1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/Reassociate.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Scalar.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <algorithm> 45 using namespace llvm; 46 using namespace reassociate; 47 48 #define DEBUG_TYPE "reassociate" 49 50 STATISTIC(NumChanged, "Number of insts reassociated"); 51 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 52 STATISTIC(NumFactor , "Number of multiplies factored"); 53 54 #ifndef NDEBUG 55 /// Print out the expression identified in the Ops list. 56 /// 57 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 58 Module *M = I->getModule(); 59 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 60 << *Ops[0].Op->getType() << '\t'; 61 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 62 dbgs() << "[ "; 63 Ops[i].Op->printAsOperand(dbgs(), false, M); 64 dbgs() << ", #" << Ops[i].Rank << "] "; 65 } 66 } 67 #endif 68 69 /// Utility class representing a non-constant Xor-operand. We classify 70 /// non-constant Xor-Operands into two categories: 71 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 72 /// C2) 73 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 74 /// constant. 75 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 76 /// operand as "E | 0" 77 class llvm::reassociate::XorOpnd { 78 public: 79 XorOpnd(Value *V); 80 81 bool isInvalid() const { return SymbolicPart == nullptr; } 82 bool isOrExpr() const { return isOr; } 83 Value *getValue() const { return OrigVal; } 84 Value *getSymbolicPart() const { return SymbolicPart; } 85 unsigned getSymbolicRank() const { return SymbolicRank; } 86 const APInt &getConstPart() const { return ConstPart; } 87 88 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 89 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 90 91 private: 92 Value *OrigVal; 93 Value *SymbolicPart; 94 APInt ConstPart; 95 unsigned SymbolicRank; 96 bool isOr; 97 }; 98 99 XorOpnd::XorOpnd(Value *V) { 100 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 101 OrigVal = V; 102 Instruction *I = dyn_cast<Instruction>(V); 103 SymbolicRank = 0; 104 105 if (I && (I->getOpcode() == Instruction::Or || 106 I->getOpcode() == Instruction::And)) { 107 Value *V0 = I->getOperand(0); 108 Value *V1 = I->getOperand(1); 109 if (isa<ConstantInt>(V0)) 110 std::swap(V0, V1); 111 112 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 113 ConstPart = C->getValue(); 114 SymbolicPart = V0; 115 isOr = (I->getOpcode() == Instruction::Or); 116 return; 117 } 118 } 119 120 // view the operand as "V | 0" 121 SymbolicPart = V; 122 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 123 isOr = true; 124 } 125 126 /// Return true if V is an instruction of the specified opcode and if it 127 /// only has one use. 128 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 129 if (V->hasOneUse() && isa<Instruction>(V) && 130 cast<Instruction>(V)->getOpcode() == Opcode && 131 (!isa<FPMathOperator>(V) || 132 cast<Instruction>(V)->hasUnsafeAlgebra())) 133 return cast<BinaryOperator>(V); 134 return nullptr; 135 } 136 137 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 138 unsigned Opcode2) { 139 if (V->hasOneUse() && isa<Instruction>(V) && 140 (cast<Instruction>(V)->getOpcode() == Opcode1 || 141 cast<Instruction>(V)->getOpcode() == Opcode2) && 142 (!isa<FPMathOperator>(V) || 143 cast<Instruction>(V)->hasUnsafeAlgebra())) 144 return cast<BinaryOperator>(V); 145 return nullptr; 146 } 147 148 void ReassociatePass::BuildRankMap( 149 Function &F, ReversePostOrderTraversal<Function *> &RPOT) { 150 unsigned i = 2; 151 152 // Assign distinct ranks to function arguments. 153 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 154 ValueRankMap[&*I] = ++i; 155 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n"); 156 } 157 158 for (BasicBlock *BB : RPOT) { 159 unsigned BBRank = RankMap[BB] = ++i << 16; 160 161 // Walk the basic block, adding precomputed ranks for any instructions that 162 // we cannot move. This ensures that the ranks for these instructions are 163 // all different in the block. 164 for (Instruction &I : *BB) 165 if (mayBeMemoryDependent(I)) 166 ValueRankMap[&I] = ++BBRank; 167 } 168 } 169 170 unsigned ReassociatePass::getRank(Value *V) { 171 Instruction *I = dyn_cast<Instruction>(V); 172 if (!I) { 173 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 174 return 0; // Otherwise it's a global or constant, rank 0. 175 } 176 177 if (unsigned Rank = ValueRankMap[I]) 178 return Rank; // Rank already known? 179 180 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 181 // we can reassociate expressions for code motion! Since we do not recurse 182 // for PHI nodes, we cannot have infinite recursion here, because there 183 // cannot be loops in the value graph that do not go through PHI nodes. 184 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 185 for (unsigned i = 0, e = I->getNumOperands(); 186 i != e && Rank != MaxRank; ++i) 187 Rank = std::max(Rank, getRank(I->getOperand(i))); 188 189 // If this is a not or neg instruction, do not count it for rank. This 190 // assures us that X and ~X will have the same rank. 191 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 192 !BinaryOperator::isFNeg(I)) 193 ++Rank; 194 195 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 196 197 return ValueRankMap[I] = Rank; 198 } 199 200 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 201 void ReassociatePass::canonicalizeOperands(Instruction *I) { 202 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 203 assert(I->isCommutative() && "Expected commutative operator."); 204 205 Value *LHS = I->getOperand(0); 206 Value *RHS = I->getOperand(1); 207 unsigned LHSRank = getRank(LHS); 208 unsigned RHSRank = getRank(RHS); 209 210 if (isa<Constant>(RHS)) 211 return; 212 213 if (isa<Constant>(LHS) || RHSRank < LHSRank) 214 cast<BinaryOperator>(I)->swapOperands(); 215 } 216 217 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 218 Instruction *InsertBefore, Value *FlagsOp) { 219 if (S1->getType()->isIntOrIntVectorTy()) 220 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 221 else { 222 BinaryOperator *Res = 223 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 224 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 225 return Res; 226 } 227 } 228 229 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 230 Instruction *InsertBefore, Value *FlagsOp) { 231 if (S1->getType()->isIntOrIntVectorTy()) 232 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 233 else { 234 BinaryOperator *Res = 235 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 236 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 237 return Res; 238 } 239 } 240 241 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 242 Instruction *InsertBefore, Value *FlagsOp) { 243 if (S1->getType()->isIntOrIntVectorTy()) 244 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 245 else { 246 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 247 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 248 return Res; 249 } 250 } 251 252 /// Replace 0-X with X*-1. 253 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 254 Type *Ty = Neg->getType(); 255 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 256 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 257 258 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 259 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 260 Res->takeName(Neg); 261 Neg->replaceAllUsesWith(Res); 262 Res->setDebugLoc(Neg->getDebugLoc()); 263 return Res; 264 } 265 266 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 267 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 268 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 269 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 270 /// even x in Bitwidth-bit arithmetic. 271 static unsigned CarmichaelShift(unsigned Bitwidth) { 272 if (Bitwidth < 3) 273 return Bitwidth - 1; 274 return Bitwidth - 2; 275 } 276 277 /// Add the extra weight 'RHS' to the existing weight 'LHS', 278 /// reducing the combined weight using any special properties of the operation. 279 /// The existing weight LHS represents the computation X op X op ... op X where 280 /// X occurs LHS times. The combined weight represents X op X op ... op X with 281 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 282 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 283 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 284 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 285 // If we were working with infinite precision arithmetic then the combined 286 // weight would be LHS + RHS. But we are using finite precision arithmetic, 287 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 288 // for nilpotent operations and addition, but not for idempotent operations 289 // and multiplication), so it is important to correctly reduce the combined 290 // weight back into range if wrapping would be wrong. 291 292 // If RHS is zero then the weight didn't change. 293 if (RHS.isMinValue()) 294 return; 295 // If LHS is zero then the combined weight is RHS. 296 if (LHS.isMinValue()) { 297 LHS = RHS; 298 return; 299 } 300 // From this point on we know that neither LHS nor RHS is zero. 301 302 if (Instruction::isIdempotent(Opcode)) { 303 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 304 // weight of 1. Keeping weights at zero or one also means that wrapping is 305 // not a problem. 306 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 307 return; // Return a weight of 1. 308 } 309 if (Instruction::isNilpotent(Opcode)) { 310 // Nilpotent means X op X === 0, so reduce weights modulo 2. 311 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 312 LHS = 0; // 1 + 1 === 0 modulo 2. 313 return; 314 } 315 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 316 // TODO: Reduce the weight by exploiting nsw/nuw? 317 LHS += RHS; 318 return; 319 } 320 321 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 322 "Unknown associative operation!"); 323 unsigned Bitwidth = LHS.getBitWidth(); 324 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 325 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 326 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 327 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 328 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 329 // which by a happy accident means that they can always be represented using 330 // Bitwidth bits. 331 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 332 // the Carmichael number). 333 if (Bitwidth > 3) { 334 /// CM - The value of Carmichael's lambda function. 335 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 336 // Any weight W >= Threshold can be replaced with W - CM. 337 APInt Threshold = CM + Bitwidth; 338 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 339 // For Bitwidth 4 or more the following sum does not overflow. 340 LHS += RHS; 341 while (LHS.uge(Threshold)) 342 LHS -= CM; 343 } else { 344 // To avoid problems with overflow do everything the same as above but using 345 // a larger type. 346 unsigned CM = 1U << CarmichaelShift(Bitwidth); 347 unsigned Threshold = CM + Bitwidth; 348 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 349 "Weights not reduced!"); 350 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 351 while (Total >= Threshold) 352 Total -= CM; 353 LHS = Total; 354 } 355 } 356 357 typedef std::pair<Value*, APInt> RepeatedValue; 358 359 /// Given an associative binary expression, return the leaf 360 /// nodes in Ops along with their weights (how many times the leaf occurs). The 361 /// original expression is the same as 362 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 363 /// op 364 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 365 /// op 366 /// ... 367 /// op 368 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 369 /// 370 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 371 /// 372 /// This routine may modify the function, in which case it returns 'true'. The 373 /// changes it makes may well be destructive, changing the value computed by 'I' 374 /// to something completely different. Thus if the routine returns 'true' then 375 /// you MUST either replace I with a new expression computed from the Ops array, 376 /// or use RewriteExprTree to put the values back in. 377 /// 378 /// A leaf node is either not a binary operation of the same kind as the root 379 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 380 /// opcode), or is the same kind of binary operator but has a use which either 381 /// does not belong to the expression, or does belong to the expression but is 382 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 383 /// of the expression, while for non-leaf nodes (except for the root 'I') every 384 /// use is a non-leaf node of the expression. 385 /// 386 /// For example: 387 /// expression graph node names 388 /// 389 /// + | I 390 /// / \ | 391 /// + + | A, B 392 /// / \ / \ | 393 /// * + * | C, D, E 394 /// / \ / \ / \ | 395 /// + * | F, G 396 /// 397 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 398 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 399 /// 400 /// The expression is maximal: if some instruction is a binary operator of the 401 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 402 /// then the instruction also belongs to the expression, is not a leaf node of 403 /// it, and its operands also belong to the expression (but may be leaf nodes). 404 /// 405 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 406 /// order to ensure that every non-root node in the expression has *exactly one* 407 /// use by a non-leaf node of the expression. This destruction means that the 408 /// caller MUST either replace 'I' with a new expression or use something like 409 /// RewriteExprTree to put the values back in if the routine indicates that it 410 /// made a change by returning 'true'. 411 /// 412 /// In the above example either the right operand of A or the left operand of B 413 /// will be replaced by undef. If it is B's operand then this gives: 414 /// 415 /// + | I 416 /// / \ | 417 /// + + | A, B - operand of B replaced with undef 418 /// / \ \ | 419 /// * + * | C, D, E 420 /// / \ / \ / \ | 421 /// + * | F, G 422 /// 423 /// Note that such undef operands can only be reached by passing through 'I'. 424 /// For example, if you visit operands recursively starting from a leaf node 425 /// then you will never see such an undef operand unless you get back to 'I', 426 /// which requires passing through a phi node. 427 /// 428 /// Note that this routine may also mutate binary operators of the wrong type 429 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 430 /// of the expression) if it can turn them into binary operators of the right 431 /// type and thus make the expression bigger. 432 433 static bool LinearizeExprTree(BinaryOperator *I, 434 SmallVectorImpl<RepeatedValue> &Ops) { 435 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 436 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 437 unsigned Opcode = I->getOpcode(); 438 assert(I->isAssociative() && I->isCommutative() && 439 "Expected an associative and commutative operation!"); 440 441 // Visit all operands of the expression, keeping track of their weight (the 442 // number of paths from the expression root to the operand, or if you like 443 // the number of times that operand occurs in the linearized expression). 444 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 445 // while A has weight two. 446 447 // Worklist of non-leaf nodes (their operands are in the expression too) along 448 // with their weights, representing a certain number of paths to the operator. 449 // If an operator occurs in the worklist multiple times then we found multiple 450 // ways to get to it. 451 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 452 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 453 bool Changed = false; 454 455 // Leaves of the expression are values that either aren't the right kind of 456 // operation (eg: a constant, or a multiply in an add tree), or are, but have 457 // some uses that are not inside the expression. For example, in I = X + X, 458 // X = A + B, the value X has two uses (by I) that are in the expression. If 459 // X has any other uses, for example in a return instruction, then we consider 460 // X to be a leaf, and won't analyze it further. When we first visit a value, 461 // if it has more than one use then at first we conservatively consider it to 462 // be a leaf. Later, as the expression is explored, we may discover some more 463 // uses of the value from inside the expression. If all uses turn out to be 464 // from within the expression (and the value is a binary operator of the right 465 // kind) then the value is no longer considered to be a leaf, and its operands 466 // are explored. 467 468 // Leaves - Keeps track of the set of putative leaves as well as the number of 469 // paths to each leaf seen so far. 470 typedef DenseMap<Value*, APInt> LeafMap; 471 LeafMap Leaves; // Leaf -> Total weight so far. 472 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 473 474 #ifndef NDEBUG 475 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 476 #endif 477 while (!Worklist.empty()) { 478 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 479 I = P.first; // We examine the operands of this binary operator. 480 481 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 482 Value *Op = I->getOperand(OpIdx); 483 APInt Weight = P.second; // Number of paths to this operand. 484 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 485 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 486 487 // If this is a binary operation of the right kind with only one use then 488 // add its operands to the expression. 489 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 490 assert(Visited.insert(Op).second && "Not first visit!"); 491 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 492 Worklist.push_back(std::make_pair(BO, Weight)); 493 continue; 494 } 495 496 // Appears to be a leaf. Is the operand already in the set of leaves? 497 LeafMap::iterator It = Leaves.find(Op); 498 if (It == Leaves.end()) { 499 // Not in the leaf map. Must be the first time we saw this operand. 500 assert(Visited.insert(Op).second && "Not first visit!"); 501 if (!Op->hasOneUse()) { 502 // This value has uses not accounted for by the expression, so it is 503 // not safe to modify. Mark it as being a leaf. 504 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 505 LeafOrder.push_back(Op); 506 Leaves[Op] = Weight; 507 continue; 508 } 509 // No uses outside the expression, try morphing it. 510 } else if (It != Leaves.end()) { 511 // Already in the leaf map. 512 assert(Visited.count(Op) && "In leaf map but not visited!"); 513 514 // Update the number of paths to the leaf. 515 IncorporateWeight(It->second, Weight, Opcode); 516 517 #if 0 // TODO: Re-enable once PR13021 is fixed. 518 // The leaf already has one use from inside the expression. As we want 519 // exactly one such use, drop this new use of the leaf. 520 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 521 I->setOperand(OpIdx, UndefValue::get(I->getType())); 522 Changed = true; 523 524 // If the leaf is a binary operation of the right kind and we now see 525 // that its multiple original uses were in fact all by nodes belonging 526 // to the expression, then no longer consider it to be a leaf and add 527 // its operands to the expression. 528 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 529 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 530 Worklist.push_back(std::make_pair(BO, It->second)); 531 Leaves.erase(It); 532 continue; 533 } 534 #endif 535 536 // If we still have uses that are not accounted for by the expression 537 // then it is not safe to modify the value. 538 if (!Op->hasOneUse()) 539 continue; 540 541 // No uses outside the expression, try morphing it. 542 Weight = It->second; 543 Leaves.erase(It); // Since the value may be morphed below. 544 } 545 546 // At this point we have a value which, first of all, is not a binary 547 // expression of the right kind, and secondly, is only used inside the 548 // expression. This means that it can safely be modified. See if we 549 // can usefully morph it into an expression of the right kind. 550 assert((!isa<Instruction>(Op) || 551 cast<Instruction>(Op)->getOpcode() != Opcode 552 || (isa<FPMathOperator>(Op) && 553 !cast<Instruction>(Op)->hasUnsafeAlgebra())) && 554 "Should have been handled above!"); 555 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 556 557 // If this is a multiply expression, turn any internal negations into 558 // multiplies by -1 so they can be reassociated. 559 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 560 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 561 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 562 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 563 BO = LowerNegateToMultiply(BO); 564 DEBUG(dbgs() << *BO << '\n'); 565 Worklist.push_back(std::make_pair(BO, Weight)); 566 Changed = true; 567 continue; 568 } 569 570 // Failed to morph into an expression of the right type. This really is 571 // a leaf. 572 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 573 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 574 LeafOrder.push_back(Op); 575 Leaves[Op] = Weight; 576 } 577 } 578 579 // The leaves, repeated according to their weights, represent the linearized 580 // form of the expression. 581 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 582 Value *V = LeafOrder[i]; 583 LeafMap::iterator It = Leaves.find(V); 584 if (It == Leaves.end()) 585 // Node initially thought to be a leaf wasn't. 586 continue; 587 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 588 APInt Weight = It->second; 589 if (Weight.isMinValue()) 590 // Leaf already output or weight reduction eliminated it. 591 continue; 592 // Ensure the leaf is only output once. 593 It->second = 0; 594 Ops.push_back(std::make_pair(V, Weight)); 595 } 596 597 // For nilpotent operations or addition there may be no operands, for example 598 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 599 // in both cases the weight reduces to 0 causing the value to be skipped. 600 if (Ops.empty()) { 601 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 602 assert(Identity && "Associative operation without identity!"); 603 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 604 } 605 606 return Changed; 607 } 608 609 /// Now that the operands for this expression tree are 610 /// linearized and optimized, emit them in-order. 611 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 612 SmallVectorImpl<ValueEntry> &Ops) { 613 assert(Ops.size() > 1 && "Single values should be used directly!"); 614 615 // Since our optimizations should never increase the number of operations, the 616 // new expression can usually be written reusing the existing binary operators 617 // from the original expression tree, without creating any new instructions, 618 // though the rewritten expression may have a completely different topology. 619 // We take care to not change anything if the new expression will be the same 620 // as the original. If more than trivial changes (like commuting operands) 621 // were made then we are obliged to clear out any optional subclass data like 622 // nsw flags. 623 624 /// NodesToRewrite - Nodes from the original expression available for writing 625 /// the new expression into. 626 SmallVector<BinaryOperator*, 8> NodesToRewrite; 627 unsigned Opcode = I->getOpcode(); 628 BinaryOperator *Op = I; 629 630 /// NotRewritable - The operands being written will be the leaves of the new 631 /// expression and must not be used as inner nodes (via NodesToRewrite) by 632 /// mistake. Inner nodes are always reassociable, and usually leaves are not 633 /// (if they were they would have been incorporated into the expression and so 634 /// would not be leaves), so most of the time there is no danger of this. But 635 /// in rare cases a leaf may become reassociable if an optimization kills uses 636 /// of it, or it may momentarily become reassociable during rewriting (below) 637 /// due it being removed as an operand of one of its uses. Ensure that misuse 638 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 639 /// leaves and refusing to reuse any of them as inner nodes. 640 SmallPtrSet<Value*, 8> NotRewritable; 641 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 642 NotRewritable.insert(Ops[i].Op); 643 644 // ExpressionChanged - Non-null if the rewritten expression differs from the 645 // original in some non-trivial way, requiring the clearing of optional flags. 646 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 647 BinaryOperator *ExpressionChanged = nullptr; 648 for (unsigned i = 0; ; ++i) { 649 // The last operation (which comes earliest in the IR) is special as both 650 // operands will come from Ops, rather than just one with the other being 651 // a subexpression. 652 if (i+2 == Ops.size()) { 653 Value *NewLHS = Ops[i].Op; 654 Value *NewRHS = Ops[i+1].Op; 655 Value *OldLHS = Op->getOperand(0); 656 Value *OldRHS = Op->getOperand(1); 657 658 if (NewLHS == OldLHS && NewRHS == OldRHS) 659 // Nothing changed, leave it alone. 660 break; 661 662 if (NewLHS == OldRHS && NewRHS == OldLHS) { 663 // The order of the operands was reversed. Swap them. 664 DEBUG(dbgs() << "RA: " << *Op << '\n'); 665 Op->swapOperands(); 666 DEBUG(dbgs() << "TO: " << *Op << '\n'); 667 MadeChange = true; 668 ++NumChanged; 669 break; 670 } 671 672 // The new operation differs non-trivially from the original. Overwrite 673 // the old operands with the new ones. 674 DEBUG(dbgs() << "RA: " << *Op << '\n'); 675 if (NewLHS != OldLHS) { 676 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 677 if (BO && !NotRewritable.count(BO)) 678 NodesToRewrite.push_back(BO); 679 Op->setOperand(0, NewLHS); 680 } 681 if (NewRHS != OldRHS) { 682 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 683 if (BO && !NotRewritable.count(BO)) 684 NodesToRewrite.push_back(BO); 685 Op->setOperand(1, NewRHS); 686 } 687 DEBUG(dbgs() << "TO: " << *Op << '\n'); 688 689 ExpressionChanged = Op; 690 MadeChange = true; 691 ++NumChanged; 692 693 break; 694 } 695 696 // Not the last operation. The left-hand side will be a sub-expression 697 // while the right-hand side will be the current element of Ops. 698 Value *NewRHS = Ops[i].Op; 699 if (NewRHS != Op->getOperand(1)) { 700 DEBUG(dbgs() << "RA: " << *Op << '\n'); 701 if (NewRHS == Op->getOperand(0)) { 702 // The new right-hand side was already present as the left operand. If 703 // we are lucky then swapping the operands will sort out both of them. 704 Op->swapOperands(); 705 } else { 706 // Overwrite with the new right-hand side. 707 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 708 if (BO && !NotRewritable.count(BO)) 709 NodesToRewrite.push_back(BO); 710 Op->setOperand(1, NewRHS); 711 ExpressionChanged = Op; 712 } 713 DEBUG(dbgs() << "TO: " << *Op << '\n'); 714 MadeChange = true; 715 ++NumChanged; 716 } 717 718 // Now deal with the left-hand side. If this is already an operation node 719 // from the original expression then just rewrite the rest of the expression 720 // into it. 721 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 722 if (BO && !NotRewritable.count(BO)) { 723 Op = BO; 724 continue; 725 } 726 727 // Otherwise, grab a spare node from the original expression and use that as 728 // the left-hand side. If there are no nodes left then the optimizers made 729 // an expression with more nodes than the original! This usually means that 730 // they did something stupid but it might mean that the problem was just too 731 // hard (finding the mimimal number of multiplications needed to realize a 732 // multiplication expression is NP-complete). Whatever the reason, smart or 733 // stupid, create a new node if there are none left. 734 BinaryOperator *NewOp; 735 if (NodesToRewrite.empty()) { 736 Constant *Undef = UndefValue::get(I->getType()); 737 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 738 Undef, Undef, "", I); 739 if (NewOp->getType()->isFPOrFPVectorTy()) 740 NewOp->setFastMathFlags(I->getFastMathFlags()); 741 } else { 742 NewOp = NodesToRewrite.pop_back_val(); 743 } 744 745 DEBUG(dbgs() << "RA: " << *Op << '\n'); 746 Op->setOperand(0, NewOp); 747 DEBUG(dbgs() << "TO: " << *Op << '\n'); 748 ExpressionChanged = Op; 749 MadeChange = true; 750 ++NumChanged; 751 Op = NewOp; 752 } 753 754 // If the expression changed non-trivially then clear out all subclass data 755 // starting from the operator specified in ExpressionChanged, and compactify 756 // the operators to just before the expression root to guarantee that the 757 // expression tree is dominated by all of Ops. 758 if (ExpressionChanged) 759 do { 760 // Preserve FastMathFlags. 761 if (isa<FPMathOperator>(I)) { 762 FastMathFlags Flags = I->getFastMathFlags(); 763 ExpressionChanged->clearSubclassOptionalData(); 764 ExpressionChanged->setFastMathFlags(Flags); 765 } else 766 ExpressionChanged->clearSubclassOptionalData(); 767 768 if (ExpressionChanged == I) 769 break; 770 ExpressionChanged->moveBefore(I); 771 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 772 } while (1); 773 774 // Throw away any left over nodes from the original expression. 775 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 776 RedoInsts.insert(NodesToRewrite[i]); 777 } 778 779 /// Insert instructions before the instruction pointed to by BI, 780 /// that computes the negative version of the value specified. The negative 781 /// version of the value is returned, and BI is left pointing at the instruction 782 /// that should be processed next by the reassociation pass. 783 /// Also add intermediate instructions to the redo list that are modified while 784 /// pushing the negates through adds. These will be revisited to see if 785 /// additional opportunities have been exposed. 786 static Value *NegateValue(Value *V, Instruction *BI, 787 SetVector<AssertingVH<Instruction>> &ToRedo) { 788 if (Constant *C = dyn_cast<Constant>(V)) { 789 if (C->getType()->isFPOrFPVectorTy()) { 790 return ConstantExpr::getFNeg(C); 791 } 792 return ConstantExpr::getNeg(C); 793 } 794 795 796 // We are trying to expose opportunity for reassociation. One of the things 797 // that we want to do to achieve this is to push a negation as deep into an 798 // expression chain as possible, to expose the add instructions. In practice, 799 // this means that we turn this: 800 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 801 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 802 // the constants. We assume that instcombine will clean up the mess later if 803 // we introduce tons of unnecessary negation instructions. 804 // 805 if (BinaryOperator *I = 806 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 807 // Push the negates through the add. 808 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 809 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 810 if (I->getOpcode() == Instruction::Add) { 811 I->setHasNoUnsignedWrap(false); 812 I->setHasNoSignedWrap(false); 813 } 814 815 // We must move the add instruction here, because the neg instructions do 816 // not dominate the old add instruction in general. By moving it, we are 817 // assured that the neg instructions we just inserted dominate the 818 // instruction we are about to insert after them. 819 // 820 I->moveBefore(BI); 821 I->setName(I->getName()+".neg"); 822 823 // Add the intermediate negates to the redo list as processing them later 824 // could expose more reassociating opportunities. 825 ToRedo.insert(I); 826 return I; 827 } 828 829 // Okay, we need to materialize a negated version of V with an instruction. 830 // Scan the use lists of V to see if we have one already. 831 for (User *U : V->users()) { 832 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 833 continue; 834 835 // We found one! Now we have to make sure that the definition dominates 836 // this use. We do this by moving it to the entry block (if it is a 837 // non-instruction value) or right after the definition. These negates will 838 // be zapped by reassociate later, so we don't need much finesse here. 839 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 840 841 // Verify that the negate is in this function, V might be a constant expr. 842 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 843 continue; 844 845 BasicBlock::iterator InsertPt; 846 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 847 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 848 InsertPt = II->getNormalDest()->begin(); 849 } else { 850 InsertPt = ++InstInput->getIterator(); 851 } 852 while (isa<PHINode>(InsertPt)) ++InsertPt; 853 } else { 854 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 855 } 856 TheNeg->moveBefore(&*InsertPt); 857 if (TheNeg->getOpcode() == Instruction::Sub) { 858 TheNeg->setHasNoUnsignedWrap(false); 859 TheNeg->setHasNoSignedWrap(false); 860 } else { 861 TheNeg->andIRFlags(BI); 862 } 863 ToRedo.insert(TheNeg); 864 return TheNeg; 865 } 866 867 // Insert a 'neg' instruction that subtracts the value from zero to get the 868 // negation. 869 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 870 ToRedo.insert(NewNeg); 871 return NewNeg; 872 } 873 874 /// Return true if we should break up this subtract of X-Y into (X + -Y). 875 static bool ShouldBreakUpSubtract(Instruction *Sub) { 876 // If this is a negation, we can't split it up! 877 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 878 return false; 879 880 // Don't breakup X - undef. 881 if (isa<UndefValue>(Sub->getOperand(1))) 882 return false; 883 884 // Don't bother to break this up unless either the LHS is an associable add or 885 // subtract or if this is only used by one. 886 Value *V0 = Sub->getOperand(0); 887 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 888 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 889 return true; 890 Value *V1 = Sub->getOperand(1); 891 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 892 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 893 return true; 894 Value *VB = Sub->user_back(); 895 if (Sub->hasOneUse() && 896 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 897 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 898 return true; 899 900 return false; 901 } 902 903 /// If we have (X-Y), and if either X is an add, or if this is only used by an 904 /// add, transform this into (X+(0-Y)) to promote better reassociation. 905 static BinaryOperator * 906 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) { 907 // Convert a subtract into an add and a neg instruction. This allows sub 908 // instructions to be commuted with other add instructions. 909 // 910 // Calculate the negative value of Operand 1 of the sub instruction, 911 // and set it as the RHS of the add instruction we just made. 912 // 913 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 914 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 915 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 916 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 917 New->takeName(Sub); 918 919 // Everyone now refers to the add instruction. 920 Sub->replaceAllUsesWith(New); 921 New->setDebugLoc(Sub->getDebugLoc()); 922 923 DEBUG(dbgs() << "Negated: " << *New << '\n'); 924 return New; 925 } 926 927 /// If this is a shift of a reassociable multiply or is used by one, change 928 /// this into a multiply by a constant to assist with further reassociation. 929 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 930 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 931 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 932 933 BinaryOperator *Mul = 934 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 935 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 936 Mul->takeName(Shl); 937 938 // Everyone now refers to the mul instruction. 939 Shl->replaceAllUsesWith(Mul); 940 Mul->setDebugLoc(Shl->getDebugLoc()); 941 942 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 943 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 944 // handling. 945 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 946 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 947 if (NSW && NUW) 948 Mul->setHasNoSignedWrap(true); 949 Mul->setHasNoUnsignedWrap(NUW); 950 return Mul; 951 } 952 953 /// Scan backwards and forwards among values with the same rank as element i 954 /// to see if X exists. If X does not exist, return i. This is useful when 955 /// scanning for 'x' when we see '-x' because they both get the same rank. 956 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 957 Value *X) { 958 unsigned XRank = Ops[i].Rank; 959 unsigned e = Ops.size(); 960 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 961 if (Ops[j].Op == X) 962 return j; 963 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 964 if (Instruction *I2 = dyn_cast<Instruction>(X)) 965 if (I1->isIdenticalTo(I2)) 966 return j; 967 } 968 // Scan backwards. 969 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 970 if (Ops[j].Op == X) 971 return j; 972 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 973 if (Instruction *I2 = dyn_cast<Instruction>(X)) 974 if (I1->isIdenticalTo(I2)) 975 return j; 976 } 977 return i; 978 } 979 980 /// Emit a tree of add instructions, summing Ops together 981 /// and returning the result. Insert the tree before I. 982 static Value *EmitAddTreeOfValues(Instruction *I, 983 SmallVectorImpl<WeakVH> &Ops){ 984 if (Ops.size() == 1) return Ops.back(); 985 986 Value *V1 = Ops.back(); 987 Ops.pop_back(); 988 Value *V2 = EmitAddTreeOfValues(I, Ops); 989 return CreateAdd(V2, V1, "tmp", I, I); 990 } 991 992 /// If V is an expression tree that is a multiplication sequence, 993 /// and if this sequence contains a multiply by Factor, 994 /// remove Factor from the tree and return the new tree. 995 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 996 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 997 if (!BO) 998 return nullptr; 999 1000 SmallVector<RepeatedValue, 8> Tree; 1001 MadeChange |= LinearizeExprTree(BO, Tree); 1002 SmallVector<ValueEntry, 8> Factors; 1003 Factors.reserve(Tree.size()); 1004 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1005 RepeatedValue E = Tree[i]; 1006 Factors.append(E.second.getZExtValue(), 1007 ValueEntry(getRank(E.first), E.first)); 1008 } 1009 1010 bool FoundFactor = false; 1011 bool NeedsNegate = false; 1012 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1013 if (Factors[i].Op == Factor) { 1014 FoundFactor = true; 1015 Factors.erase(Factors.begin()+i); 1016 break; 1017 } 1018 1019 // If this is a negative version of this factor, remove it. 1020 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1021 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1022 if (FC1->getValue() == -FC2->getValue()) { 1023 FoundFactor = NeedsNegate = true; 1024 Factors.erase(Factors.begin()+i); 1025 break; 1026 } 1027 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1028 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1029 const APFloat &F1 = FC1->getValueAPF(); 1030 APFloat F2(FC2->getValueAPF()); 1031 F2.changeSign(); 1032 if (F1.compare(F2) == APFloat::cmpEqual) { 1033 FoundFactor = NeedsNegate = true; 1034 Factors.erase(Factors.begin() + i); 1035 break; 1036 } 1037 } 1038 } 1039 } 1040 1041 if (!FoundFactor) { 1042 // Make sure to restore the operands to the expression tree. 1043 RewriteExprTree(BO, Factors); 1044 return nullptr; 1045 } 1046 1047 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1048 1049 // If this was just a single multiply, remove the multiply and return the only 1050 // remaining operand. 1051 if (Factors.size() == 1) { 1052 RedoInsts.insert(BO); 1053 V = Factors[0].Op; 1054 } else { 1055 RewriteExprTree(BO, Factors); 1056 V = BO; 1057 } 1058 1059 if (NeedsNegate) 1060 V = CreateNeg(V, "neg", &*InsertPt, BO); 1061 1062 return V; 1063 } 1064 1065 /// If V is a single-use multiply, recursively add its operands as factors, 1066 /// otherwise add V to the list of factors. 1067 /// 1068 /// Ops is the top-level list of add operands we're trying to factor. 1069 static void FindSingleUseMultiplyFactors(Value *V, 1070 SmallVectorImpl<Value*> &Factors, 1071 const SmallVectorImpl<ValueEntry> &Ops) { 1072 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1073 if (!BO) { 1074 Factors.push_back(V); 1075 return; 1076 } 1077 1078 // Otherwise, add the LHS and RHS to the list of factors. 1079 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1080 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1081 } 1082 1083 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1084 /// This optimizes based on identities. If it can be reduced to a single Value, 1085 /// it is returned, otherwise the Ops list is mutated as necessary. 1086 static Value *OptimizeAndOrXor(unsigned Opcode, 1087 SmallVectorImpl<ValueEntry> &Ops) { 1088 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1089 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1090 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1091 // First, check for X and ~X in the operand list. 1092 assert(i < Ops.size()); 1093 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1094 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1095 unsigned FoundX = FindInOperandList(Ops, i, X); 1096 if (FoundX != i) { 1097 if (Opcode == Instruction::And) // ...&X&~X = 0 1098 return Constant::getNullValue(X->getType()); 1099 1100 if (Opcode == Instruction::Or) // ...|X|~X = -1 1101 return Constant::getAllOnesValue(X->getType()); 1102 } 1103 } 1104 1105 // Next, check for duplicate pairs of values, which we assume are next to 1106 // each other, due to our sorting criteria. 1107 assert(i < Ops.size()); 1108 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1109 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1110 // Drop duplicate values for And and Or. 1111 Ops.erase(Ops.begin()+i); 1112 --i; --e; 1113 ++NumAnnihil; 1114 continue; 1115 } 1116 1117 // Drop pairs of values for Xor. 1118 assert(Opcode == Instruction::Xor); 1119 if (e == 2) 1120 return Constant::getNullValue(Ops[0].Op->getType()); 1121 1122 // Y ^ X^X -> Y 1123 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1124 i -= 1; e -= 2; 1125 ++NumAnnihil; 1126 } 1127 } 1128 return nullptr; 1129 } 1130 1131 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1132 /// instruction with the given two operands, and return the resulting 1133 /// instruction. There are two special cases: 1) if the constant operand is 0, 1134 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1135 /// be returned. 1136 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1137 const APInt &ConstOpnd) { 1138 if (ConstOpnd != 0) { 1139 if (!ConstOpnd.isAllOnesValue()) { 1140 LLVMContext &Ctx = Opnd->getType()->getContext(); 1141 Instruction *I; 1142 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1143 "and.ra", InsertBefore); 1144 I->setDebugLoc(InsertBefore->getDebugLoc()); 1145 return I; 1146 } 1147 return Opnd; 1148 } 1149 return nullptr; 1150 } 1151 1152 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1153 // into "R ^ C", where C would be 0, and R is a symbolic value. 1154 // 1155 // If it was successful, true is returned, and the "R" and "C" is returned 1156 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1157 // and both "Res" and "ConstOpnd" remain unchanged. 1158 // 1159 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1160 APInt &ConstOpnd, Value *&Res) { 1161 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1162 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1163 // = (x & ~c1) ^ (c1 ^ c2) 1164 // It is useful only when c1 == c2. 1165 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1166 if (!Opnd1->getValue()->hasOneUse()) 1167 return false; 1168 1169 const APInt &C1 = Opnd1->getConstPart(); 1170 if (C1 != ConstOpnd) 1171 return false; 1172 1173 Value *X = Opnd1->getSymbolicPart(); 1174 Res = createAndInstr(I, X, ~C1); 1175 // ConstOpnd was C2, now C1 ^ C2. 1176 ConstOpnd ^= C1; 1177 1178 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1179 RedoInsts.insert(T); 1180 return true; 1181 } 1182 return false; 1183 } 1184 1185 1186 // Helper function of OptimizeXor(). It tries to simplify 1187 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1188 // symbolic value. 1189 // 1190 // If it was successful, true is returned, and the "R" and "C" is returned 1191 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1192 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1193 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1194 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1195 XorOpnd *Opnd2, APInt &ConstOpnd, 1196 Value *&Res) { 1197 Value *X = Opnd1->getSymbolicPart(); 1198 if (X != Opnd2->getSymbolicPart()) 1199 return false; 1200 1201 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1202 int DeadInstNum = 1; 1203 if (Opnd1->getValue()->hasOneUse()) 1204 DeadInstNum++; 1205 if (Opnd2->getValue()->hasOneUse()) 1206 DeadInstNum++; 1207 1208 // Xor-Rule 2: 1209 // (x | c1) ^ (x & c2) 1210 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1211 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1212 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1213 // 1214 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1215 if (Opnd2->isOrExpr()) 1216 std::swap(Opnd1, Opnd2); 1217 1218 const APInt &C1 = Opnd1->getConstPart(); 1219 const APInt &C2 = Opnd2->getConstPart(); 1220 APInt C3((~C1) ^ C2); 1221 1222 // Do not increase code size! 1223 if (C3 != 0 && !C3.isAllOnesValue()) { 1224 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1225 if (NewInstNum > DeadInstNum) 1226 return false; 1227 } 1228 1229 Res = createAndInstr(I, X, C3); 1230 ConstOpnd ^= C1; 1231 1232 } else if (Opnd1->isOrExpr()) { 1233 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1234 // 1235 const APInt &C1 = Opnd1->getConstPart(); 1236 const APInt &C2 = Opnd2->getConstPart(); 1237 APInt C3 = C1 ^ C2; 1238 1239 // Do not increase code size 1240 if (C3 != 0 && !C3.isAllOnesValue()) { 1241 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1242 if (NewInstNum > DeadInstNum) 1243 return false; 1244 } 1245 1246 Res = createAndInstr(I, X, C3); 1247 ConstOpnd ^= C3; 1248 } else { 1249 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1250 // 1251 const APInt &C1 = Opnd1->getConstPart(); 1252 const APInt &C2 = Opnd2->getConstPart(); 1253 APInt C3 = C1 ^ C2; 1254 Res = createAndInstr(I, X, C3); 1255 } 1256 1257 // Put the original operands in the Redo list; hope they will be deleted 1258 // as dead code. 1259 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1260 RedoInsts.insert(T); 1261 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1262 RedoInsts.insert(T); 1263 1264 return true; 1265 } 1266 1267 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1268 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1269 /// necessary. 1270 Value *ReassociatePass::OptimizeXor(Instruction *I, 1271 SmallVectorImpl<ValueEntry> &Ops) { 1272 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1273 return V; 1274 1275 if (Ops.size() == 1) 1276 return nullptr; 1277 1278 SmallVector<XorOpnd, 8> Opnds; 1279 SmallVector<XorOpnd*, 8> OpndPtrs; 1280 Type *Ty = Ops[0].Op->getType(); 1281 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1282 1283 // Step 1: Convert ValueEntry to XorOpnd 1284 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1285 Value *V = Ops[i].Op; 1286 if (!isa<ConstantInt>(V)) { 1287 XorOpnd O(V); 1288 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1289 Opnds.push_back(O); 1290 } else 1291 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1292 } 1293 1294 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1295 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1296 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1297 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1298 // when new elements are added to the vector. 1299 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1300 OpndPtrs.push_back(&Opnds[i]); 1301 1302 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1303 // the same symbolic value cluster together. For instance, the input operand 1304 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1305 // ("x | 123", "x & 789", "y & 456"). 1306 // 1307 // The purpose is twofold: 1308 // 1) Cluster together the operands sharing the same symbolic-value. 1309 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1310 // could potentially shorten crital path, and expose more loop-invariants. 1311 // Note that values' rank are basically defined in RPO order (FIXME). 1312 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1313 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1314 // "z" in the order of X-Y-Z is better than any other orders. 1315 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), 1316 [](XorOpnd *LHS, XorOpnd *RHS) { 1317 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1318 }); 1319 1320 // Step 3: Combine adjacent operands 1321 XorOpnd *PrevOpnd = nullptr; 1322 bool Changed = false; 1323 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1324 XorOpnd *CurrOpnd = OpndPtrs[i]; 1325 // The combined value 1326 Value *CV; 1327 1328 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1329 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1330 Changed = true; 1331 if (CV) 1332 *CurrOpnd = XorOpnd(CV); 1333 else { 1334 CurrOpnd->Invalidate(); 1335 continue; 1336 } 1337 } 1338 1339 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1340 PrevOpnd = CurrOpnd; 1341 continue; 1342 } 1343 1344 // step 3.2: When previous and current operands share the same symbolic 1345 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1346 // 1347 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1348 // Remove previous operand 1349 PrevOpnd->Invalidate(); 1350 if (CV) { 1351 *CurrOpnd = XorOpnd(CV); 1352 PrevOpnd = CurrOpnd; 1353 } else { 1354 CurrOpnd->Invalidate(); 1355 PrevOpnd = nullptr; 1356 } 1357 Changed = true; 1358 } 1359 } 1360 1361 // Step 4: Reassemble the Ops 1362 if (Changed) { 1363 Ops.clear(); 1364 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1365 XorOpnd &O = Opnds[i]; 1366 if (O.isInvalid()) 1367 continue; 1368 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1369 Ops.push_back(VE); 1370 } 1371 if (ConstOpnd != 0) { 1372 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1373 ValueEntry VE(getRank(C), C); 1374 Ops.push_back(VE); 1375 } 1376 int Sz = Ops.size(); 1377 if (Sz == 1) 1378 return Ops.back().Op; 1379 else if (Sz == 0) { 1380 assert(ConstOpnd == 0); 1381 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1382 } 1383 } 1384 1385 return nullptr; 1386 } 1387 1388 /// Optimize a series of operands to an 'add' instruction. This 1389 /// optimizes based on identities. If it can be reduced to a single Value, it 1390 /// is returned, otherwise the Ops list is mutated as necessary. 1391 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1392 SmallVectorImpl<ValueEntry> &Ops) { 1393 // Scan the operand lists looking for X and -X pairs. If we find any, we 1394 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1395 // scan for any 1396 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1397 1398 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1399 Value *TheOp = Ops[i].Op; 1400 // Check to see if we've seen this operand before. If so, we factor all 1401 // instances of the operand together. Due to our sorting criteria, we know 1402 // that these need to be next to each other in the vector. 1403 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1404 // Rescan the list, remove all instances of this operand from the expr. 1405 unsigned NumFound = 0; 1406 do { 1407 Ops.erase(Ops.begin()+i); 1408 ++NumFound; 1409 } while (i != Ops.size() && Ops[i].Op == TheOp); 1410 1411 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1412 ++NumFactor; 1413 1414 // Insert a new multiply. 1415 Type *Ty = TheOp->getType(); 1416 Constant *C = Ty->isIntOrIntVectorTy() ? 1417 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1418 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1419 1420 // Now that we have inserted a multiply, optimize it. This allows us to 1421 // handle cases that require multiple factoring steps, such as this: 1422 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1423 RedoInsts.insert(Mul); 1424 1425 // If every add operand was a duplicate, return the multiply. 1426 if (Ops.empty()) 1427 return Mul; 1428 1429 // Otherwise, we had some input that didn't have the dupe, such as 1430 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1431 // things being added by this operation. 1432 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1433 1434 --i; 1435 e = Ops.size(); 1436 continue; 1437 } 1438 1439 // Check for X and -X or X and ~X in the operand list. 1440 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1441 !BinaryOperator::isNot(TheOp)) 1442 continue; 1443 1444 Value *X = nullptr; 1445 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1446 X = BinaryOperator::getNegArgument(TheOp); 1447 else if (BinaryOperator::isNot(TheOp)) 1448 X = BinaryOperator::getNotArgument(TheOp); 1449 1450 unsigned FoundX = FindInOperandList(Ops, i, X); 1451 if (FoundX == i) 1452 continue; 1453 1454 // Remove X and -X from the operand list. 1455 if (Ops.size() == 2 && 1456 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1457 return Constant::getNullValue(X->getType()); 1458 1459 // Remove X and ~X from the operand list. 1460 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1461 return Constant::getAllOnesValue(X->getType()); 1462 1463 Ops.erase(Ops.begin()+i); 1464 if (i < FoundX) 1465 --FoundX; 1466 else 1467 --i; // Need to back up an extra one. 1468 Ops.erase(Ops.begin()+FoundX); 1469 ++NumAnnihil; 1470 --i; // Revisit element. 1471 e -= 2; // Removed two elements. 1472 1473 // if X and ~X we append -1 to the operand list. 1474 if (BinaryOperator::isNot(TheOp)) { 1475 Value *V = Constant::getAllOnesValue(X->getType()); 1476 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1477 e += 1; 1478 } 1479 } 1480 1481 // Scan the operand list, checking to see if there are any common factors 1482 // between operands. Consider something like A*A+A*B*C+D. We would like to 1483 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1484 // To efficiently find this, we count the number of times a factor occurs 1485 // for any ADD operands that are MULs. 1486 DenseMap<Value*, unsigned> FactorOccurrences; 1487 1488 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1489 // where they are actually the same multiply. 1490 unsigned MaxOcc = 0; 1491 Value *MaxOccVal = nullptr; 1492 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1493 BinaryOperator *BOp = 1494 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1495 if (!BOp) 1496 continue; 1497 1498 // Compute all of the factors of this added value. 1499 SmallVector<Value*, 8> Factors; 1500 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1501 assert(Factors.size() > 1 && "Bad linearize!"); 1502 1503 // Add one to FactorOccurrences for each unique factor in this op. 1504 SmallPtrSet<Value*, 8> Duplicates; 1505 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1506 Value *Factor = Factors[i]; 1507 if (!Duplicates.insert(Factor).second) 1508 continue; 1509 1510 unsigned Occ = ++FactorOccurrences[Factor]; 1511 if (Occ > MaxOcc) { 1512 MaxOcc = Occ; 1513 MaxOccVal = Factor; 1514 } 1515 1516 // If Factor is a negative constant, add the negated value as a factor 1517 // because we can percolate the negate out. Watch for minint, which 1518 // cannot be positivified. 1519 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1520 if (CI->isNegative() && !CI->isMinValue(true)) { 1521 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1522 assert(!Duplicates.count(Factor) && 1523 "Shouldn't have two constant factors, missed a canonicalize"); 1524 unsigned Occ = ++FactorOccurrences[Factor]; 1525 if (Occ > MaxOcc) { 1526 MaxOcc = Occ; 1527 MaxOccVal = Factor; 1528 } 1529 } 1530 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1531 if (CF->isNegative()) { 1532 APFloat F(CF->getValueAPF()); 1533 F.changeSign(); 1534 Factor = ConstantFP::get(CF->getContext(), F); 1535 assert(!Duplicates.count(Factor) && 1536 "Shouldn't have two constant factors, missed a canonicalize"); 1537 unsigned Occ = ++FactorOccurrences[Factor]; 1538 if (Occ > MaxOcc) { 1539 MaxOcc = Occ; 1540 MaxOccVal = Factor; 1541 } 1542 } 1543 } 1544 } 1545 } 1546 1547 // If any factor occurred more than one time, we can pull it out. 1548 if (MaxOcc > 1) { 1549 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1550 ++NumFactor; 1551 1552 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1553 // this, we could otherwise run into situations where removing a factor 1554 // from an expression will drop a use of maxocc, and this can cause 1555 // RemoveFactorFromExpression on successive values to behave differently. 1556 Instruction *DummyInst = 1557 I->getType()->isIntOrIntVectorTy() 1558 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1559 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1560 1561 SmallVector<WeakVH, 4> NewMulOps; 1562 for (unsigned i = 0; i != Ops.size(); ++i) { 1563 // Only try to remove factors from expressions we're allowed to. 1564 BinaryOperator *BOp = 1565 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1566 if (!BOp) 1567 continue; 1568 1569 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1570 // The factorized operand may occur several times. Convert them all in 1571 // one fell swoop. 1572 for (unsigned j = Ops.size(); j != i;) { 1573 --j; 1574 if (Ops[j].Op == Ops[i].Op) { 1575 NewMulOps.push_back(V); 1576 Ops.erase(Ops.begin()+j); 1577 } 1578 } 1579 --i; 1580 } 1581 } 1582 1583 // No need for extra uses anymore. 1584 delete DummyInst; 1585 1586 unsigned NumAddedValues = NewMulOps.size(); 1587 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1588 1589 // Now that we have inserted the add tree, optimize it. This allows us to 1590 // handle cases that require multiple factoring steps, such as this: 1591 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1592 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1593 (void)NumAddedValues; 1594 if (Instruction *VI = dyn_cast<Instruction>(V)) 1595 RedoInsts.insert(VI); 1596 1597 // Create the multiply. 1598 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1599 1600 // Rerun associate on the multiply in case the inner expression turned into 1601 // a multiply. We want to make sure that we keep things in canonical form. 1602 RedoInsts.insert(V2); 1603 1604 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1605 // entire result expression is just the multiply "A*(B+C)". 1606 if (Ops.empty()) 1607 return V2; 1608 1609 // Otherwise, we had some input that didn't have the factor, such as 1610 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1611 // things being added by this operation. 1612 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1613 } 1614 1615 return nullptr; 1616 } 1617 1618 /// \brief Build up a vector of value/power pairs factoring a product. 1619 /// 1620 /// Given a series of multiplication operands, build a vector of factors and 1621 /// the powers each is raised to when forming the final product. Sort them in 1622 /// the order of descending power. 1623 /// 1624 /// (x*x) -> [(x, 2)] 1625 /// ((x*x)*x) -> [(x, 3)] 1626 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1627 /// 1628 /// \returns Whether any factors have a power greater than one. 1629 bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1630 SmallVectorImpl<Factor> &Factors) { 1631 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1632 // Compute the sum of powers of simplifiable factors. 1633 unsigned FactorPowerSum = 0; 1634 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1635 Value *Op = Ops[Idx-1].Op; 1636 1637 // Count the number of occurrences of this value. 1638 unsigned Count = 1; 1639 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1640 ++Count; 1641 // Track for simplification all factors which occur 2 or more times. 1642 if (Count > 1) 1643 FactorPowerSum += Count; 1644 } 1645 1646 // We can only simplify factors if the sum of the powers of our simplifiable 1647 // factors is 4 or higher. When that is the case, we will *always* have 1648 // a simplification. This is an important invariant to prevent cyclicly 1649 // trying to simplify already minimal formations. 1650 if (FactorPowerSum < 4) 1651 return false; 1652 1653 // Now gather the simplifiable factors, removing them from Ops. 1654 FactorPowerSum = 0; 1655 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1656 Value *Op = Ops[Idx-1].Op; 1657 1658 // Count the number of occurrences of this value. 1659 unsigned Count = 1; 1660 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1661 ++Count; 1662 if (Count == 1) 1663 continue; 1664 // Move an even number of occurrences to Factors. 1665 Count &= ~1U; 1666 Idx -= Count; 1667 FactorPowerSum += Count; 1668 Factors.push_back(Factor(Op, Count)); 1669 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1670 } 1671 1672 // None of the adjustments above should have reduced the sum of factor powers 1673 // below our mininum of '4'. 1674 assert(FactorPowerSum >= 4); 1675 1676 std::stable_sort(Factors.begin(), Factors.end(), 1677 [](const Factor &LHS, const Factor &RHS) { 1678 return LHS.Power > RHS.Power; 1679 }); 1680 return true; 1681 } 1682 1683 /// \brief Build a tree of multiplies, computing the product of Ops. 1684 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1685 SmallVectorImpl<Value*> &Ops) { 1686 if (Ops.size() == 1) 1687 return Ops.back(); 1688 1689 Value *LHS = Ops.pop_back_val(); 1690 do { 1691 if (LHS->getType()->isIntOrIntVectorTy()) 1692 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1693 else 1694 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1695 } while (!Ops.empty()); 1696 1697 return LHS; 1698 } 1699 1700 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1701 /// 1702 /// Given a vector of values raised to various powers, where no two values are 1703 /// equal and the powers are sorted in decreasing order, compute the minimal 1704 /// DAG of multiplies to compute the final product, and return that product 1705 /// value. 1706 Value * 1707 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1708 SmallVectorImpl<Factor> &Factors) { 1709 assert(Factors[0].Power); 1710 SmallVector<Value *, 4> OuterProduct; 1711 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1712 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1713 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1714 LastIdx = Idx; 1715 continue; 1716 } 1717 1718 // We want to multiply across all the factors with the same power so that 1719 // we can raise them to that power as a single entity. Build a mini tree 1720 // for that. 1721 SmallVector<Value *, 4> InnerProduct; 1722 InnerProduct.push_back(Factors[LastIdx].Base); 1723 do { 1724 InnerProduct.push_back(Factors[Idx].Base); 1725 ++Idx; 1726 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1727 1728 // Reset the base value of the first factor to the new expression tree. 1729 // We'll remove all the factors with the same power in a second pass. 1730 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1731 if (Instruction *MI = dyn_cast<Instruction>(M)) 1732 RedoInsts.insert(MI); 1733 1734 LastIdx = Idx; 1735 } 1736 // Unique factors with equal powers -- we've folded them into the first one's 1737 // base. 1738 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1739 [](const Factor &LHS, const Factor &RHS) { 1740 return LHS.Power == RHS.Power; 1741 }), 1742 Factors.end()); 1743 1744 // Iteratively collect the base of each factor with an add power into the 1745 // outer product, and halve each power in preparation for squaring the 1746 // expression. 1747 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1748 if (Factors[Idx].Power & 1) 1749 OuterProduct.push_back(Factors[Idx].Base); 1750 Factors[Idx].Power >>= 1; 1751 } 1752 if (Factors[0].Power) { 1753 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1754 OuterProduct.push_back(SquareRoot); 1755 OuterProduct.push_back(SquareRoot); 1756 } 1757 if (OuterProduct.size() == 1) 1758 return OuterProduct.front(); 1759 1760 Value *V = buildMultiplyTree(Builder, OuterProduct); 1761 return V; 1762 } 1763 1764 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1765 SmallVectorImpl<ValueEntry> &Ops) { 1766 // We can only optimize the multiplies when there is a chain of more than 1767 // three, such that a balanced tree might require fewer total multiplies. 1768 if (Ops.size() < 4) 1769 return nullptr; 1770 1771 // Try to turn linear trees of multiplies without other uses of the 1772 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1773 // re-use. 1774 SmallVector<Factor, 4> Factors; 1775 if (!collectMultiplyFactors(Ops, Factors)) 1776 return nullptr; // All distinct factors, so nothing left for us to do. 1777 1778 IRBuilder<> Builder(I); 1779 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1780 if (Ops.empty()) 1781 return V; 1782 1783 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1784 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1785 return nullptr; 1786 } 1787 1788 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1789 SmallVectorImpl<ValueEntry> &Ops) { 1790 // Now that we have the linearized expression tree, try to optimize it. 1791 // Start by folding any constants that we found. 1792 Constant *Cst = nullptr; 1793 unsigned Opcode = I->getOpcode(); 1794 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1795 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1796 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1797 } 1798 // If there was nothing but constants then we are done. 1799 if (Ops.empty()) 1800 return Cst; 1801 1802 // Put the combined constant back at the end of the operand list, except if 1803 // there is no point. For example, an add of 0 gets dropped here, while a 1804 // multiplication by zero turns the whole expression into zero. 1805 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1806 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1807 return Cst; 1808 Ops.push_back(ValueEntry(0, Cst)); 1809 } 1810 1811 if (Ops.size() == 1) return Ops[0].Op; 1812 1813 // Handle destructive annihilation due to identities between elements in the 1814 // argument list here. 1815 unsigned NumOps = Ops.size(); 1816 switch (Opcode) { 1817 default: break; 1818 case Instruction::And: 1819 case Instruction::Or: 1820 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1821 return Result; 1822 break; 1823 1824 case Instruction::Xor: 1825 if (Value *Result = OptimizeXor(I, Ops)) 1826 return Result; 1827 break; 1828 1829 case Instruction::Add: 1830 case Instruction::FAdd: 1831 if (Value *Result = OptimizeAdd(I, Ops)) 1832 return Result; 1833 break; 1834 1835 case Instruction::Mul: 1836 case Instruction::FMul: 1837 if (Value *Result = OptimizeMul(I, Ops)) 1838 return Result; 1839 break; 1840 } 1841 1842 if (Ops.size() != NumOps) 1843 return OptimizeExpression(I, Ops); 1844 return nullptr; 1845 } 1846 1847 // Remove dead instructions and if any operands are trivially dead add them to 1848 // Insts so they will be removed as well. 1849 void ReassociatePass::RecursivelyEraseDeadInsts( 1850 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) { 1851 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1852 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1853 ValueRankMap.erase(I); 1854 Insts.remove(I); 1855 RedoInsts.remove(I); 1856 I->eraseFromParent(); 1857 for (auto Op : Ops) 1858 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1859 if (OpInst->use_empty()) 1860 Insts.insert(OpInst); 1861 } 1862 1863 /// Zap the given instruction, adding interesting operands to the work list. 1864 void ReassociatePass::EraseInst(Instruction *I) { 1865 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1866 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1867 // Erase the dead instruction. 1868 ValueRankMap.erase(I); 1869 RedoInsts.remove(I); 1870 I->eraseFromParent(); 1871 // Optimize its operands. 1872 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1873 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1874 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1875 // If this is a node in an expression tree, climb to the expression root 1876 // and add that since that's where optimization actually happens. 1877 unsigned Opcode = Op->getOpcode(); 1878 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1879 Visited.insert(Op).second) 1880 Op = Op->user_back(); 1881 RedoInsts.insert(Op); 1882 } 1883 } 1884 1885 // Canonicalize expressions of the following form: 1886 // x + (-Constant * y) -> x - (Constant * y) 1887 // x - (-Constant * y) -> x + (Constant * y) 1888 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1889 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1890 return nullptr; 1891 1892 // Must be a fmul or fdiv instruction. 1893 unsigned Opcode = I->getOpcode(); 1894 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1895 return nullptr; 1896 1897 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1898 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1899 1900 // Both operands are constant, let it get constant folded away. 1901 if (C0 && C1) 1902 return nullptr; 1903 1904 ConstantFP *CF = C0 ? C0 : C1; 1905 1906 // Must have one constant operand. 1907 if (!CF) 1908 return nullptr; 1909 1910 // Must be a negative ConstantFP. 1911 if (!CF->isNegative()) 1912 return nullptr; 1913 1914 // User must be a binary operator with one or more uses. 1915 Instruction *User = I->user_back(); 1916 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1)) 1917 return nullptr; 1918 1919 unsigned UserOpcode = User->getOpcode(); 1920 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1921 return nullptr; 1922 1923 // Subtraction is not commutative. Explicitly, the following transform is 1924 // not valid: (-Constant * y) - x -> x + (Constant * y) 1925 if (!User->isCommutative() && User->getOperand(1) != I) 1926 return nullptr; 1927 1928 // Change the sign of the constant. 1929 APFloat Val = CF->getValueAPF(); 1930 Val.changeSign(); 1931 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1932 1933 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1934 // ((-Const*y) + x) -> (x + (-Const*y)). 1935 if (User->getOperand(0) == I && User->isCommutative()) 1936 cast<BinaryOperator>(User)->swapOperands(); 1937 1938 Value *Op0 = User->getOperand(0); 1939 Value *Op1 = User->getOperand(1); 1940 BinaryOperator *NI; 1941 switch (UserOpcode) { 1942 default: 1943 llvm_unreachable("Unexpected Opcode!"); 1944 case Instruction::FAdd: 1945 NI = BinaryOperator::CreateFSub(Op0, Op1); 1946 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1947 break; 1948 case Instruction::FSub: 1949 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1950 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1951 break; 1952 } 1953 1954 NI->insertBefore(User); 1955 NI->setName(User->getName()); 1956 User->replaceAllUsesWith(NI); 1957 NI->setDebugLoc(I->getDebugLoc()); 1958 RedoInsts.insert(I); 1959 MadeChange = true; 1960 return NI; 1961 } 1962 1963 /// Inspect and optimize the given instruction. Note that erasing 1964 /// instructions is not allowed. 1965 void ReassociatePass::OptimizeInst(Instruction *I) { 1966 // Only consider operations that we understand. 1967 if (!isa<BinaryOperator>(I)) 1968 return; 1969 1970 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 1971 // If an operand of this shift is a reassociable multiply, or if the shift 1972 // is used by a reassociable multiply or add, turn into a multiply. 1973 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1974 (I->hasOneUse() && 1975 (isReassociableOp(I->user_back(), Instruction::Mul) || 1976 isReassociableOp(I->user_back(), Instruction::Add)))) { 1977 Instruction *NI = ConvertShiftToMul(I); 1978 RedoInsts.insert(I); 1979 MadeChange = true; 1980 I = NI; 1981 } 1982 1983 // Canonicalize negative constants out of expressions. 1984 if (Instruction *Res = canonicalizeNegConstExpr(I)) 1985 I = Res; 1986 1987 // Commute binary operators, to canonicalize the order of their operands. 1988 // This can potentially expose more CSE opportunities, and makes writing other 1989 // transformations simpler. 1990 if (I->isCommutative()) 1991 canonicalizeOperands(I); 1992 1993 // TODO: We should optimize vector Xor instructions, but they are 1994 // currently unsupported. 1995 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor) 1996 return; 1997 1998 // Don't optimize floating point instructions that don't have unsafe algebra. 1999 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra()) 2000 return; 2001 2002 // Do not reassociate boolean (i1) expressions. We want to preserve the 2003 // original order of evaluation for short-circuited comparisons that 2004 // SimplifyCFG has folded to AND/OR expressions. If the expression 2005 // is not further optimized, it is likely to be transformed back to a 2006 // short-circuited form for code gen, and the source order may have been 2007 // optimized for the most likely conditions. 2008 if (I->getType()->isIntegerTy(1)) 2009 return; 2010 2011 // If this is a subtract instruction which is not already in negate form, 2012 // see if we can convert it to X+-Y. 2013 if (I->getOpcode() == Instruction::Sub) { 2014 if (ShouldBreakUpSubtract(I)) { 2015 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2016 RedoInsts.insert(I); 2017 MadeChange = true; 2018 I = NI; 2019 } else if (BinaryOperator::isNeg(I)) { 2020 // Otherwise, this is a negation. See if the operand is a multiply tree 2021 // and if this is not an inner node of a multiply tree. 2022 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2023 (!I->hasOneUse() || 2024 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2025 Instruction *NI = LowerNegateToMultiply(I); 2026 // If the negate was simplified, revisit the users to see if we can 2027 // reassociate further. 2028 for (User *U : NI->users()) { 2029 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2030 RedoInsts.insert(Tmp); 2031 } 2032 RedoInsts.insert(I); 2033 MadeChange = true; 2034 I = NI; 2035 } 2036 } 2037 } else if (I->getOpcode() == Instruction::FSub) { 2038 if (ShouldBreakUpSubtract(I)) { 2039 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2040 RedoInsts.insert(I); 2041 MadeChange = true; 2042 I = NI; 2043 } else if (BinaryOperator::isFNeg(I)) { 2044 // Otherwise, this is a negation. See if the operand is a multiply tree 2045 // and if this is not an inner node of a multiply tree. 2046 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2047 (!I->hasOneUse() || 2048 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2049 // If the negate was simplified, revisit the users to see if we can 2050 // reassociate further. 2051 Instruction *NI = LowerNegateToMultiply(I); 2052 for (User *U : NI->users()) { 2053 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2054 RedoInsts.insert(Tmp); 2055 } 2056 RedoInsts.insert(I); 2057 MadeChange = true; 2058 I = NI; 2059 } 2060 } 2061 } 2062 2063 // If this instruction is an associative binary operator, process it. 2064 if (!I->isAssociative()) return; 2065 BinaryOperator *BO = cast<BinaryOperator>(I); 2066 2067 // If this is an interior node of a reassociable tree, ignore it until we 2068 // get to the root of the tree, to avoid N^2 analysis. 2069 unsigned Opcode = BO->getOpcode(); 2070 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2071 // During the initial run we will get to the root of the tree. 2072 // But if we get here while we are redoing instructions, there is no 2073 // guarantee that the root will be visited. So Redo later 2074 if (BO->user_back() != BO && 2075 BO->getParent() == BO->user_back()->getParent()) 2076 RedoInsts.insert(BO->user_back()); 2077 return; 2078 } 2079 2080 // If this is an add tree that is used by a sub instruction, ignore it 2081 // until we process the subtract. 2082 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2083 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2084 return; 2085 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2086 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2087 return; 2088 2089 ReassociateExpression(BO); 2090 } 2091 2092 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2093 // First, walk the expression tree, linearizing the tree, collecting the 2094 // operand information. 2095 SmallVector<RepeatedValue, 8> Tree; 2096 MadeChange |= LinearizeExprTree(I, Tree); 2097 SmallVector<ValueEntry, 8> Ops; 2098 Ops.reserve(Tree.size()); 2099 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2100 RepeatedValue E = Tree[i]; 2101 Ops.append(E.second.getZExtValue(), 2102 ValueEntry(getRank(E.first), E.first)); 2103 } 2104 2105 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2106 2107 // Now that we have linearized the tree to a list and have gathered all of 2108 // the operands and their ranks, sort the operands by their rank. Use a 2109 // stable_sort so that values with equal ranks will have their relative 2110 // positions maintained (and so the compiler is deterministic). Note that 2111 // this sorts so that the highest ranking values end up at the beginning of 2112 // the vector. 2113 std::stable_sort(Ops.begin(), Ops.end()); 2114 2115 // Now that we have the expression tree in a convenient 2116 // sorted form, optimize it globally if possible. 2117 if (Value *V = OptimizeExpression(I, Ops)) { 2118 if (V == I) 2119 // Self-referential expression in unreachable code. 2120 return; 2121 // This expression tree simplified to something that isn't a tree, 2122 // eliminate it. 2123 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2124 I->replaceAllUsesWith(V); 2125 if (Instruction *VI = dyn_cast<Instruction>(V)) 2126 VI->setDebugLoc(I->getDebugLoc()); 2127 RedoInsts.insert(I); 2128 ++NumAnnihil; 2129 return; 2130 } 2131 2132 // We want to sink immediates as deeply as possible except in the case where 2133 // this is a multiply tree used only by an add, and the immediate is a -1. 2134 // In this case we reassociate to put the negation on the outside so that we 2135 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2136 if (I->hasOneUse()) { 2137 if (I->getOpcode() == Instruction::Mul && 2138 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2139 isa<ConstantInt>(Ops.back().Op) && 2140 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 2141 ValueEntry Tmp = Ops.pop_back_val(); 2142 Ops.insert(Ops.begin(), Tmp); 2143 } else if (I->getOpcode() == Instruction::FMul && 2144 cast<Instruction>(I->user_back())->getOpcode() == 2145 Instruction::FAdd && 2146 isa<ConstantFP>(Ops.back().Op) && 2147 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2148 ValueEntry Tmp = Ops.pop_back_val(); 2149 Ops.insert(Ops.begin(), Tmp); 2150 } 2151 } 2152 2153 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2154 2155 if (Ops.size() == 1) { 2156 if (Ops[0].Op == I) 2157 // Self-referential expression in unreachable code. 2158 return; 2159 2160 // This expression tree simplified to something that isn't a tree, 2161 // eliminate it. 2162 I->replaceAllUsesWith(Ops[0].Op); 2163 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2164 OI->setDebugLoc(I->getDebugLoc()); 2165 RedoInsts.insert(I); 2166 return; 2167 } 2168 2169 // Now that we ordered and optimized the expressions, splat them back into 2170 // the expression tree, removing any unneeded nodes. 2171 RewriteExprTree(I, Ops); 2172 } 2173 2174 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2175 // Reassociate needs for each instruction to have its operands already 2176 // processed, so we first perform a RPOT of the basic blocks so that 2177 // when we process a basic block, all its dominators have been processed 2178 // before. 2179 ReversePostOrderTraversal<Function *> RPOT(&F); 2180 BuildRankMap(F, RPOT); 2181 2182 MadeChange = false; 2183 for (BasicBlock *BI : RPOT) { 2184 // Use a worklist to keep track of which instructions have been processed 2185 // (and which insts won't be optimized again) so when redoing insts, 2186 // optimize insts rightaway which won't be processed later. 2187 SmallSet<Instruction *, 8> Worklist; 2188 2189 // Insert all instructions in the BB 2190 for (Instruction &I : *BI) 2191 Worklist.insert(&I); 2192 2193 // Optimize every instruction in the basic block. 2194 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) { 2195 // This instruction has been processed. 2196 Worklist.erase(&*II); 2197 if (isInstructionTriviallyDead(&*II)) { 2198 EraseInst(&*II++); 2199 } else { 2200 OptimizeInst(&*II); 2201 assert(II->getParent() == &*BI && "Moved to a different block!"); 2202 ++II; 2203 } 2204 2205 // If the above optimizations produced new instructions to optimize or 2206 // made modifications which need to be redone, do them now if they won't 2207 // be handled later. 2208 while (!RedoInsts.empty()) { 2209 Instruction *I = RedoInsts.pop_back_val(); 2210 // Process instructions that won't be processed later, either 2211 // inside the block itself or in another basic block (based on rank), 2212 // since these will be processed later. 2213 if ((I->getParent() != BI || !Worklist.count(I)) && 2214 RankMap[I->getParent()] <= RankMap[BI]) { 2215 if (isInstructionTriviallyDead(I)) 2216 EraseInst(I); 2217 else 2218 OptimizeInst(I); 2219 } 2220 } 2221 } 2222 } 2223 2224 // We are done with the rank map. 2225 RankMap.clear(); 2226 ValueRankMap.clear(); 2227 2228 if (MadeChange) { 2229 // FIXME: This should also 'preserve the CFG'. 2230 auto PA = PreservedAnalyses(); 2231 PA.preserve<GlobalsAA>(); 2232 return PA; 2233 } 2234 2235 return PreservedAnalyses::all(); 2236 } 2237 2238 namespace { 2239 class ReassociateLegacyPass : public FunctionPass { 2240 ReassociatePass Impl; 2241 public: 2242 static char ID; // Pass identification, replacement for typeid 2243 ReassociateLegacyPass() : FunctionPass(ID) { 2244 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2245 } 2246 2247 bool runOnFunction(Function &F) override { 2248 if (skipFunction(F)) 2249 return false; 2250 2251 FunctionAnalysisManager DummyFAM; 2252 auto PA = Impl.run(F, DummyFAM); 2253 return !PA.areAllPreserved(); 2254 } 2255 2256 void getAnalysisUsage(AnalysisUsage &AU) const override { 2257 AU.setPreservesCFG(); 2258 AU.addPreserved<GlobalsAAWrapperPass>(); 2259 } 2260 }; 2261 } 2262 2263 char ReassociateLegacyPass::ID = 0; 2264 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2265 "Reassociate expressions", false, false) 2266 2267 // Public interface to the Reassociate pass 2268 FunctionPass *llvm::createReassociatePass() { 2269 return new ReassociateLegacyPass(); 2270 } 2271