Home | History | Annotate | Download | only in Scalar
      1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates commutative expressions in an order that is designed
     11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
     12 //
     13 // For example: 4 + (x + 5) -> x + (4 + 5)
     14 //
     15 // In the implementation of this algorithm, constants are assigned rank = 0,
     16 // function arguments are rank = 1, and other values are assigned ranks
     17 // corresponding to the reverse post order traversal of current function
     18 // (starting at 2), which effectively gives values in deep loops higher rank
     19 // than values not in loops.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "llvm/Transforms/Scalar/Reassociate.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/PostOrderIterator.h"
     26 #include "llvm/ADT/STLExtras.h"
     27 #include "llvm/ADT/SetVector.h"
     28 #include "llvm/ADT/Statistic.h"
     29 #include "llvm/Analysis/GlobalsModRef.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/IR/CFG.h"
     32 #include "llvm/IR/Constants.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/Function.h"
     35 #include "llvm/IR/IRBuilder.h"
     36 #include "llvm/IR/Instructions.h"
     37 #include "llvm/IR/IntrinsicInst.h"
     38 #include "llvm/IR/ValueHandle.h"
     39 #include "llvm/Pass.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Transforms/Scalar.h"
     43 #include "llvm/Transforms/Utils/Local.h"
     44 #include <algorithm>
     45 using namespace llvm;
     46 using namespace reassociate;
     47 
     48 #define DEBUG_TYPE "reassociate"
     49 
     50 STATISTIC(NumChanged, "Number of insts reassociated");
     51 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
     52 STATISTIC(NumFactor , "Number of multiplies factored");
     53 
     54 #ifndef NDEBUG
     55 /// Print out the expression identified in the Ops list.
     56 ///
     57 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
     58   Module *M = I->getModule();
     59   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
     60        << *Ops[0].Op->getType() << '\t';
     61   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     62     dbgs() << "[ ";
     63     Ops[i].Op->printAsOperand(dbgs(), false, M);
     64     dbgs() << ", #" << Ops[i].Rank << "] ";
     65   }
     66 }
     67 #endif
     68 
     69 /// Utility class representing a non-constant Xor-operand. We classify
     70 /// non-constant Xor-Operands into two categories:
     71 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
     72 ///  C2)
     73 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
     74 ///          constant.
     75 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
     76 ///          operand as "E | 0"
     77 class llvm::reassociate::XorOpnd {
     78 public:
     79   XorOpnd(Value *V);
     80 
     81   bool isInvalid() const { return SymbolicPart == nullptr; }
     82   bool isOrExpr() const { return isOr; }
     83   Value *getValue() const { return OrigVal; }
     84   Value *getSymbolicPart() const { return SymbolicPart; }
     85   unsigned getSymbolicRank() const { return SymbolicRank; }
     86   const APInt &getConstPart() const { return ConstPart; }
     87 
     88   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
     89   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
     90 
     91 private:
     92   Value *OrigVal;
     93   Value *SymbolicPart;
     94   APInt ConstPart;
     95   unsigned SymbolicRank;
     96   bool isOr;
     97 };
     98 
     99 XorOpnd::XorOpnd(Value *V) {
    100   assert(!isa<ConstantInt>(V) && "No ConstantInt");
    101   OrigVal = V;
    102   Instruction *I = dyn_cast<Instruction>(V);
    103   SymbolicRank = 0;
    104 
    105   if (I && (I->getOpcode() == Instruction::Or ||
    106             I->getOpcode() == Instruction::And)) {
    107     Value *V0 = I->getOperand(0);
    108     Value *V1 = I->getOperand(1);
    109     if (isa<ConstantInt>(V0))
    110       std::swap(V0, V1);
    111 
    112     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
    113       ConstPart = C->getValue();
    114       SymbolicPart = V0;
    115       isOr = (I->getOpcode() == Instruction::Or);
    116       return;
    117     }
    118   }
    119 
    120   // view the operand as "V | 0"
    121   SymbolicPart = V;
    122   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
    123   isOr = true;
    124 }
    125 
    126 /// Return true if V is an instruction of the specified opcode and if it
    127 /// only has one use.
    128 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
    129   if (V->hasOneUse() && isa<Instruction>(V) &&
    130       cast<Instruction>(V)->getOpcode() == Opcode &&
    131       (!isa<FPMathOperator>(V) ||
    132        cast<Instruction>(V)->hasUnsafeAlgebra()))
    133     return cast<BinaryOperator>(V);
    134   return nullptr;
    135 }
    136 
    137 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
    138                                         unsigned Opcode2) {
    139   if (V->hasOneUse() && isa<Instruction>(V) &&
    140       (cast<Instruction>(V)->getOpcode() == Opcode1 ||
    141        cast<Instruction>(V)->getOpcode() == Opcode2) &&
    142       (!isa<FPMathOperator>(V) ||
    143        cast<Instruction>(V)->hasUnsafeAlgebra()))
    144     return cast<BinaryOperator>(V);
    145   return nullptr;
    146 }
    147 
    148 void ReassociatePass::BuildRankMap(
    149     Function &F, ReversePostOrderTraversal<Function *> &RPOT) {
    150   unsigned i = 2;
    151 
    152   // Assign distinct ranks to function arguments.
    153   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
    154     ValueRankMap[&*I] = ++i;
    155     DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
    156   }
    157 
    158   for (BasicBlock *BB : RPOT) {
    159     unsigned BBRank = RankMap[BB] = ++i << 16;
    160 
    161     // Walk the basic block, adding precomputed ranks for any instructions that
    162     // we cannot move.  This ensures that the ranks for these instructions are
    163     // all different in the block.
    164     for (Instruction &I : *BB)
    165       if (mayBeMemoryDependent(I))
    166         ValueRankMap[&I] = ++BBRank;
    167   }
    168 }
    169 
    170 unsigned ReassociatePass::getRank(Value *V) {
    171   Instruction *I = dyn_cast<Instruction>(V);
    172   if (!I) {
    173     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    174     return 0;  // Otherwise it's a global or constant, rank 0.
    175   }
    176 
    177   if (unsigned Rank = ValueRankMap[I])
    178     return Rank;    // Rank already known?
    179 
    180   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
    181   // we can reassociate expressions for code motion!  Since we do not recurse
    182   // for PHI nodes, we cannot have infinite recursion here, because there
    183   // cannot be loops in the value graph that do not go through PHI nodes.
    184   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
    185   for (unsigned i = 0, e = I->getNumOperands();
    186        i != e && Rank != MaxRank; ++i)
    187     Rank = std::max(Rank, getRank(I->getOperand(i)));
    188 
    189   // If this is a not or neg instruction, do not count it for rank.  This
    190   // assures us that X and ~X will have the same rank.
    191   if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
    192        !BinaryOperator::isFNeg(I))
    193     ++Rank;
    194 
    195   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
    196 
    197   return ValueRankMap[I] = Rank;
    198 }
    199 
    200 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
    201 void ReassociatePass::canonicalizeOperands(Instruction *I) {
    202   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
    203   assert(I->isCommutative() && "Expected commutative operator.");
    204 
    205   Value *LHS = I->getOperand(0);
    206   Value *RHS = I->getOperand(1);
    207   unsigned LHSRank = getRank(LHS);
    208   unsigned RHSRank = getRank(RHS);
    209 
    210   if (isa<Constant>(RHS))
    211     return;
    212 
    213   if (isa<Constant>(LHS) || RHSRank < LHSRank)
    214     cast<BinaryOperator>(I)->swapOperands();
    215 }
    216 
    217 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
    218                                  Instruction *InsertBefore, Value *FlagsOp) {
    219   if (S1->getType()->isIntOrIntVectorTy())
    220     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
    221   else {
    222     BinaryOperator *Res =
    223         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
    224     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    225     return Res;
    226   }
    227 }
    228 
    229 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
    230                                  Instruction *InsertBefore, Value *FlagsOp) {
    231   if (S1->getType()->isIntOrIntVectorTy())
    232     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
    233   else {
    234     BinaryOperator *Res =
    235       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
    236     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    237     return Res;
    238   }
    239 }
    240 
    241 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
    242                                  Instruction *InsertBefore, Value *FlagsOp) {
    243   if (S1->getType()->isIntOrIntVectorTy())
    244     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
    245   else {
    246     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
    247     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    248     return Res;
    249   }
    250 }
    251 
    252 /// Replace 0-X with X*-1.
    253 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
    254   Type *Ty = Neg->getType();
    255   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
    256     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
    257 
    258   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
    259   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
    260   Res->takeName(Neg);
    261   Neg->replaceAllUsesWith(Res);
    262   Res->setDebugLoc(Neg->getDebugLoc());
    263   return Res;
    264 }
    265 
    266 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
    267 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
    268 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
    269 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
    270 /// even x in Bitwidth-bit arithmetic.
    271 static unsigned CarmichaelShift(unsigned Bitwidth) {
    272   if (Bitwidth < 3)
    273     return Bitwidth - 1;
    274   return Bitwidth - 2;
    275 }
    276 
    277 /// Add the extra weight 'RHS' to the existing weight 'LHS',
    278 /// reducing the combined weight using any special properties of the operation.
    279 /// The existing weight LHS represents the computation X op X op ... op X where
    280 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
    281 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
    282 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
    283 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
    284 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
    285   // If we were working with infinite precision arithmetic then the combined
    286   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
    287   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
    288   // for nilpotent operations and addition, but not for idempotent operations
    289   // and multiplication), so it is important to correctly reduce the combined
    290   // weight back into range if wrapping would be wrong.
    291 
    292   // If RHS is zero then the weight didn't change.
    293   if (RHS.isMinValue())
    294     return;
    295   // If LHS is zero then the combined weight is RHS.
    296   if (LHS.isMinValue()) {
    297     LHS = RHS;
    298     return;
    299   }
    300   // From this point on we know that neither LHS nor RHS is zero.
    301 
    302   if (Instruction::isIdempotent(Opcode)) {
    303     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
    304     // weight of 1.  Keeping weights at zero or one also means that wrapping is
    305     // not a problem.
    306     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    307     return; // Return a weight of 1.
    308   }
    309   if (Instruction::isNilpotent(Opcode)) {
    310     // Nilpotent means X op X === 0, so reduce weights modulo 2.
    311     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    312     LHS = 0; // 1 + 1 === 0 modulo 2.
    313     return;
    314   }
    315   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
    316     // TODO: Reduce the weight by exploiting nsw/nuw?
    317     LHS += RHS;
    318     return;
    319   }
    320 
    321   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
    322          "Unknown associative operation!");
    323   unsigned Bitwidth = LHS.getBitWidth();
    324   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
    325   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
    326   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
    327   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
    328   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
    329   // which by a happy accident means that they can always be represented using
    330   // Bitwidth bits.
    331   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
    332   // the Carmichael number).
    333   if (Bitwidth > 3) {
    334     /// CM - The value of Carmichael's lambda function.
    335     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
    336     // Any weight W >= Threshold can be replaced with W - CM.
    337     APInt Threshold = CM + Bitwidth;
    338     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
    339     // For Bitwidth 4 or more the following sum does not overflow.
    340     LHS += RHS;
    341     while (LHS.uge(Threshold))
    342       LHS -= CM;
    343   } else {
    344     // To avoid problems with overflow do everything the same as above but using
    345     // a larger type.
    346     unsigned CM = 1U << CarmichaelShift(Bitwidth);
    347     unsigned Threshold = CM + Bitwidth;
    348     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
    349            "Weights not reduced!");
    350     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
    351     while (Total >= Threshold)
    352       Total -= CM;
    353     LHS = Total;
    354   }
    355 }
    356 
    357 typedef std::pair<Value*, APInt> RepeatedValue;
    358 
    359 /// Given an associative binary expression, return the leaf
    360 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
    361 /// original expression is the same as
    362 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
    363 /// op
    364 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
    365 /// op
    366 ///   ...
    367 /// op
    368 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
    369 ///
    370 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
    371 ///
    372 /// This routine may modify the function, in which case it returns 'true'.  The
    373 /// changes it makes may well be destructive, changing the value computed by 'I'
    374 /// to something completely different.  Thus if the routine returns 'true' then
    375 /// you MUST either replace I with a new expression computed from the Ops array,
    376 /// or use RewriteExprTree to put the values back in.
    377 ///
    378 /// A leaf node is either not a binary operation of the same kind as the root
    379 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
    380 /// opcode), or is the same kind of binary operator but has a use which either
    381 /// does not belong to the expression, or does belong to the expression but is
    382 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
    383 /// of the expression, while for non-leaf nodes (except for the root 'I') every
    384 /// use is a non-leaf node of the expression.
    385 ///
    386 /// For example:
    387 ///           expression graph        node names
    388 ///
    389 ///                     +        |        I
    390 ///                    / \       |
    391 ///                   +   +      |      A,  B
    392 ///                  / \ / \     |
    393 ///                 *   +   *    |    C,  D,  E
    394 ///                / \ / \ / \   |
    395 ///                   +   *      |      F,  G
    396 ///
    397 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
    398 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
    399 ///
    400 /// The expression is maximal: if some instruction is a binary operator of the
    401 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
    402 /// then the instruction also belongs to the expression, is not a leaf node of
    403 /// it, and its operands also belong to the expression (but may be leaf nodes).
    404 ///
    405 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
    406 /// order to ensure that every non-root node in the expression has *exactly one*
    407 /// use by a non-leaf node of the expression.  This destruction means that the
    408 /// caller MUST either replace 'I' with a new expression or use something like
    409 /// RewriteExprTree to put the values back in if the routine indicates that it
    410 /// made a change by returning 'true'.
    411 ///
    412 /// In the above example either the right operand of A or the left operand of B
    413 /// will be replaced by undef.  If it is B's operand then this gives:
    414 ///
    415 ///                     +        |        I
    416 ///                    / \       |
    417 ///                   +   +      |      A,  B - operand of B replaced with undef
    418 ///                  / \   \     |
    419 ///                 *   +   *    |    C,  D,  E
    420 ///                / \ / \ / \   |
    421 ///                   +   *      |      F,  G
    422 ///
    423 /// Note that such undef operands can only be reached by passing through 'I'.
    424 /// For example, if you visit operands recursively starting from a leaf node
    425 /// then you will never see such an undef operand unless you get back to 'I',
    426 /// which requires passing through a phi node.
    427 ///
    428 /// Note that this routine may also mutate binary operators of the wrong type
    429 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
    430 /// of the expression) if it can turn them into binary operators of the right
    431 /// type and thus make the expression bigger.
    432 
    433 static bool LinearizeExprTree(BinaryOperator *I,
    434                               SmallVectorImpl<RepeatedValue> &Ops) {
    435   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
    436   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
    437   unsigned Opcode = I->getOpcode();
    438   assert(I->isAssociative() && I->isCommutative() &&
    439          "Expected an associative and commutative operation!");
    440 
    441   // Visit all operands of the expression, keeping track of their weight (the
    442   // number of paths from the expression root to the operand, or if you like
    443   // the number of times that operand occurs in the linearized expression).
    444   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
    445   // while A has weight two.
    446 
    447   // Worklist of non-leaf nodes (their operands are in the expression too) along
    448   // with their weights, representing a certain number of paths to the operator.
    449   // If an operator occurs in the worklist multiple times then we found multiple
    450   // ways to get to it.
    451   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
    452   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
    453   bool Changed = false;
    454 
    455   // Leaves of the expression are values that either aren't the right kind of
    456   // operation (eg: a constant, or a multiply in an add tree), or are, but have
    457   // some uses that are not inside the expression.  For example, in I = X + X,
    458   // X = A + B, the value X has two uses (by I) that are in the expression.  If
    459   // X has any other uses, for example in a return instruction, then we consider
    460   // X to be a leaf, and won't analyze it further.  When we first visit a value,
    461   // if it has more than one use then at first we conservatively consider it to
    462   // be a leaf.  Later, as the expression is explored, we may discover some more
    463   // uses of the value from inside the expression.  If all uses turn out to be
    464   // from within the expression (and the value is a binary operator of the right
    465   // kind) then the value is no longer considered to be a leaf, and its operands
    466   // are explored.
    467 
    468   // Leaves - Keeps track of the set of putative leaves as well as the number of
    469   // paths to each leaf seen so far.
    470   typedef DenseMap<Value*, APInt> LeafMap;
    471   LeafMap Leaves; // Leaf -> Total weight so far.
    472   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
    473 
    474 #ifndef NDEBUG
    475   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
    476 #endif
    477   while (!Worklist.empty()) {
    478     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
    479     I = P.first; // We examine the operands of this binary operator.
    480 
    481     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
    482       Value *Op = I->getOperand(OpIdx);
    483       APInt Weight = P.second; // Number of paths to this operand.
    484       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
    485       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
    486 
    487       // If this is a binary operation of the right kind with only one use then
    488       // add its operands to the expression.
    489       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    490         assert(Visited.insert(Op).second && "Not first visit!");
    491         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
    492         Worklist.push_back(std::make_pair(BO, Weight));
    493         continue;
    494       }
    495 
    496       // Appears to be a leaf.  Is the operand already in the set of leaves?
    497       LeafMap::iterator It = Leaves.find(Op);
    498       if (It == Leaves.end()) {
    499         // Not in the leaf map.  Must be the first time we saw this operand.
    500         assert(Visited.insert(Op).second && "Not first visit!");
    501         if (!Op->hasOneUse()) {
    502           // This value has uses not accounted for by the expression, so it is
    503           // not safe to modify.  Mark it as being a leaf.
    504           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
    505           LeafOrder.push_back(Op);
    506           Leaves[Op] = Weight;
    507           continue;
    508         }
    509         // No uses outside the expression, try morphing it.
    510       } else if (It != Leaves.end()) {
    511         // Already in the leaf map.
    512         assert(Visited.count(Op) && "In leaf map but not visited!");
    513 
    514         // Update the number of paths to the leaf.
    515         IncorporateWeight(It->second, Weight, Opcode);
    516 
    517 #if 0   // TODO: Re-enable once PR13021 is fixed.
    518         // The leaf already has one use from inside the expression.  As we want
    519         // exactly one such use, drop this new use of the leaf.
    520         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
    521         I->setOperand(OpIdx, UndefValue::get(I->getType()));
    522         Changed = true;
    523 
    524         // If the leaf is a binary operation of the right kind and we now see
    525         // that its multiple original uses were in fact all by nodes belonging
    526         // to the expression, then no longer consider it to be a leaf and add
    527         // its operands to the expression.
    528         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    529           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
    530           Worklist.push_back(std::make_pair(BO, It->second));
    531           Leaves.erase(It);
    532           continue;
    533         }
    534 #endif
    535 
    536         // If we still have uses that are not accounted for by the expression
    537         // then it is not safe to modify the value.
    538         if (!Op->hasOneUse())
    539           continue;
    540 
    541         // No uses outside the expression, try morphing it.
    542         Weight = It->second;
    543         Leaves.erase(It); // Since the value may be morphed below.
    544       }
    545 
    546       // At this point we have a value which, first of all, is not a binary
    547       // expression of the right kind, and secondly, is only used inside the
    548       // expression.  This means that it can safely be modified.  See if we
    549       // can usefully morph it into an expression of the right kind.
    550       assert((!isa<Instruction>(Op) ||
    551               cast<Instruction>(Op)->getOpcode() != Opcode
    552               || (isa<FPMathOperator>(Op) &&
    553                   !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
    554              "Should have been handled above!");
    555       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
    556 
    557       // If this is a multiply expression, turn any internal negations into
    558       // multiplies by -1 so they can be reassociated.
    559       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
    560         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
    561             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
    562           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
    563           BO = LowerNegateToMultiply(BO);
    564           DEBUG(dbgs() << *BO << '\n');
    565           Worklist.push_back(std::make_pair(BO, Weight));
    566           Changed = true;
    567           continue;
    568         }
    569 
    570       // Failed to morph into an expression of the right type.  This really is
    571       // a leaf.
    572       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
    573       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
    574       LeafOrder.push_back(Op);
    575       Leaves[Op] = Weight;
    576     }
    577   }
    578 
    579   // The leaves, repeated according to their weights, represent the linearized
    580   // form of the expression.
    581   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
    582     Value *V = LeafOrder[i];
    583     LeafMap::iterator It = Leaves.find(V);
    584     if (It == Leaves.end())
    585       // Node initially thought to be a leaf wasn't.
    586       continue;
    587     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
    588     APInt Weight = It->second;
    589     if (Weight.isMinValue())
    590       // Leaf already output or weight reduction eliminated it.
    591       continue;
    592     // Ensure the leaf is only output once.
    593     It->second = 0;
    594     Ops.push_back(std::make_pair(V, Weight));
    595   }
    596 
    597   // For nilpotent operations or addition there may be no operands, for example
    598   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
    599   // in both cases the weight reduces to 0 causing the value to be skipped.
    600   if (Ops.empty()) {
    601     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
    602     assert(Identity && "Associative operation without identity!");
    603     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
    604   }
    605 
    606   return Changed;
    607 }
    608 
    609 /// Now that the operands for this expression tree are
    610 /// linearized and optimized, emit them in-order.
    611 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
    612                                       SmallVectorImpl<ValueEntry> &Ops) {
    613   assert(Ops.size() > 1 && "Single values should be used directly!");
    614 
    615   // Since our optimizations should never increase the number of operations, the
    616   // new expression can usually be written reusing the existing binary operators
    617   // from the original expression tree, without creating any new instructions,
    618   // though the rewritten expression may have a completely different topology.
    619   // We take care to not change anything if the new expression will be the same
    620   // as the original.  If more than trivial changes (like commuting operands)
    621   // were made then we are obliged to clear out any optional subclass data like
    622   // nsw flags.
    623 
    624   /// NodesToRewrite - Nodes from the original expression available for writing
    625   /// the new expression into.
    626   SmallVector<BinaryOperator*, 8> NodesToRewrite;
    627   unsigned Opcode = I->getOpcode();
    628   BinaryOperator *Op = I;
    629 
    630   /// NotRewritable - The operands being written will be the leaves of the new
    631   /// expression and must not be used as inner nodes (via NodesToRewrite) by
    632   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
    633   /// (if they were they would have been incorporated into the expression and so
    634   /// would not be leaves), so most of the time there is no danger of this.  But
    635   /// in rare cases a leaf may become reassociable if an optimization kills uses
    636   /// of it, or it may momentarily become reassociable during rewriting (below)
    637   /// due it being removed as an operand of one of its uses.  Ensure that misuse
    638   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
    639   /// leaves and refusing to reuse any of them as inner nodes.
    640   SmallPtrSet<Value*, 8> NotRewritable;
    641   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    642     NotRewritable.insert(Ops[i].Op);
    643 
    644   // ExpressionChanged - Non-null if the rewritten expression differs from the
    645   // original in some non-trivial way, requiring the clearing of optional flags.
    646   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
    647   BinaryOperator *ExpressionChanged = nullptr;
    648   for (unsigned i = 0; ; ++i) {
    649     // The last operation (which comes earliest in the IR) is special as both
    650     // operands will come from Ops, rather than just one with the other being
    651     // a subexpression.
    652     if (i+2 == Ops.size()) {
    653       Value *NewLHS = Ops[i].Op;
    654       Value *NewRHS = Ops[i+1].Op;
    655       Value *OldLHS = Op->getOperand(0);
    656       Value *OldRHS = Op->getOperand(1);
    657 
    658       if (NewLHS == OldLHS && NewRHS == OldRHS)
    659         // Nothing changed, leave it alone.
    660         break;
    661 
    662       if (NewLHS == OldRHS && NewRHS == OldLHS) {
    663         // The order of the operands was reversed.  Swap them.
    664         DEBUG(dbgs() << "RA: " << *Op << '\n');
    665         Op->swapOperands();
    666         DEBUG(dbgs() << "TO: " << *Op << '\n');
    667         MadeChange = true;
    668         ++NumChanged;
    669         break;
    670       }
    671 
    672       // The new operation differs non-trivially from the original. Overwrite
    673       // the old operands with the new ones.
    674       DEBUG(dbgs() << "RA: " << *Op << '\n');
    675       if (NewLHS != OldLHS) {
    676         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
    677         if (BO && !NotRewritable.count(BO))
    678           NodesToRewrite.push_back(BO);
    679         Op->setOperand(0, NewLHS);
    680       }
    681       if (NewRHS != OldRHS) {
    682         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
    683         if (BO && !NotRewritable.count(BO))
    684           NodesToRewrite.push_back(BO);
    685         Op->setOperand(1, NewRHS);
    686       }
    687       DEBUG(dbgs() << "TO: " << *Op << '\n');
    688 
    689       ExpressionChanged = Op;
    690       MadeChange = true;
    691       ++NumChanged;
    692 
    693       break;
    694     }
    695 
    696     // Not the last operation.  The left-hand side will be a sub-expression
    697     // while the right-hand side will be the current element of Ops.
    698     Value *NewRHS = Ops[i].Op;
    699     if (NewRHS != Op->getOperand(1)) {
    700       DEBUG(dbgs() << "RA: " << *Op << '\n');
    701       if (NewRHS == Op->getOperand(0)) {
    702         // The new right-hand side was already present as the left operand.  If
    703         // we are lucky then swapping the operands will sort out both of them.
    704         Op->swapOperands();
    705       } else {
    706         // Overwrite with the new right-hand side.
    707         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
    708         if (BO && !NotRewritable.count(BO))
    709           NodesToRewrite.push_back(BO);
    710         Op->setOperand(1, NewRHS);
    711         ExpressionChanged = Op;
    712       }
    713       DEBUG(dbgs() << "TO: " << *Op << '\n');
    714       MadeChange = true;
    715       ++NumChanged;
    716     }
    717 
    718     // Now deal with the left-hand side.  If this is already an operation node
    719     // from the original expression then just rewrite the rest of the expression
    720     // into it.
    721     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
    722     if (BO && !NotRewritable.count(BO)) {
    723       Op = BO;
    724       continue;
    725     }
    726 
    727     // Otherwise, grab a spare node from the original expression and use that as
    728     // the left-hand side.  If there are no nodes left then the optimizers made
    729     // an expression with more nodes than the original!  This usually means that
    730     // they did something stupid but it might mean that the problem was just too
    731     // hard (finding the mimimal number of multiplications needed to realize a
    732     // multiplication expression is NP-complete).  Whatever the reason, smart or
    733     // stupid, create a new node if there are none left.
    734     BinaryOperator *NewOp;
    735     if (NodesToRewrite.empty()) {
    736       Constant *Undef = UndefValue::get(I->getType());
    737       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
    738                                      Undef, Undef, "", I);
    739       if (NewOp->getType()->isFPOrFPVectorTy())
    740         NewOp->setFastMathFlags(I->getFastMathFlags());
    741     } else {
    742       NewOp = NodesToRewrite.pop_back_val();
    743     }
    744 
    745     DEBUG(dbgs() << "RA: " << *Op << '\n');
    746     Op->setOperand(0, NewOp);
    747     DEBUG(dbgs() << "TO: " << *Op << '\n');
    748     ExpressionChanged = Op;
    749     MadeChange = true;
    750     ++NumChanged;
    751     Op = NewOp;
    752   }
    753 
    754   // If the expression changed non-trivially then clear out all subclass data
    755   // starting from the operator specified in ExpressionChanged, and compactify
    756   // the operators to just before the expression root to guarantee that the
    757   // expression tree is dominated by all of Ops.
    758   if (ExpressionChanged)
    759     do {
    760       // Preserve FastMathFlags.
    761       if (isa<FPMathOperator>(I)) {
    762         FastMathFlags Flags = I->getFastMathFlags();
    763         ExpressionChanged->clearSubclassOptionalData();
    764         ExpressionChanged->setFastMathFlags(Flags);
    765       } else
    766         ExpressionChanged->clearSubclassOptionalData();
    767 
    768       if (ExpressionChanged == I)
    769         break;
    770       ExpressionChanged->moveBefore(I);
    771       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
    772     } while (1);
    773 
    774   // Throw away any left over nodes from the original expression.
    775   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
    776     RedoInsts.insert(NodesToRewrite[i]);
    777 }
    778 
    779 /// Insert instructions before the instruction pointed to by BI,
    780 /// that computes the negative version of the value specified.  The negative
    781 /// version of the value is returned, and BI is left pointing at the instruction
    782 /// that should be processed next by the reassociation pass.
    783 /// Also add intermediate instructions to the redo list that are modified while
    784 /// pushing the negates through adds.  These will be revisited to see if
    785 /// additional opportunities have been exposed.
    786 static Value *NegateValue(Value *V, Instruction *BI,
    787                           SetVector<AssertingVH<Instruction>> &ToRedo) {
    788   if (Constant *C = dyn_cast<Constant>(V)) {
    789     if (C->getType()->isFPOrFPVectorTy()) {
    790       return ConstantExpr::getFNeg(C);
    791     }
    792     return ConstantExpr::getNeg(C);
    793   }
    794 
    795 
    796   // We are trying to expose opportunity for reassociation.  One of the things
    797   // that we want to do to achieve this is to push a negation as deep into an
    798   // expression chain as possible, to expose the add instructions.  In practice,
    799   // this means that we turn this:
    800   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
    801   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
    802   // the constants.  We assume that instcombine will clean up the mess later if
    803   // we introduce tons of unnecessary negation instructions.
    804   //
    805   if (BinaryOperator *I =
    806           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
    807     // Push the negates through the add.
    808     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
    809     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
    810     if (I->getOpcode() == Instruction::Add) {
    811       I->setHasNoUnsignedWrap(false);
    812       I->setHasNoSignedWrap(false);
    813     }
    814 
    815     // We must move the add instruction here, because the neg instructions do
    816     // not dominate the old add instruction in general.  By moving it, we are
    817     // assured that the neg instructions we just inserted dominate the
    818     // instruction we are about to insert after them.
    819     //
    820     I->moveBefore(BI);
    821     I->setName(I->getName()+".neg");
    822 
    823     // Add the intermediate negates to the redo list as processing them later
    824     // could expose more reassociating opportunities.
    825     ToRedo.insert(I);
    826     return I;
    827   }
    828 
    829   // Okay, we need to materialize a negated version of V with an instruction.
    830   // Scan the use lists of V to see if we have one already.
    831   for (User *U : V->users()) {
    832     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
    833       continue;
    834 
    835     // We found one!  Now we have to make sure that the definition dominates
    836     // this use.  We do this by moving it to the entry block (if it is a
    837     // non-instruction value) or right after the definition.  These negates will
    838     // be zapped by reassociate later, so we don't need much finesse here.
    839     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
    840 
    841     // Verify that the negate is in this function, V might be a constant expr.
    842     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
    843       continue;
    844 
    845     BasicBlock::iterator InsertPt;
    846     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
    847       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
    848         InsertPt = II->getNormalDest()->begin();
    849       } else {
    850         InsertPt = ++InstInput->getIterator();
    851       }
    852       while (isa<PHINode>(InsertPt)) ++InsertPt;
    853     } else {
    854       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    855     }
    856     TheNeg->moveBefore(&*InsertPt);
    857     if (TheNeg->getOpcode() == Instruction::Sub) {
    858       TheNeg->setHasNoUnsignedWrap(false);
    859       TheNeg->setHasNoSignedWrap(false);
    860     } else {
    861       TheNeg->andIRFlags(BI);
    862     }
    863     ToRedo.insert(TheNeg);
    864     return TheNeg;
    865   }
    866 
    867   // Insert a 'neg' instruction that subtracts the value from zero to get the
    868   // negation.
    869   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
    870   ToRedo.insert(NewNeg);
    871   return NewNeg;
    872 }
    873 
    874 /// Return true if we should break up this subtract of X-Y into (X + -Y).
    875 static bool ShouldBreakUpSubtract(Instruction *Sub) {
    876   // If this is a negation, we can't split it up!
    877   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
    878     return false;
    879 
    880   // Don't breakup X - undef.
    881   if (isa<UndefValue>(Sub->getOperand(1)))
    882     return false;
    883 
    884   // Don't bother to break this up unless either the LHS is an associable add or
    885   // subtract or if this is only used by one.
    886   Value *V0 = Sub->getOperand(0);
    887   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
    888       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
    889     return true;
    890   Value *V1 = Sub->getOperand(1);
    891   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
    892       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
    893     return true;
    894   Value *VB = Sub->user_back();
    895   if (Sub->hasOneUse() &&
    896       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
    897        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
    898     return true;
    899 
    900   return false;
    901 }
    902 
    903 /// If we have (X-Y), and if either X is an add, or if this is only used by an
    904 /// add, transform this into (X+(0-Y)) to promote better reassociation.
    905 static BinaryOperator *
    906 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
    907   // Convert a subtract into an add and a neg instruction. This allows sub
    908   // instructions to be commuted with other add instructions.
    909   //
    910   // Calculate the negative value of Operand 1 of the sub instruction,
    911   // and set it as the RHS of the add instruction we just made.
    912   //
    913   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
    914   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
    915   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
    916   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
    917   New->takeName(Sub);
    918 
    919   // Everyone now refers to the add instruction.
    920   Sub->replaceAllUsesWith(New);
    921   New->setDebugLoc(Sub->getDebugLoc());
    922 
    923   DEBUG(dbgs() << "Negated: " << *New << '\n');
    924   return New;
    925 }
    926 
    927 /// If this is a shift of a reassociable multiply or is used by one, change
    928 /// this into a multiply by a constant to assist with further reassociation.
    929 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
    930   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
    931   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
    932 
    933   BinaryOperator *Mul =
    934     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
    935   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
    936   Mul->takeName(Shl);
    937 
    938   // Everyone now refers to the mul instruction.
    939   Shl->replaceAllUsesWith(Mul);
    940   Mul->setDebugLoc(Shl->getDebugLoc());
    941 
    942   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
    943   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
    944   // handling.
    945   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
    946   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
    947   if (NSW && NUW)
    948     Mul->setHasNoSignedWrap(true);
    949   Mul->setHasNoUnsignedWrap(NUW);
    950   return Mul;
    951 }
    952 
    953 /// Scan backwards and forwards among values with the same rank as element i
    954 /// to see if X exists.  If X does not exist, return i.  This is useful when
    955 /// scanning for 'x' when we see '-x' because they both get the same rank.
    956 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
    957                                   Value *X) {
    958   unsigned XRank = Ops[i].Rank;
    959   unsigned e = Ops.size();
    960   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
    961     if (Ops[j].Op == X)
    962       return j;
    963     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
    964       if (Instruction *I2 = dyn_cast<Instruction>(X))
    965         if (I1->isIdenticalTo(I2))
    966           return j;
    967   }
    968   // Scan backwards.
    969   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
    970     if (Ops[j].Op == X)
    971       return j;
    972     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
    973       if (Instruction *I2 = dyn_cast<Instruction>(X))
    974         if (I1->isIdenticalTo(I2))
    975           return j;
    976   }
    977   return i;
    978 }
    979 
    980 /// Emit a tree of add instructions, summing Ops together
    981 /// and returning the result.  Insert the tree before I.
    982 static Value *EmitAddTreeOfValues(Instruction *I,
    983                                   SmallVectorImpl<WeakVH> &Ops){
    984   if (Ops.size() == 1) return Ops.back();
    985 
    986   Value *V1 = Ops.back();
    987   Ops.pop_back();
    988   Value *V2 = EmitAddTreeOfValues(I, Ops);
    989   return CreateAdd(V2, V1, "tmp", I, I);
    990 }
    991 
    992 /// If V is an expression tree that is a multiplication sequence,
    993 /// and if this sequence contains a multiply by Factor,
    994 /// remove Factor from the tree and return the new tree.
    995 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
    996   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
    997   if (!BO)
    998     return nullptr;
    999 
   1000   SmallVector<RepeatedValue, 8> Tree;
   1001   MadeChange |= LinearizeExprTree(BO, Tree);
   1002   SmallVector<ValueEntry, 8> Factors;
   1003   Factors.reserve(Tree.size());
   1004   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   1005     RepeatedValue E = Tree[i];
   1006     Factors.append(E.second.getZExtValue(),
   1007                    ValueEntry(getRank(E.first), E.first));
   1008   }
   1009 
   1010   bool FoundFactor = false;
   1011   bool NeedsNegate = false;
   1012   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1013     if (Factors[i].Op == Factor) {
   1014       FoundFactor = true;
   1015       Factors.erase(Factors.begin()+i);
   1016       break;
   1017     }
   1018 
   1019     // If this is a negative version of this factor, remove it.
   1020     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
   1021       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
   1022         if (FC1->getValue() == -FC2->getValue()) {
   1023           FoundFactor = NeedsNegate = true;
   1024           Factors.erase(Factors.begin()+i);
   1025           break;
   1026         }
   1027     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
   1028       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
   1029         const APFloat &F1 = FC1->getValueAPF();
   1030         APFloat F2(FC2->getValueAPF());
   1031         F2.changeSign();
   1032         if (F1.compare(F2) == APFloat::cmpEqual) {
   1033           FoundFactor = NeedsNegate = true;
   1034           Factors.erase(Factors.begin() + i);
   1035           break;
   1036         }
   1037       }
   1038     }
   1039   }
   1040 
   1041   if (!FoundFactor) {
   1042     // Make sure to restore the operands to the expression tree.
   1043     RewriteExprTree(BO, Factors);
   1044     return nullptr;
   1045   }
   1046 
   1047   BasicBlock::iterator InsertPt = ++BO->getIterator();
   1048 
   1049   // If this was just a single multiply, remove the multiply and return the only
   1050   // remaining operand.
   1051   if (Factors.size() == 1) {
   1052     RedoInsts.insert(BO);
   1053     V = Factors[0].Op;
   1054   } else {
   1055     RewriteExprTree(BO, Factors);
   1056     V = BO;
   1057   }
   1058 
   1059   if (NeedsNegate)
   1060     V = CreateNeg(V, "neg", &*InsertPt, BO);
   1061 
   1062   return V;
   1063 }
   1064 
   1065 /// If V is a single-use multiply, recursively add its operands as factors,
   1066 /// otherwise add V to the list of factors.
   1067 ///
   1068 /// Ops is the top-level list of add operands we're trying to factor.
   1069 static void FindSingleUseMultiplyFactors(Value *V,
   1070                                          SmallVectorImpl<Value*> &Factors,
   1071                                        const SmallVectorImpl<ValueEntry> &Ops) {
   1072   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
   1073   if (!BO) {
   1074     Factors.push_back(V);
   1075     return;
   1076   }
   1077 
   1078   // Otherwise, add the LHS and RHS to the list of factors.
   1079   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
   1080   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
   1081 }
   1082 
   1083 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
   1084 /// This optimizes based on identities.  If it can be reduced to a single Value,
   1085 /// it is returned, otherwise the Ops list is mutated as necessary.
   1086 static Value *OptimizeAndOrXor(unsigned Opcode,
   1087                                SmallVectorImpl<ValueEntry> &Ops) {
   1088   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
   1089   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
   1090   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1091     // First, check for X and ~X in the operand list.
   1092     assert(i < Ops.size());
   1093     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
   1094       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
   1095       unsigned FoundX = FindInOperandList(Ops, i, X);
   1096       if (FoundX != i) {
   1097         if (Opcode == Instruction::And)   // ...&X&~X = 0
   1098           return Constant::getNullValue(X->getType());
   1099 
   1100         if (Opcode == Instruction::Or)    // ...|X|~X = -1
   1101           return Constant::getAllOnesValue(X->getType());
   1102       }
   1103     }
   1104 
   1105     // Next, check for duplicate pairs of values, which we assume are next to
   1106     // each other, due to our sorting criteria.
   1107     assert(i < Ops.size());
   1108     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
   1109       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
   1110         // Drop duplicate values for And and Or.
   1111         Ops.erase(Ops.begin()+i);
   1112         --i; --e;
   1113         ++NumAnnihil;
   1114         continue;
   1115       }
   1116 
   1117       // Drop pairs of values for Xor.
   1118       assert(Opcode == Instruction::Xor);
   1119       if (e == 2)
   1120         return Constant::getNullValue(Ops[0].Op->getType());
   1121 
   1122       // Y ^ X^X -> Y
   1123       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
   1124       i -= 1; e -= 2;
   1125       ++NumAnnihil;
   1126     }
   1127   }
   1128   return nullptr;
   1129 }
   1130 
   1131 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
   1132 /// instruction with the given two operands, and return the resulting
   1133 /// instruction. There are two special cases: 1) if the constant operand is 0,
   1134 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
   1135 /// be returned.
   1136 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
   1137                              const APInt &ConstOpnd) {
   1138   if (ConstOpnd != 0) {
   1139     if (!ConstOpnd.isAllOnesValue()) {
   1140       LLVMContext &Ctx = Opnd->getType()->getContext();
   1141       Instruction *I;
   1142       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
   1143                                     "and.ra", InsertBefore);
   1144       I->setDebugLoc(InsertBefore->getDebugLoc());
   1145       return I;
   1146     }
   1147     return Opnd;
   1148   }
   1149   return nullptr;
   1150 }
   1151 
   1152 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
   1153 // into "R ^ C", where C would be 0, and R is a symbolic value.
   1154 //
   1155 // If it was successful, true is returned, and the "R" and "C" is returned
   1156 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
   1157 // and both "Res" and "ConstOpnd" remain unchanged.
   1158 //
   1159 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
   1160                                      APInt &ConstOpnd, Value *&Res) {
   1161   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
   1162   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
   1163   //                       = (x & ~c1) ^ (c1 ^ c2)
   1164   // It is useful only when c1 == c2.
   1165   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
   1166     if (!Opnd1->getValue()->hasOneUse())
   1167       return false;
   1168 
   1169     const APInt &C1 = Opnd1->getConstPart();
   1170     if (C1 != ConstOpnd)
   1171       return false;
   1172 
   1173     Value *X = Opnd1->getSymbolicPart();
   1174     Res = createAndInstr(I, X, ~C1);
   1175     // ConstOpnd was C2, now C1 ^ C2.
   1176     ConstOpnd ^= C1;
   1177 
   1178     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1179       RedoInsts.insert(T);
   1180     return true;
   1181   }
   1182   return false;
   1183 }
   1184 
   1185 
   1186 // Helper function of OptimizeXor(). It tries to simplify
   1187 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
   1188 // symbolic value.
   1189 //
   1190 // If it was successful, true is returned, and the "R" and "C" is returned
   1191 // via "Res" and "ConstOpnd", respectively (If the entire expression is
   1192 // evaluated to a constant, the Res is set to NULL); otherwise, false is
   1193 // returned, and both "Res" and "ConstOpnd" remain unchanged.
   1194 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
   1195                                      XorOpnd *Opnd2, APInt &ConstOpnd,
   1196                                      Value *&Res) {
   1197   Value *X = Opnd1->getSymbolicPart();
   1198   if (X != Opnd2->getSymbolicPart())
   1199     return false;
   1200 
   1201   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
   1202   int DeadInstNum = 1;
   1203   if (Opnd1->getValue()->hasOneUse())
   1204     DeadInstNum++;
   1205   if (Opnd2->getValue()->hasOneUse())
   1206     DeadInstNum++;
   1207 
   1208   // Xor-Rule 2:
   1209   //  (x | c1) ^ (x & c2)
   1210   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
   1211   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
   1212   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
   1213   //
   1214   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
   1215     if (Opnd2->isOrExpr())
   1216       std::swap(Opnd1, Opnd2);
   1217 
   1218     const APInt &C1 = Opnd1->getConstPart();
   1219     const APInt &C2 = Opnd2->getConstPart();
   1220     APInt C3((~C1) ^ C2);
   1221 
   1222     // Do not increase code size!
   1223     if (C3 != 0 && !C3.isAllOnesValue()) {
   1224       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1225       if (NewInstNum > DeadInstNum)
   1226         return false;
   1227     }
   1228 
   1229     Res = createAndInstr(I, X, C3);
   1230     ConstOpnd ^= C1;
   1231 
   1232   } else if (Opnd1->isOrExpr()) {
   1233     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
   1234     //
   1235     const APInt &C1 = Opnd1->getConstPart();
   1236     const APInt &C2 = Opnd2->getConstPart();
   1237     APInt C3 = C1 ^ C2;
   1238 
   1239     // Do not increase code size
   1240     if (C3 != 0 && !C3.isAllOnesValue()) {
   1241       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1242       if (NewInstNum > DeadInstNum)
   1243         return false;
   1244     }
   1245 
   1246     Res = createAndInstr(I, X, C3);
   1247     ConstOpnd ^= C3;
   1248   } else {
   1249     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
   1250     //
   1251     const APInt &C1 = Opnd1->getConstPart();
   1252     const APInt &C2 = Opnd2->getConstPart();
   1253     APInt C3 = C1 ^ C2;
   1254     Res = createAndInstr(I, X, C3);
   1255   }
   1256 
   1257   // Put the original operands in the Redo list; hope they will be deleted
   1258   // as dead code.
   1259   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1260     RedoInsts.insert(T);
   1261   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
   1262     RedoInsts.insert(T);
   1263 
   1264   return true;
   1265 }
   1266 
   1267 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
   1268 /// to a single Value, it is returned, otherwise the Ops list is mutated as
   1269 /// necessary.
   1270 Value *ReassociatePass::OptimizeXor(Instruction *I,
   1271                                     SmallVectorImpl<ValueEntry> &Ops) {
   1272   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
   1273     return V;
   1274 
   1275   if (Ops.size() == 1)
   1276     return nullptr;
   1277 
   1278   SmallVector<XorOpnd, 8> Opnds;
   1279   SmallVector<XorOpnd*, 8> OpndPtrs;
   1280   Type *Ty = Ops[0].Op->getType();
   1281   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
   1282 
   1283   // Step 1: Convert ValueEntry to XorOpnd
   1284   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1285     Value *V = Ops[i].Op;
   1286     if (!isa<ConstantInt>(V)) {
   1287       XorOpnd O(V);
   1288       O.setSymbolicRank(getRank(O.getSymbolicPart()));
   1289       Opnds.push_back(O);
   1290     } else
   1291       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
   1292   }
   1293 
   1294   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
   1295   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
   1296   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
   1297   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
   1298   //  when new elements are added to the vector.
   1299   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
   1300     OpndPtrs.push_back(&Opnds[i]);
   1301 
   1302   // Step 2: Sort the Xor-Operands in a way such that the operands containing
   1303   //  the same symbolic value cluster together. For instance, the input operand
   1304   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
   1305   //  ("x | 123", "x & 789", "y & 456").
   1306   //
   1307   //  The purpose is twofold:
   1308   //  1) Cluster together the operands sharing the same symbolic-value.
   1309   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
   1310   //     could potentially shorten crital path, and expose more loop-invariants.
   1311   //     Note that values' rank are basically defined in RPO order (FIXME).
   1312   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
   1313   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
   1314   //     "z" in the order of X-Y-Z is better than any other orders.
   1315   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
   1316                    [](XorOpnd *LHS, XorOpnd *RHS) {
   1317     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
   1318   });
   1319 
   1320   // Step 3: Combine adjacent operands
   1321   XorOpnd *PrevOpnd = nullptr;
   1322   bool Changed = false;
   1323   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
   1324     XorOpnd *CurrOpnd = OpndPtrs[i];
   1325     // The combined value
   1326     Value *CV;
   1327 
   1328     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
   1329     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
   1330       Changed = true;
   1331       if (CV)
   1332         *CurrOpnd = XorOpnd(CV);
   1333       else {
   1334         CurrOpnd->Invalidate();
   1335         continue;
   1336       }
   1337     }
   1338 
   1339     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
   1340       PrevOpnd = CurrOpnd;
   1341       continue;
   1342     }
   1343 
   1344     // step 3.2: When previous and current operands share the same symbolic
   1345     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
   1346     //
   1347     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
   1348       // Remove previous operand
   1349       PrevOpnd->Invalidate();
   1350       if (CV) {
   1351         *CurrOpnd = XorOpnd(CV);
   1352         PrevOpnd = CurrOpnd;
   1353       } else {
   1354         CurrOpnd->Invalidate();
   1355         PrevOpnd = nullptr;
   1356       }
   1357       Changed = true;
   1358     }
   1359   }
   1360 
   1361   // Step 4: Reassemble the Ops
   1362   if (Changed) {
   1363     Ops.clear();
   1364     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
   1365       XorOpnd &O = Opnds[i];
   1366       if (O.isInvalid())
   1367         continue;
   1368       ValueEntry VE(getRank(O.getValue()), O.getValue());
   1369       Ops.push_back(VE);
   1370     }
   1371     if (ConstOpnd != 0) {
   1372       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
   1373       ValueEntry VE(getRank(C), C);
   1374       Ops.push_back(VE);
   1375     }
   1376     int Sz = Ops.size();
   1377     if (Sz == 1)
   1378       return Ops.back().Op;
   1379     else if (Sz == 0) {
   1380       assert(ConstOpnd == 0);
   1381       return ConstantInt::get(Ty->getContext(), ConstOpnd);
   1382     }
   1383   }
   1384 
   1385   return nullptr;
   1386 }
   1387 
   1388 /// Optimize a series of operands to an 'add' instruction.  This
   1389 /// optimizes based on identities.  If it can be reduced to a single Value, it
   1390 /// is returned, otherwise the Ops list is mutated as necessary.
   1391 Value *ReassociatePass::OptimizeAdd(Instruction *I,
   1392                                     SmallVectorImpl<ValueEntry> &Ops) {
   1393   // Scan the operand lists looking for X and -X pairs.  If we find any, we
   1394   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
   1395   // scan for any
   1396   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
   1397 
   1398   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1399     Value *TheOp = Ops[i].Op;
   1400     // Check to see if we've seen this operand before.  If so, we factor all
   1401     // instances of the operand together.  Due to our sorting criteria, we know
   1402     // that these need to be next to each other in the vector.
   1403     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
   1404       // Rescan the list, remove all instances of this operand from the expr.
   1405       unsigned NumFound = 0;
   1406       do {
   1407         Ops.erase(Ops.begin()+i);
   1408         ++NumFound;
   1409       } while (i != Ops.size() && Ops[i].Op == TheOp);
   1410 
   1411       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
   1412       ++NumFactor;
   1413 
   1414       // Insert a new multiply.
   1415       Type *Ty = TheOp->getType();
   1416       Constant *C = Ty->isIntOrIntVectorTy() ?
   1417         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
   1418       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
   1419 
   1420       // Now that we have inserted a multiply, optimize it. This allows us to
   1421       // handle cases that require multiple factoring steps, such as this:
   1422       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
   1423       RedoInsts.insert(Mul);
   1424 
   1425       // If every add operand was a duplicate, return the multiply.
   1426       if (Ops.empty())
   1427         return Mul;
   1428 
   1429       // Otherwise, we had some input that didn't have the dupe, such as
   1430       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
   1431       // things being added by this operation.
   1432       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
   1433 
   1434       --i;
   1435       e = Ops.size();
   1436       continue;
   1437     }
   1438 
   1439     // Check for X and -X or X and ~X in the operand list.
   1440     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
   1441         !BinaryOperator::isNot(TheOp))
   1442       continue;
   1443 
   1444     Value *X = nullptr;
   1445     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
   1446       X = BinaryOperator::getNegArgument(TheOp);
   1447     else if (BinaryOperator::isNot(TheOp))
   1448       X = BinaryOperator::getNotArgument(TheOp);
   1449 
   1450     unsigned FoundX = FindInOperandList(Ops, i, X);
   1451     if (FoundX == i)
   1452       continue;
   1453 
   1454     // Remove X and -X from the operand list.
   1455     if (Ops.size() == 2 &&
   1456         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
   1457       return Constant::getNullValue(X->getType());
   1458 
   1459     // Remove X and ~X from the operand list.
   1460     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
   1461       return Constant::getAllOnesValue(X->getType());
   1462 
   1463     Ops.erase(Ops.begin()+i);
   1464     if (i < FoundX)
   1465       --FoundX;
   1466     else
   1467       --i;   // Need to back up an extra one.
   1468     Ops.erase(Ops.begin()+FoundX);
   1469     ++NumAnnihil;
   1470     --i;     // Revisit element.
   1471     e -= 2;  // Removed two elements.
   1472 
   1473     // if X and ~X we append -1 to the operand list.
   1474     if (BinaryOperator::isNot(TheOp)) {
   1475       Value *V = Constant::getAllOnesValue(X->getType());
   1476       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
   1477       e += 1;
   1478     }
   1479   }
   1480 
   1481   // Scan the operand list, checking to see if there are any common factors
   1482   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
   1483   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
   1484   // To efficiently find this, we count the number of times a factor occurs
   1485   // for any ADD operands that are MULs.
   1486   DenseMap<Value*, unsigned> FactorOccurrences;
   1487 
   1488   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
   1489   // where they are actually the same multiply.
   1490   unsigned MaxOcc = 0;
   1491   Value *MaxOccVal = nullptr;
   1492   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1493     BinaryOperator *BOp =
   1494         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
   1495     if (!BOp)
   1496       continue;
   1497 
   1498     // Compute all of the factors of this added value.
   1499     SmallVector<Value*, 8> Factors;
   1500     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
   1501     assert(Factors.size() > 1 && "Bad linearize!");
   1502 
   1503     // Add one to FactorOccurrences for each unique factor in this op.
   1504     SmallPtrSet<Value*, 8> Duplicates;
   1505     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1506       Value *Factor = Factors[i];
   1507       if (!Duplicates.insert(Factor).second)
   1508         continue;
   1509 
   1510       unsigned Occ = ++FactorOccurrences[Factor];
   1511       if (Occ > MaxOcc) {
   1512         MaxOcc = Occ;
   1513         MaxOccVal = Factor;
   1514       }
   1515 
   1516       // If Factor is a negative constant, add the negated value as a factor
   1517       // because we can percolate the negate out.  Watch for minint, which
   1518       // cannot be positivified.
   1519       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
   1520         if (CI->isNegative() && !CI->isMinValue(true)) {
   1521           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
   1522           assert(!Duplicates.count(Factor) &&
   1523                  "Shouldn't have two constant factors, missed a canonicalize");
   1524           unsigned Occ = ++FactorOccurrences[Factor];
   1525           if (Occ > MaxOcc) {
   1526             MaxOcc = Occ;
   1527             MaxOccVal = Factor;
   1528           }
   1529         }
   1530       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
   1531         if (CF->isNegative()) {
   1532           APFloat F(CF->getValueAPF());
   1533           F.changeSign();
   1534           Factor = ConstantFP::get(CF->getContext(), F);
   1535           assert(!Duplicates.count(Factor) &&
   1536                  "Shouldn't have two constant factors, missed a canonicalize");
   1537           unsigned Occ = ++FactorOccurrences[Factor];
   1538           if (Occ > MaxOcc) {
   1539             MaxOcc = Occ;
   1540             MaxOccVal = Factor;
   1541           }
   1542         }
   1543       }
   1544     }
   1545   }
   1546 
   1547   // If any factor occurred more than one time, we can pull it out.
   1548   if (MaxOcc > 1) {
   1549     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
   1550     ++NumFactor;
   1551 
   1552     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
   1553     // this, we could otherwise run into situations where removing a factor
   1554     // from an expression will drop a use of maxocc, and this can cause
   1555     // RemoveFactorFromExpression on successive values to behave differently.
   1556     Instruction *DummyInst =
   1557         I->getType()->isIntOrIntVectorTy()
   1558             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
   1559             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
   1560 
   1561     SmallVector<WeakVH, 4> NewMulOps;
   1562     for (unsigned i = 0; i != Ops.size(); ++i) {
   1563       // Only try to remove factors from expressions we're allowed to.
   1564       BinaryOperator *BOp =
   1565           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
   1566       if (!BOp)
   1567         continue;
   1568 
   1569       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
   1570         // The factorized operand may occur several times.  Convert them all in
   1571         // one fell swoop.
   1572         for (unsigned j = Ops.size(); j != i;) {
   1573           --j;
   1574           if (Ops[j].Op == Ops[i].Op) {
   1575             NewMulOps.push_back(V);
   1576             Ops.erase(Ops.begin()+j);
   1577           }
   1578         }
   1579         --i;
   1580       }
   1581     }
   1582 
   1583     // No need for extra uses anymore.
   1584     delete DummyInst;
   1585 
   1586     unsigned NumAddedValues = NewMulOps.size();
   1587     Value *V = EmitAddTreeOfValues(I, NewMulOps);
   1588 
   1589     // Now that we have inserted the add tree, optimize it. This allows us to
   1590     // handle cases that require multiple factoring steps, such as this:
   1591     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
   1592     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
   1593     (void)NumAddedValues;
   1594     if (Instruction *VI = dyn_cast<Instruction>(V))
   1595       RedoInsts.insert(VI);
   1596 
   1597     // Create the multiply.
   1598     Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
   1599 
   1600     // Rerun associate on the multiply in case the inner expression turned into
   1601     // a multiply.  We want to make sure that we keep things in canonical form.
   1602     RedoInsts.insert(V2);
   1603 
   1604     // If every add operand included the factor (e.g. "A*B + A*C"), then the
   1605     // entire result expression is just the multiply "A*(B+C)".
   1606     if (Ops.empty())
   1607       return V2;
   1608 
   1609     // Otherwise, we had some input that didn't have the factor, such as
   1610     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
   1611     // things being added by this operation.
   1612     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
   1613   }
   1614 
   1615   return nullptr;
   1616 }
   1617 
   1618 /// \brief Build up a vector of value/power pairs factoring a product.
   1619 ///
   1620 /// Given a series of multiplication operands, build a vector of factors and
   1621 /// the powers each is raised to when forming the final product. Sort them in
   1622 /// the order of descending power.
   1623 ///
   1624 ///      (x*x)          -> [(x, 2)]
   1625 ///     ((x*x)*x)       -> [(x, 3)]
   1626 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
   1627 ///
   1628 /// \returns Whether any factors have a power greater than one.
   1629 bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
   1630                                              SmallVectorImpl<Factor> &Factors) {
   1631   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
   1632   // Compute the sum of powers of simplifiable factors.
   1633   unsigned FactorPowerSum = 0;
   1634   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
   1635     Value *Op = Ops[Idx-1].Op;
   1636 
   1637     // Count the number of occurrences of this value.
   1638     unsigned Count = 1;
   1639     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
   1640       ++Count;
   1641     // Track for simplification all factors which occur 2 or more times.
   1642     if (Count > 1)
   1643       FactorPowerSum += Count;
   1644   }
   1645 
   1646   // We can only simplify factors if the sum of the powers of our simplifiable
   1647   // factors is 4 or higher. When that is the case, we will *always* have
   1648   // a simplification. This is an important invariant to prevent cyclicly
   1649   // trying to simplify already minimal formations.
   1650   if (FactorPowerSum < 4)
   1651     return false;
   1652 
   1653   // Now gather the simplifiable factors, removing them from Ops.
   1654   FactorPowerSum = 0;
   1655   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
   1656     Value *Op = Ops[Idx-1].Op;
   1657 
   1658     // Count the number of occurrences of this value.
   1659     unsigned Count = 1;
   1660     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
   1661       ++Count;
   1662     if (Count == 1)
   1663       continue;
   1664     // Move an even number of occurrences to Factors.
   1665     Count &= ~1U;
   1666     Idx -= Count;
   1667     FactorPowerSum += Count;
   1668     Factors.push_back(Factor(Op, Count));
   1669     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
   1670   }
   1671 
   1672   // None of the adjustments above should have reduced the sum of factor powers
   1673   // below our mininum of '4'.
   1674   assert(FactorPowerSum >= 4);
   1675 
   1676   std::stable_sort(Factors.begin(), Factors.end(),
   1677                    [](const Factor &LHS, const Factor &RHS) {
   1678     return LHS.Power > RHS.Power;
   1679   });
   1680   return true;
   1681 }
   1682 
   1683 /// \brief Build a tree of multiplies, computing the product of Ops.
   1684 static Value *buildMultiplyTree(IRBuilder<> &Builder,
   1685                                 SmallVectorImpl<Value*> &Ops) {
   1686   if (Ops.size() == 1)
   1687     return Ops.back();
   1688 
   1689   Value *LHS = Ops.pop_back_val();
   1690   do {
   1691     if (LHS->getType()->isIntOrIntVectorTy())
   1692       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
   1693     else
   1694       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
   1695   } while (!Ops.empty());
   1696 
   1697   return LHS;
   1698 }
   1699 
   1700 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
   1701 ///
   1702 /// Given a vector of values raised to various powers, where no two values are
   1703 /// equal and the powers are sorted in decreasing order, compute the minimal
   1704 /// DAG of multiplies to compute the final product, and return that product
   1705 /// value.
   1706 Value *
   1707 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
   1708                                          SmallVectorImpl<Factor> &Factors) {
   1709   assert(Factors[0].Power);
   1710   SmallVector<Value *, 4> OuterProduct;
   1711   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
   1712        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
   1713     if (Factors[Idx].Power != Factors[LastIdx].Power) {
   1714       LastIdx = Idx;
   1715       continue;
   1716     }
   1717 
   1718     // We want to multiply across all the factors with the same power so that
   1719     // we can raise them to that power as a single entity. Build a mini tree
   1720     // for that.
   1721     SmallVector<Value *, 4> InnerProduct;
   1722     InnerProduct.push_back(Factors[LastIdx].Base);
   1723     do {
   1724       InnerProduct.push_back(Factors[Idx].Base);
   1725       ++Idx;
   1726     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
   1727 
   1728     // Reset the base value of the first factor to the new expression tree.
   1729     // We'll remove all the factors with the same power in a second pass.
   1730     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
   1731     if (Instruction *MI = dyn_cast<Instruction>(M))
   1732       RedoInsts.insert(MI);
   1733 
   1734     LastIdx = Idx;
   1735   }
   1736   // Unique factors with equal powers -- we've folded them into the first one's
   1737   // base.
   1738   Factors.erase(std::unique(Factors.begin(), Factors.end(),
   1739                             [](const Factor &LHS, const Factor &RHS) {
   1740                               return LHS.Power == RHS.Power;
   1741                             }),
   1742                 Factors.end());
   1743 
   1744   // Iteratively collect the base of each factor with an add power into the
   1745   // outer product, and halve each power in preparation for squaring the
   1746   // expression.
   1747   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
   1748     if (Factors[Idx].Power & 1)
   1749       OuterProduct.push_back(Factors[Idx].Base);
   1750     Factors[Idx].Power >>= 1;
   1751   }
   1752   if (Factors[0].Power) {
   1753     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
   1754     OuterProduct.push_back(SquareRoot);
   1755     OuterProduct.push_back(SquareRoot);
   1756   }
   1757   if (OuterProduct.size() == 1)
   1758     return OuterProduct.front();
   1759 
   1760   Value *V = buildMultiplyTree(Builder, OuterProduct);
   1761   return V;
   1762 }
   1763 
   1764 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
   1765                                     SmallVectorImpl<ValueEntry> &Ops) {
   1766   // We can only optimize the multiplies when there is a chain of more than
   1767   // three, such that a balanced tree might require fewer total multiplies.
   1768   if (Ops.size() < 4)
   1769     return nullptr;
   1770 
   1771   // Try to turn linear trees of multiplies without other uses of the
   1772   // intermediate stages into minimal multiply DAGs with perfect sub-expression
   1773   // re-use.
   1774   SmallVector<Factor, 4> Factors;
   1775   if (!collectMultiplyFactors(Ops, Factors))
   1776     return nullptr; // All distinct factors, so nothing left for us to do.
   1777 
   1778   IRBuilder<> Builder(I);
   1779   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
   1780   if (Ops.empty())
   1781     return V;
   1782 
   1783   ValueEntry NewEntry = ValueEntry(getRank(V), V);
   1784   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
   1785   return nullptr;
   1786 }
   1787 
   1788 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
   1789                                            SmallVectorImpl<ValueEntry> &Ops) {
   1790   // Now that we have the linearized expression tree, try to optimize it.
   1791   // Start by folding any constants that we found.
   1792   Constant *Cst = nullptr;
   1793   unsigned Opcode = I->getOpcode();
   1794   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
   1795     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
   1796     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
   1797   }
   1798   // If there was nothing but constants then we are done.
   1799   if (Ops.empty())
   1800     return Cst;
   1801 
   1802   // Put the combined constant back at the end of the operand list, except if
   1803   // there is no point.  For example, an add of 0 gets dropped here, while a
   1804   // multiplication by zero turns the whole expression into zero.
   1805   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
   1806     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
   1807       return Cst;
   1808     Ops.push_back(ValueEntry(0, Cst));
   1809   }
   1810 
   1811   if (Ops.size() == 1) return Ops[0].Op;
   1812 
   1813   // Handle destructive annihilation due to identities between elements in the
   1814   // argument list here.
   1815   unsigned NumOps = Ops.size();
   1816   switch (Opcode) {
   1817   default: break;
   1818   case Instruction::And:
   1819   case Instruction::Or:
   1820     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
   1821       return Result;
   1822     break;
   1823 
   1824   case Instruction::Xor:
   1825     if (Value *Result = OptimizeXor(I, Ops))
   1826       return Result;
   1827     break;
   1828 
   1829   case Instruction::Add:
   1830   case Instruction::FAdd:
   1831     if (Value *Result = OptimizeAdd(I, Ops))
   1832       return Result;
   1833     break;
   1834 
   1835   case Instruction::Mul:
   1836   case Instruction::FMul:
   1837     if (Value *Result = OptimizeMul(I, Ops))
   1838       return Result;
   1839     break;
   1840   }
   1841 
   1842   if (Ops.size() != NumOps)
   1843     return OptimizeExpression(I, Ops);
   1844   return nullptr;
   1845 }
   1846 
   1847 // Remove dead instructions and if any operands are trivially dead add them to
   1848 // Insts so they will be removed as well.
   1849 void ReassociatePass::RecursivelyEraseDeadInsts(
   1850     Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
   1851   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
   1852   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
   1853   ValueRankMap.erase(I);
   1854   Insts.remove(I);
   1855   RedoInsts.remove(I);
   1856   I->eraseFromParent();
   1857   for (auto Op : Ops)
   1858     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
   1859       if (OpInst->use_empty())
   1860         Insts.insert(OpInst);
   1861 }
   1862 
   1863 /// Zap the given instruction, adding interesting operands to the work list.
   1864 void ReassociatePass::EraseInst(Instruction *I) {
   1865   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
   1866   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   1867   // Erase the dead instruction.
   1868   ValueRankMap.erase(I);
   1869   RedoInsts.remove(I);
   1870   I->eraseFromParent();
   1871   // Optimize its operands.
   1872   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
   1873   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1874     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
   1875       // If this is a node in an expression tree, climb to the expression root
   1876       // and add that since that's where optimization actually happens.
   1877       unsigned Opcode = Op->getOpcode();
   1878       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
   1879              Visited.insert(Op).second)
   1880         Op = Op->user_back();
   1881       RedoInsts.insert(Op);
   1882     }
   1883 }
   1884 
   1885 // Canonicalize expressions of the following form:
   1886 //  x + (-Constant * y) -> x - (Constant * y)
   1887 //  x - (-Constant * y) -> x + (Constant * y)
   1888 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
   1889   if (!I->hasOneUse() || I->getType()->isVectorTy())
   1890     return nullptr;
   1891 
   1892   // Must be a fmul or fdiv instruction.
   1893   unsigned Opcode = I->getOpcode();
   1894   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
   1895     return nullptr;
   1896 
   1897   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
   1898   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
   1899 
   1900   // Both operands are constant, let it get constant folded away.
   1901   if (C0 && C1)
   1902     return nullptr;
   1903 
   1904   ConstantFP *CF = C0 ? C0 : C1;
   1905 
   1906   // Must have one constant operand.
   1907   if (!CF)
   1908     return nullptr;
   1909 
   1910   // Must be a negative ConstantFP.
   1911   if (!CF->isNegative())
   1912     return nullptr;
   1913 
   1914   // User must be a binary operator with one or more uses.
   1915   Instruction *User = I->user_back();
   1916   if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
   1917     return nullptr;
   1918 
   1919   unsigned UserOpcode = User->getOpcode();
   1920   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
   1921     return nullptr;
   1922 
   1923   // Subtraction is not commutative. Explicitly, the following transform is
   1924   // not valid: (-Constant * y) - x  -> x + (Constant * y)
   1925   if (!User->isCommutative() && User->getOperand(1) != I)
   1926     return nullptr;
   1927 
   1928   // Change the sign of the constant.
   1929   APFloat Val = CF->getValueAPF();
   1930   Val.changeSign();
   1931   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
   1932 
   1933   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
   1934   // ((-Const*y) + x) -> (x + (-Const*y)).
   1935   if (User->getOperand(0) == I && User->isCommutative())
   1936     cast<BinaryOperator>(User)->swapOperands();
   1937 
   1938   Value *Op0 = User->getOperand(0);
   1939   Value *Op1 = User->getOperand(1);
   1940   BinaryOperator *NI;
   1941   switch (UserOpcode) {
   1942   default:
   1943     llvm_unreachable("Unexpected Opcode!");
   1944   case Instruction::FAdd:
   1945     NI = BinaryOperator::CreateFSub(Op0, Op1);
   1946     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
   1947     break;
   1948   case Instruction::FSub:
   1949     NI = BinaryOperator::CreateFAdd(Op0, Op1);
   1950     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
   1951     break;
   1952   }
   1953 
   1954   NI->insertBefore(User);
   1955   NI->setName(User->getName());
   1956   User->replaceAllUsesWith(NI);
   1957   NI->setDebugLoc(I->getDebugLoc());
   1958   RedoInsts.insert(I);
   1959   MadeChange = true;
   1960   return NI;
   1961 }
   1962 
   1963 /// Inspect and optimize the given instruction. Note that erasing
   1964 /// instructions is not allowed.
   1965 void ReassociatePass::OptimizeInst(Instruction *I) {
   1966   // Only consider operations that we understand.
   1967   if (!isa<BinaryOperator>(I))
   1968     return;
   1969 
   1970   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
   1971     // If an operand of this shift is a reassociable multiply, or if the shift
   1972     // is used by a reassociable multiply or add, turn into a multiply.
   1973     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
   1974         (I->hasOneUse() &&
   1975          (isReassociableOp(I->user_back(), Instruction::Mul) ||
   1976           isReassociableOp(I->user_back(), Instruction::Add)))) {
   1977       Instruction *NI = ConvertShiftToMul(I);
   1978       RedoInsts.insert(I);
   1979       MadeChange = true;
   1980       I = NI;
   1981     }
   1982 
   1983   // Canonicalize negative constants out of expressions.
   1984   if (Instruction *Res = canonicalizeNegConstExpr(I))
   1985     I = Res;
   1986 
   1987   // Commute binary operators, to canonicalize the order of their operands.
   1988   // This can potentially expose more CSE opportunities, and makes writing other
   1989   // transformations simpler.
   1990   if (I->isCommutative())
   1991     canonicalizeOperands(I);
   1992 
   1993   // TODO: We should optimize vector Xor instructions, but they are
   1994   // currently unsupported.
   1995   if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
   1996     return;
   1997 
   1998   // Don't optimize floating point instructions that don't have unsafe algebra.
   1999   if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
   2000     return;
   2001 
   2002   // Do not reassociate boolean (i1) expressions.  We want to preserve the
   2003   // original order of evaluation for short-circuited comparisons that
   2004   // SimplifyCFG has folded to AND/OR expressions.  If the expression
   2005   // is not further optimized, it is likely to be transformed back to a
   2006   // short-circuited form for code gen, and the source order may have been
   2007   // optimized for the most likely conditions.
   2008   if (I->getType()->isIntegerTy(1))
   2009     return;
   2010 
   2011   // If this is a subtract instruction which is not already in negate form,
   2012   // see if we can convert it to X+-Y.
   2013   if (I->getOpcode() == Instruction::Sub) {
   2014     if (ShouldBreakUpSubtract(I)) {
   2015       Instruction *NI = BreakUpSubtract(I, RedoInsts);
   2016       RedoInsts.insert(I);
   2017       MadeChange = true;
   2018       I = NI;
   2019     } else if (BinaryOperator::isNeg(I)) {
   2020       // Otherwise, this is a negation.  See if the operand is a multiply tree
   2021       // and if this is not an inner node of a multiply tree.
   2022       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
   2023           (!I->hasOneUse() ||
   2024            !isReassociableOp(I->user_back(), Instruction::Mul))) {
   2025         Instruction *NI = LowerNegateToMultiply(I);
   2026         // If the negate was simplified, revisit the users to see if we can
   2027         // reassociate further.
   2028         for (User *U : NI->users()) {
   2029           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
   2030             RedoInsts.insert(Tmp);
   2031         }
   2032         RedoInsts.insert(I);
   2033         MadeChange = true;
   2034         I = NI;
   2035       }
   2036     }
   2037   } else if (I->getOpcode() == Instruction::FSub) {
   2038     if (ShouldBreakUpSubtract(I)) {
   2039       Instruction *NI = BreakUpSubtract(I, RedoInsts);
   2040       RedoInsts.insert(I);
   2041       MadeChange = true;
   2042       I = NI;
   2043     } else if (BinaryOperator::isFNeg(I)) {
   2044       // Otherwise, this is a negation.  See if the operand is a multiply tree
   2045       // and if this is not an inner node of a multiply tree.
   2046       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
   2047           (!I->hasOneUse() ||
   2048            !isReassociableOp(I->user_back(), Instruction::FMul))) {
   2049         // If the negate was simplified, revisit the users to see if we can
   2050         // reassociate further.
   2051         Instruction *NI = LowerNegateToMultiply(I);
   2052         for (User *U : NI->users()) {
   2053           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
   2054             RedoInsts.insert(Tmp);
   2055         }
   2056         RedoInsts.insert(I);
   2057         MadeChange = true;
   2058         I = NI;
   2059       }
   2060     }
   2061   }
   2062 
   2063   // If this instruction is an associative binary operator, process it.
   2064   if (!I->isAssociative()) return;
   2065   BinaryOperator *BO = cast<BinaryOperator>(I);
   2066 
   2067   // If this is an interior node of a reassociable tree, ignore it until we
   2068   // get to the root of the tree, to avoid N^2 analysis.
   2069   unsigned Opcode = BO->getOpcode();
   2070   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
   2071     // During the initial run we will get to the root of the tree.
   2072     // But if we get here while we are redoing instructions, there is no
   2073     // guarantee that the root will be visited. So Redo later
   2074     if (BO->user_back() != BO &&
   2075         BO->getParent() == BO->user_back()->getParent())
   2076       RedoInsts.insert(BO->user_back());
   2077     return;
   2078   }
   2079 
   2080   // If this is an add tree that is used by a sub instruction, ignore it
   2081   // until we process the subtract.
   2082   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
   2083       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
   2084     return;
   2085   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
   2086       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
   2087     return;
   2088 
   2089   ReassociateExpression(BO);
   2090 }
   2091 
   2092 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
   2093   // First, walk the expression tree, linearizing the tree, collecting the
   2094   // operand information.
   2095   SmallVector<RepeatedValue, 8> Tree;
   2096   MadeChange |= LinearizeExprTree(I, Tree);
   2097   SmallVector<ValueEntry, 8> Ops;
   2098   Ops.reserve(Tree.size());
   2099   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   2100     RepeatedValue E = Tree[i];
   2101     Ops.append(E.second.getZExtValue(),
   2102                ValueEntry(getRank(E.first), E.first));
   2103   }
   2104 
   2105   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
   2106 
   2107   // Now that we have linearized the tree to a list and have gathered all of
   2108   // the operands and their ranks, sort the operands by their rank.  Use a
   2109   // stable_sort so that values with equal ranks will have their relative
   2110   // positions maintained (and so the compiler is deterministic).  Note that
   2111   // this sorts so that the highest ranking values end up at the beginning of
   2112   // the vector.
   2113   std::stable_sort(Ops.begin(), Ops.end());
   2114 
   2115   // Now that we have the expression tree in a convenient
   2116   // sorted form, optimize it globally if possible.
   2117   if (Value *V = OptimizeExpression(I, Ops)) {
   2118     if (V == I)
   2119       // Self-referential expression in unreachable code.
   2120       return;
   2121     // This expression tree simplified to something that isn't a tree,
   2122     // eliminate it.
   2123     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
   2124     I->replaceAllUsesWith(V);
   2125     if (Instruction *VI = dyn_cast<Instruction>(V))
   2126       VI->setDebugLoc(I->getDebugLoc());
   2127     RedoInsts.insert(I);
   2128     ++NumAnnihil;
   2129     return;
   2130   }
   2131 
   2132   // We want to sink immediates as deeply as possible except in the case where
   2133   // this is a multiply tree used only by an add, and the immediate is a -1.
   2134   // In this case we reassociate to put the negation on the outside so that we
   2135   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
   2136   if (I->hasOneUse()) {
   2137     if (I->getOpcode() == Instruction::Mul &&
   2138         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
   2139         isa<ConstantInt>(Ops.back().Op) &&
   2140         cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
   2141       ValueEntry Tmp = Ops.pop_back_val();
   2142       Ops.insert(Ops.begin(), Tmp);
   2143     } else if (I->getOpcode() == Instruction::FMul &&
   2144                cast<Instruction>(I->user_back())->getOpcode() ==
   2145                    Instruction::FAdd &&
   2146                isa<ConstantFP>(Ops.back().Op) &&
   2147                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
   2148       ValueEntry Tmp = Ops.pop_back_val();
   2149       Ops.insert(Ops.begin(), Tmp);
   2150     }
   2151   }
   2152 
   2153   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
   2154 
   2155   if (Ops.size() == 1) {
   2156     if (Ops[0].Op == I)
   2157       // Self-referential expression in unreachable code.
   2158       return;
   2159 
   2160     // This expression tree simplified to something that isn't a tree,
   2161     // eliminate it.
   2162     I->replaceAllUsesWith(Ops[0].Op);
   2163     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
   2164       OI->setDebugLoc(I->getDebugLoc());
   2165     RedoInsts.insert(I);
   2166     return;
   2167   }
   2168 
   2169   // Now that we ordered and optimized the expressions, splat them back into
   2170   // the expression tree, removing any unneeded nodes.
   2171   RewriteExprTree(I, Ops);
   2172 }
   2173 
   2174 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
   2175   // Reassociate needs for each instruction to have its operands already
   2176   // processed, so we first perform a RPOT of the basic blocks so that
   2177   // when we process a basic block, all its dominators have been processed
   2178   // before.
   2179   ReversePostOrderTraversal<Function *> RPOT(&F);
   2180   BuildRankMap(F, RPOT);
   2181 
   2182   MadeChange = false;
   2183   for (BasicBlock *BI : RPOT) {
   2184     // Use a worklist to keep track of which instructions have been processed
   2185     // (and which insts won't be optimized again) so when redoing insts,
   2186     // optimize insts rightaway which won't be processed later.
   2187     SmallSet<Instruction *, 8> Worklist;
   2188 
   2189     // Insert all instructions in the BB
   2190     for (Instruction &I : *BI)
   2191       Worklist.insert(&I);
   2192 
   2193     // Optimize every instruction in the basic block.
   2194     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) {
   2195       // This instruction has been processed.
   2196       Worklist.erase(&*II);
   2197       if (isInstructionTriviallyDead(&*II)) {
   2198         EraseInst(&*II++);
   2199       } else {
   2200         OptimizeInst(&*II);
   2201         assert(II->getParent() == &*BI && "Moved to a different block!");
   2202         ++II;
   2203       }
   2204 
   2205       // If the above optimizations produced new instructions to optimize or
   2206       // made modifications which need to be redone, do them now if they won't
   2207       // be handled later.
   2208       while (!RedoInsts.empty()) {
   2209         Instruction *I = RedoInsts.pop_back_val();
   2210         // Process instructions that won't be processed later, either
   2211         // inside the block itself or in another basic block (based on rank),
   2212         // since these will be processed later.
   2213         if ((I->getParent() != BI || !Worklist.count(I)) &&
   2214             RankMap[I->getParent()] <= RankMap[BI]) {
   2215           if (isInstructionTriviallyDead(I))
   2216             EraseInst(I);
   2217           else
   2218             OptimizeInst(I);
   2219         }
   2220       }
   2221     }
   2222   }
   2223 
   2224   // We are done with the rank map.
   2225   RankMap.clear();
   2226   ValueRankMap.clear();
   2227 
   2228   if (MadeChange) {
   2229     // FIXME: This should also 'preserve the CFG'.
   2230     auto PA = PreservedAnalyses();
   2231     PA.preserve<GlobalsAA>();
   2232     return PA;
   2233   }
   2234 
   2235   return PreservedAnalyses::all();
   2236 }
   2237 
   2238 namespace {
   2239   class ReassociateLegacyPass : public FunctionPass {
   2240     ReassociatePass Impl;
   2241   public:
   2242     static char ID; // Pass identification, replacement for typeid
   2243     ReassociateLegacyPass() : FunctionPass(ID) {
   2244       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
   2245     }
   2246 
   2247     bool runOnFunction(Function &F) override {
   2248       if (skipFunction(F))
   2249         return false;
   2250 
   2251       FunctionAnalysisManager DummyFAM;
   2252       auto PA = Impl.run(F, DummyFAM);
   2253       return !PA.areAllPreserved();
   2254     }
   2255 
   2256     void getAnalysisUsage(AnalysisUsage &AU) const override {
   2257       AU.setPreservesCFG();
   2258       AU.addPreserved<GlobalsAAWrapperPass>();
   2259     }
   2260   };
   2261 }
   2262 
   2263 char ReassociateLegacyPass::ID = 0;
   2264 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
   2265                 "Reassociate expressions", false, false)
   2266 
   2267 // Public interface to the Reassociate pass
   2268 FunctionPass *llvm::createReassociatePass() {
   2269   return new ReassociateLegacyPass();
   2270 }
   2271