           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
    166     break;
    167   case ISD::SETNE:
    168   case ISD::SETUNE:
    169     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
    170           (VT == MVT::f64) ? RTLIB::UNE_F64 :
    171           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
    172     break;
    173   case ISD::SETGE:
    174   case ISD::SETOGE:
    175     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    176           (VT == MVT::f64) ? RTLIB::OGE_F64 :
    177           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
    178     break;
    179   case ISD::SETLT:
    180   case ISD::SETOLT:
    181     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    182           (VT == MVT::f64) ? RTLIB::OLT_F64 :
    183           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
    184     break;
    185   case ISD::SETLE:
    186   case ISD::SETOLE:
    187     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    188           (VT == MVT::f64) ? RTLIB::OLE_F64 :
    189           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
    190     break;
    191   case ISD::SETGT:
    192   case ISD::SETOGT:
    193     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    194           (VT == MVT::f64) ? RTLIB::OGT_F64 :
    195           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
    196     break;
    197   case ISD::SETUO:
    198     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    199           (VT == MVT::f64) ? RTLIB::UO_F64 :
    200           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
    201     break;
    202   case ISD::SETO:
    203     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
    204           (VT == MVT::f64) ? RTLIB::O_F64 :
    205           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
    206     break;
    207   case ISD::SETONE:
    208     // SETONE = SETOLT | SETOGT
    209     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    210           (VT == MVT::f64) ? RTLIB::OLT_F64 :
    211           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
    212     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    213           (VT == MVT::f64) ? RTLIB::OGT_F64 :
    214           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
    215     break;
    216   case ISD::SETUEQ:
    217     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    218           (VT == MVT::f64) ? RTLIB::UO_F64 :
    219           (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128;
    220     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    221           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
    222           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
    223     break;
    224   default:
    225     // Invert CC for unordered comparisons
    226     ShouldInvertCC = true;
    227     switch (CCCode) {
    228     case ISD::SETULT:
    229       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    230             (VT == MVT::f64) ? RTLIB::OGE_F64 :
    231             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
    232       break;
    233     case ISD::SETULE:
    234       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    235             (VT == MVT::f64) ? RTLIB::OGT_F64 :
    236             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
    237       break;
    238     case ISD::SETUGT:
    239       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    240             (VT == MVT::f64) ? RTLIB::OLE_F64 :
    241             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
    242       break;
    243     case ISD::SETUGE:
    244       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    245             (VT == MVT::f64) ? RTLIB::OLT_F64 :
    246             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
    247       break;
    248     default: llvm_unreachable("Do not know how to soften this setcc!");
    249     }
    250   }
    251 
    252   // Use the target specific return value for comparions lib calls.
    253   EVT RetVT = getCmpLibcallReturnType();
    254   SDValue Ops[2] = {NewLHS, NewRHS};
    255   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
    256                        dl).first;
    257   NewRHS = DAG.getConstant(0, dl, RetVT);
    258 
    259   CCCode = getCmpLibcallCC(LC1);
    260   if (ShouldInvertCC)
    261     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
    262 
    263   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
    264     SDValue Tmp = DAG.getNode(
    265         ISD::SETCC, dl,
    266         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
    267         NewLHS, NewRHS, DAG.getCondCode(CCCode));
    268     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
    269                          dl).first;
    270     NewLHS = DAG.getNode(
    271         ISD::SETCC, dl,
    272         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
    273         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
    274     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
    275     NewRHS = SDValue();
    276   }
    277 }
    278 
    279 /// Return the entry encoding for a jump table in the current function. The
    280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
    281 unsigned TargetLowering::getJumpTableEncoding() const {
    282   // In non-pic modes, just use the address of a block.
    283   if (!isPositionIndependent())
    284     return MachineJumpTableInfo::EK_BlockAddress;
    285 
    286   // In PIC mode, if the target supports a GPRel32 directive, use it.
    287   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
    288     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
    289 
    290   // Otherwise, use a label difference.
    291   return MachineJumpTableInfo::EK_LabelDifference32;
    292 }
    293 
    294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
    295                                                  SelectionDAG &DAG) const {
    296   // If our PIC model is GP relative, use the global offset table as the base.
    297   unsigned JTEncoding = getJumpTableEncoding();
    298 
    299   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
    300       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
    301     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
    302 
    303   return Table;
    304 }
    305 
    306 /// This returns the relocation base for the given PIC jumptable, the same as
    307 /// getPICJumpTableRelocBase, but as an MCExpr.
    308 const MCExpr *
    309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    310                                              unsigned JTI,MCContext &Ctx) const{
    311   // The normal PIC reloc base is the label at the start of the jump table.
    312   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
    313 }
    314 
    315 bool
    316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
    317   const TargetMachine &TM = getTargetMachine();
    318   const GlobalValue *GV = GA->getGlobal();
    319 
    320   // If the address is not even local to this DSO we will have to load it from
    321   // a got and then add the offset.
    322   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
    323     return false;
    324 
    325   // If the code is position independent we will have to add a base register.
    326   if (isPositionIndependent())
    327     return false;
    328 
    329   // Otherwise we can do it.
    330   return true;
    331 }
    332 
    333 //===----------------------------------------------------------------------===//
    334 //  Optimization Methods
    335 //===----------------------------------------------------------------------===//
    336 
    337 /// Check to see if the specified operand of the specified instruction is a
    338 /// constant integer. If so, check to see if there are any bits set in the
    339 /// constant that are not demanded. If so, shrink the constant and return true.
    340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
    341                                                         const APInt &Demanded) {
    342   SDLoc dl(Op);
    343 
    344   // FIXME: ISD::SELECT, ISD::SELECT_CC
    345   switch (Op.getOpcode()) {
    346   default: break;
    347   case ISD::XOR:
    348   case ISD::AND:
    349   case ISD::OR: {
    350     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    351     if (!C) return false;
    352 
    353     if (Op.getOpcode() == ISD::XOR &&
    354         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
    355       return false;
    356 
    357     // if we can expand it to have all bits set, do it
    358     if (C->getAPIntValue().intersects(~Demanded)) {
    359       EVT VT = Op.getValueType();
    360       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
    361                                 DAG.getConstant(Demanded &
    362                                                 C->getAPIntValue(),
    363                                                 dl, VT));
    364       return CombineTo(Op, New);
    365     }
    366 
    367     break;
    368   }
    369   }
    370 
    371   return false;
    372 }
    373 
    374 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
    375 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
    376 /// generalized for targets with other types of implicit widening casts.
    377 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
    378                                                          unsigned BitWidth,
    379                                                          const APInt &Demanded,
    380                                                          const SDLoc &dl) {
    381   assert(Op.getNumOperands() == 2 &&
    382          "ShrinkDemandedOp only supports binary operators!");
    383   assert(Op.getNode()->getNumValues() == 1 &&
    384          "ShrinkDemandedOp only supports nodes with one result!");
    385 
    386   // Early return, as this function cannot handle vector types.
    387   if (Op.getValueType().isVector())
    388     return false;
    389 
    390   // Don't do this if the node has another user, which may require the
    391   // full value.
    392   if (!Op.getNode()->hasOneUse())
    393     return false;
    394 
    395   // Search for the smallest integer type with free casts to and from
    396   // Op's type. For expedience, just check power-of-2 integer types.
    397   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    398   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
    399   unsigned SmallVTBits = DemandedSize;
    400   if (!isPowerOf2_32(SmallVTBits))
    401     SmallVTBits = NextPowerOf2(SmallVTBits);
    402   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
    403     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
    404     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
    405         TLI.isZExtFree(SmallVT, Op.getValueType())) {
    406       // We found a type with free casts.
    407       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
    408                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    409                                           Op.getNode()->getOperand(0)),
    410                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    411                                           Op.getNode()->getOperand(1)));
    412       bool NeedZext = DemandedSize > SmallVTBits;
    413       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
    414                               dl, Op.getValueType(), X);
    415       return CombineTo(Op, Z);
    416     }
    417   }
    418   return false;
    419 }
    420 
    421 /// Look at Op. At this point, we know that only the DemandedMask bits of the
    422 /// result of Op are ever used downstream. If we can use this information to
    423 /// simplify Op, create a new simplified DAG node and return true, returning the
    424 /// original and new nodes in Old and New. Otherwise, analyze the expression and
    425 /// return a mask of KnownOne and KnownZero bits for the expression (used to
    426 /// simplify the caller).  The KnownZero/One bits may only be accurate for those
    427 /// bits in the DemandedMask.
    428 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
    429                                           const APInt &DemandedMask,
    430                                           APInt &KnownZero,
    431                                           APInt &KnownOne,
    432                                           TargetLoweringOpt &TLO,
    433                                           unsigned Depth) const {
    434   unsigned BitWidth = DemandedMask.getBitWidth();
    435   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
    436          "Mask size mismatches value type size!");
    437   APInt NewMask = DemandedMask;
    438   SDLoc dl(Op);
    439   auto &DL = TLO.DAG.getDataLayout();
    440 
    441   // Don't know anything.
    442   KnownZero = KnownOne = APInt(BitWidth, 0);
    443 
    444   // Other users may use these bits.
    445   if (!Op.getNode()->hasOneUse()) {
    446     if (Depth != 0) {
    447       // If not at the root, Just compute the KnownZero/KnownOne bits to
    448       // simplify things downstream.
    449       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
    450       return false;
    451     }
    452     // If this is the root being simplified, allow it to have multiple uses,
    453     // just set the NewMask to all bits.
    454     NewMask = APInt::getAllOnesValue(BitWidth);
    455   } else if (DemandedMask == 0) {
    456     // Not demanding any bits from Op.
    457     if (!Op.isUndef())
    458       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
    459     return false;
    460   } else if (Depth == 6) {        // Limit search depth.
    461     return false;
    462   }
    463 
    464   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
    465   switch (Op.getOpcode()) {
    466   case ISD::Constant:
    467     // We know all of the bits for a constant!
    468     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
    469     KnownZero = ~KnownOne;
    470     return false;   // Don't fall through, will infinitely loop.
    471   case ISD::AND:
    472     // If the RHS is a constant, check to see if the LHS would be zero without
    473     // using the bits from the RHS.  Below, we use knowledge about the RHS to
    474     // simplify the LHS, here we're using information from the LHS to simplify
    475     // the RHS.
    476     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    477       APInt LHSZero, LHSOne;
    478       // Do not increment Depth here; that can cause an infinite loop.
    479       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
    480       // If the LHS already has zeros where RHSC does, this and is dead.
    481       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
    482         return TLO.CombineTo(Op, Op.getOperand(0));
    483       // If any of the set bits in the RHS are known zero on the LHS, shrink
    484       // the constant.
    485       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
    486         return true;
    487     }
    488 
    489     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    490                              KnownOne, TLO, Depth+1))
    491       return true;
    492     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    493     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
    494                              KnownZero2, KnownOne2, TLO, Depth+1))
    495       return true;
    496     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    497 
    498     // If all of the demanded bits are known one on one side, return the other.
    499     // These bits cannot contribute to the result of the 'and'.
    500     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    501       return TLO.CombineTo(Op, Op.getOperand(0));
    502     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    503       return TLO.CombineTo(Op, Op.getOperand(1));
    504     // If all of the demanded bits in the inputs are known zeros, return zero.
    505     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
    506       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
    507     // If the RHS is a constant, see if we can simplify it.
    508     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
    509       return true;
    510     // If the operation can be done in a smaller type, do so.
    511     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    512       return true;
    513 
    514     // Output known-1 bits are only known if set in both the LHS & RHS.
    515     KnownOne &= KnownOne2;
    516     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    517     KnownZero |= KnownZero2;
    518     break;
    519   case ISD::OR:
    520     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    521                              KnownOne, TLO, Depth+1))
    522       return true;
    523     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    524     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
    525                              KnownZero2, KnownOne2, TLO, Depth+1))
    526       return true;
    527     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    528 
    529     // If all of the demanded bits are known zero on one side, return the other.
    530     // These bits cannot contribute to the result of the 'or'.
    531     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
    532       return TLO.CombineTo(Op, Op.getOperand(0));
    533     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
    534       return TLO.CombineTo(Op, Op.getOperand(1));
    535     // If all of the potentially set bits on one side are known to be set on
    536     // the other side, just use the 'other' side.
    537     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    538       return TLO.CombineTo(Op, Op.getOperand(0));
    539     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    540       return TLO.CombineTo(Op, Op.getOperand(1));
    541     // If the RHS is a constant, see if we can simplify it.
    542     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    543       return true;
    544     // If the operation can be done in a smaller type, do so.
    545     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    546       return true;
    547 
    548     // Output known-0 bits are only known if clear in both the LHS & RHS.
    549     KnownZero &= KnownZero2;
    550     // Output known-1 are known to be set if set in either the LHS | RHS.
    551     KnownOne |= KnownOne2;
    552     break;
    553   case ISD::XOR:
    554     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    555                              KnownOne, TLO, Depth+1))
    556       return true;
    557     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    558     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
    559                              KnownOne2, TLO, Depth+1))
    560       return true;
    561     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    562 
    563     // If all of the demanded bits are known zero on one side, return the other.
    564     // These bits cannot contribute to the result of the 'xor'.
    565     if ((KnownZero & NewMask) == NewMask)
    566       return TLO.CombineTo(Op, Op.getOperand(0));
    567     if ((KnownZero2 & NewMask) == NewMask)
    568       return TLO.CombineTo(Op, Op.getOperand(1));
    569     // If the operation can be done in a smaller type, do so.
    570     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    571       return true;
    572 
    573     // If all of the unknown bits are known to be zero on one side or the other
    574     // (but not both) turn this into an *inclusive* or.
    575     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    576     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
    577       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
    578                                                Op.getOperand(0),
    579                                                Op.getOperand(1)));
    580 
    581     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    582     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    583     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    584     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    585 
    586     // If all of the demanded bits on one side are known, and all of the set
    587     // bits on that side are also known to be set on the other side, turn this
    588     // into an AND, as we know the bits will be cleared.
    589     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    590     // NB: it is okay if more bits are known than are requested
    591     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
    592       if (KnownOne == KnownOne2) { // set bits are the same on both sides
    593         EVT VT = Op.getValueType();
    594         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
    595         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
    596                                                  Op.getOperand(0), ANDC));
    597       }
    598     }
    599 
    600     // If the RHS is a constant, see if we can simplify it.
    601     // for XOR, we prefer to force bits to 1 if they will make a -1.
    602     // if we can't force bits, try to shrink constant
    603     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    604       APInt Expanded = C->getAPIntValue() | (~NewMask);
    605       // if we can expand it to have all bits set, do it
    606       if (Expanded.isAllOnesValue()) {
    607         if (Expanded != C->getAPIntValue()) {
    608           EVT VT = Op.getValueType();
    609           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
    610                                         TLO.DAG.getConstant(Expanded, dl, VT));
    611           return TLO.CombineTo(Op, New);
    612         }
    613         // if it already has all the bits set, nothing to change
    614         // but don't shrink either!
    615       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
    616         return true;
    617       }
    618     }
    619 
    620     KnownZero = KnownZeroOut;
    621     KnownOne  = KnownOneOut;
    622     break;
    623   case ISD::SELECT:
    624     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
    625                              KnownOne, TLO, Depth+1))
    626       return true;
    627     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
    628                              KnownOne2, TLO, Depth+1))
    629       return true;
    630     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    631     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    632 
    633     // If the operands are constants, see if we can simplify them.
    634     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    635       return true;
    636 
    637     // Only known if known in both the LHS and RHS.
    638     KnownOne &= KnownOne2;
    639     KnownZero &= KnownZero2;
    640     break;
    641   case ISD::SELECT_CC:
    642     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
    643                              KnownOne, TLO, Depth+1))
    644       return true;
    645     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
    646                              KnownOne2, TLO, Depth+1))
    647       return true;
    648     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    649     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    650 
    651     // If the operands are constants, see if we can simplify them.
    652     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    653       return true;
    654 
    655     // Only known if known in both the LHS and RHS.
    656     KnownOne &= KnownOne2;
    657     KnownZero &= KnownZero2;
    658     break;
    659   case ISD::SHL:
    660     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    661       unsigned ShAmt = SA->getZExtValue();
    662       SDValue InOp = Op.getOperand(0);
    663 
    664       // If the shift count is an invalid immediate, don't do anything.
    665       if (ShAmt >= BitWidth)
    666         break;
    667 
    668       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
    669       // single shift.  We can do this if the bottom bits (which are shifted
    670       // out) are never demanded.
    671       if (InOp.getOpcode() == ISD::SRL &&
    672           isa<ConstantSDNode>(InOp.getOperand(1))) {
    673         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
    674           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    675           unsigned Opc = ISD::SHL;
    676           int Diff = ShAmt-C1;
    677           if (Diff < 0) {
    678             Diff = -Diff;
    679             Opc = ISD::SRL;
    680           }
    681 
    682           SDValue NewSA =
    683             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
    684           EVT VT = Op.getValueType();
    685           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    686                                                    InOp.getOperand(0), NewSA));
    687         }
    688       }
    689 
    690       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
    691                                KnownZero, KnownOne, TLO, Depth+1))
    692         return true;
    693 
    694       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
    695       // are not demanded. This will likely allow the anyext to be folded away.
    696       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
    697         SDValue InnerOp = InOp.getNode()->getOperand(0);
    698         EVT InnerVT = InnerOp.getValueType();
    699         unsigned InnerBits = InnerVT.getSizeInBits();
    700         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
    701             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
    702           EVT ShTy = getShiftAmountTy(InnerVT, DL);
    703           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
    704             ShTy = InnerVT;
    705           SDValue NarrowShl =
    706             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
    707                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
    708           return
    709             TLO.CombineTo(Op,
    710                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
    711                                           NarrowShl));
    712         }
    713         // Repeat the SHL optimization above in cases where an extension
    714         // intervenes: (shl (anyext (shr x, c1)), c2) to
    715         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
    716         // aren't demanded (as above) and that the shifted upper c1 bits of
    717         // x aren't demanded.
    718         if (InOp.hasOneUse() &&
    719             InnerOp.getOpcode() == ISD::SRL &&
    720             InnerOp.hasOneUse() &&
    721             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
    722           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
    723             ->getZExtValue();
    724           if (InnerShAmt < ShAmt &&
    725               InnerShAmt < InnerBits &&
    726               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
    727               NewMask.trunc(ShAmt) == 0) {
    728             SDValue NewSA =
    729               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
    730                                   Op.getOperand(1).getValueType());
    731             EVT VT = Op.getValueType();
    732             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
    733                                              InnerOp.getOperand(0));
    734             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
    735                                                      NewExt, NewSA));
    736           }
    737         }
    738       }
    739 
    740       KnownZero <<= SA->getZExtValue();
    741       KnownOne  <<= SA->getZExtValue();
    742       // low bits known zero.
    743       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
    744     }
    745     break;
    746   case ISD::SRL:
    747     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    748       EVT VT = Op.getValueType();
    749       unsigned ShAmt = SA->getZExtValue();
    750       unsigned VTSize = VT.getSizeInBits();
    751       SDValue InOp = Op.getOperand(0);
    752 
    753       // If the shift count is an invalid immediate, don't do anything.
    754       if (ShAmt >= BitWidth)
    755         break;
    756 
    757       APInt InDemandedMask = (NewMask << ShAmt);
    758 
    759       // If the shift is exact, then it does demand the low bits (and knows that
    760       // they are zero).
    761       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
    762         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
    763 
    764       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
    765       // single shift.  We can do this if the top bits (which are shifted out)
    766       // are never demanded.
    767       if (InOp.getOpcode() == ISD::SHL &&
    768           isa<ConstantSDNode>(InOp.getOperand(1))) {
    769         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
    770           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    771           unsigned Opc = ISD::SRL;
    772           int Diff = ShAmt-C1;
    773           if (Diff < 0) {
    774             Diff = -Diff;
    775             Opc = ISD::SHL;
    776           }
    777 
    778           SDValue NewSA =
    779             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
    780           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    781                                                    InOp.getOperand(0), NewSA));
    782         }
    783       }
    784 
    785       // Compute the new bits that are at the top now.
    786       if (SimplifyDemandedBits(InOp, InDemandedMask,
    787                                KnownZero, KnownOne, TLO, Depth+1))
    788         return true;
    789       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    790       KnownZero = KnownZero.lshr(ShAmt);
    791       KnownOne  = KnownOne.lshr(ShAmt);
    792 
    793       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    794       KnownZero |= HighBits;  // High bits known zero.
    795     }
    796     break;
    797   case ISD::SRA:
    798     // If this is an arithmetic shift right and only the low-bit is set, we can
    799     // always convert this into a logical shr, even if the shift amount is
    800     // variable.  The low bit of the shift cannot be an input sign bit unless
    801     // the shift amount is >= the size of the datatype, which is undefined.
    802     if (NewMask == 1)
    803       return TLO.CombineTo(Op,
    804                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
    805                                            Op.getOperand(0), Op.getOperand(1)));
    806 
    807     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    808       EVT VT = Op.getValueType();
    809       unsigned ShAmt = SA->getZExtValue();
    810 
    811       // If the shift count is an invalid immediate, don't do anything.
    812       if (ShAmt >= BitWidth)
    813         break;
    814 
    815       APInt InDemandedMask = (NewMask << ShAmt);
    816 
    817       // If the shift is exact, then it does demand the low bits (and knows that
    818       // they are zero).
    819       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
    820         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
    821 
    822       // If any of the demanded bits are produced by the sign extension, we also
    823       // demand the input sign bit.
    824       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    825       if (HighBits.intersects(NewMask))
    826         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
    827 
    828       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
    829                                KnownZero, KnownOne, TLO, Depth+1))
    830         return true;
    831       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    832       KnownZero = KnownZero.lshr(ShAmt);
    833       KnownOne  = KnownOne.lshr(ShAmt);
    834 
    835       // Handle the sign bit, adjusted to where it is now in the mask.
    836       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
    837 
    838       // If the input sign bit is known to be zero, or if none of the top bits
    839       // are demanded, turn this into an unsigned shift right.
    840       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
    841         SDNodeFlags Flags;
    842         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
    843         return TLO.CombineTo(Op,
    844                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
    845                                              Op.getOperand(1), &Flags));
    846       }
    847 
    848       int Log2 = NewMask.exactLogBase2();
    849       if (Log2 >= 0) {
    850         // The bit must come from the sign.
    851         SDValue NewSA =
    852           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
    853                               Op.getOperand(1).getValueType());
    854         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
    855                                                  Op.getOperand(0), NewSA));
    856       }
    857 
    858       if (KnownOne.intersects(SignBit))
    859         // New bits are known one.
    860         KnownOne |= HighBits;
    861     }
    862     break;
    863   case ISD::SIGN_EXTEND_INREG: {
    864     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    865 
    866     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
    867     // If we only care about the highest bit, don't bother shifting right.
    868     if (MsbMask == NewMask) {
    869       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
    870       SDValue InOp = Op.getOperand(0);
    871       unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
    872       bool AlreadySignExtended =
    873         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
    874       // However if the input is already sign extended we expect the sign
    875       // extension to be dropped altogether later and do not simplify.
    876       if (!AlreadySignExtended) {
    877         // Compute the correct shift amount type, which must be getShiftAmountTy
    878         // for scalar types after legalization.
    879         EVT ShiftAmtTy = Op.getValueType();
    880         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
    881           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
    882 
    883         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
    884                                                ShiftAmtTy);
    885         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
    886                                                  Op.getValueType(), InOp,
    887                                                  ShiftAmt));
    888       }
    889     }
    890 
    891     // Sign extension.  Compute the demanded bits in the result that are not
    892     // present in the input.
    893     APInt NewBits =
    894       APInt::getHighBitsSet(BitWidth,
    895                             BitWidth - ExVT.getScalarType().getSizeInBits());
    896 
    897     // If none of the extended bits are demanded, eliminate the sextinreg.
    898     if ((NewBits & NewMask) == 0)
    899       return TLO.CombineTo(Op, Op.getOperand(0));
    900 
    901     APInt InSignBit =
    902       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
    903     APInt InputDemandedBits =
    904       APInt::getLowBitsSet(BitWidth,
    905                            ExVT.getScalarType().getSizeInBits()) &
    906       NewMask;
    907 
    908     // Since the sign extended bits are demanded, we know that the sign
    909     // bit is demanded.
    910     InputDemandedBits |= InSignBit;
    911 
    912     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
    913                              KnownZero, KnownOne, TLO, Depth+1))
    914       return true;
    915     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    916 
    917     // If the sign bit of the input is known set or clear, then we know the
    918     // top bits of the result.
    919 
    920     // If the input sign bit is known zero, convert this into a zero extension.
    921     if (KnownZero.intersects(InSignBit))
    922       return TLO.CombineTo(Op,
    923                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
    924 
    925     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
    926       KnownOne |= NewBits;
    927       KnownZero &= ~NewBits;
    928     } else {                       // Input sign bit unknown
    929       KnownZero &= ~NewBits;
    930       KnownOne &= ~NewBits;
    931     }
    932     break;
    933   }
    934   case ISD::BUILD_PAIR: {
    935     EVT HalfVT = Op.getOperand(0).getValueType();
    936     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
    937 
    938     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
    939     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
    940 
    941     APInt KnownZeroLo, KnownOneLo;
    942     APInt KnownZeroHi, KnownOneHi;
    943 
    944     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
    945                              KnownOneLo, TLO, Depth + 1))
    946       return true;
    947 
    948     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
    949                              KnownOneHi, TLO, Depth + 1))
    950       return true;
    951 
    952     KnownZero = KnownZeroLo.zext(BitWidth) |
    953                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
    954 
    955     KnownOne = KnownOneLo.zext(BitWidth) |
    956                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
    957     break;
    958   }
    959   case ISD::ZERO_EXTEND: {
    960     unsigned OperandBitWidth =
    961       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    962     APInt InMask = NewMask.trunc(OperandBitWidth);
    963 
    964     // If none of the top bits are demanded, convert this into an any_extend.
    965     APInt NewBits =
    966       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
    967     if (!NewBits.intersects(NewMask))
    968       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    969                                                Op.getValueType(),
    970                                                Op.getOperand(0)));
    971 
    972     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    973                              KnownZero, KnownOne, TLO, Depth+1))
    974       return true;
    975     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    976     KnownZero = KnownZero.zext(BitWidth);
    977     KnownOne = KnownOne.zext(BitWidth);
    978     KnownZero |= NewBits;
    979     break;
    980   }
    981   case ISD::SIGN_EXTEND: {
    982     EVT InVT = Op.getOperand(0).getValueType();
    983     unsigned InBits = InVT.getScalarType().getSizeInBits();
    984     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
    985     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
    986     APInt NewBits   = ~InMask & NewMask;
    987 
    988     // If none of the top bits are demanded, convert this into an any_extend.
    989     if (NewBits == 0)
    990       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    991                                               Op.getValueType(),
    992                                               Op.getOperand(0)));
    993 
    994     // Since some of the sign extended bits are demanded, we know that the sign
    995     // bit is demanded.
    996     APInt InDemandedBits = InMask & NewMask;
    997     InDemandedBits |= InSignBit;
    998     InDemandedBits = InDemandedBits.trunc(InBits);
    999 
   1000     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
   1001                              KnownOne, TLO, Depth+1))
   1002       return true;
   1003     KnownZero = KnownZero.zext(BitWidth);
   1004     KnownOne = KnownOne.zext(BitWidth);
   1005 
   1006     // If the sign bit is known zero, convert this to a zero extend.
   1007     if (KnownZero.intersects(InSignBit))
   1008       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
   1009                                                Op.getValueType(),
   1010                                                Op.getOperand(0)));
   1011 
   1012     // If the sign bit is known one, the top bits match.
   1013     if (KnownOne.intersects(InSignBit)) {
   1014       KnownOne |= NewBits;
   1015       assert((KnownZero & NewBits) == 0);
   1016     } else {   // Otherwise, top bits aren't known.
   1017       assert((KnownOne & NewBits) == 0);
   1018       assert((KnownZero & NewBits) == 0);
   1019     }
   1020     break;
   1021   }
   1022   case ISD::ANY_EXTEND: {
   1023     unsigned OperandBitWidth =
   1024       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1025     APInt InMask = NewMask.trunc(OperandBitWidth);
   1026     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
   1027                              KnownZero, KnownOne, TLO, Depth+1))
   1028       return true;
   1029     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1030     KnownZero = KnownZero.zext(BitWidth);
   1031     KnownOne = KnownOne.zext(BitWidth);
   1032     break;
   1033   }
   1034   case ISD::TRUNCATE: {
   1035     // Simplify the input, using demanded bit information, and compute the known
   1036     // zero/one bits live out.
   1037     unsigned OperandBitWidth =
   1038       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1039     APInt TruncMask = NewMask.zext(OperandBitWidth);
   1040     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
   1041                              KnownZero, KnownOne, TLO, Depth+1))
   1042       return true;
   1043     KnownZero = KnownZero.trunc(BitWidth);
   1044     KnownOne = KnownOne.trunc(BitWidth);
   1045 
   1046     // If the input is only used by this truncate, see if we can shrink it based
   1047     // on the known demanded bits.
   1048     if (Op.getOperand(0).getNode()->hasOneUse()) {
   1049       SDValue In = Op.getOperand(0);
   1050       switch (In.getOpcode()) {
   1051       default: break;
   1052       case ISD::SRL:
   1053         // Shrink SRL by a constant if none of the high bits shifted in are
   1054         // demanded.
   1055         if (TLO.LegalTypes() &&
   1056             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
   1057           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
   1058           // undesirable.
   1059           break;
   1060         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
   1061         if (!ShAmt)
   1062           break;
   1063         SDValue Shift = In.getOperand(1);
   1064         if (TLO.LegalTypes()) {
   1065           uint64_t ShVal = ShAmt->getZExtValue();
   1066           Shift = TLO.DAG.getConstant(ShVal, dl,
   1067                                       getShiftAmountTy(Op.getValueType(), DL));
   1068         }
   1069 
   1070         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
   1071                                                OperandBitWidth - BitWidth);
   1072         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
   1073 
   1074         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
   1075           // None of the shifted in bits are needed.  Add a truncate of the
   1076           // shift input, then shift it.
   1077           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
   1078                                              Op.getValueType(),
   1079                                              In.getOperand(0));
   1080           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
   1081                                                    Op.getValueType(),
   1082                                                    NewTrunc,
   1083                                                    Shift));
   1084         }
   1085         break;
   1086       }
   1087     }
   1088 
   1089     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1090     break;
   1091   }
   1092   case ISD::AssertZext: {
   1093     // AssertZext demands all of the high bits, plus any of the low bits
   1094     // demanded by its users.
   1095     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1096     APInt InMask = APInt::getLowBitsSet(BitWidth,
   1097                                         VT.getSizeInBits());
   1098     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
   1099                              KnownZero, KnownOne, TLO, Depth+1))
   1100       return true;
   1101     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1102 
   1103     KnownZero |= ~InMask & NewMask;
   1104     break;
   1105   }
   1106   case ISD::BITCAST:
   1107     // If this is an FP->Int bitcast and if the sign bit is the only
   1108     // thing demanded, turn this into a FGETSIGN.
   1109     if (!TLO.LegalOperations() &&
   1110         !Op.getValueType().isVector() &&
   1111         !Op.getOperand(0).getValueType().isVector() &&
   1112         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
   1113         Op.getOperand(0).getValueType().isFloatingPoint()) {
   1114       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
   1115       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
   1116       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
   1117            Op.getOperand(0).getValueType() != MVT::f128) {
   1118         // Cannot eliminate/lower SHL for f128 yet.
   1119         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
   1120         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
   1121         // place.  We expect the SHL to be eliminated by other optimizations.
   1122         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
   1123         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
   1124         if (!OpVTLegal && OpVTSizeInBits > 32)
   1125           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
   1126         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
   1127         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
   1128         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
   1129                                                  Op.getValueType(),
   1130                                                  Sign, ShAmt));
   1131       }
   1132     }
   1133     break;
   1134   case ISD::ADD:
   1135   case ISD::MUL:
   1136   case ISD::SUB: {
   1137     // Add, Sub, and Mul don't demand any bits in positions beyond that
   1138     // of the highest bit demanded of them.
   1139     APInt LoMask = APInt::getLowBitsSet(BitWidth,
   1140                                         BitWidth - NewMask.countLeadingZeros());
   1141     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
   1142                              KnownOne2, TLO, Depth+1))
   1143       return true;
   1144     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
   1145                              KnownOne2, TLO, Depth+1))
   1146       return true;
   1147     // See if the operation should be performed at a smaller bit width.
   1148     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1149       return true;
   1150   }
   1151   // FALL THROUGH
   1152   default:
   1153     // Just use computeKnownBits to compute output bits.
   1154     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
   1155     break;
   1156   }
   1157 
   1158   // If we know the value of all of the demanded bits, return this as a
   1159   // constant.
   1160   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
   1161     // Avoid folding to a constant if any OpaqueConstant is involved.
   1162     const SDNode *N = Op.getNode();
   1163     for (SDNodeIterator I = SDNodeIterator::begin(N),
   1164          E = SDNodeIterator::end(N); I != E; ++I) {
   1165       SDNode *Op = *I;
   1166       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
   1167         if (C->isOpaque())
   1168           return false;
   1169     }
   1170     return TLO.CombineTo(Op,
   1171                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
   1172   }
   1173 
   1174   return false;
   1175 }
   1176 
   1177 /// Determine which of the bits specified in Mask are known to be either zero or
   1178 /// one and return them in the KnownZero/KnownOne bitsets.
   1179 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   1180                                                    APInt &KnownZero,
   1181                                                    APInt &KnownOne,
   1182                                                    const SelectionDAG &DAG,
   1183                                                    unsigned Depth) const {
   1184   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1185           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1186           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1187           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1188          "Should use MaskedValueIsZero if you don't know whether Op"
   1189          " is a target node!");
   1190   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   1191 }
   1192 
   1193 /// This method can be implemented by targets that want to expose additional
   1194 /// information about sign bits to the DAG Combiner.
   1195 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1196                                                          const SelectionDAG &,
   1197                                                          unsigned Depth) const {
   1198   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1199           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1200           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1201           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1202          "Should use ComputeNumSignBits if you don't know whether Op"
   1203          " is a target node!");
   1204   return 1;
   1205 }
   1206 
   1207 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
   1208   if (!N)
   1209     return false;
   1210 
   1211   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
   1212   if (!CN) {
   1213     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
   1214     if (!BV)
   1215       return false;
   1216 
   1217     BitVector UndefElements;
   1218     CN = BV->getConstantSplatNode(&UndefElements);
   1219     // Only interested in constant splats, and we don't try to handle undef
   1220     // elements in identifying boolean constants.
   1221     if (!CN || UndefElements.none())
   1222       return false;
   1223   }
   1224 
   1225   switch (getBooleanContents(N->getValueType(0))) {
   1226   case UndefinedBooleanContent:
   1227     return CN->getAPIntValue()[0];
   1228   case ZeroOrOneBooleanContent:
   1229     return CN->isOne();
   1230   case ZeroOrNegativeOneBooleanContent:
   1231     return CN->isAllOnesValue();
   1232   }
   1233 
   1234   llvm_unreachable("Invalid boolean contents");
   1235 }
   1236 
   1237 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
   1238   if (!N)
   1239     return false;
   1240 
   1241   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
   1242   if (!CN) {
   1243     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
   1244     if (!BV)
   1245       return false;
   1246 
   1247     BitVector UndefElements;
   1248     CN = BV->getConstantSplatNode(&UndefElements);
   1249     // Only interested in constant splats, and we don't try to handle undef
   1250     // elements in identifying boolean constants.
   1251     if (!CN || UndefElements.none())
   1252       return false;
   1253   }
   1254 
   1255   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
   1256     return !CN->getAPIntValue()[0];
   1257 
   1258   return CN->isNullValue();
   1259 }
   1260 
   1261 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
   1262                                        bool SExt) const {
   1263   if (VT == MVT::i1)
   1264     return N->isOne();
   1265 
   1266   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
   1267   switch (Cnt) {
   1268   case TargetLowering::ZeroOrOneBooleanContent:
   1269     // An extended value of 1 is always true, unless its original type is i1,
   1270     // in which case it will be sign extended to -1.
   1271     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
   1272   case TargetLowering::UndefinedBooleanContent:
   1273   case TargetLowering::ZeroOrNegativeOneBooleanContent:
   1274     return N->isAllOnesValue() && SExt;
   1275   }
   1276   llvm_unreachable("Unexpected enumeration.");
   1277 }
   1278 
   1279 /// This helper function of SimplifySetCC tries to optimize the comparison when
   1280 /// either operand of the SetCC node is a bitwise-and instruction.
   1281 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
   1282                                              ISD::CondCode Cond,
   1283                                              DAGCombinerInfo &DCI,
   1284                                              const SDLoc &DL) const {
   1285   // Match these patterns in any of their permutations:
   1286   // (X & Y) == Y
   1287   // (X & Y) != Y
   1288   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
   1289     std::swap(N0, N1);
   1290 
   1291   EVT OpVT = N0.getValueType();
   1292   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
   1293       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
   1294     return SDValue();
   1295 
   1296   SDValue X, Y;
   1297   if (N0.getOperand(0) == N1) {
   1298     X = N0.getOperand(1);
   1299     Y = N0.getOperand(0);
   1300   } else if (N0.getOperand(1) == N1) {
   1301     X = N0.getOperand(0);
   1302     Y = N0.getOperand(1);
   1303   } else {
   1304     return SDValue();
   1305   }
   1306 
   1307   SelectionDAG &DAG = DCI.DAG;
   1308   SDValue Zero = DAG.getConstant(0, DL, OpVT);
   1309   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
   1310     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
   1311     // Note that where Y is variable and is known to have at most one bit set
   1312     // (for example, if it is Z & 1) we cannot do this; the expressions are not
   1313     // equivalent when Y == 0.
   1314     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1315     if (DCI.isBeforeLegalizeOps() ||
   1316         isCondCodeLegal(Cond, N0.getSimpleValueType()))
   1317       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
   1318   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
   1319     // If the target supports an 'and-not' or 'and-complement' logic operation,
   1320     // try to use that to make a comparison operation more efficient.
   1321     // But don't do this transform if the mask is a single bit because there are
   1322     // more efficient ways to deal with that case (for example, 'bt' on x86 or
   1323     // 'rlwinm' on PPC).
   1324 
   1325     // Bail out if the compare operand that we want to turn into a zero is
   1326     // already a zero (otherwise, infinite loop).
   1327     auto *YConst = dyn_cast<ConstantSDNode>(Y);
   1328     if (YConst && YConst->isNullValue())
   1329       return SDValue();
   1330 
   1331     // Transform this into: ~X & Y == 0.
   1332     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
   1333     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
   1334     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
   1335   }
   1336 
   1337   return SDValue();
   1338 }
   1339 
   1340 /// Try to simplify a setcc built with the specified operands and cc. If it is
   1341 /// unable to simplify it, return a null SDValue.
   1342 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1343                                       ISD::CondCode Cond, bool foldBooleans,
   1344                                       DAGCombinerInfo &DCI,
   1345                                       const SDLoc &dl) const {
   1346   SelectionDAG &DAG = DCI.DAG;
   1347 
   1348   // These setcc operations always fold.
   1349   switch (Cond) {
   1350   default: break;
   1351   case ISD::SETFALSE:
   1352   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
   1353   case ISD::SETTRUE:
   1354   case ISD::SETTRUE2: {
   1355     TargetLowering::BooleanContent Cnt =
   1356         getBooleanContents(N0->getValueType(0));
   1357     return DAG.getConstant(
   1358         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
   1359         VT);
   1360   }
   1361   }
   1362 
   1363   // Ensure that the constant occurs on the RHS, and fold constant
   1364   // comparisons.
   1365   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
   1366   if (isa<ConstantSDNode>(N0.getNode()) &&
   1367       (DCI.isBeforeLegalizeOps() ||
   1368        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
   1369     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
   1370 
   1371   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1372     const APInt &C1 = N1C->getAPIntValue();
   1373 
   1374     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1375     // equality comparison, then we're just comparing whether X itself is
   1376     // zero.
   1377     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
   1378         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1379         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1380       const APInt &ShAmt
   1381         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1382       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1383           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
   1384         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1385           // (srl (ctlz x), 5) == 0  -> X != 0
   1386           // (srl (ctlz x), 5) != 1  -> X != 0
   1387           Cond = ISD::SETNE;
   1388         } else {
   1389           // (srl (ctlz x), 5) != 0  -> X == 0
   1390           // (srl (ctlz x), 5) == 1  -> X == 0
   1391           Cond = ISD::SETEQ;
   1392         }
   1393         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
   1394         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1395                             Zero, Cond);
   1396       }
   1397     }
   1398 
   1399     SDValue CTPOP = N0;
   1400     // Look through truncs that don't change the value of a ctpop.
   1401     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1402       CTPOP = N0.getOperand(0);
   1403 
   1404     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1405         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
   1406                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
   1407       EVT CTVT = CTPOP.getValueType();
   1408       SDValue CTOp = CTPOP.getOperand(0);
   1409 
   1410       // (ctpop x) u< 2 -> (x & x-1) == 0
   1411       // (ctpop x) u> 1 -> (x & x-1) != 0
   1412       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   1413         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   1414                                   DAG.getConstant(1, dl, CTVT));
   1415         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   1416         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   1417         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
   1418       }
   1419 
   1420       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   1421     }
   1422 
   1423     // (zext x) == C --> x == (trunc C)
   1424     // (sext x) == C --> x == (trunc C)
   1425     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1426         DCI.isBeforeLegalize() && N0->hasOneUse()) {
   1427       unsigned MinBits = N0.getValueSizeInBits();
   1428       SDValue PreExt;
   1429       bool Signed = false;
   1430       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   1431         // ZExt
   1432         MinBits = N0->getOperand(0).getValueSizeInBits();
   1433         PreExt = N0->getOperand(0);
   1434       } else if (N0->getOpcode() == ISD::AND) {
   1435         // DAGCombine turns costly ZExts into ANDs
   1436         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   1437           if ((C->getAPIntValue()+1).isPowerOf2()) {
   1438             MinBits = C->getAPIntValue().countTrailingOnes();
   1439             PreExt = N0->getOperand(0);
   1440           }
   1441       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
   1442         // SExt
   1443         MinBits = N0->getOperand(0).getValueSizeInBits();
   1444         PreExt = N0->getOperand(0);
   1445         Signed = true;
   1446       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
   1447         // ZEXTLOAD / SEXTLOAD
   1448         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   1449           MinBits = LN0->getMemoryVT().getSizeInBits();
   1450           PreExt = N0;
   1451         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
   1452           Signed = true;
   1453           MinBits = LN0->getMemoryVT().getSizeInBits();
   1454           PreExt = N0;
   1455         }
   1456       }
   1457 
   1458       // Figure out how many bits we need to preserve this constant.
   1459       unsigned ReqdBits = Signed ?
   1460         C1.getBitWidth() - C1.getNumSignBits() + 1 :
   1461         C1.getActiveBits();
   1462 
   1463       // Make sure we're not losing bits from the constant.
   1464       if (MinBits > 0 &&
   1465           MinBits < C1.getBitWidth() &&
   1466           MinBits >= ReqdBits) {
   1467         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   1468         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   1469           // Will get folded away.
   1470           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
   1471           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
   1472           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   1473         }
   1474 
   1475         // If truncating the setcc operands is not desirable, we can still
   1476         // simplify the expression in some cases:
   1477         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
   1478         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
   1479         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
   1480         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
   1481         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
   1482         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
   1483         SDValue TopSetCC = N0->getOperand(0);
   1484         unsigned N0Opc = N0->getOpcode();
   1485         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
   1486         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
   1487             TopSetCC.getOpcode() == ISD::SETCC &&
   1488             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
   1489             (isConstFalseVal(N1C) ||
   1490              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
   1491 
   1492           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
   1493                          (!N1C->isNullValue() && Cond == ISD::SETNE);
   1494 
   1495           if (!Inverse)
   1496             return TopSetCC;
   1497 
   1498           ISD::CondCode InvCond = ISD::getSetCCInverse(
   1499               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
   1500               TopSetCC.getOperand(0).getValueType().isInteger());
   1501           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
   1502                                       TopSetCC.getOperand(1),
   1503                                       InvCond);
   1504 
   1505         }
   1506       }
   1507     }
   1508 
   1509     // If the LHS is '(and load, const)', the RHS is 0,
   1510     // the test is for equality or unsigned, and all 1 bits of the const are
   1511     // in the same partial word, see if we can shorten the load.
   1512     if (DCI.isBeforeLegalize() &&
   1513         !ISD::isSignedIntSetCC(Cond) &&
   1514         N0.getOpcode() == ISD::AND && C1 == 0 &&
   1515         N0.getNode()->hasOneUse() &&
   1516         isa<LoadSDNode>(N0.getOperand(0)) &&
   1517         N0.getOperand(0).getNode()->hasOneUse() &&
   1518         isa<ConstantSDNode>(N0.getOperand(1))) {
   1519       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   1520       APInt bestMask;
   1521       unsigned bestWidth = 0, bestOffset = 0;
   1522       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   1523         unsigned origWidth = N0.getValueType().getSizeInBits();
   1524         unsigned maskWidth = origWidth;
   1525         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   1526         // 8 bits, but have to be careful...
   1527         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   1528           origWidth = Lod->getMemoryVT().getSizeInBits();
   1529         const APInt &Mask =
   1530           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1531         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   1532           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   1533           for (unsigned offset=0; offset<origWidth/width; offset++) {
   1534             if ((newMask & Mask) == Mask) {
   1535               if (!DAG.getDataLayout().isLittleEndian())
   1536                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   1537               else
   1538                 bestOffset = (uint64_t)offset * (width/8);
   1539               bestMask = Mask.lshr(offset * (width/8) * 8);
   1540               bestWidth = width;
   1541               break;
   1542             }
   1543             newMask = newMask << width;
   1544           }
   1545         }
   1546       }
   1547       if (bestWidth) {
   1548         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   1549         if (newVT.isRound()) {
   1550           EVT PtrType = Lod->getOperand(1).getValueType();
   1551           SDValue Ptr = Lod->getBasePtr();
   1552           if (bestOffset != 0)
   1553             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   1554                               DAG.getConstant(bestOffset, dl, PtrType));
   1555           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   1556           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
   1557                                 Lod->getPointerInfo().getWithOffset(bestOffset),
   1558                                         false, false, false, NewAlign);
   1559           return DAG.getSetCC(dl, VT,
   1560                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   1561                                       DAG.getConstant(bestMask.trunc(bestWidth),
   1562                                                       dl, newVT)),
   1563                               DAG.getConstant(0LL, dl, newVT), Cond);
   1564         }
   1565       }
   1566     }
   1567 
   1568     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   1569     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   1570       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
   1571 
   1572       // If the comparison constant has bits in the upper part, the
   1573       // zero-extended value could never match.
   1574       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   1575                                               C1.getBitWidth() - InSize))) {
   1576         switch (Cond) {
   1577         case ISD::SETUGT:
   1578         case ISD::SETUGE:
   1579         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
   1580         case ISD::SETULT:
   1581         case ISD::SETULE:
   1582         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
   1583         case ISD::SETGT:
   1584         case ISD::SETGE:
   1585           // True if the sign bit of C1 is set.
   1586           return DAG.getConstant(C1.isNegative(), dl, VT);
   1587         case ISD::SETLT:
   1588         case ISD::SETLE:
   1589           // True if the sign bit of C1 isn't set.
   1590           return DAG.getConstant(C1.isNonNegative(), dl, VT);
   1591         default:
   1592           break;
   1593         }
   1594       }
   1595 
   1596       // Otherwise, we can perform the comparison with the low bits.
   1597       switch (Cond) {
   1598       case ISD::SETEQ:
   1599       case ISD::SETNE:
   1600       case ISD::SETUGT:
   1601       case ISD::SETUGE:
   1602       case ISD::SETULT:
   1603       case ISD::SETULE: {
   1604         EVT newVT = N0.getOperand(0).getValueType();
   1605         if (DCI.isBeforeLegalizeOps() ||
   1606             (isOperationLegal(ISD::SETCC, newVT) &&
   1607              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
   1608           EVT NewSetCCVT =
   1609               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
   1610           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
   1611 
   1612           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
   1613                                           NewConst, Cond);
   1614           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
   1615         }
   1616         break;
   1617       }
   1618       default:
   1619         break;   // todo, be more careful with signed comparisons
   1620       }
   1621     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1622                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1623       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   1624       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   1625       EVT ExtDstTy = N0.getValueType();
   1626       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   1627 
   1628       // If the constant doesn't fit into the number of bits for the source of
   1629       // the sign extension, it is impossible for both sides to be equal.
   1630       if (C1.getMinSignedBits() > ExtSrcTyBits)
   1631         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
   1632 
   1633       SDValue ZextOp;
   1634       EVT Op0Ty = N0.getOperand(0).getValueType();
   1635       if (Op0Ty == ExtSrcTy) {
   1636         ZextOp = N0.getOperand(0);
   1637       } else {
   1638         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   1639         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   1640                               DAG.getConstant(Imm, dl, Op0Ty));
   1641       }
   1642       if (!DCI.isCalledByLegalizer())
   1643         DCI.AddToWorklist(ZextOp.getNode());
   1644       // Otherwise, make this a use of a zext.
   1645       return DAG.getSetCC(dl, VT, ZextOp,
   1646                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   1647                                                               ExtDstTyBits,
   1648                                                               ExtSrcTyBits),
   1649                                           dl, ExtDstTy),
   1650                           Cond);
   1651     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
   1652                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1653       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   1654       if (N0.getOpcode() == ISD::SETCC &&
   1655           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   1656         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
   1657         if (TrueWhenTrue)
   1658           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   1659         // Invert the condition.
   1660         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   1661         CC = ISD::getSetCCInverse(CC,
   1662                                   N0.getOperand(0).getValueType().isInteger());
   1663         if (DCI.isBeforeLegalizeOps() ||
   1664             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
   1665           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   1666       }
   1667 
   1668       if ((N0.getOpcode() == ISD::XOR ||
   1669            (N0.getOpcode() == ISD::AND &&
   1670             N0.getOperand(0).getOpcode() == ISD::XOR &&
   1671             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   1672           isa<ConstantSDNode>(N0.getOperand(1)) &&
   1673           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
   1674         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   1675         // can only do this if the top bits are known zero.
   1676         unsigned BitWidth = N0.getValueSizeInBits();
   1677         if (DAG.MaskedValueIsZero(N0,
   1678                                   APInt::getHighBitsSet(BitWidth,
   1679                                                         BitWidth-1))) {
   1680           // Okay, get the un-inverted input value.
   1681           SDValue Val;
   1682           if (N0.getOpcode() == ISD::XOR)
   1683             Val = N0.getOperand(0);
   1684           else {
   1685             assert(N0.getOpcode() == ISD::AND &&
   1686                     N0.getOperand(0).getOpcode() == ISD::XOR);
   1687             // ((X^1)&1)^1 -> X & 1
   1688             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   1689                               N0.getOperand(0).getOperand(0),
   1690                               N0.getOperand(1));
   1691           }
   1692 
   1693           return DAG.getSetCC(dl, VT, Val, N1,
   1694                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1695         }
   1696       } else if (N1C->getAPIntValue() == 1 &&
   1697                  (VT == MVT::i1 ||
   1698                   getBooleanContents(N0->getValueType(0)) ==
   1699                       ZeroOrOneBooleanContent)) {
   1700         SDValue Op0 = N0;
   1701         if (Op0.getOpcode() == ISD::TRUNCATE)
   1702           Op0 = Op0.getOperand(0);
   1703 
   1704         if ((Op0.getOpcode() == ISD::XOR) &&
   1705             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   1706             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   1707           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   1708           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   1709           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   1710                               Cond);
   1711         }
   1712         if (Op0.getOpcode() == ISD::AND &&
   1713             isa<ConstantSDNode>(Op0.getOperand(1)) &&
   1714             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
   1715           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   1716           if (Op0.getValueType().bitsGT(VT))
   1717             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1718                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   1719                           DAG.getConstant(1, dl, VT));
   1720           else if (Op0.getValueType().bitsLT(VT))
   1721             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1722                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   1723                         DAG.getConstant(1, dl, VT));
   1724 
   1725           return DAG.getSetCC(dl, VT, Op0,
   1726                               DAG.getConstant(0, dl, Op0.getValueType()),
   1727                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1728         }
   1729         if (Op0.getOpcode() == ISD::AssertZext &&
   1730             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
   1731           return DAG.getSetCC(dl, VT, Op0,
   1732                               DAG.getConstant(0, dl, Op0.getValueType()),
   1733                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1734       }
   1735     }
   1736 
   1737     APInt MinVal, MaxVal;
   1738     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
   1739     if (ISD::isSignedIntSetCC(Cond)) {
   1740       MinVal = APInt::getSignedMinValue(OperandBitSize);
   1741       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   1742     } else {
   1743       MinVal = APInt::getMinValue(OperandBitSize);
   1744       MaxVal = APInt::getMaxValue(OperandBitSize);
   1745     }
   1746 
   1747     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   1748     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   1749       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
   1750       // X >= C0 --> X > (C0 - 1)
   1751       APInt C = C1 - 1;
   1752       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
   1753       if ((DCI.isBeforeLegalizeOps() ||
   1754            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   1755           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
   1756                                 isLegalICmpImmediate(C.getSExtValue())))) {
   1757         return DAG.getSetCC(dl, VT, N0,
   1758                             DAG.getConstant(C, dl, N1.getValueType()),
   1759                             NewCC);
   1760       }
   1761     }
   1762 
   1763     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   1764       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
   1765       // X <= C0 --> X < (C0 + 1)
   1766       APInt C = C1 + 1;
   1767       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
   1768       if ((DCI.isBeforeLegalizeOps() ||
   1769            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   1770           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
   1771                                 isLegalICmpImmediate(C.getSExtValue())))) {
   1772         return DAG.getSetCC(dl, VT, N0,
   1773                             DAG.getConstant(C, dl, N1.getValueType()),
   1774                             NewCC);
   1775       }
   1776     }
   1777 
   1778     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
   1779       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
   1780     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
   1781       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
   1782     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
   1783       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
   1784     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
   1785       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
   1786 
   1787     // Canonicalize setgt X, Min --> setne X, Min
   1788     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
   1789       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1790     // Canonicalize setlt X, Max --> setne X, Max
   1791     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
   1792       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1793 
   1794     // If we have setult X, 1, turn it into seteq X, 0
   1795     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
   1796       return DAG.getSetCC(dl, VT, N0,
   1797                           DAG.getConstant(MinVal, dl, N0.getValueType()),
   1798                           ISD::SETEQ);
   1799     // If we have setugt X, Max-1, turn it into seteq X, Max
   1800     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
   1801       return DAG.getSetCC(dl, VT, N0,
   1802                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
   1803                           ISD::SETEQ);
   1804 
   1805     // If we have "setcc X, C0", check to see if we can shrink the immediate
   1806     // by changing cc.
   1807 
   1808     // SETUGT X, SINTMAX  -> SETLT X, 0
   1809     if (Cond == ISD::SETUGT &&
   1810         C1 == APInt::getSignedMaxValue(OperandBitSize))
   1811       return DAG.getSetCC(dl, VT, N0,
   1812                           DAG.getConstant(0, dl, N1.getValueType()),
   1813                           ISD::SETLT);
   1814 
   1815     // SETULT X, SINTMIN  -> SETGT X, -1
   1816     if (Cond == ISD::SETULT &&
   1817         C1 == APInt::getSignedMinValue(OperandBitSize)) {
   1818       SDValue ConstMinusOne =
   1819           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
   1820                           N1.getValueType());
   1821       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   1822     }
   1823 
   1824     // Fold bit comparisons when we can.
   1825     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1826         (VT == N0.getValueType() ||
   1827          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   1828         N0.getOpcode() == ISD::AND) {
   1829       auto &DL = DAG.getDataLayout();
   1830       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1831         EVT ShiftTy = DCI.isBeforeLegalize()
   1832                           ? getPointerTy(DL)
   1833                           : getShiftAmountTy(N0.getValueType(), DL);
   1834         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   1835           // Perform the xform if the AND RHS is a single bit.
   1836           if (AndRHS->getAPIntValue().isPowerOf2()) {
   1837             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1838                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1839                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
   1840                                    ShiftTy)));
   1841           }
   1842         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   1843           // (X & 8) == 8  -->  (X & 8) >> 3
   1844           // Perform the xform if C1 is a single bit.
   1845           if (C1.isPowerOf2()) {
   1846             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1847                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1848                                       DAG.getConstant(C1.logBase2(), dl,
   1849                                                       ShiftTy)));
   1850           }
   1851         }
   1852       }
   1853     }
   1854 
   1855     if (C1.getMinSignedBits() <= 64 &&
   1856         !isLegalICmpImmediate(C1.getSExtValue())) {
   1857       // (X & -256) == 256 -> (X >> 8) == 1
   1858       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1859           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
   1860         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1861           const APInt &AndRHSC = AndRHS->getAPIntValue();
   1862           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
   1863             unsigned ShiftBits = AndRHSC.countTrailingZeros();
   1864             auto &DL = DAG.getDataLayout();
   1865             EVT ShiftTy = DCI.isBeforeLegalize()
   1866                               ? getPointerTy(DL)
   1867                               : getShiftAmountTy(N0.getValueType(), DL);
   1868             EVT CmpTy = N0.getValueType();
   1869             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
   1870                                         DAG.getConstant(ShiftBits, dl,
   1871                                                         ShiftTy));
   1872             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
   1873             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
   1874           }
   1875         }
   1876       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
   1877                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
   1878         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
   1879         // X <  0x100000000 -> (X >> 32) <  1
   1880         // X >= 0x100000000 -> (X >> 32) >= 1
   1881         // X <= 0x0ffffffff -> (X >> 32) <  1
   1882         // X >  0x0ffffffff -> (X >> 32) >= 1
   1883         unsigned ShiftBits;
   1884         APInt NewC = C1;
   1885         ISD::CondCode NewCond = Cond;
   1886         if (AdjOne) {
   1887           ShiftBits = C1.countTrailingOnes();
   1888           NewC = NewC + 1;
   1889           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   1890         } else {
   1891           ShiftBits = C1.countTrailingZeros();
   1892         }
   1893         NewC = NewC.lshr(ShiftBits);
   1894         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
   1895           isLegalICmpImmediate(NewC.getSExtValue())) {
   1896           auto &DL = DAG.getDataLayout();
   1897           EVT ShiftTy = DCI.isBeforeLegalize()
   1898                             ? getPointerTy(DL)
   1899                             : getShiftAmountTy(N0.getValueType(), DL);
   1900           EVT CmpTy = N0.getValueType();
   1901           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
   1902                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
   1903           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
   1904           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
   1905         }
   1906       }
   1907     }
   1908   }
   1909 
   1910   if (isa<ConstantFPSDNode>(N0.getNode())) {
   1911     // Constant fold or commute setcc.
   1912     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   1913     if (O.getNode()) return O;
   1914   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   1915     // If the RHS of an FP comparison is a constant, simplify it away in
   1916     // some cases.
   1917     if (CFP->getValueAPF().isNaN()) {
   1918       // If an operand is known to be a nan, we can fold it.
   1919       switch (ISD::getUnorderedFlavor(Cond)) {
   1920       default: llvm_unreachable("Unknown flavor!");
   1921       case 0:  // Known false.
   1922         return DAG.getConstant(0, dl, VT);
   1923       case 1:  // Known true.
   1924         return DAG.getConstant(1, dl, VT);
   1925       case 2:  // Undefined.
   1926         return DAG.getUNDEF(VT);
   1927       }
   1928     }
   1929 
   1930     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   1931     // constant if knowing that the operand is non-nan is enough.  We prefer to
   1932     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   1933     // materialize 0.0.
   1934     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   1935       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   1936 
   1937     // If the condition is not legal, see if we can find an equivalent one
   1938     // which is legal.
   1939     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   1940       // If the comparison was an awkward floating-point == or != and one of
   1941       // the comparison operands is infinity or negative infinity, convert the
   1942       // condition to a less-awkward <= or >=.
   1943       if (CFP->getValueAPF().isInfinity()) {
   1944         if (CFP->getValueAPF().isNegative()) {
   1945           if (Cond == ISD::SETOEQ &&
   1946               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1947             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   1948           if (Cond == ISD::SETUEQ &&
   1949               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1950             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   1951           if (Cond == ISD::SETUNE &&
   1952               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1953             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   1954           if (Cond == ISD::SETONE &&
   1955               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1956             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   1957         } else {
   1958           if (Cond == ISD::SETOEQ &&
   1959               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1960             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   1961           if (Cond == ISD::SETUEQ &&
   1962               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1963             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   1964           if (Cond == ISD::SETUNE &&
   1965               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1966             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   1967           if (Cond == ISD::SETONE &&
   1968               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1969             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   1970         }
   1971       }
   1972     }
   1973   }
   1974 
   1975   if (N0 == N1) {
   1976     // The sext(setcc()) => setcc() optimization relies on the appropriate
   1977     // constant being emitted.
   1978     uint64_t EqVal = 0;
   1979     switch (getBooleanContents(N0.getValueType())) {
   1980     case UndefinedBooleanContent:
   1981     case ZeroOrOneBooleanContent:
   1982       EqVal = ISD::isTrueWhenEqual(Cond);
   1983       break;
   1984     case ZeroOrNegativeOneBooleanContent:
   1985       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
   1986       break;
   1987     }
   1988 
   1989     // We can always fold X == X for integer setcc's.
   1990     if (N0.getValueType().isInteger()) {
   1991       return DAG.getConstant(EqVal, dl, VT);
   1992     }
   1993     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   1994     if (UOF == 2)   // FP operators that are undefined on NaNs.
   1995       return DAG.getConstant(EqVal, dl, VT);
   1996     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
   1997       return DAG.getConstant(EqVal, dl, VT);
   1998     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   1999     // if it is not already.
   2000     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   2001     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
   2002           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
   2003       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   2004   }
   2005 
   2006   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2007       N0.getValueType().isInteger()) {
   2008     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   2009         N0.getOpcode() == ISD::XOR) {
   2010       // Simplify (X+Y) == (X+Z) -->  Y == Z
   2011       if (N0.getOpcode() == N1.getOpcode()) {
   2012         if (N0.getOperand(0) == N1.getOperand(0))
   2013           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   2014         if (N0.getOperand(1) == N1.getOperand(1))
   2015           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   2016         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
   2017           // If X op Y == Y op X, try other combinations.
   2018           if (N0.getOperand(0) == N1.getOperand(1))
   2019             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   2020                                 Cond);
   2021           if (N0.getOperand(1) == N1.getOperand(0))
   2022             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   2023                                 Cond);
   2024         }
   2025       }
   2026 
   2027       // If RHS is a legal immediate value for a compare instruction, we need
   2028       // to be careful about increasing register pressure needlessly.
   2029       bool LegalRHSImm = false;
   2030 
   2031       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   2032         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2033           // Turn (X+C1) == C2 --> X == C2-C1
   2034           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   2035             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2036                                 DAG.getConstant(RHSC->getAPIntValue()-
   2037                                                 LHSR->getAPIntValue(),
   2038                                 dl, N0.getValueType()), Cond);
   2039           }
   2040 
   2041           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   2042           if (N0.getOpcode() == ISD::XOR)
   2043             // If we know that all of the inverted bits are zero, don't bother
   2044             // performing the inversion.
   2045             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   2046               return
   2047                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   2048                              DAG.getConstant(LHSR->getAPIntValue() ^
   2049                                                RHSC->getAPIntValue(),
   2050                                              dl, N0.getValueType()),
   2051                              Cond);
   2052         }
   2053 
   2054         // Turn (C1-X) == C2 --> X == C1-C2
   2055         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   2056           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   2057             return
   2058               DAG.getSetCC(dl, VT, N0.getOperand(1),
   2059                            DAG.getConstant(SUBC->getAPIntValue() -
   2060                                              RHSC->getAPIntValue(),
   2061                                            dl, N0.getValueType()),
   2062                            Cond);
   2063           }
   2064         }
   2065 
   2066         // Could RHSC fold directly into a compare?
   2067         if (RHSC->getValueType(0).getSizeInBits() <= 64)
   2068           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
   2069       }
   2070 
   2071       // Simplify (X+Z) == X -->  Z == 0
   2072       // Don't do this if X is an immediate that can fold into a cmp
   2073       // instruction and X+Z has other uses. It could be an induction variable
   2074       // chain, and the transform would increase register pressure.
   2075       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
   2076         if (N0.getOperand(0) == N1)
   2077           return DAG.getSetCC(dl, VT, N0.getOperand(1),
   2078                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
   2079         if (N0.getOperand(1) == N1) {
   2080           if (DAG.isCommutativeBinOp(N0.getOpcode()))
   2081             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2082                                 DAG.getConstant(0, dl, N0.getValueType()),
   2083                                 Cond);
   2084           if (N0.getNode()->hasOneUse()) {
   2085             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   2086             auto &DL = DAG.getDataLayout();
   2087             // (Z-X) == X  --> Z == X<<1
   2088             SDValue SH = DAG.getNode(
   2089                 ISD::SHL, dl, N1.getValueType(), N1,
   2090                 DAG.getConstant(1, dl,
   2091                                 getShiftAmountTy(N1.getValueType(), DL)));
   2092             if (!DCI.isCalledByLegalizer())
   2093               DCI.AddToWorklist(SH.getNode());
   2094             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   2095           }
   2096         }
   2097       }
   2098     }
   2099 
   2100     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   2101         N1.getOpcode() == ISD::XOR) {
   2102       // Simplify  X == (X+Z) -->  Z == 0
   2103       if (N1.getOperand(0) == N0)
   2104         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   2105                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
   2106       if (N1.getOperand(1) == N0) {
   2107         if (DAG.isCommutativeBinOp(N1.getOpcode()))
   2108           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   2109                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
   2110         if (N1.getNode()->hasOneUse()) {
   2111           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   2112           auto &DL = DAG.getDataLayout();
   2113           // X == (Z-X)  --> X<<1 == Z
   2114           SDValue SH = DAG.getNode(
   2115               ISD::SHL, dl, N1.getValueType(), N0,
   2116               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
   2117           if (!DCI.isCalledByLegalizer())
   2118             DCI.AddToWorklist(SH.getNode());
   2119           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   2120         }
   2121       }
   2122     }
   2123 
   2124     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
   2125       return V;
   2126   }
   2127 
   2128   // Fold away ALL boolean setcc's.
   2129   SDValue Temp;
   2130   if (N0.getValueType() == MVT::i1 && foldBooleans) {
   2131     switch (Cond) {
   2132     default: llvm_unreachable("Unknown integer setcc!");
   2133     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   2134       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2135       N0 = DAG.getNOT(dl, Temp, MVT::i1);
   2136       if (!DCI.isCalledByLegalizer())
   2137         DCI.AddToWorklist(Temp.getNode());
   2138       break;
   2139     case ISD::SETNE:  // X != Y   -->  (X^Y)
   2140       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2141       break;
   2142     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2143     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2144       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2145       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
   2146       if (!DCI.isCalledByLegalizer())
   2147         DCI.AddToWorklist(Temp.getNode());
   2148       break;
   2149     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   2150     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   2151       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2152       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
   2153       if (!DCI.isCalledByLegalizer())
   2154         DCI.AddToWorklist(Temp.getNode());
   2155       break;
   2156     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   2157     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   2158       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2159       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
   2160       if (!DCI.isCalledByLegalizer())
   2161         DCI.AddToWorklist(Temp.getNode());
   2162       break;
   2163     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   2164     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   2165       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2166       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
   2167       break;
   2168     }
   2169     if (VT != MVT::i1) {
   2170       if (!DCI.isCalledByLegalizer())
   2171         DCI.AddToWorklist(N0.getNode());
   2172       // FIXME: If running after legalize, we probably can't do this.
   2173       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
   2174     }
   2175     return N0;
   2176   }
   2177 
   2178   // Could not fold it.
   2179   return SDValue();
   2180 }
   2181 
   2182 /// Returns true (and the GlobalValue and the offset) if the node is a
   2183 /// GlobalAddress + offset.
   2184 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   2185                                     int64_t &Offset) const {
   2186   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
   2187     GA = GASD->getGlobal();
   2188     Offset += GASD->getOffset();
   2189     return true;
   2190   }
   2191 
   2192   if (N->getOpcode() == ISD::ADD) {
   2193     SDValue N1 = N->getOperand(0);
   2194     SDValue N2 = N->getOperand(1);
   2195     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   2196       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
   2197         Offset += V->getSExtValue();
   2198         return true;
   2199       }
   2200     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   2201       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
   2202         Offset += V->getSExtValue();
   2203         return true;
   2204       }
   2205     }
   2206   }
   2207 
   2208   return false;
   2209 }
   2210 
   2211 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
   2212                                           DAGCombinerInfo &DCI) const {
   2213   // Default implementation: no optimization.
   2214   return SDValue();
   2215 }
   2216 
   2217 //===----------------------------------------------------------------------===//
   2218 //  Inline Assembler Implementation Methods
   2219 //===----------------------------------------------------------------------===//
   2220 
   2221 TargetLowering::ConstraintType
   2222 TargetLowering::getConstraintType(StringRef Constraint) const {
   2223   unsigned S = Constraint.size();
   2224 
   2225   if (S == 1) {
   2226     switch (Constraint[0]) {
   2227     default: break;
   2228     case 'r': return C_RegisterClass;
   2229     case 'm':    // memory
   2230     case 'o':    // offsetable
   2231     case 'V':    // not offsetable
   2232       return C_Memory;
   2233     case 'i':    // Simple Integer or Relocatable Constant
   2234     case 'n':    // Simple Integer
   2235     case 'E':    // Floating Point Constant
   2236     case 'F':    // Floating Point Constant
   2237     case 's':    // Relocatable Constant
   2238     case 'p':    // Address.
   2239     case 'X':    // Allow ANY value.
   2240     case 'I':    // Target registers.
   2241     case 'J':
   2242     case 'K':
   2243     case 'L':
   2244     case 'M':
   2245     case 'N':
   2246     case 'O':
   2247     case 'P':
   2248     case '<':
   2249     case '>':
   2250       return C_Other;
   2251     }
   2252   }
   2253 
   2254   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
   2255     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
   2256       return C_Memory;
   2257     return C_Register;
   2258   }
   2259   return C_Unknown;
   2260 }
   2261 
   2262 /// Try to replace an X constraint, which matches anything, with another that
   2263 /// has more specific requirements based on the type of the corresponding
   2264 /// operand.
   2265 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   2266   if (ConstraintVT.isInteger())
   2267     return "r";
   2268   if (ConstraintVT.isFloatingPoint())
   2269     return "f";      // works for many targets
   2270   return nullptr;
   2271 }
   2272 
   2273 /// Lower the specified operand into the Ops vector.
   2274 /// If it is invalid, don't add anything to Ops.
   2275 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   2276                                                   std::string &Constraint,
   2277                                                   std::vector<SDValue> &Ops,
   2278                                                   SelectionDAG &DAG) const {
   2279 
   2280   if (Constraint.length() > 1) return;
   2281 
   2282   char ConstraintLetter = Constraint[0];
   2283   switch (ConstraintLetter) {
   2284   default: break;
   2285   case 'X':     // Allows any operand; labels (basic block) use this.
   2286     if (Op.getOpcode() == ISD::BasicBlock) {
   2287       Ops.push_back(Op);
   2288       return;
   2289     }
   2290     // fall through
   2291   case 'i':    // Simple Integer or Relocatable Constant
   2292   case 'n':    // Simple Integer
   2293   case 's': {  // Relocatable Constant
   2294     // These operands are interested in values of the form (GV+C), where C may
   2295     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   2296     // is possible and fine if either GV or C are missing.
   2297     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2298     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   2299 
   2300     // If we have "(add GV, C)", pull out GV/C
   2301     if (Op.getOpcode() == ISD::ADD) {
   2302       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   2303       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   2304       if (!C || !GA) {
   2305         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   2306         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   2307       }
   2308       if (!C || !GA) {
   2309         C = nullptr;
   2310         GA = nullptr;
   2311       }
   2312     }
   2313 
   2314     // If we find a valid operand, map to the TargetXXX version so that the
   2315     // value itself doesn't get selected.
   2316     if (GA) {   // Either &GV   or   &GV+C
   2317       if (ConstraintLetter != 'n') {
   2318         int64_t Offs = GA->getOffset();
   2319         if (C) Offs += C->getZExtValue();
   2320         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   2321                                                  C ? SDLoc(C) : SDLoc(),
   2322                                                  Op.getValueType(), Offs));
   2323       }
   2324       return;
   2325     }
   2326     if (C) {   // just C, no GV.
   2327       // Simple constants are not allowed for 's'.
   2328       if (ConstraintLetter != 's') {
   2329         // gcc prints these as sign extended.  Sign extend value to 64 bits
   2330         // now; without this it would get ZExt'd later in
   2331         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   2332         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
   2333                                             SDLoc(C), MVT::i64));
   2334       }
   2335       return;
   2336     }
   2337     break;
   2338   }
   2339   }
   2340 }
   2341 
   2342 std::pair<unsigned, const TargetRegisterClass *>
   2343 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
   2344                                              StringRef Constraint,
   2345                                              MVT VT) const {
   2346   if (Constraint.empty() || Constraint[0] != '{')
   2347     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
   2348   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   2349 
   2350   // Remove the braces from around the name.
   2351   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   2352 
   2353   std::pair<unsigned, const TargetRegisterClass*> R =
   2354     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
   2355 
   2356   // Figure out which register class contains this reg.
   2357   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
   2358        E = RI->regclass_end(); RCI != E; ++RCI) {
   2359     const TargetRegisterClass *RC = *RCI;
   2360 
   2361     // If none of the value types for this register class are valid, we
   2362     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2363     if (!isLegalRC(RC))
   2364       continue;
   2365 
   2366     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   2367          I != E; ++I) {
   2368       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
   2369         std::pair<unsigned, const TargetRegisterClass*> S =
   2370           std::make_pair(*I, RC);
   2371 
   2372         // If this register class has the requested value type, return it,
   2373         // otherwise keep searching and return the first class found
   2374         // if no other is found which explicitly has the requested type.
   2375         if (RC->hasType(VT))
   2376           return S;
   2377         else if (!R.second)
   2378           R = S;
   2379       }
   2380     }
   2381   }
   2382 
   2383   return R;
   2384 }
   2385 
   2386 //===----------------------------------------------------------------------===//
   2387 // Constraint Selection.
   2388 
   2389 /// Return true of this is an input operand that is a matching constraint like
   2390 /// "4".
   2391 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   2392   assert(!ConstraintCode.empty() && "No known constraint!");
   2393   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
   2394 }
   2395 
   2396 /// If this is an input matching constraint, this method returns the output
   2397 /// operand it matches.
   2398 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   2399   assert(!ConstraintCode.empty() && "No known constraint!");
   2400   return atoi(ConstraintCode.c_str());
   2401 }
   2402 
   2403 /// Split up the constraint string from the inline assembly value into the
   2404 /// specific constraints and their prefixes, and also tie in the associated
   2405 /// operand values.
   2406 /// If this returns an empty vector, and if the constraint string itself
   2407 /// isn't empty, there was an error parsing.
   2408 TargetLowering::AsmOperandInfoVector
   2409 TargetLowering::ParseConstraints(const DataLayout &DL,
   2410                                  const TargetRegisterInfo *TRI,
   2411                                  ImmutableCallSite CS) const {
   2412   /// Information about all of the constraints.
   2413   AsmOperandInfoVector ConstraintOperands;
   2414   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   2415   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   2416 
   2417   // Do a prepass over the constraints, canonicalizing them, and building up the
   2418   // ConstraintOperands list.
   2419   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   2420   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   2421 
   2422   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
   2423     ConstraintOperands.emplace_back(std::move(CI));
   2424     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   2425 
   2426     // Update multiple alternative constraint count.
   2427     if (OpInfo.multipleAlternatives.size() > maCount)
   2428       maCount = OpInfo.multipleAlternatives.size();
   2429 
   2430     OpInfo.ConstraintVT = MVT::Other;
   2431 
   2432     // Compute the value type for each operand.
   2433     switch (OpInfo.Type) {
   2434     case InlineAsm::isOutput:
   2435       // Indirect outputs just consume an argument.
   2436       if (OpInfo.isIndirect) {
   2437         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2438         break;
   2439       }
   2440 
   2441       // The return value of the call is this value.  As such, there is no
   2442       // corresponding argument.
   2443       assert(!CS.getType()->isVoidTy() &&
   2444              "Bad inline asm!");
   2445       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   2446         OpInfo.ConstraintVT =
   2447             getSimpleValueType(DL, STy->getElementType(ResNo));
   2448       } else {
   2449         assert(ResNo == 0 && "Asm only has one result!");
   2450         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
   2451       }
   2452       ++ResNo;
   2453       break;
   2454     case InlineAsm::isInput:
   2455       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2456       break;
   2457     case InlineAsm::isClobber:
   2458       // Nothing to do.
   2459       break;
   2460     }
   2461 
   2462     if (OpInfo.CallOperandVal) {
   2463       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   2464       if (OpInfo.isIndirect) {
   2465         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   2466         if (!PtrTy)
   2467           report_fatal_error("Indirect operand for inline asm not a pointer!");
   2468         OpTy = PtrTy->getElementType();
   2469       }
   2470 
   2471       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   2472       if (StructType *STy = dyn_cast<StructType>(OpTy))
   2473         if (STy->getNumElements() == 1)
   2474           OpTy = STy->getElementType(0);
   2475 
   2476       // If OpTy is not a single value, it may be a struct/union that we
   2477       // can tile with integers.
   2478       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   2479         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
   2480         switch (BitSize) {
   2481         default: break;
   2482         case 1:
   2483         case 8:
   2484         case 16:
   2485         case 32:
   2486         case 64:
   2487         case 128:
   2488           OpInfo.ConstraintVT =
   2489             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   2490           break;
   2491         }
   2492       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
   2493         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
   2494         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
   2495       } else {
   2496         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
   2497       }
   2498     }
   2499   }
   2500 
   2501   // If we have multiple alternative constraints, select the best alternative.
   2502   if (!ConstraintOperands.empty()) {
   2503     if (maCount) {
   2504       unsigned bestMAIndex = 0;
   2505       int bestWeight = -1;
   2506       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   2507       int weight = -1;
   2508       unsigned maIndex;
   2509       // Compute the sums of the weights for each alternative, keeping track
   2510       // of the best (highest weight) one so far.
   2511       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   2512         int weightSum = 0;
   2513         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2514             cIndex != eIndex; ++cIndex) {
   2515           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2516           if (OpInfo.Type == InlineAsm::isClobber)
   2517             continue;
   2518 
   2519           // If this is an output operand with a matching input operand,
   2520           // look up the matching input. If their types mismatch, e.g. one
   2521           // is an integer, the other is floating point, or their sizes are
   2522           // different, flag it as an maCantMatch.
   2523           if (OpInfo.hasMatchingInput()) {
   2524             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2525             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2526               if ((OpInfo.ConstraintVT.isInteger() !=
   2527                    Input.ConstraintVT.isInteger()) ||
   2528                   (OpInfo.ConstraintVT.getSizeInBits() !=
   2529                    Input.ConstraintVT.getSizeInBits())) {
   2530                 weightSum = -1;  // Can't match.
   2531                 break;
   2532               }
   2533             }
   2534           }
   2535           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   2536           if (weight == -1) {
   2537             weightSum = -1;
   2538             break;
   2539           }
   2540           weightSum += weight;
   2541         }
   2542         // Update best.
   2543         if (weightSum > bestWeight) {
   2544           bestWeight = weightSum;
   2545           bestMAIndex = maIndex;
   2546         }
   2547       }
   2548 
   2549       // Now select chosen alternative in each constraint.
   2550       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2551           cIndex != eIndex; ++cIndex) {
   2552         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   2553         if (cInfo.Type == InlineAsm::isClobber)
   2554           continue;
   2555         cInfo.selectAlternative(bestMAIndex);
   2556       }
   2557     }
   2558   }
   2559 
   2560   // Check and hook up tied operands, choose constraint code to use.
   2561   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2562       cIndex != eIndex; ++cIndex) {
   2563     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2564 
   2565     // If this is an output operand with a matching input operand, look up the
   2566     // matching input. If their types mismatch, e.g. one is an integer, the
   2567     // other is floating point, or their sizes are different, flag it as an
   2568     // error.
   2569     if (OpInfo.hasMatchingInput()) {
   2570       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2571 
   2572       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2573         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
   2574             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
   2575                                          OpInfo.ConstraintVT);
   2576         std::pair<unsigned, const TargetRegisterClass *> InputRC =
   2577             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
   2578                                          Input.ConstraintVT);
   2579         if ((OpInfo.ConstraintVT.isInteger() !=
   2580              Input.ConstraintVT.isInteger()) ||
   2581             (MatchRC.second != InputRC.second)) {
   2582           report_fatal_error("Unsupported asm: input constraint"
   2583                              " with a matching output constraint of"
   2584                              " incompatible type!");
   2585         }
   2586       }
   2587     }
   2588   }
   2589 
   2590   return ConstraintOperands;
   2591 }
   2592 
   2593 /// Return an integer indicating how general CT is.
   2594 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   2595   switch (CT) {
   2596   case TargetLowering::C_Other:
   2597   case TargetLowering::C_Unknown:
   2598     return 0;
   2599   case TargetLowering::C_Register:
   2600     return 1;
   2601   case TargetLowering::C_RegisterClass:
   2602     return 2;
   2603   case TargetLowering::C_Memory:
   2604     return 3;
   2605   }
   2606   llvm_unreachable("Invalid constraint type");
   2607 }
   2608 
   2609 /// Examine constraint type and operand type and determine a weight value.
   2610 /// This object must already have been set up with the operand type
   2611 /// and the current alternative constraint selected.
   2612 TargetLowering::ConstraintWeight
   2613   TargetLowering::getMultipleConstraintMatchWeight(
   2614     AsmOperandInfo &info, int maIndex) const {
   2615   InlineAsm::ConstraintCodeVector *rCodes;
   2616   if (maIndex >= (int)info.multipleAlternatives.size())
   2617     rCodes = &info.Codes;
   2618   else
   2619     rCodes = &info.multipleAlternatives[maIndex].Codes;
   2620   ConstraintWeight BestWeight = CW_Invalid;
   2621 
   2622   // Loop over the options, keeping track of the most general one.
   2623   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   2624     ConstraintWeight weight =
   2625       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   2626     if (weight > BestWeight)
   2627       BestWeight = weight;
   2628   }
   2629 
   2630   return BestWeight;
   2631 }
   2632 
   2633 /// Examine constraint type and operand type and determine a weight value.
   2634 /// This object must already have been set up with the operand type
   2635 /// and the current alternative constraint selected.
   2636 TargetLowering::ConstraintWeight
   2637   TargetLowering::getSingleConstraintMatchWeight(
   2638     AsmOperandInfo &info, const char *constraint) const {
   2639   ConstraintWeight weight = CW_Invalid;
   2640   Value *CallOperandVal = info.CallOperandVal;
   2641     // If we don't have a value, we can't do a match,
   2642     // but allow it at the lowest weight.
   2643   if (!CallOperandVal)
   2644     return CW_Default;
   2645   // Look at the constraint type.
   2646   switch (*constraint) {
   2647     case 'i': // immediate integer.
   2648     case 'n': // immediate integer with a known value.
   2649       if (isa<ConstantInt>(CallOperandVal))
   2650         weight = CW_Constant;
   2651       break;
   2652     case 's': // non-explicit intregal immediate.
   2653       if (isa<GlobalValue>(CallOperandVal))
   2654         weight = CW_Constant;
   2655       break;
   2656     case 'E': // immediate float if host format.
   2657     case 'F': // immediate float.
   2658       if (isa<ConstantFP>(CallOperandVal))
   2659         weight = CW_Constant;
   2660       break;
   2661     case '<': // memory operand with autodecrement.
   2662     case '>': // memory operand with autoincrement.
   2663     case 'm': // memory operand.
   2664     case 'o': // offsettable memory operand
   2665     case 'V': // non-offsettable memory operand
   2666       weight = CW_Memory;
   2667       break;
   2668     case 'r': // general register.
   2669     case 'g': // general register, memory operand or immediate integer.
   2670               // note: Clang converts "g" to "imr".
   2671       if (CallOperandVal->getType()->isIntegerTy())
   2672         weight = CW_Register;
   2673       break;
   2674     case 'X': // any operand.
   2675     default:
   2676       weight = CW_Default;
   2677       break;
   2678   }
   2679   return weight;
   2680 }
   2681 
   2682 /// If there are multiple different constraints that we could pick for this
   2683 /// operand (e.g. "imr") try to pick the 'best' one.
   2684 /// This is somewhat tricky: constraints fall into four classes:
   2685 ///    Other         -> immediates and magic values
   2686 ///    Register      -> one specific register
   2687 ///    RegisterClass -> a group of regs
   2688 ///    Memory        -> memory
   2689 /// Ideally, we would pick the most specific constraint possible: if we have
   2690 /// something that fits into a register, we would pick it.  The problem here
   2691 /// is that if we have something that could either be in a register or in
   2692 /// memory that use of the register could cause selection of *other*
   2693 /// operands to fail: they might only succeed if we pick memory.  Because of
   2694 /// this the heuristic we use is:
   2695 ///
   2696 ///  1) If there is an 'other' constraint, and if the operand is valid for
   2697 ///     that constraint, use it.  This makes us take advantage of 'i'
   2698 ///     constraints when available.
   2699 ///  2) Otherwise, pick the most general constraint present.  This prefers
   2700 ///     'm' over 'r', for example.
   2701 ///
   2702 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   2703                              const TargetLowering &TLI,
   2704                              SDValue Op, SelectionDAG *DAG) {
   2705   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   2706   unsigned BestIdx = 0;
   2707   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   2708   int BestGenerality = -1;
   2709 
   2710   // Loop over the options, keeping track of the most general one.
   2711   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   2712     TargetLowering::ConstraintType CType =
   2713       TLI.getConstraintType(OpInfo.Codes[i]);
   2714 
   2715     // If this is an 'other' constraint, see if the operand is valid for it.
   2716     // For example, on X86 we might have an 'rI' constraint.  If the operand
   2717     // is an integer in the range [0..31] we want to use I (saving a load
   2718     // of a register), otherwise we must use 'r'.
   2719     if (CType == TargetLowering::C_Other && Op.getNode()) {
   2720       assert(OpInfo.Codes[i].size() == 1 &&
   2721              "Unhandled multi-letter 'other' constraint");
   2722       std::vector<SDValue> ResultOps;
   2723       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   2724                                        ResultOps, *DAG);
   2725       if (!ResultOps.empty()) {
   2726         BestType = CType;
   2727         BestIdx = i;
   2728         break;
   2729       }
   2730     }
   2731 
   2732     // Things with matching constraints can only be registers, per gcc
   2733     // documentation.  This mainly affects "g" constraints.
   2734     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   2735       continue;
   2736 
   2737     // This constraint letter is more general than the previous one, use it.
   2738     int Generality = getConstraintGenerality(CType);
   2739     if (Generality > BestGenerality) {
   2740       BestType = CType;
   2741       BestIdx = i;
   2742       BestGenerality = Generality;
   2743     }
   2744   }
   2745 
   2746   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   2747   OpInfo.ConstraintType = BestType;
   2748 }
   2749 
   2750 /// Determines the constraint code and constraint type to use for the specific
   2751 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2752 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2753                                             SDValue Op,
   2754                                             SelectionDAG *DAG) const {
   2755   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   2756 
   2757   // Single-letter constraints ('r') are very common.
   2758   if (OpInfo.Codes.size() == 1) {
   2759     OpInfo.ConstraintCode = OpInfo.Codes[0];
   2760     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2761   } else {
   2762     ChooseConstraint(OpInfo, *this, Op, DAG);
   2763   }
   2764 
   2765   // 'X' matches anything.
   2766   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   2767     // Labels and constants are handled elsewhere ('X' is the only thing
   2768     // that matches labels).  For Functions, the type here is the type of
   2769     // the result, which is not what we want to look at; leave them alone.
   2770     Value *v = OpInfo.CallOperandVal;
   2771     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   2772       OpInfo.CallOperandVal = v;
   2773       return;
   2774     }
   2775 
   2776     // Otherwise, try to resolve it to something we know about by looking at
   2777     // the actual operand type.
   2778     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   2779       OpInfo.ConstraintCode = Repl;
   2780       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2781     }
   2782   }
   2783 }
   2784 
   2785 /// \brief Given an exact SDIV by a constant, create a multiplication
   2786 /// with the multiplicative inverse of the constant.
   2787 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
   2788                               const SDLoc &dl, SelectionDAG &DAG,
   2789                               std::vector<SDNode *> &Created) {
   2790   assert(d != 0 && "Division by zero!");
   2791 
   2792   // Shift the value upfront if it is even, so the LSB is one.
   2793   unsigned ShAmt = d.countTrailingZeros();
   2794   if (ShAmt) {
   2795     // TODO: For UDIV use SRL instead of SRA.
   2796     SDValue Amt =
   2797         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
   2798                                                         DAG.getDataLayout()));
   2799     SDNodeFlags Flags;
   2800     Flags.setExact(true);
   2801     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
   2802     Created.push_back(Op1.getNode());
   2803     d = d.ashr(ShAmt);
   2804   }
   2805 
   2806   // Calculate the multiplicative inverse, using Newton's method.
   2807   APInt t, xn = d;
   2808   while ((t = d*xn) != 1)
   2809     xn *= APInt(d.getBitWidth(), 2) - t;
   2810 
   2811   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
   2812   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   2813   Created.push_back(Mul.getNode());
   2814   return Mul;
   2815 }
   2816 
   2817 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   2818                                       SelectionDAG &DAG,
   2819                                       std::vector<SDNode *> *Created) const {
   2820   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
   2821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2822   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
   2823     return SDValue(N,0); // Lower SDIV as SDIV
   2824   return SDValue();
   2825 }
   2826 
   2827 /// \brief Given an ISD::SDIV node expressing a divide by constant,
   2828 /// return a DAG expression to select that will generate the same value by
   2829 /// multiplying by a magic number.
   2830 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
   2831 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
   2832                                   SelectionDAG &DAG, bool IsAfterLegalization,
   2833                                   std::vector<SDNode *> *Created) const {
   2834   assert(Created && "No vector to hold sdiv ops.");
   2835 
   2836   EVT VT = N->getValueType(0);
   2837   SDLoc dl(N);
   2838 
   2839   // Check to see if we can do this.
   2840   // FIXME: We should be more aggressive here.
   2841   if (!isTypeLegal(VT))
   2842     return SDValue();
   2843 
   2844   // If the sdiv has an 'exact' bit we can use a simpler lowering.
   2845   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
   2846     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
   2847 
   2848   APInt::ms magics = Divisor.magic();
   2849 
   2850   // Multiply the numerator (operand 0) by the magic value
   2851   // FIXME: We should support doing a MUL in a wider type
   2852   SDValue Q;
   2853   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
   2854                             isOperationLegalOrCustom(ISD::MULHS, VT))
   2855     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   2856                     DAG.getConstant(magics.m, dl, VT));
   2857   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
   2858                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   2859     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   2860                               N->getOperand(0),
   2861                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
   2862   else
   2863     return SDValue();       // No mulhs or equvialent
   2864   // If d > 0 and m < 0, add the numerator
   2865   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
   2866     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   2867     Created->push_back(Q.getNode());
   2868   }
   2869   // If d < 0 and m > 0, subtract the numerator.
   2870   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
   2871     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   2872     Created->push_back(Q.getNode());
   2873   }
   2874   auto &DL = DAG.getDataLayout();
   2875   // Shift right algebraic if shift value is nonzero
   2876   if (magics.s > 0) {
   2877     Q = DAG.getNode(
   2878         ISD::SRA, dl, VT, Q,
   2879         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
   2880     Created->push_back(Q.getNode());
   2881   }
   2882   // Extract the sign bit and add it to the quotient
   2883   SDValue T =
   2884       DAG.getNode(ISD::SRL, dl, VT, Q,
   2885                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
   2886                                   getShiftAmountTy(Q.getValueType(), DL)));
   2887   Created->push_back(T.getNode());
   2888   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   2889 }
   2890 
   2891 /// \brief Given an ISD::UDIV node expressing a divide by constant,
   2892 /// return a DAG expression to select that will generate the same value by
   2893 /// multiplying by a magic number.
   2894 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
   2895 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
   2896                                   SelectionDAG &DAG, bool IsAfterLegalization,
   2897                                   std::vector<SDNode *> *Created) const {
   2898   assert(Created && "No vector to hold udiv ops.");
   2899 
   2900   EVT VT = N->getValueType(0);
   2901   SDLoc dl(N);
   2902   auto &DL = DAG.getDataLayout();
   2903 
   2904   // Check to see if we can do this.
   2905   // FIXME: We should be more aggressive here.
   2906   if (!isTypeLegal(VT))
   2907     return SDValue();
   2908 
   2909   // FIXME: We should use a narrower constant when the upper
   2910   // bits are known to be zero.
   2911   APInt::mu magics = Divisor.magicu();
   2912 
   2913   SDValue Q = N->getOperand(0);
   2914 
   2915   // If the divisor is even, we can avoid using the expensive fixup by shifting
   2916   // the divided value upfront.
   2917   if (magics.a != 0 && !Divisor[0]) {
   2918     unsigned Shift = Divisor.countTrailingZeros();
   2919     Q = DAG.getNode(
   2920         ISD::SRL, dl, VT, Q,
   2921         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
   2922     Created->push_back(Q.getNode());
   2923 
   2924     // Get magic number for the shifted divisor.
   2925     magics = Divisor.lshr(Shift).magicu(Shift);
   2926     assert(magics.a == 0 && "Should use cheap fixup now");
   2927   }
   2928 
   2929   // Multiply the numerator (operand 0) by the magic value
   2930   // FIXME: We should support doing a MUL in a wider type
   2931   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
   2932                             isOperationLegalOrCustom(ISD::MULHU, VT))
   2933     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
   2934   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
   2935                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   2936     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   2937                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
   2938   else
   2939     return SDValue();       // No mulhu or equvialent
   2940 
   2941   Created->push_back(Q.getNode());
   2942 
   2943   if (magics.a == 0) {
   2944     assert(magics.s < Divisor.getBitWidth() &&
   2945            "We shouldn't generate an undefined shift!");
   2946     return DAG.getNode(
   2947         ISD::SRL, dl, VT, Q,
   2948         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
   2949   } else {
   2950     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   2951     Created->push_back(NPQ.getNode());
   2952     NPQ = DAG.getNode(
   2953         ISD::SRL, dl, VT, NPQ,
   2954         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
   2955     Created->push_back(NPQ.getNode());
   2956     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   2957     Created->push_back(NPQ.getNode());
   2958     return DAG.getNode(
   2959         ISD::SRL, dl, VT, NPQ,
   2960         DAG.getConstant(magics.s - 1, dl,
   2961                         getShiftAmountTy(NPQ.getValueType(), DL)));
   2962   }
   2963 }
   2964 
   2965 bool TargetLowering::
   2966 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
   2967   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
   2968     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
   2969                                 "be a constant integer");
   2970     return true;
   2971   }
   2972 
   2973   return false;
   2974 }
   2975 
   2976 //===----------------------------------------------------------------------===//
   2977 // Legalization Utilities
   2978 //===----------------------------------------------------------------------===//
   2979 
   2980 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   2981                                SelectionDAG &DAG, SDValue LL, SDValue LH,
   2982                                SDValue RL, SDValue RH) const {
   2983   EVT VT = N->getValueType(0);
   2984   SDLoc dl(N);
   2985 
   2986   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
   2987   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
   2988   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
   2989   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
   2990   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
   2991     unsigned OuterBitSize = VT.getSizeInBits();
   2992     unsigned InnerBitSize = HiLoVT.getSizeInBits();
   2993     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
   2994     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
   2995 
   2996     // LL, LH, RL, and RH must be either all NULL or all set to a value.
   2997     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
   2998            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
   2999 
   3000     if (!LL.getNode() && !RL.getNode() &&
   3001         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   3002       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
   3003       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
   3004     }
   3005 
   3006     if (!LL.getNode())
   3007       return false;
   3008 
   3009     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
   3010     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
   3011         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
   3012       // The inputs are both zero-extended.
   3013       if (HasUMUL_LOHI) {
   3014         // We can emit a umul_lohi.
   3015         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
   3016                          RL);
   3017         Hi = SDValue(Lo.getNode(), 1);
   3018         return true;
   3019       }
   3020       if (HasMULHU) {
   3021         // We can emit a mulhu+mul.
   3022         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   3023         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
   3024         return true;
   3025       }
   3026     }
   3027     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
   3028       // The input values are both sign-extended.
   3029       if (HasSMUL_LOHI) {
   3030         // We can emit a smul_lohi.
   3031         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
   3032                          RL);
   3033         Hi = SDValue(Lo.getNode(), 1);
   3034         return true;
   3035       }
   3036       if (HasMULHS) {
   3037         // We can emit a mulhs+mul.
   3038         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   3039         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
   3040         return true;
   3041       }
   3042     }
   3043 
   3044     if (!LH.getNode() && !RH.getNode() &&
   3045         isOperationLegalOrCustom(ISD::SRL, VT) &&
   3046         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   3047       auto &DL = DAG.getDataLayout();
   3048       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
   3049       SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL));
   3050       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
   3051       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
   3052       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
   3053       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
   3054     }
   3055 
   3056     if (!LH.getNode())
   3057       return false;
   3058 
   3059     if (HasUMUL_LOHI) {
   3060       // Lo,Hi = umul LHS, RHS.
   3061       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
   3062                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
   3063       Lo = UMulLOHI;
   3064       Hi = UMulLOHI.getValue(1);
   3065       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
   3066       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
   3067       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
   3068       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
   3069       return true;
   3070     }
   3071     if (HasMULHU) {
   3072       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   3073       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
   3074       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
   3075       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
   3076       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
   3077       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
   3078       return true;
   3079     }
   3080   }
   3081   return false;
   3082 }
   3083 
   3084 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
   3085                                SelectionDAG &DAG) const {
   3086   EVT VT = Node->getOperand(0).getValueType();
   3087   EVT NVT = Node->getValueType(0);
   3088   SDLoc dl(SDValue(Node, 0));
   3089 
   3090   // FIXME: Only f32 to i64 conversions are supported.
   3091   if (VT != MVT::f32 || NVT != MVT::i64)
   3092     return false;
   3093 
   3094   // Expand f32 -> i64 conversion
   3095   // This algorithm comes from compiler-rt's implementation of fixsfdi:
   3096   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
   3097   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
   3098                                 VT.getSizeInBits());
   3099   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
   3100   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
   3101   SDValue Bias = DAG.getConstant(127, dl, IntVT);
   3102   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
   3103                                      IntVT);
   3104   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
   3105   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
   3106 
   3107   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
   3108 
   3109   auto &DL = DAG.getDataLayout();
   3110   SDValue ExponentBits = DAG.getNode(
   3111       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
   3112       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
   3113   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
   3114 
   3115   SDValue Sign = DAG.getNode(
   3116       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
   3117       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
   3118   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
   3119 
   3120   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
   3121       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
   3122       DAG.getConstant(0x00800000, dl, IntVT));
   3123 
   3124   R = DAG.getZExtOrTrunc(R, dl, NVT);
   3125 
   3126   R = DAG.getSelectCC(
   3127       dl, Exponent, ExponentLoBit,
   3128       DAG.getNode(ISD::SHL, dl, NVT, R,
   3129                   DAG.getZExtOrTrunc(
   3130                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
   3131                       dl, getShiftAmountTy(IntVT, DL))),
   3132       DAG.getNode(ISD::SRL, dl, NVT, R,
   3133                   DAG.getZExtOrTrunc(
   3134                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
   3135                       dl, getShiftAmountTy(IntVT, DL))),
   3136       ISD::SETGT);
   3137 
   3138   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
   3139       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
   3140       Sign);
   3141 
   3142   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
   3143       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
   3144   return true;
   3145 }
   3146 
   3147 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
   3148                                             SelectionDAG &DAG) const {
   3149   SDLoc SL(LD);
   3150   SDValue Chain = LD->getChain();
   3151   SDValue BasePTR = LD->getBasePtr();
   3152   EVT SrcVT = LD->getMemoryVT();
   3153   ISD::LoadExtType ExtType = LD->getExtensionType();
   3154 
   3155   unsigned NumElem = SrcVT.getVectorNumElements();
   3156 
   3157   EVT SrcEltVT = SrcVT.getScalarType();
   3158   EVT DstEltVT = LD->getValueType(0).getScalarType();
   3159 
   3160   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
   3161   assert(SrcEltVT.isByteSized());
   3162 
   3163   EVT PtrVT = BasePTR.getValueType();
   3164 
   3165   SmallVector<SDValue, 8> Vals;
   3166   SmallVector<SDValue, 8> LoadChains;
   3167 
   3168   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
   3169     SDValue ScalarLoad = DAG.getExtLoad(
   3170       ExtType, SL, DstEltVT,
   3171       Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
   3172       SrcEltVT,
   3173       LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
   3174       MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
   3175 
   3176     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
   3177                           DAG.getConstant(Stride, SL, PtrVT));
   3178 
   3179     Vals.push_back(ScalarLoad.getValue(0));
   3180     LoadChains.push_back(ScalarLoad.getValue(1));
   3181   }
   3182 
   3183   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
   3184   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals);
   3185 
   3186   return DAG.getMergeValues({ Value, NewChain }, SL);
   3187 }
   3188 
   3189 // FIXME: This relies on each element having a byte size, otherwise the stride
   3190 // is 0 and just overwrites the same location. ExpandStore currently expects
   3191 // this broken behavior.
   3192 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
   3193                                              SelectionDAG &DAG) const {
   3194   SDLoc SL(ST);
   3195 
   3196   SDValue Chain = ST->getChain();
   3197   SDValue BasePtr = ST->getBasePtr();
   3198   SDValue Value = ST->getValue();
   3199   EVT StVT = ST->getMemoryVT();
   3200 
   3201   unsigned Alignment = ST->getAlignment();
   3202   bool isVolatile = ST->isVolatile();
   3203   bool isNonTemporal = ST->isNonTemporal();
   3204   AAMDNodes AAInfo = ST->getAAInfo();
   3205 
   3206   // The type of the data we want to save
   3207   EVT RegVT = Value.getValueType();
   3208   EVT RegSclVT = RegVT.getScalarType();
   3209 
   3210   // The type of data as saved in memory.
   3211   EVT MemSclVT = StVT.getScalarType();
   3212 
   3213   EVT PtrVT = BasePtr.getValueType();
   3214 
   3215   // Store Stride in bytes
   3216   unsigned Stride = MemSclVT.getSizeInBits() / 8;
   3217   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
   3218   unsigned NumElem = StVT.getVectorNumElements();
   3219 
   3220   // Extract each of the elements from the original vector and save them into
   3221   // memory individually.
   3222   SmallVector<SDValue, 8> Stores;
   3223   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
   3224     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
   3225                               DAG.getConstant(Idx, SL, IdxVT));
   3226 
   3227     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
   3228                               DAG.getConstant(Idx * Stride, SL, PtrVT));
   3229 
   3230     // This scalar TruncStore may be illegal, but we legalize it later.
   3231     SDValue Store = DAG.getTruncStore(
   3232       Chain, SL, Elt, Ptr,
   3233       ST->getPointerInfo().getWithOffset(Idx * Stride), MemSclVT,
   3234       isVolatile, isNonTemporal, MinAlign(Alignment, Idx * Stride),
   3235       AAInfo);
   3236 
   3237     Stores.push_back(Store);
   3238   }
   3239 
   3240   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
   3241 }
   3242 
   3243 std::pair<SDValue, SDValue>
   3244 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
   3245   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
   3246          "unaligned indexed loads not implemented!");
   3247   SDValue Chain = LD->getChain();
   3248   SDValue Ptr = LD->getBasePtr();
   3249   EVT VT = LD->getValueType(0);
   3250   EVT LoadedVT = LD->getMemoryVT();
   3251   SDLoc dl(LD);
   3252   if (VT.isFloatingPoint() || VT.isVector()) {
   3253     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
   3254     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
   3255       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
   3256         // Scalarize the load and let the individual components be handled.
   3257         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
   3258         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
   3259       }
   3260 
   3261       // Expand to a (misaligned) integer load of the same size,
   3262       // then bitconvert to floating point or vector.
   3263       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
   3264                                     LD->getMemOperand());
   3265       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
   3266       if (LoadedVT != VT)
   3267         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
   3268                              ISD::ANY_EXTEND, dl, VT, Result);
   3269 
   3270       return std::make_pair(Result, newLoad.getValue(1));
   3271     }
   3272 
   3273     // Copy the value to a (aligned) stack slot using (unaligned) integer
   3274     // loads and stores, then do a (aligned) load from the stack slot.
   3275     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
   3276     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
   3277     unsigned RegBytes = RegVT.getSizeInBits() / 8;
   3278     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
   3279 
   3280     // Make sure the stack slot is also aligned for the register type.
   3281     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
   3282 
   3283     SmallVector<SDValue, 8> Stores;
   3284     SDValue StackPtr = StackBase;
   3285     unsigned Offset = 0;
   3286 
   3287     EVT PtrVT = Ptr.getValueType();
   3288     EVT StackPtrVT = StackPtr.getValueType();
   3289 
   3290     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
   3291     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
   3292 
   3293     // Do all but one copies using the full register width.
   3294     for (unsigned i = 1; i < NumRegs; i++) {
   3295       // Load one integer register's worth from the original location.
   3296       SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
   3297                                  LD->getPointerInfo().getWithOffset(Offset),
   3298                                  LD->isVolatile(), LD->isNonTemporal(),
   3299                                  LD->isInvariant(),
   3300                                  MinAlign(LD->getAlignment(), Offset),
   3301                                  LD->getAAInfo());
   3302       // Follow the load with a store to the stack slot.  Remember the store.
   3303       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
   3304                                     MachinePointerInfo(), false, false, 0));
   3305       // Increment the pointers.
   3306       Offset += RegBytes;
   3307       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
   3308       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
   3309                              StackPtrIncrement);
   3310     }
   3311 
   3312     // The last copy may be partial.  Do an extending load.
   3313     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
   3314                                   8 * (LoadedBytes - Offset));
   3315     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
   3316                                   LD->getPointerInfo().getWithOffset(Offset),
   3317                                   MemVT, LD->isVolatile(),
   3318                                   LD->isNonTemporal(),
   3319                                   LD->isInvariant(),
   3320                                   MinAlign(LD->getAlignment(), Offset),
   3321                                   LD->getAAInfo());
   3322     // Follow the load with a store to the stack slot.  Remember the store.
   3323     // On big-endian machines this requires a truncating store to ensure
   3324     // that the bits end up in the right place.
   3325     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
   3326                                        MachinePointerInfo(), MemVT,
   3327                                        false, false, 0));
   3328 
   3329     // The order of the stores doesn't matter - say it with a TokenFactor.
   3330     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   3331 
   3332     // Finally, perform the original load only redirected to the stack slot.
   3333     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
   3334                           MachinePointerInfo(), LoadedVT, false,false, false,
   3335                           0);
   3336 
   3337     // Callers expect a MERGE_VALUES node.
   3338     return std::make_pair(Load, TF);
   3339   }
   3340 
   3341   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
   3342          "Unaligned load of unsupported type.");
   3343 
   3344   // Compute the new VT that is half the size of the old one.  This is an
   3345   // integer MVT.
   3346   unsigned NumBits = LoadedVT.getSizeInBits();
   3347   EVT NewLoadedVT;
   3348   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
   3349   NumBits >>= 1;
   3350 
   3351   unsigned Alignment = LD->getAlignment();
   3352   unsigned IncrementSize = NumBits / 8;
   3353   ISD::LoadExtType HiExtType = LD->getExtensionType();
   3354 
   3355   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
   3356   if (HiExtType == ISD::NON_EXTLOAD)
   3357     HiExtType = ISD::ZEXTLOAD;
   3358 
   3359   // Load the value in two parts
   3360   SDValue Lo, Hi;
   3361   if (DAG.getDataLayout().isLittleEndian()) {
   3362     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
   3363                         NewLoadedVT, LD->isVolatile(),
   3364                         LD->isNonTemporal(), LD->isInvariant(), Alignment,
   3365                         LD->getAAInfo());
   3366     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
   3367                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
   3368     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
   3369                         LD->getPointerInfo().getWithOffset(IncrementSize),
   3370                         NewLoadedVT, LD->isVolatile(),
   3371                         LD->isNonTemporal(),LD->isInvariant(),
   3372                         MinAlign(Alignment, IncrementSize), LD->getAAInfo());
   3373   } else {
   3374     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
   3375                         NewLoadedVT, LD->isVolatile(),
   3376                         LD->isNonTemporal(), LD->isInvariant(), Alignment,
   3377                         LD->getAAInfo());
   3378     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
   3379                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
   3380     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
   3381                         LD->getPointerInfo().getWithOffset(IncrementSize),
   3382                         NewLoadedVT, LD->isVolatile(),
   3383                         LD->isNonTemporal(), LD->isInvariant(),
   3384                         MinAlign(Alignment, IncrementSize), LD->getAAInfo());
   3385   }
   3386 
   3387   // aggregate the two parts
   3388   SDValue ShiftAmount =
   3389       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
   3390                                                     DAG.getDataLayout()));
   3391   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
   3392   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
   3393 
   3394   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   3395                              Hi.getValue(1));
   3396 
   3397   return std::make_pair(Result, TF);
   3398 }
   3399 
   3400 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
   3401                                              SelectionDAG &DAG) const {
   3402   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
   3403          "unaligned indexed stores not implemented!");
   3404   SDValue Chain = ST->getChain();
   3405   SDValue Ptr = ST->getBasePtr();
   3406   SDValue Val = ST->getValue();
   3407   EVT VT = Val.getValueType();
   3408   int Alignment = ST->getAlignment();
   3409 
   3410   SDLoc dl(ST);
   3411   if (ST->getMemoryVT().isFloatingPoint() ||
   3412       ST->getMemoryVT().isVector()) {
   3413     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
   3414     if (isTypeLegal(intVT)) {
   3415       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
   3416         // Scalarize the store and let the individual components be handled.
   3417         SDValue Result = scalarizeVectorStore(ST, DAG);
   3418 
   3419         return Result;
   3420       }
   3421       // Expand to a bitconvert of the value to the integer type of the
   3422       // same size, then a (misaligned) int store.
   3423       // FIXME: Does not handle truncating floating point stores!
   3424       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
   3425       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
   3426                            ST->isVolatile(), ST->isNonTemporal(), Alignment);
   3427       return Result;
   3428     }
   3429     // Do a (aligned) store to a stack slot, then copy from the stack slot
   3430     // to the final destination using (unaligned) integer loads and stores.
   3431     EVT StoredVT = ST->getMemoryVT();
   3432     MVT RegVT =
   3433       getRegisterType(*DAG.getContext(),
   3434                       EVT::getIntegerVT(*DAG.getContext(),
   3435                                         StoredVT.getSizeInBits()));
   3436     EVT PtrVT = Ptr.getValueType();
   3437     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
   3438     unsigned RegBytes = RegVT.getSizeInBits() / 8;
   3439     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
   3440 
   3441     // Make sure the stack slot is also aligned for the register type.
   3442     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
   3443 
   3444     // Perform the original store, only redirected to the stack slot.
   3445     SDValue Store = DAG.getTruncStore(Chain, dl,
   3446                                       Val, StackPtr, MachinePointerInfo(),
   3447                                       StoredVT, false, false, 0);
   3448 
   3449     EVT StackPtrVT = StackPtr.getValueType();
   3450 
   3451     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
   3452     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
   3453     SmallVector<SDValue, 8> Stores;
   3454     unsigned Offset = 0;
   3455 
   3456     // Do all but one copies using the full register width.
   3457     for (unsigned i = 1; i < NumRegs; i++) {
   3458       // Load one integer register's worth from the stack slot.
   3459       SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
   3460                                  MachinePointerInfo(),
   3461                                  false, false, false, 0);
   3462       // Store it to the final location.  Remember the store.
   3463       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
   3464                                   ST->getPointerInfo().getWithOffset(Offset),
   3465                                     ST->isVolatile(), ST->isNonTemporal(),
   3466                                     MinAlign(ST->getAlignment(), Offset)));
   3467       // Increment the pointers.
   3468       Offset += RegBytes;
   3469       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
   3470                              StackPtr, StackPtrIncrement);
   3471       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
   3472     }
   3473 
   3474     // The last store may be partial.  Do a truncating store.  On big-endian
   3475     // machines this requires an extending load from the stack slot to ensure
   3476     // that the bits are in the right place.
   3477     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
   3478                                   8 * (StoredBytes - Offset));
   3479 
   3480     // Load from the stack slot.
   3481     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
   3482                                   MachinePointerInfo(),
   3483                                   MemVT, false, false, false, 0);
   3484 
   3485     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
   3486                                        ST->getPointerInfo()
   3487                                          .getWithOffset(Offset),
   3488                                        MemVT, ST->isVolatile(),
   3489                                        ST->isNonTemporal(),
   3490                                        MinAlign(ST->getAlignment(), Offset),
   3491                                        ST->getAAInfo()));
   3492     // The order of the stores doesn't matter - say it with a TokenFactor.
   3493     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   3494     return Result;
   3495   }
   3496 
   3497   assert(ST->getMemoryVT().isInteger() &&
   3498          !ST->getMemoryVT().isVector() &&
   3499          "Unaligned store of unknown type.");
   3500   // Get the half-size VT
   3501   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
   3502   int NumBits = NewStoredVT.getSizeInBits();
   3503   int IncrementSize = NumBits / 8;
   3504 
   3505   // Divide the stored value in two parts.
   3506   SDValue ShiftAmount =
   3507       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
   3508                                                     DAG.getDataLayout()));
   3509   SDValue Lo = Val;
   3510   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
   3511 
   3512   // Store the two parts
   3513   SDValue Store1, Store2;
   3514   Store1 = DAG.getTruncStore(Chain, dl,
   3515                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
   3516                              Ptr, ST->getPointerInfo(), NewStoredVT,
   3517                              ST->isVolatile(), ST->isNonTemporal(), Alignment);
   3518 
   3519   EVT PtrVT = Ptr.getValueType();
   3520   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
   3521                     DAG.getConstant(IncrementSize, dl, PtrVT));
   3522   Alignment = MinAlign(Alignment, IncrementSize);
   3523   Store2 = DAG.getTruncStore(
   3524       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
   3525       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT,
   3526       ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo());
   3527 
   3528   SDValue Result =
   3529     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
   3530   return Result;
   3531 }
   3532 
   3533 //===----------------------------------------------------------------------===//
   3534 // Implementation of Emulated TLS Model
   3535 //===----------------------------------------------------------------------===//
   3536 
   3537 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
   3538                                                 SelectionDAG &DAG) const {
   3539   // Access to address of TLS varialbe xyz is lowered to a function call:
   3540   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
   3541   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   3542   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
   3543   SDLoc dl(GA);
   3544 
   3545   ArgListTy Args;
   3546   ArgListEntry Entry;
   3547   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
   3548   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
   3549   StringRef EmuTlsVarName(NameString);
   3550   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
   3551   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
   3552   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
   3553   Entry.Ty = VoidPtrType;
   3554   Args.push_back(Entry);
   3555 
   3556   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
   3557 
   3558   TargetLowering::CallLoweringInfo CLI(DAG);
   3559   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
   3560   CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
   3561   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   3562 
   3563   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
   3564   // At last for X86 targets, maybe good for other targets too?
   3565   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   3566   MFI->setAdjustsStack(true);  // Is this only for X86 target?
   3567   MFI->setHasCalls(true);
   3568 
   3569   assert((GA->getOffset() == 0) &&
   3570          "Emulated TLS must have zero offset in GlobalAddressSDNode");
   3571   return CallResult.first;
   3572 }
   3573