1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 // Helper for coercing an aggregate argument or return value into an integer 35 // array of the same size (including padding) and alignment. This alternate 36 // coercion happens only for the RenderScript ABI and can be removed after 37 // runtimes that rely on it are no longer supported. 38 // 39 // RenderScript assumes that the size of the argument / return value in the IR 40 // is the same as the size of the corresponding qualified type. This helper 41 // coerces the aggregate type into an array of the same size (including 42 // padding). This coercion is used in lieu of expansion of struct members or 43 // other canonical coercions that return a coerced-type of larger size. 44 // 45 // Ty - The argument / return value type 46 // Context - The associated ASTContext 47 // LLVMContext - The associated LLVMContext 48 static ABIArgInfo coerceToIntArray(QualType Ty, 49 ASTContext &Context, 50 llvm::LLVMContext &LLVMContext) { 51 // Alignment and Size are measured in bits. 52 const uint64_t Size = Context.getTypeSize(Ty); 53 const uint64_t Alignment = Context.getTypeAlign(Ty); 54 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 55 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 56 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 57 } 58 59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 60 llvm::Value *Array, 61 llvm::Value *Value, 62 unsigned FirstIndex, 63 unsigned LastIndex) { 64 // Alternatively, we could emit this as a loop in the source. 65 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 66 llvm::Value *Cell = 67 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 68 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 69 } 70 } 71 72 static bool isAggregateTypeForABI(QualType T) { 73 return !CodeGenFunction::hasScalarEvaluationKind(T) || 74 T->isMemberFunctionPointerType(); 75 } 76 77 ABIArgInfo 78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 79 llvm::Type *Padding) const { 80 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 81 ByRef, Realign, Padding); 82 } 83 84 ABIArgInfo 85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 86 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 87 /*ByRef*/ false, Realign); 88 } 89 90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 91 QualType Ty) const { 92 return Address::invalid(); 93 } 94 95 ABIInfo::~ABIInfo() {} 96 97 /// Does the given lowering require more than the given number of 98 /// registers when expanded? 99 /// 100 /// This is intended to be the basis of a reasonable basic implementation 101 /// of should{Pass,Return}IndirectlyForSwift. 102 /// 103 /// For most targets, a limit of four total registers is reasonable; this 104 /// limits the amount of code required in order to move around the value 105 /// in case it wasn't produced immediately prior to the call by the caller 106 /// (or wasn't produced in exactly the right registers) or isn't used 107 /// immediately within the callee. But some targets may need to further 108 /// limit the register count due to an inability to support that many 109 /// return registers. 110 static bool occupiesMoreThan(CodeGenTypes &cgt, 111 ArrayRef<llvm::Type*> scalarTypes, 112 unsigned maxAllRegisters) { 113 unsigned intCount = 0, fpCount = 0; 114 for (llvm::Type *type : scalarTypes) { 115 if (type->isPointerTy()) { 116 intCount++; 117 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 118 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 119 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 120 } else { 121 assert(type->isVectorTy() || type->isFloatingPointTy()); 122 fpCount++; 123 } 124 } 125 126 return (intCount + fpCount > maxAllRegisters); 127 } 128 129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 130 llvm::Type *eltTy, 131 unsigned numElts) const { 132 // The default implementation of this assumes that the target guarantees 133 // 128-bit SIMD support but nothing more. 134 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 135 } 136 137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 138 CGCXXABI &CXXABI) { 139 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 140 if (!RD) 141 return CGCXXABI::RAA_Default; 142 return CXXABI.getRecordArgABI(RD); 143 } 144 145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 146 CGCXXABI &CXXABI) { 147 const RecordType *RT = T->getAs<RecordType>(); 148 if (!RT) 149 return CGCXXABI::RAA_Default; 150 return getRecordArgABI(RT, CXXABI); 151 } 152 153 /// Pass transparent unions as if they were the type of the first element. Sema 154 /// should ensure that all elements of the union have the same "machine type". 155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 156 if (const RecordType *UT = Ty->getAsUnionType()) { 157 const RecordDecl *UD = UT->getDecl(); 158 if (UD->hasAttr<TransparentUnionAttr>()) { 159 assert(!UD->field_empty() && "sema created an empty transparent union"); 160 return UD->field_begin()->getType(); 161 } 162 } 163 return Ty; 164 } 165 166 CGCXXABI &ABIInfo::getCXXABI() const { 167 return CGT.getCXXABI(); 168 } 169 170 ASTContext &ABIInfo::getContext() const { 171 return CGT.getContext(); 172 } 173 174 llvm::LLVMContext &ABIInfo::getVMContext() const { 175 return CGT.getLLVMContext(); 176 } 177 178 const llvm::DataLayout &ABIInfo::getDataLayout() const { 179 return CGT.getDataLayout(); 180 } 181 182 const TargetInfo &ABIInfo::getTarget() const { 183 return CGT.getTarget(); 184 } 185 186 bool ABIInfo:: isAndroid() const { 187 return getTarget().getTriple().isAndroid() || 188 getContext().getLangOpts().RenderScript; 189 } 190 191 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 192 return false; 193 } 194 195 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 196 uint64_t Members) const { 197 return false; 198 } 199 200 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 201 return false; 202 } 203 204 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 205 raw_ostream &OS = llvm::errs(); 206 OS << "(ABIArgInfo Kind="; 207 switch (TheKind) { 208 case Direct: 209 OS << "Direct Type="; 210 if (llvm::Type *Ty = getCoerceToType()) 211 Ty->print(OS); 212 else 213 OS << "null"; 214 break; 215 case Extend: 216 OS << "Extend"; 217 break; 218 case Ignore: 219 OS << "Ignore"; 220 break; 221 case InAlloca: 222 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 223 break; 224 case Indirect: 225 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 226 << " ByVal=" << getIndirectByVal() 227 << " Realign=" << getIndirectRealign(); 228 break; 229 case Expand: 230 OS << "Expand"; 231 break; 232 case CoerceAndExpand: 233 OS << "CoerceAndExpand Type="; 234 getCoerceAndExpandType()->print(OS); 235 break; 236 } 237 OS << ")\n"; 238 } 239 240 // Dynamically round a pointer up to a multiple of the given alignment. 241 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 242 llvm::Value *Ptr, 243 CharUnits Align) { 244 llvm::Value *PtrAsInt = Ptr; 245 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 246 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 247 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 248 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 249 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 250 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 251 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 252 Ptr->getType(), 253 Ptr->getName() + ".aligned"); 254 return PtrAsInt; 255 } 256 257 /// Emit va_arg for a platform using the common void* representation, 258 /// where arguments are simply emitted in an array of slots on the stack. 259 /// 260 /// This version implements the core direct-value passing rules. 261 /// 262 /// \param SlotSize - The size and alignment of a stack slot. 263 /// Each argument will be allocated to a multiple of this number of 264 /// slots, and all the slots will be aligned to this value. 265 /// \param AllowHigherAlign - The slot alignment is not a cap; 266 /// an argument type with an alignment greater than the slot size 267 /// will be emitted on a higher-alignment address, potentially 268 /// leaving one or more empty slots behind as padding. If this 269 /// is false, the returned address might be less-aligned than 270 /// DirectAlign. 271 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 272 Address VAListAddr, 273 llvm::Type *DirectTy, 274 CharUnits DirectSize, 275 CharUnits DirectAlign, 276 CharUnits SlotSize, 277 bool AllowHigherAlign) { 278 // Cast the element type to i8* if necessary. Some platforms define 279 // va_list as a struct containing an i8* instead of just an i8*. 280 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 281 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 282 283 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 284 285 // If the CC aligns values higher than the slot size, do so if needed. 286 Address Addr = Address::invalid(); 287 if (AllowHigherAlign && DirectAlign > SlotSize) { 288 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 289 DirectAlign); 290 } else { 291 Addr = Address(Ptr, SlotSize); 292 } 293 294 // Advance the pointer past the argument, then store that back. 295 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 296 llvm::Value *NextPtr = 297 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 298 "argp.next"); 299 CGF.Builder.CreateStore(NextPtr, VAListAddr); 300 301 // If the argument is smaller than a slot, and this is a big-endian 302 // target, the argument will be right-adjusted in its slot. 303 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 304 !DirectTy->isStructTy()) { 305 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 306 } 307 308 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 309 return Addr; 310 } 311 312 /// Emit va_arg for a platform using the common void* representation, 313 /// where arguments are simply emitted in an array of slots on the stack. 314 /// 315 /// \param IsIndirect - Values of this type are passed indirectly. 316 /// \param ValueInfo - The size and alignment of this type, generally 317 /// computed with getContext().getTypeInfoInChars(ValueTy). 318 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 319 /// Each argument will be allocated to a multiple of this number of 320 /// slots, and all the slots will be aligned to this value. 321 /// \param AllowHigherAlign - The slot alignment is not a cap; 322 /// an argument type with an alignment greater than the slot size 323 /// will be emitted on a higher-alignment address, potentially 324 /// leaving one or more empty slots behind as padding. 325 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 326 QualType ValueTy, bool IsIndirect, 327 std::pair<CharUnits, CharUnits> ValueInfo, 328 CharUnits SlotSizeAndAlign, 329 bool AllowHigherAlign) { 330 // The size and alignment of the value that was passed directly. 331 CharUnits DirectSize, DirectAlign; 332 if (IsIndirect) { 333 DirectSize = CGF.getPointerSize(); 334 DirectAlign = CGF.getPointerAlign(); 335 } else { 336 DirectSize = ValueInfo.first; 337 DirectAlign = ValueInfo.second; 338 } 339 340 // Cast the address we've calculated to the right type. 341 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 342 if (IsIndirect) 343 DirectTy = DirectTy->getPointerTo(0); 344 345 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 346 DirectSize, DirectAlign, 347 SlotSizeAndAlign, 348 AllowHigherAlign); 349 350 if (IsIndirect) { 351 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 352 } 353 354 return Addr; 355 356 } 357 358 static Address emitMergePHI(CodeGenFunction &CGF, 359 Address Addr1, llvm::BasicBlock *Block1, 360 Address Addr2, llvm::BasicBlock *Block2, 361 const llvm::Twine &Name = "") { 362 assert(Addr1.getType() == Addr2.getType()); 363 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 364 PHI->addIncoming(Addr1.getPointer(), Block1); 365 PHI->addIncoming(Addr2.getPointer(), Block2); 366 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 367 return Address(PHI, Align); 368 } 369 370 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 371 372 // If someone can figure out a general rule for this, that would be great. 373 // It's probably just doomed to be platform-dependent, though. 374 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 375 // Verified for: 376 // x86-64 FreeBSD, Linux, Darwin 377 // x86-32 FreeBSD, Linux, Darwin 378 // PowerPC Linux, Darwin 379 // ARM Darwin (*not* EABI) 380 // AArch64 Linux 381 return 32; 382 } 383 384 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 385 const FunctionNoProtoType *fnType) const { 386 // The following conventions are known to require this to be false: 387 // x86_stdcall 388 // MIPS 389 // For everything else, we just prefer false unless we opt out. 390 return false; 391 } 392 393 void 394 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 395 llvm::SmallString<24> &Opt) const { 396 // This assumes the user is passing a library name like "rt" instead of a 397 // filename like "librt.a/so", and that they don't care whether it's static or 398 // dynamic. 399 Opt = "-l"; 400 Opt += Lib; 401 } 402 403 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 404 return llvm::CallingConv::C; 405 } 406 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 407 408 /// isEmptyField - Return true iff a the field is "empty", that is it 409 /// is an unnamed bit-field or an (array of) empty record(s). 410 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 411 bool AllowArrays) { 412 if (FD->isUnnamedBitfield()) 413 return true; 414 415 QualType FT = FD->getType(); 416 417 // Constant arrays of empty records count as empty, strip them off. 418 // Constant arrays of zero length always count as empty. 419 if (AllowArrays) 420 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 421 if (AT->getSize() == 0) 422 return true; 423 FT = AT->getElementType(); 424 } 425 426 const RecordType *RT = FT->getAs<RecordType>(); 427 if (!RT) 428 return false; 429 430 // C++ record fields are never empty, at least in the Itanium ABI. 431 // 432 // FIXME: We should use a predicate for whether this behavior is true in the 433 // current ABI. 434 if (isa<CXXRecordDecl>(RT->getDecl())) 435 return false; 436 437 return isEmptyRecord(Context, FT, AllowArrays); 438 } 439 440 /// isEmptyRecord - Return true iff a structure contains only empty 441 /// fields. Note that a structure with a flexible array member is not 442 /// considered empty. 443 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 444 const RecordType *RT = T->getAs<RecordType>(); 445 if (!RT) 446 return false; 447 const RecordDecl *RD = RT->getDecl(); 448 if (RD->hasFlexibleArrayMember()) 449 return false; 450 451 // If this is a C++ record, check the bases first. 452 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 453 for (const auto &I : CXXRD->bases()) 454 if (!isEmptyRecord(Context, I.getType(), true)) 455 return false; 456 457 for (const auto *I : RD->fields()) 458 if (!isEmptyField(Context, I, AllowArrays)) 459 return false; 460 return true; 461 } 462 463 /// isSingleElementStruct - Determine if a structure is a "single 464 /// element struct", i.e. it has exactly one non-empty field or 465 /// exactly one field which is itself a single element 466 /// struct. Structures with flexible array members are never 467 /// considered single element structs. 468 /// 469 /// \return The field declaration for the single non-empty field, if 470 /// it exists. 471 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 472 const RecordType *RT = T->getAs<RecordType>(); 473 if (!RT) 474 return nullptr; 475 476 const RecordDecl *RD = RT->getDecl(); 477 if (RD->hasFlexibleArrayMember()) 478 return nullptr; 479 480 const Type *Found = nullptr; 481 482 // If this is a C++ record, check the bases first. 483 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 484 for (const auto &I : CXXRD->bases()) { 485 // Ignore empty records. 486 if (isEmptyRecord(Context, I.getType(), true)) 487 continue; 488 489 // If we already found an element then this isn't a single-element struct. 490 if (Found) 491 return nullptr; 492 493 // If this is non-empty and not a single element struct, the composite 494 // cannot be a single element struct. 495 Found = isSingleElementStruct(I.getType(), Context); 496 if (!Found) 497 return nullptr; 498 } 499 } 500 501 // Check for single element. 502 for (const auto *FD : RD->fields()) { 503 QualType FT = FD->getType(); 504 505 // Ignore empty fields. 506 if (isEmptyField(Context, FD, true)) 507 continue; 508 509 // If we already found an element then this isn't a single-element 510 // struct. 511 if (Found) 512 return nullptr; 513 514 // Treat single element arrays as the element. 515 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 516 if (AT->getSize().getZExtValue() != 1) 517 break; 518 FT = AT->getElementType(); 519 } 520 521 if (!isAggregateTypeForABI(FT)) { 522 Found = FT.getTypePtr(); 523 } else { 524 Found = isSingleElementStruct(FT, Context); 525 if (!Found) 526 return nullptr; 527 } 528 } 529 530 // We don't consider a struct a single-element struct if it has 531 // padding beyond the element type. 532 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 533 return nullptr; 534 535 return Found; 536 } 537 538 namespace { 539 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 540 const ABIArgInfo &AI) { 541 // This default implementation defers to the llvm backend's va_arg 542 // instruction. It can handle only passing arguments directly 543 // (typically only handled in the backend for primitive types), or 544 // aggregates passed indirectly by pointer (NOTE: if the "byval" 545 // flag has ABI impact in the callee, this implementation cannot 546 // work.) 547 548 // Only a few cases are covered here at the moment -- those needed 549 // by the default abi. 550 llvm::Value *Val; 551 552 if (AI.isIndirect()) { 553 assert(!AI.getPaddingType() && 554 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 555 assert( 556 !AI.getIndirectRealign() && 557 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 558 559 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 560 CharUnits TyAlignForABI = TyInfo.second; 561 562 llvm::Type *BaseTy = 563 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 564 llvm::Value *Addr = 565 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 566 return Address(Addr, TyAlignForABI); 567 } else { 568 assert((AI.isDirect() || AI.isExtend()) && 569 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 570 571 assert(!AI.getInReg() && 572 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 573 assert(!AI.getPaddingType() && 574 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 575 assert(!AI.getDirectOffset() && 576 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 577 assert(!AI.getCoerceToType() && 578 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 579 580 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 581 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 582 CGF.Builder.CreateStore(Val, Temp); 583 return Temp; 584 } 585 } 586 587 /// DefaultABIInfo - The default implementation for ABI specific 588 /// details. This implementation provides information which results in 589 /// self-consistent and sensible LLVM IR generation, but does not 590 /// conform to any particular ABI. 591 class DefaultABIInfo : public ABIInfo { 592 public: 593 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 594 595 ABIArgInfo classifyReturnType(QualType RetTy) const; 596 ABIArgInfo classifyArgumentType(QualType RetTy) const; 597 598 void computeInfo(CGFunctionInfo &FI) const override { 599 if (!getCXXABI().classifyReturnType(FI)) 600 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 601 for (auto &I : FI.arguments()) 602 I.info = classifyArgumentType(I.type); 603 } 604 605 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 606 QualType Ty) const override { 607 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 608 } 609 }; 610 611 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 612 public: 613 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 614 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 615 }; 616 617 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 618 Ty = useFirstFieldIfTransparentUnion(Ty); 619 620 if (isAggregateTypeForABI(Ty)) { 621 // Records with non-trivial destructors/copy-constructors should not be 622 // passed by value. 623 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 624 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 625 626 return getNaturalAlignIndirect(Ty); 627 } 628 629 // Treat an enum type as its underlying type. 630 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 631 Ty = EnumTy->getDecl()->getIntegerType(); 632 633 return (Ty->isPromotableIntegerType() ? 634 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 635 } 636 637 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 638 if (RetTy->isVoidType()) 639 return ABIArgInfo::getIgnore(); 640 641 if (isAggregateTypeForABI(RetTy)) 642 return getNaturalAlignIndirect(RetTy); 643 644 // Treat an enum type as its underlying type. 645 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 646 RetTy = EnumTy->getDecl()->getIntegerType(); 647 648 return (RetTy->isPromotableIntegerType() ? 649 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 650 } 651 652 //===----------------------------------------------------------------------===// 653 // WebAssembly ABI Implementation 654 // 655 // This is a very simple ABI that relies a lot on DefaultABIInfo. 656 //===----------------------------------------------------------------------===// 657 658 class WebAssemblyABIInfo final : public DefaultABIInfo { 659 public: 660 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 661 : DefaultABIInfo(CGT) {} 662 663 private: 664 ABIArgInfo classifyReturnType(QualType RetTy) const; 665 ABIArgInfo classifyArgumentType(QualType Ty) const; 666 667 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 668 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 669 // overload them. 670 void computeInfo(CGFunctionInfo &FI) const override { 671 if (!getCXXABI().classifyReturnType(FI)) 672 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 673 for (auto &Arg : FI.arguments()) 674 Arg.info = classifyArgumentType(Arg.type); 675 } 676 677 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 678 QualType Ty) const override; 679 }; 680 681 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 682 public: 683 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 684 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 685 }; 686 687 /// \brief Classify argument of given type \p Ty. 688 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 689 Ty = useFirstFieldIfTransparentUnion(Ty); 690 691 if (isAggregateTypeForABI(Ty)) { 692 // Records with non-trivial destructors/copy-constructors should not be 693 // passed by value. 694 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 695 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 696 // Ignore empty structs/unions. 697 if (isEmptyRecord(getContext(), Ty, true)) 698 return ABIArgInfo::getIgnore(); 699 // Lower single-element structs to just pass a regular value. TODO: We 700 // could do reasonable-size multiple-element structs too, using getExpand(), 701 // though watch out for things like bitfields. 702 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 703 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 704 } 705 706 // Otherwise just do the default thing. 707 return DefaultABIInfo::classifyArgumentType(Ty); 708 } 709 710 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 711 if (isAggregateTypeForABI(RetTy)) { 712 // Records with non-trivial destructors/copy-constructors should not be 713 // returned by value. 714 if (!getRecordArgABI(RetTy, getCXXABI())) { 715 // Ignore empty structs/unions. 716 if (isEmptyRecord(getContext(), RetTy, true)) 717 return ABIArgInfo::getIgnore(); 718 // Lower single-element structs to just return a regular value. TODO: We 719 // could do reasonable-size multiple-element structs too, using 720 // ABIArgInfo::getDirect(). 721 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 722 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 723 } 724 } 725 726 // Otherwise just do the default thing. 727 return DefaultABIInfo::classifyReturnType(RetTy); 728 } 729 730 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 731 QualType Ty) const { 732 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 733 getContext().getTypeInfoInChars(Ty), 734 CharUnits::fromQuantity(4), 735 /*AllowHigherAlign=*/ true); 736 } 737 738 //===----------------------------------------------------------------------===// 739 // le32/PNaCl bitcode ABI Implementation 740 // 741 // This is a simplified version of the x86_32 ABI. Arguments and return values 742 // are always passed on the stack. 743 //===----------------------------------------------------------------------===// 744 745 class PNaClABIInfo : public ABIInfo { 746 public: 747 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 748 749 ABIArgInfo classifyReturnType(QualType RetTy) const; 750 ABIArgInfo classifyArgumentType(QualType RetTy) const; 751 752 void computeInfo(CGFunctionInfo &FI) const override; 753 Address EmitVAArg(CodeGenFunction &CGF, 754 Address VAListAddr, QualType Ty) const override; 755 }; 756 757 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 758 public: 759 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 760 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 761 }; 762 763 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 764 if (!getCXXABI().classifyReturnType(FI)) 765 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 766 767 for (auto &I : FI.arguments()) 768 I.info = classifyArgumentType(I.type); 769 } 770 771 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 772 QualType Ty) const { 773 // The PNaCL ABI is a bit odd, in that varargs don't use normal 774 // function classification. Structs get passed directly for varargs 775 // functions, through a rewriting transform in 776 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 777 // this target to actually support a va_arg instructions with an 778 // aggregate type, unlike other targets. 779 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 780 } 781 782 /// \brief Classify argument of given type \p Ty. 783 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 784 if (isAggregateTypeForABI(Ty)) { 785 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 786 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 787 return getNaturalAlignIndirect(Ty); 788 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 789 // Treat an enum type as its underlying type. 790 Ty = EnumTy->getDecl()->getIntegerType(); 791 } else if (Ty->isFloatingType()) { 792 // Floating-point types don't go inreg. 793 return ABIArgInfo::getDirect(); 794 } 795 796 return (Ty->isPromotableIntegerType() ? 797 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 798 } 799 800 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 801 if (RetTy->isVoidType()) 802 return ABIArgInfo::getIgnore(); 803 804 // In the PNaCl ABI we always return records/structures on the stack. 805 if (isAggregateTypeForABI(RetTy)) 806 return getNaturalAlignIndirect(RetTy); 807 808 // Treat an enum type as its underlying type. 809 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 810 RetTy = EnumTy->getDecl()->getIntegerType(); 811 812 return (RetTy->isPromotableIntegerType() ? 813 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 814 } 815 816 /// IsX86_MMXType - Return true if this is an MMX type. 817 bool IsX86_MMXType(llvm::Type *IRType) { 818 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 819 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 820 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 821 IRType->getScalarSizeInBits() != 64; 822 } 823 824 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 825 StringRef Constraint, 826 llvm::Type* Ty) { 827 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 828 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 829 // Invalid MMX constraint 830 return nullptr; 831 } 832 833 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 834 } 835 836 // No operation needed 837 return Ty; 838 } 839 840 /// Returns true if this type can be passed in SSE registers with the 841 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 842 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 843 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 844 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 845 return true; 846 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 847 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 848 // registers specially. 849 unsigned VecSize = Context.getTypeSize(VT); 850 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 851 return true; 852 } 853 return false; 854 } 855 856 /// Returns true if this aggregate is small enough to be passed in SSE registers 857 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 858 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 859 return NumMembers <= 4; 860 } 861 862 //===----------------------------------------------------------------------===// 863 // X86-32 ABI Implementation 864 //===----------------------------------------------------------------------===// 865 866 /// \brief Similar to llvm::CCState, but for Clang. 867 struct CCState { 868 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 869 870 unsigned CC; 871 unsigned FreeRegs; 872 unsigned FreeSSERegs; 873 }; 874 875 /// X86_32ABIInfo - The X86-32 ABI information. 876 class X86_32ABIInfo : public SwiftABIInfo { 877 enum Class { 878 Integer, 879 Float 880 }; 881 882 static const unsigned MinABIStackAlignInBytes = 4; 883 884 bool IsDarwinVectorABI; 885 bool IsRetSmallStructInRegABI; 886 bool IsWin32StructABI; 887 bool IsSoftFloatABI; 888 bool IsMCUABI; 889 unsigned DefaultNumRegisterParameters; 890 891 static bool isRegisterSize(unsigned Size) { 892 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 893 } 894 895 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 896 // FIXME: Assumes vectorcall is in use. 897 return isX86VectorTypeForVectorCall(getContext(), Ty); 898 } 899 900 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 901 uint64_t NumMembers) const override { 902 // FIXME: Assumes vectorcall is in use. 903 return isX86VectorCallAggregateSmallEnough(NumMembers); 904 } 905 906 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 907 908 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 909 /// such that the argument will be passed in memory. 910 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 911 912 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 913 914 /// \brief Return the alignment to use for the given type on the stack. 915 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 916 917 Class classify(QualType Ty) const; 918 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 919 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 920 /// \brief Updates the number of available free registers, returns 921 /// true if any registers were allocated. 922 bool updateFreeRegs(QualType Ty, CCState &State) const; 923 924 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 925 bool &NeedsPadding) const; 926 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 927 928 bool canExpandIndirectArgument(QualType Ty) const; 929 930 /// \brief Rewrite the function info so that all memory arguments use 931 /// inalloca. 932 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 933 934 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 935 CharUnits &StackOffset, ABIArgInfo &Info, 936 QualType Type) const; 937 938 public: 939 940 void computeInfo(CGFunctionInfo &FI) const override; 941 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 942 QualType Ty) const override; 943 944 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 945 bool RetSmallStructInRegABI, bool Win32StructABI, 946 unsigned NumRegisterParameters, bool SoftFloatABI) 947 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 948 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 949 IsWin32StructABI(Win32StructABI), 950 IsSoftFloatABI(SoftFloatABI), 951 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 952 DefaultNumRegisterParameters(NumRegisterParameters) {} 953 954 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 955 ArrayRef<llvm::Type*> scalars, 956 bool asReturnValue) const override { 957 // LLVM's x86-32 lowering currently only assigns up to three 958 // integer registers and three fp registers. Oddly, it'll use up to 959 // four vector registers for vectors, but those can overlap with the 960 // scalar registers. 961 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 962 } 963 }; 964 965 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 966 public: 967 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 968 bool RetSmallStructInRegABI, bool Win32StructABI, 969 unsigned NumRegisterParameters, bool SoftFloatABI) 970 : TargetCodeGenInfo(new X86_32ABIInfo( 971 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 972 NumRegisterParameters, SoftFloatABI)) {} 973 974 static bool isStructReturnInRegABI( 975 const llvm::Triple &Triple, const CodeGenOptions &Opts); 976 977 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 978 CodeGen::CodeGenModule &CGM) const override; 979 980 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 981 // Darwin uses different dwarf register numbers for EH. 982 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 983 return 4; 984 } 985 986 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 987 llvm::Value *Address) const override; 988 989 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 990 StringRef Constraint, 991 llvm::Type* Ty) const override { 992 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 993 } 994 995 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 996 std::string &Constraints, 997 std::vector<llvm::Type *> &ResultRegTypes, 998 std::vector<llvm::Type *> &ResultTruncRegTypes, 999 std::vector<LValue> &ResultRegDests, 1000 std::string &AsmString, 1001 unsigned NumOutputs) const override; 1002 1003 llvm::Constant * 1004 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1005 unsigned Sig = (0xeb << 0) | // jmp rel8 1006 (0x06 << 8) | // .+0x08 1007 ('F' << 16) | 1008 ('T' << 24); 1009 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1010 } 1011 1012 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1013 return "movl\t%ebp, %ebp" 1014 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 1015 } 1016 }; 1017 1018 } 1019 1020 /// Rewrite input constraint references after adding some output constraints. 1021 /// In the case where there is one output and one input and we add one output, 1022 /// we need to replace all operand references greater than or equal to 1: 1023 /// mov $0, $1 1024 /// mov eax, $1 1025 /// The result will be: 1026 /// mov $0, $2 1027 /// mov eax, $2 1028 static void rewriteInputConstraintReferences(unsigned FirstIn, 1029 unsigned NumNewOuts, 1030 std::string &AsmString) { 1031 std::string Buf; 1032 llvm::raw_string_ostream OS(Buf); 1033 size_t Pos = 0; 1034 while (Pos < AsmString.size()) { 1035 size_t DollarStart = AsmString.find('$', Pos); 1036 if (DollarStart == std::string::npos) 1037 DollarStart = AsmString.size(); 1038 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1039 if (DollarEnd == std::string::npos) 1040 DollarEnd = AsmString.size(); 1041 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1042 Pos = DollarEnd; 1043 size_t NumDollars = DollarEnd - DollarStart; 1044 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1045 // We have an operand reference. 1046 size_t DigitStart = Pos; 1047 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1048 if (DigitEnd == std::string::npos) 1049 DigitEnd = AsmString.size(); 1050 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1051 unsigned OperandIndex; 1052 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1053 if (OperandIndex >= FirstIn) 1054 OperandIndex += NumNewOuts; 1055 OS << OperandIndex; 1056 } else { 1057 OS << OperandStr; 1058 } 1059 Pos = DigitEnd; 1060 } 1061 } 1062 AsmString = std::move(OS.str()); 1063 } 1064 1065 /// Add output constraints for EAX:EDX because they are return registers. 1066 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1067 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1068 std::vector<llvm::Type *> &ResultRegTypes, 1069 std::vector<llvm::Type *> &ResultTruncRegTypes, 1070 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1071 unsigned NumOutputs) const { 1072 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1073 1074 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1075 // larger. 1076 if (!Constraints.empty()) 1077 Constraints += ','; 1078 if (RetWidth <= 32) { 1079 Constraints += "={eax}"; 1080 ResultRegTypes.push_back(CGF.Int32Ty); 1081 } else { 1082 // Use the 'A' constraint for EAX:EDX. 1083 Constraints += "=A"; 1084 ResultRegTypes.push_back(CGF.Int64Ty); 1085 } 1086 1087 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1088 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1089 ResultTruncRegTypes.push_back(CoerceTy); 1090 1091 // Coerce the integer by bitcasting the return slot pointer. 1092 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1093 CoerceTy->getPointerTo())); 1094 ResultRegDests.push_back(ReturnSlot); 1095 1096 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1097 } 1098 1099 /// shouldReturnTypeInRegister - Determine if the given type should be 1100 /// returned in a register (for the Darwin and MCU ABI). 1101 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1102 ASTContext &Context) const { 1103 uint64_t Size = Context.getTypeSize(Ty); 1104 1105 // For i386, type must be register sized. 1106 // For the MCU ABI, it only needs to be <= 8-byte 1107 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1108 return false; 1109 1110 if (Ty->isVectorType()) { 1111 // 64- and 128- bit vectors inside structures are not returned in 1112 // registers. 1113 if (Size == 64 || Size == 128) 1114 return false; 1115 1116 return true; 1117 } 1118 1119 // If this is a builtin, pointer, enum, complex type, member pointer, or 1120 // member function pointer it is ok. 1121 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1122 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1123 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1124 return true; 1125 1126 // Arrays are treated like records. 1127 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1128 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1129 1130 // Otherwise, it must be a record type. 1131 const RecordType *RT = Ty->getAs<RecordType>(); 1132 if (!RT) return false; 1133 1134 // FIXME: Traverse bases here too. 1135 1136 // Structure types are passed in register if all fields would be 1137 // passed in a register. 1138 for (const auto *FD : RT->getDecl()->fields()) { 1139 // Empty fields are ignored. 1140 if (isEmptyField(Context, FD, true)) 1141 continue; 1142 1143 // Check fields recursively. 1144 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1145 return false; 1146 } 1147 return true; 1148 } 1149 1150 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1151 // Treat complex types as the element type. 1152 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1153 Ty = CTy->getElementType(); 1154 1155 // Check for a type which we know has a simple scalar argument-passing 1156 // convention without any padding. (We're specifically looking for 32 1157 // and 64-bit integer and integer-equivalents, float, and double.) 1158 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1159 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1160 return false; 1161 1162 uint64_t Size = Context.getTypeSize(Ty); 1163 return Size == 32 || Size == 64; 1164 } 1165 1166 /// Test whether an argument type which is to be passed indirectly (on the 1167 /// stack) would have the equivalent layout if it was expanded into separate 1168 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1169 /// optimizations. 1170 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1171 // We can only expand structure types. 1172 const RecordType *RT = Ty->getAs<RecordType>(); 1173 if (!RT) 1174 return false; 1175 const RecordDecl *RD = RT->getDecl(); 1176 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1177 if (!IsWin32StructABI ) { 1178 // On non-Windows, we have to conservatively match our old bitcode 1179 // prototypes in order to be ABI-compatible at the bitcode level. 1180 if (!CXXRD->isCLike()) 1181 return false; 1182 } else { 1183 // Don't do this for dynamic classes. 1184 if (CXXRD->isDynamicClass()) 1185 return false; 1186 // Don't do this if there are any non-empty bases. 1187 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 1188 if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true)) 1189 return false; 1190 } 1191 } 1192 } 1193 1194 uint64_t Size = 0; 1195 1196 for (const auto *FD : RD->fields()) { 1197 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1198 // argument is smaller than 32-bits, expanding the struct will create 1199 // alignment padding. 1200 if (!is32Or64BitBasicType(FD->getType(), getContext())) 1201 return false; 1202 1203 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1204 // how to expand them yet, and the predicate for telling if a bitfield still 1205 // counts as "basic" is more complicated than what we were doing previously. 1206 if (FD->isBitField()) 1207 return false; 1208 1209 Size += getContext().getTypeSize(FD->getType()); 1210 } 1211 1212 // We can do this if there was no alignment padding. 1213 return Size == getContext().getTypeSize(Ty); 1214 } 1215 1216 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1217 // If the return value is indirect, then the hidden argument is consuming one 1218 // integer register. 1219 if (State.FreeRegs) { 1220 --State.FreeRegs; 1221 if (!IsMCUABI) 1222 return getNaturalAlignIndirectInReg(RetTy); 1223 } 1224 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1225 } 1226 1227 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1228 CCState &State) const { 1229 if (RetTy->isVoidType()) 1230 return ABIArgInfo::getIgnore(); 1231 1232 const Type *Base = nullptr; 1233 uint64_t NumElts = 0; 1234 if (State.CC == llvm::CallingConv::X86_VectorCall && 1235 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1236 // The LLVM struct type for such an aggregate should lower properly. 1237 return ABIArgInfo::getDirect(); 1238 } 1239 1240 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1241 // On Darwin, some vectors are returned in registers. 1242 if (IsDarwinVectorABI) { 1243 uint64_t Size = getContext().getTypeSize(RetTy); 1244 1245 // 128-bit vectors are a special case; they are returned in 1246 // registers and we need to make sure to pick a type the LLVM 1247 // backend will like. 1248 if (Size == 128) 1249 return ABIArgInfo::getDirect(llvm::VectorType::get( 1250 llvm::Type::getInt64Ty(getVMContext()), 2)); 1251 1252 // Always return in register if it fits in a general purpose 1253 // register, or if it is 64 bits and has a single element. 1254 if ((Size == 8 || Size == 16 || Size == 32) || 1255 (Size == 64 && VT->getNumElements() == 1)) 1256 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1257 Size)); 1258 1259 return getIndirectReturnResult(RetTy, State); 1260 } 1261 1262 return ABIArgInfo::getDirect(); 1263 } 1264 1265 if (isAggregateTypeForABI(RetTy)) { 1266 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1267 // Structures with flexible arrays are always indirect. 1268 if (RT->getDecl()->hasFlexibleArrayMember()) 1269 return getIndirectReturnResult(RetTy, State); 1270 } 1271 1272 // If specified, structs and unions are always indirect. 1273 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1274 return getIndirectReturnResult(RetTy, State); 1275 1276 // Ignore empty structs/unions. 1277 if (isEmptyRecord(getContext(), RetTy, true)) 1278 return ABIArgInfo::getIgnore(); 1279 1280 // Small structures which are register sized are generally returned 1281 // in a register. 1282 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1283 uint64_t Size = getContext().getTypeSize(RetTy); 1284 1285 // As a special-case, if the struct is a "single-element" struct, and 1286 // the field is of type "float" or "double", return it in a 1287 // floating-point register. (MSVC does not apply this special case.) 1288 // We apply a similar transformation for pointer types to improve the 1289 // quality of the generated IR. 1290 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1291 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1292 || SeltTy->hasPointerRepresentation()) 1293 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1294 1295 // FIXME: We should be able to narrow this integer in cases with dead 1296 // padding. 1297 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1298 } 1299 1300 return getIndirectReturnResult(RetTy, State); 1301 } 1302 1303 // Treat an enum type as its underlying type. 1304 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1305 RetTy = EnumTy->getDecl()->getIntegerType(); 1306 1307 return (RetTy->isPromotableIntegerType() ? 1308 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1309 } 1310 1311 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1312 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1313 } 1314 1315 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1316 const RecordType *RT = Ty->getAs<RecordType>(); 1317 if (!RT) 1318 return 0; 1319 const RecordDecl *RD = RT->getDecl(); 1320 1321 // If this is a C++ record, check the bases first. 1322 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1323 for (const auto &I : CXXRD->bases()) 1324 if (!isRecordWithSSEVectorType(Context, I.getType())) 1325 return false; 1326 1327 for (const auto *i : RD->fields()) { 1328 QualType FT = i->getType(); 1329 1330 if (isSSEVectorType(Context, FT)) 1331 return true; 1332 1333 if (isRecordWithSSEVectorType(Context, FT)) 1334 return true; 1335 } 1336 1337 return false; 1338 } 1339 1340 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1341 unsigned Align) const { 1342 // Otherwise, if the alignment is less than or equal to the minimum ABI 1343 // alignment, just use the default; the backend will handle this. 1344 if (Align <= MinABIStackAlignInBytes) 1345 return 0; // Use default alignment. 1346 1347 // On non-Darwin, the stack type alignment is always 4. 1348 if (!IsDarwinVectorABI) { 1349 // Set explicit alignment, since we may need to realign the top. 1350 return MinABIStackAlignInBytes; 1351 } 1352 1353 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1354 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1355 isRecordWithSSEVectorType(getContext(), Ty))) 1356 return 16; 1357 1358 return MinABIStackAlignInBytes; 1359 } 1360 1361 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1362 CCState &State) const { 1363 if (!ByVal) { 1364 if (State.FreeRegs) { 1365 --State.FreeRegs; // Non-byval indirects just use one pointer. 1366 if (!IsMCUABI) 1367 return getNaturalAlignIndirectInReg(Ty); 1368 } 1369 return getNaturalAlignIndirect(Ty, false); 1370 } 1371 1372 // Compute the byval alignment. 1373 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1374 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1375 if (StackAlign == 0) 1376 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1377 1378 // If the stack alignment is less than the type alignment, realign the 1379 // argument. 1380 bool Realign = TypeAlign > StackAlign; 1381 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1382 /*ByVal=*/true, Realign); 1383 } 1384 1385 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1386 const Type *T = isSingleElementStruct(Ty, getContext()); 1387 if (!T) 1388 T = Ty.getTypePtr(); 1389 1390 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1391 BuiltinType::Kind K = BT->getKind(); 1392 if (K == BuiltinType::Float || K == BuiltinType::Double) 1393 return Float; 1394 } 1395 return Integer; 1396 } 1397 1398 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1399 if (!IsSoftFloatABI) { 1400 Class C = classify(Ty); 1401 if (C == Float) 1402 return false; 1403 } 1404 1405 unsigned Size = getContext().getTypeSize(Ty); 1406 unsigned SizeInRegs = (Size + 31) / 32; 1407 1408 if (SizeInRegs == 0) 1409 return false; 1410 1411 if (!IsMCUABI) { 1412 if (SizeInRegs > State.FreeRegs) { 1413 State.FreeRegs = 0; 1414 return false; 1415 } 1416 } else { 1417 // The MCU psABI allows passing parameters in-reg even if there are 1418 // earlier parameters that are passed on the stack. Also, 1419 // it does not allow passing >8-byte structs in-register, 1420 // even if there are 3 free registers available. 1421 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1422 return false; 1423 } 1424 1425 State.FreeRegs -= SizeInRegs; 1426 return true; 1427 } 1428 1429 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1430 bool &InReg, 1431 bool &NeedsPadding) const { 1432 // On Windows, aggregates other than HFAs are never passed in registers, and 1433 // they do not consume register slots. Homogenous floating-point aggregates 1434 // (HFAs) have already been dealt with at this point. 1435 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1436 return false; 1437 1438 NeedsPadding = false; 1439 InReg = !IsMCUABI; 1440 1441 if (!updateFreeRegs(Ty, State)) 1442 return false; 1443 1444 if (IsMCUABI) 1445 return true; 1446 1447 if (State.CC == llvm::CallingConv::X86_FastCall || 1448 State.CC == llvm::CallingConv::X86_VectorCall) { 1449 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1450 NeedsPadding = true; 1451 1452 return false; 1453 } 1454 1455 return true; 1456 } 1457 1458 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1459 if (!updateFreeRegs(Ty, State)) 1460 return false; 1461 1462 if (IsMCUABI) 1463 return false; 1464 1465 if (State.CC == llvm::CallingConv::X86_FastCall || 1466 State.CC == llvm::CallingConv::X86_VectorCall) { 1467 if (getContext().getTypeSize(Ty) > 32) 1468 return false; 1469 1470 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1471 Ty->isReferenceType()); 1472 } 1473 1474 return true; 1475 } 1476 1477 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1478 CCState &State) const { 1479 // FIXME: Set alignment on indirect arguments. 1480 1481 Ty = useFirstFieldIfTransparentUnion(Ty); 1482 1483 // Check with the C++ ABI first. 1484 const RecordType *RT = Ty->getAs<RecordType>(); 1485 if (RT) { 1486 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1487 if (RAA == CGCXXABI::RAA_Indirect) { 1488 return getIndirectResult(Ty, false, State); 1489 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1490 // The field index doesn't matter, we'll fix it up later. 1491 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1492 } 1493 } 1494 1495 // vectorcall adds the concept of a homogenous vector aggregate, similar 1496 // to other targets. 1497 const Type *Base = nullptr; 1498 uint64_t NumElts = 0; 1499 if (State.CC == llvm::CallingConv::X86_VectorCall && 1500 isHomogeneousAggregate(Ty, Base, NumElts)) { 1501 if (State.FreeSSERegs >= NumElts) { 1502 State.FreeSSERegs -= NumElts; 1503 if (Ty->isBuiltinType() || Ty->isVectorType()) 1504 return ABIArgInfo::getDirect(); 1505 return ABIArgInfo::getExpand(); 1506 } 1507 return getIndirectResult(Ty, /*ByVal=*/false, State); 1508 } 1509 1510 if (isAggregateTypeForABI(Ty)) { 1511 // Structures with flexible arrays are always indirect. 1512 // FIXME: This should not be byval! 1513 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1514 return getIndirectResult(Ty, true, State); 1515 1516 // Ignore empty structs/unions on non-Windows. 1517 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1518 return ABIArgInfo::getIgnore(); 1519 1520 llvm::LLVMContext &LLVMContext = getVMContext(); 1521 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1522 bool NeedsPadding = false; 1523 bool InReg; 1524 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1525 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1526 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1527 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1528 if (InReg) 1529 return ABIArgInfo::getDirectInReg(Result); 1530 else 1531 return ABIArgInfo::getDirect(Result); 1532 } 1533 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1534 1535 // Expand small (<= 128-bit) record types when we know that the stack layout 1536 // of those arguments will match the struct. This is important because the 1537 // LLVM backend isn't smart enough to remove byval, which inhibits many 1538 // optimizations. 1539 // Don't do this for the MCU if there are still free integer registers 1540 // (see X86_64 ABI for full explanation). 1541 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1542 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1543 return ABIArgInfo::getExpandWithPadding( 1544 State.CC == llvm::CallingConv::X86_FastCall || 1545 State.CC == llvm::CallingConv::X86_VectorCall, 1546 PaddingType); 1547 1548 return getIndirectResult(Ty, true, State); 1549 } 1550 1551 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1552 // On Darwin, some vectors are passed in memory, we handle this by passing 1553 // it as an i8/i16/i32/i64. 1554 if (IsDarwinVectorABI) { 1555 uint64_t Size = getContext().getTypeSize(Ty); 1556 if ((Size == 8 || Size == 16 || Size == 32) || 1557 (Size == 64 && VT->getNumElements() == 1)) 1558 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1559 Size)); 1560 } 1561 1562 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1563 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1564 1565 return ABIArgInfo::getDirect(); 1566 } 1567 1568 1569 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1570 Ty = EnumTy->getDecl()->getIntegerType(); 1571 1572 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1573 1574 if (Ty->isPromotableIntegerType()) { 1575 if (InReg) 1576 return ABIArgInfo::getExtendInReg(); 1577 return ABIArgInfo::getExtend(); 1578 } 1579 1580 if (InReg) 1581 return ABIArgInfo::getDirectInReg(); 1582 return ABIArgInfo::getDirect(); 1583 } 1584 1585 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1586 CCState State(FI.getCallingConvention()); 1587 if (IsMCUABI) 1588 State.FreeRegs = 3; 1589 else if (State.CC == llvm::CallingConv::X86_FastCall) 1590 State.FreeRegs = 2; 1591 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1592 State.FreeRegs = 2; 1593 State.FreeSSERegs = 6; 1594 } else if (FI.getHasRegParm()) 1595 State.FreeRegs = FI.getRegParm(); 1596 else 1597 State.FreeRegs = DefaultNumRegisterParameters; 1598 1599 if (!getCXXABI().classifyReturnType(FI)) { 1600 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1601 } else if (FI.getReturnInfo().isIndirect()) { 1602 // The C++ ABI is not aware of register usage, so we have to check if the 1603 // return value was sret and put it in a register ourselves if appropriate. 1604 if (State.FreeRegs) { 1605 --State.FreeRegs; // The sret parameter consumes a register. 1606 if (!IsMCUABI) 1607 FI.getReturnInfo().setInReg(true); 1608 } 1609 } 1610 1611 // The chain argument effectively gives us another free register. 1612 if (FI.isChainCall()) 1613 ++State.FreeRegs; 1614 1615 bool UsedInAlloca = false; 1616 for (auto &I : FI.arguments()) { 1617 I.info = classifyArgumentType(I.type, State); 1618 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1619 } 1620 1621 // If we needed to use inalloca for any argument, do a second pass and rewrite 1622 // all the memory arguments to use inalloca. 1623 if (UsedInAlloca) 1624 rewriteWithInAlloca(FI); 1625 } 1626 1627 void 1628 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1629 CharUnits &StackOffset, ABIArgInfo &Info, 1630 QualType Type) const { 1631 // Arguments are always 4-byte-aligned. 1632 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1633 1634 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1635 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1636 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1637 StackOffset += getContext().getTypeSizeInChars(Type); 1638 1639 // Insert padding bytes to respect alignment. 1640 CharUnits FieldEnd = StackOffset; 1641 StackOffset = FieldEnd.alignTo(FieldAlign); 1642 if (StackOffset != FieldEnd) { 1643 CharUnits NumBytes = StackOffset - FieldEnd; 1644 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1645 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1646 FrameFields.push_back(Ty); 1647 } 1648 } 1649 1650 static bool isArgInAlloca(const ABIArgInfo &Info) { 1651 // Leave ignored and inreg arguments alone. 1652 switch (Info.getKind()) { 1653 case ABIArgInfo::InAlloca: 1654 return true; 1655 case ABIArgInfo::Indirect: 1656 assert(Info.getIndirectByVal()); 1657 return true; 1658 case ABIArgInfo::Ignore: 1659 return false; 1660 case ABIArgInfo::Direct: 1661 case ABIArgInfo::Extend: 1662 if (Info.getInReg()) 1663 return false; 1664 return true; 1665 case ABIArgInfo::Expand: 1666 case ABIArgInfo::CoerceAndExpand: 1667 // These are aggregate types which are never passed in registers when 1668 // inalloca is involved. 1669 return true; 1670 } 1671 llvm_unreachable("invalid enum"); 1672 } 1673 1674 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1675 assert(IsWin32StructABI && "inalloca only supported on win32"); 1676 1677 // Build a packed struct type for all of the arguments in memory. 1678 SmallVector<llvm::Type *, 6> FrameFields; 1679 1680 // The stack alignment is always 4. 1681 CharUnits StackAlign = CharUnits::fromQuantity(4); 1682 1683 CharUnits StackOffset; 1684 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1685 1686 // Put 'this' into the struct before 'sret', if necessary. 1687 bool IsThisCall = 1688 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1689 ABIArgInfo &Ret = FI.getReturnInfo(); 1690 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1691 isArgInAlloca(I->info)) { 1692 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1693 ++I; 1694 } 1695 1696 // Put the sret parameter into the inalloca struct if it's in memory. 1697 if (Ret.isIndirect() && !Ret.getInReg()) { 1698 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1699 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1700 // On Windows, the hidden sret parameter is always returned in eax. 1701 Ret.setInAllocaSRet(IsWin32StructABI); 1702 } 1703 1704 // Skip the 'this' parameter in ecx. 1705 if (IsThisCall) 1706 ++I; 1707 1708 // Put arguments passed in memory into the struct. 1709 for (; I != E; ++I) { 1710 if (isArgInAlloca(I->info)) 1711 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1712 } 1713 1714 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1715 /*isPacked=*/true), 1716 StackAlign); 1717 } 1718 1719 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1720 Address VAListAddr, QualType Ty) const { 1721 1722 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1723 1724 // x86-32 changes the alignment of certain arguments on the stack. 1725 // 1726 // Just messing with TypeInfo like this works because we never pass 1727 // anything indirectly. 1728 TypeInfo.second = CharUnits::fromQuantity( 1729 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1730 1731 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1732 TypeInfo, CharUnits::fromQuantity(4), 1733 /*AllowHigherAlign*/ true); 1734 } 1735 1736 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1737 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1738 assert(Triple.getArch() == llvm::Triple::x86); 1739 1740 switch (Opts.getStructReturnConvention()) { 1741 case CodeGenOptions::SRCK_Default: 1742 break; 1743 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1744 return false; 1745 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1746 return true; 1747 } 1748 1749 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1750 return true; 1751 1752 switch (Triple.getOS()) { 1753 case llvm::Triple::DragonFly: 1754 case llvm::Triple::FreeBSD: 1755 case llvm::Triple::OpenBSD: 1756 case llvm::Triple::Bitrig: 1757 case llvm::Triple::Win32: 1758 return true; 1759 default: 1760 return false; 1761 } 1762 } 1763 1764 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1765 llvm::GlobalValue *GV, 1766 CodeGen::CodeGenModule &CGM) const { 1767 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1768 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1769 // Get the LLVM function. 1770 llvm::Function *Fn = cast<llvm::Function>(GV); 1771 1772 // Now add the 'alignstack' attribute with a value of 16. 1773 llvm::AttrBuilder B; 1774 B.addStackAlignmentAttr(16); 1775 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1776 llvm::AttributeSet::get(CGM.getLLVMContext(), 1777 llvm::AttributeSet::FunctionIndex, 1778 B)); 1779 } 1780 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1781 llvm::Function *Fn = cast<llvm::Function>(GV); 1782 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1783 } 1784 } 1785 } 1786 1787 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1788 CodeGen::CodeGenFunction &CGF, 1789 llvm::Value *Address) const { 1790 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1791 1792 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1793 1794 // 0-7 are the eight integer registers; the order is different 1795 // on Darwin (for EH), but the range is the same. 1796 // 8 is %eip. 1797 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1798 1799 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1800 // 12-16 are st(0..4). Not sure why we stop at 4. 1801 // These have size 16, which is sizeof(long double) on 1802 // platforms with 8-byte alignment for that type. 1803 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1804 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1805 1806 } else { 1807 // 9 is %eflags, which doesn't get a size on Darwin for some 1808 // reason. 1809 Builder.CreateAlignedStore( 1810 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1811 CharUnits::One()); 1812 1813 // 11-16 are st(0..5). Not sure why we stop at 5. 1814 // These have size 12, which is sizeof(long double) on 1815 // platforms with 4-byte alignment for that type. 1816 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1817 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1818 } 1819 1820 return false; 1821 } 1822 1823 //===----------------------------------------------------------------------===// 1824 // X86-64 ABI Implementation 1825 //===----------------------------------------------------------------------===// 1826 1827 1828 namespace { 1829 /// The AVX ABI level for X86 targets. 1830 enum class X86AVXABILevel { 1831 None, 1832 AVX, 1833 AVX512 1834 }; 1835 1836 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1837 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1838 switch (AVXLevel) { 1839 case X86AVXABILevel::AVX512: 1840 return 512; 1841 case X86AVXABILevel::AVX: 1842 return 256; 1843 case X86AVXABILevel::None: 1844 return 128; 1845 } 1846 llvm_unreachable("Unknown AVXLevel"); 1847 } 1848 1849 /// X86_64ABIInfo - The X86_64 ABI information. 1850 class X86_64ABIInfo : public SwiftABIInfo { 1851 enum Class { 1852 Integer = 0, 1853 SSE, 1854 SSEUp, 1855 X87, 1856 X87Up, 1857 ComplexX87, 1858 NoClass, 1859 Memory 1860 }; 1861 1862 /// merge - Implement the X86_64 ABI merging algorithm. 1863 /// 1864 /// Merge an accumulating classification \arg Accum with a field 1865 /// classification \arg Field. 1866 /// 1867 /// \param Accum - The accumulating classification. This should 1868 /// always be either NoClass or the result of a previous merge 1869 /// call. In addition, this should never be Memory (the caller 1870 /// should just return Memory for the aggregate). 1871 static Class merge(Class Accum, Class Field); 1872 1873 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1874 /// 1875 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1876 /// final MEMORY or SSE classes when necessary. 1877 /// 1878 /// \param AggregateSize - The size of the current aggregate in 1879 /// the classification process. 1880 /// 1881 /// \param Lo - The classification for the parts of the type 1882 /// residing in the low word of the containing object. 1883 /// 1884 /// \param Hi - The classification for the parts of the type 1885 /// residing in the higher words of the containing object. 1886 /// 1887 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1888 1889 /// classify - Determine the x86_64 register classes in which the 1890 /// given type T should be passed. 1891 /// 1892 /// \param Lo - The classification for the parts of the type 1893 /// residing in the low word of the containing object. 1894 /// 1895 /// \param Hi - The classification for the parts of the type 1896 /// residing in the high word of the containing object. 1897 /// 1898 /// \param OffsetBase - The bit offset of this type in the 1899 /// containing object. Some parameters are classified different 1900 /// depending on whether they straddle an eightbyte boundary. 1901 /// 1902 /// \param isNamedArg - Whether the argument in question is a "named" 1903 /// argument, as used in AMD64-ABI 3.5.7. 1904 /// 1905 /// If a word is unused its result will be NoClass; if a type should 1906 /// be passed in Memory then at least the classification of \arg Lo 1907 /// will be Memory. 1908 /// 1909 /// The \arg Lo class will be NoClass iff the argument is ignored. 1910 /// 1911 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1912 /// also be ComplexX87. 1913 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1914 bool isNamedArg) const; 1915 1916 llvm::Type *GetByteVectorType(QualType Ty) const; 1917 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1918 unsigned IROffset, QualType SourceTy, 1919 unsigned SourceOffset) const; 1920 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1921 unsigned IROffset, QualType SourceTy, 1922 unsigned SourceOffset) const; 1923 1924 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1925 /// such that the argument will be returned in memory. 1926 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1927 1928 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1929 /// such that the argument will be passed in memory. 1930 /// 1931 /// \param freeIntRegs - The number of free integer registers remaining 1932 /// available. 1933 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1934 1935 ABIArgInfo classifyReturnType(QualType RetTy) const; 1936 1937 ABIArgInfo classifyArgumentType(QualType Ty, 1938 unsigned freeIntRegs, 1939 unsigned &neededInt, 1940 unsigned &neededSSE, 1941 bool isNamedArg) const; 1942 1943 bool IsIllegalVectorType(QualType Ty) const; 1944 1945 /// The 0.98 ABI revision clarified a lot of ambiguities, 1946 /// unfortunately in ways that were not always consistent with 1947 /// certain previous compilers. In particular, platforms which 1948 /// required strict binary compatibility with older versions of GCC 1949 /// may need to exempt themselves. 1950 bool honorsRevision0_98() const { 1951 return !getTarget().getTriple().isOSDarwin(); 1952 } 1953 1954 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 1955 // compilers require us to classify it as INTEGER. 1956 bool classifyIntegerMMXAsSSE() const { 1957 const llvm::Triple &Triple = getTarget().getTriple(); 1958 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 1959 return false; 1960 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 1961 return false; 1962 return true; 1963 } 1964 1965 X86AVXABILevel AVXLevel; 1966 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1967 // 64-bit hardware. 1968 bool Has64BitPointers; 1969 1970 public: 1971 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1972 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 1973 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1974 } 1975 1976 bool isPassedUsingAVXType(QualType type) const { 1977 unsigned neededInt, neededSSE; 1978 // The freeIntRegs argument doesn't matter here. 1979 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1980 /*isNamedArg*/true); 1981 if (info.isDirect()) { 1982 llvm::Type *ty = info.getCoerceToType(); 1983 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1984 return (vectorTy->getBitWidth() > 128); 1985 } 1986 return false; 1987 } 1988 1989 void computeInfo(CGFunctionInfo &FI) const override; 1990 1991 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1992 QualType Ty) const override; 1993 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 1994 QualType Ty) const override; 1995 1996 bool has64BitPointers() const { 1997 return Has64BitPointers; 1998 } 1999 2000 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2001 ArrayRef<llvm::Type*> scalars, 2002 bool asReturnValue) const override { 2003 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2004 } 2005 }; 2006 2007 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2008 class WinX86_64ABIInfo : public ABIInfo { 2009 public: 2010 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2011 : ABIInfo(CGT), 2012 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2013 2014 void computeInfo(CGFunctionInfo &FI) const override; 2015 2016 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2017 QualType Ty) const override; 2018 2019 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2020 // FIXME: Assumes vectorcall is in use. 2021 return isX86VectorTypeForVectorCall(getContext(), Ty); 2022 } 2023 2024 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2025 uint64_t NumMembers) const override { 2026 // FIXME: Assumes vectorcall is in use. 2027 return isX86VectorCallAggregateSmallEnough(NumMembers); 2028 } 2029 2030 private: 2031 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 2032 bool IsReturnType) const; 2033 2034 bool IsMingw64; 2035 }; 2036 2037 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2038 public: 2039 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2040 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2041 2042 const X86_64ABIInfo &getABIInfo() const { 2043 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2044 } 2045 2046 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2047 return 7; 2048 } 2049 2050 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2051 llvm::Value *Address) const override { 2052 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2053 2054 // 0-15 are the 16 integer registers. 2055 // 16 is %rip. 2056 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2057 return false; 2058 } 2059 2060 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2061 StringRef Constraint, 2062 llvm::Type* Ty) const override { 2063 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2064 } 2065 2066 bool isNoProtoCallVariadic(const CallArgList &args, 2067 const FunctionNoProtoType *fnType) const override { 2068 // The default CC on x86-64 sets %al to the number of SSA 2069 // registers used, and GCC sets this when calling an unprototyped 2070 // function, so we override the default behavior. However, don't do 2071 // that when AVX types are involved: the ABI explicitly states it is 2072 // undefined, and it doesn't work in practice because of how the ABI 2073 // defines varargs anyway. 2074 if (fnType->getCallConv() == CC_C) { 2075 bool HasAVXType = false; 2076 for (CallArgList::const_iterator 2077 it = args.begin(), ie = args.end(); it != ie; ++it) { 2078 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2079 HasAVXType = true; 2080 break; 2081 } 2082 } 2083 2084 if (!HasAVXType) 2085 return true; 2086 } 2087 2088 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2089 } 2090 2091 llvm::Constant * 2092 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2093 unsigned Sig; 2094 if (getABIInfo().has64BitPointers()) 2095 Sig = (0xeb << 0) | // jmp rel8 2096 (0x0a << 8) | // .+0x0c 2097 ('F' << 16) | 2098 ('T' << 24); 2099 else 2100 Sig = (0xeb << 0) | // jmp rel8 2101 (0x06 << 8) | // .+0x08 2102 ('F' << 16) | 2103 ('T' << 24); 2104 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2105 } 2106 2107 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2108 CodeGen::CodeGenModule &CGM) const override { 2109 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2110 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2111 llvm::Function *Fn = cast<llvm::Function>(GV); 2112 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2113 } 2114 } 2115 } 2116 }; 2117 2118 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2119 public: 2120 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2121 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2122 2123 void getDependentLibraryOption(llvm::StringRef Lib, 2124 llvm::SmallString<24> &Opt) const override { 2125 Opt = "\01"; 2126 // If the argument contains a space, enclose it in quotes. 2127 if (Lib.find(" ") != StringRef::npos) 2128 Opt += "\"" + Lib.str() + "\""; 2129 else 2130 Opt += Lib; 2131 } 2132 }; 2133 2134 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2135 // If the argument does not end in .lib, automatically add the suffix. 2136 // If the argument contains a space, enclose it in quotes. 2137 // This matches the behavior of MSVC. 2138 bool Quote = (Lib.find(" ") != StringRef::npos); 2139 std::string ArgStr = Quote ? "\"" : ""; 2140 ArgStr += Lib; 2141 if (!Lib.endswith_lower(".lib")) 2142 ArgStr += ".lib"; 2143 ArgStr += Quote ? "\"" : ""; 2144 return ArgStr; 2145 } 2146 2147 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2148 public: 2149 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2150 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2151 unsigned NumRegisterParameters) 2152 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2153 Win32StructABI, NumRegisterParameters, false) {} 2154 2155 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2156 CodeGen::CodeGenModule &CGM) const override; 2157 2158 void getDependentLibraryOption(llvm::StringRef Lib, 2159 llvm::SmallString<24> &Opt) const override { 2160 Opt = "/DEFAULTLIB:"; 2161 Opt += qualifyWindowsLibrary(Lib); 2162 } 2163 2164 void getDetectMismatchOption(llvm::StringRef Name, 2165 llvm::StringRef Value, 2166 llvm::SmallString<32> &Opt) const override { 2167 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2168 } 2169 }; 2170 2171 static void addStackProbeSizeTargetAttribute(const Decl *D, 2172 llvm::GlobalValue *GV, 2173 CodeGen::CodeGenModule &CGM) { 2174 if (D && isa<FunctionDecl>(D)) { 2175 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2176 llvm::Function *Fn = cast<llvm::Function>(GV); 2177 2178 Fn->addFnAttr("stack-probe-size", 2179 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2180 } 2181 } 2182 } 2183 2184 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2185 llvm::GlobalValue *GV, 2186 CodeGen::CodeGenModule &CGM) const { 2187 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2188 2189 addStackProbeSizeTargetAttribute(D, GV, CGM); 2190 } 2191 2192 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2193 public: 2194 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2195 X86AVXABILevel AVXLevel) 2196 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2197 2198 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2199 CodeGen::CodeGenModule &CGM) const override; 2200 2201 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2202 return 7; 2203 } 2204 2205 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2206 llvm::Value *Address) const override { 2207 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2208 2209 // 0-15 are the 16 integer registers. 2210 // 16 is %rip. 2211 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2212 return false; 2213 } 2214 2215 void getDependentLibraryOption(llvm::StringRef Lib, 2216 llvm::SmallString<24> &Opt) const override { 2217 Opt = "/DEFAULTLIB:"; 2218 Opt += qualifyWindowsLibrary(Lib); 2219 } 2220 2221 void getDetectMismatchOption(llvm::StringRef Name, 2222 llvm::StringRef Value, 2223 llvm::SmallString<32> &Opt) const override { 2224 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2225 } 2226 }; 2227 2228 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2229 llvm::GlobalValue *GV, 2230 CodeGen::CodeGenModule &CGM) const { 2231 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2232 2233 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2234 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2235 llvm::Function *Fn = cast<llvm::Function>(GV); 2236 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2237 } 2238 } 2239 2240 addStackProbeSizeTargetAttribute(D, GV, CGM); 2241 } 2242 } 2243 2244 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2245 Class &Hi) const { 2246 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2247 // 2248 // (a) If one of the classes is Memory, the whole argument is passed in 2249 // memory. 2250 // 2251 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2252 // memory. 2253 // 2254 // (c) If the size of the aggregate exceeds two eightbytes and the first 2255 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2256 // argument is passed in memory. NOTE: This is necessary to keep the 2257 // ABI working for processors that don't support the __m256 type. 2258 // 2259 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2260 // 2261 // Some of these are enforced by the merging logic. Others can arise 2262 // only with unions; for example: 2263 // union { _Complex double; unsigned; } 2264 // 2265 // Note that clauses (b) and (c) were added in 0.98. 2266 // 2267 if (Hi == Memory) 2268 Lo = Memory; 2269 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2270 Lo = Memory; 2271 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2272 Lo = Memory; 2273 if (Hi == SSEUp && Lo != SSE) 2274 Hi = SSE; 2275 } 2276 2277 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2278 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2279 // classified recursively so that always two fields are 2280 // considered. The resulting class is calculated according to 2281 // the classes of the fields in the eightbyte: 2282 // 2283 // (a) If both classes are equal, this is the resulting class. 2284 // 2285 // (b) If one of the classes is NO_CLASS, the resulting class is 2286 // the other class. 2287 // 2288 // (c) If one of the classes is MEMORY, the result is the MEMORY 2289 // class. 2290 // 2291 // (d) If one of the classes is INTEGER, the result is the 2292 // INTEGER. 2293 // 2294 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2295 // MEMORY is used as class. 2296 // 2297 // (f) Otherwise class SSE is used. 2298 2299 // Accum should never be memory (we should have returned) or 2300 // ComplexX87 (because this cannot be passed in a structure). 2301 assert((Accum != Memory && Accum != ComplexX87) && 2302 "Invalid accumulated classification during merge."); 2303 if (Accum == Field || Field == NoClass) 2304 return Accum; 2305 if (Field == Memory) 2306 return Memory; 2307 if (Accum == NoClass) 2308 return Field; 2309 if (Accum == Integer || Field == Integer) 2310 return Integer; 2311 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2312 Accum == X87 || Accum == X87Up) 2313 return Memory; 2314 return SSE; 2315 } 2316 2317 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2318 Class &Lo, Class &Hi, bool isNamedArg) const { 2319 // FIXME: This code can be simplified by introducing a simple value class for 2320 // Class pairs with appropriate constructor methods for the various 2321 // situations. 2322 2323 // FIXME: Some of the split computations are wrong; unaligned vectors 2324 // shouldn't be passed in registers for example, so there is no chance they 2325 // can straddle an eightbyte. Verify & simplify. 2326 2327 Lo = Hi = NoClass; 2328 2329 Class &Current = OffsetBase < 64 ? Lo : Hi; 2330 Current = Memory; 2331 2332 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2333 BuiltinType::Kind k = BT->getKind(); 2334 2335 if (k == BuiltinType::Void) { 2336 Current = NoClass; 2337 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2338 Lo = Integer; 2339 Hi = Integer; 2340 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2341 Current = Integer; 2342 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2343 Current = SSE; 2344 } else if (k == BuiltinType::LongDouble) { 2345 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2346 if (LDF == &llvm::APFloat::IEEEquad) { 2347 Lo = SSE; 2348 Hi = SSEUp; 2349 } else if (LDF == &llvm::APFloat::x87DoubleExtended) { 2350 Lo = X87; 2351 Hi = X87Up; 2352 } else if (LDF == &llvm::APFloat::IEEEdouble) { 2353 Current = SSE; 2354 } else 2355 llvm_unreachable("unexpected long double representation!"); 2356 } 2357 // FIXME: _Decimal32 and _Decimal64 are SSE. 2358 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2359 return; 2360 } 2361 2362 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2363 // Classify the underlying integer type. 2364 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2365 return; 2366 } 2367 2368 if (Ty->hasPointerRepresentation()) { 2369 Current = Integer; 2370 return; 2371 } 2372 2373 if (Ty->isMemberPointerType()) { 2374 if (Ty->isMemberFunctionPointerType()) { 2375 if (Has64BitPointers) { 2376 // If Has64BitPointers, this is an {i64, i64}, so classify both 2377 // Lo and Hi now. 2378 Lo = Hi = Integer; 2379 } else { 2380 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2381 // straddles an eightbyte boundary, Hi should be classified as well. 2382 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2383 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2384 if (EB_FuncPtr != EB_ThisAdj) { 2385 Lo = Hi = Integer; 2386 } else { 2387 Current = Integer; 2388 } 2389 } 2390 } else { 2391 Current = Integer; 2392 } 2393 return; 2394 } 2395 2396 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2397 uint64_t Size = getContext().getTypeSize(VT); 2398 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2399 // gcc passes the following as integer: 2400 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2401 // 2 bytes - <2 x char>, <1 x short> 2402 // 1 byte - <1 x char> 2403 Current = Integer; 2404 2405 // If this type crosses an eightbyte boundary, it should be 2406 // split. 2407 uint64_t EB_Lo = (OffsetBase) / 64; 2408 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2409 if (EB_Lo != EB_Hi) 2410 Hi = Lo; 2411 } else if (Size == 64) { 2412 QualType ElementType = VT->getElementType(); 2413 2414 // gcc passes <1 x double> in memory. :( 2415 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2416 return; 2417 2418 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2419 // pass them as integer. For platforms where clang is the de facto 2420 // platform compiler, we must continue to use integer. 2421 if (!classifyIntegerMMXAsSSE() && 2422 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2423 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2424 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2425 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2426 Current = Integer; 2427 else 2428 Current = SSE; 2429 2430 // If this type crosses an eightbyte boundary, it should be 2431 // split. 2432 if (OffsetBase && OffsetBase != 64) 2433 Hi = Lo; 2434 } else if (Size == 128 || 2435 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2436 // Arguments of 256-bits are split into four eightbyte chunks. The 2437 // least significant one belongs to class SSE and all the others to class 2438 // SSEUP. The original Lo and Hi design considers that types can't be 2439 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2440 // This design isn't correct for 256-bits, but since there're no cases 2441 // where the upper parts would need to be inspected, avoid adding 2442 // complexity and just consider Hi to match the 64-256 part. 2443 // 2444 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2445 // registers if they are "named", i.e. not part of the "..." of a 2446 // variadic function. 2447 // 2448 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2449 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2450 Lo = SSE; 2451 Hi = SSEUp; 2452 } 2453 return; 2454 } 2455 2456 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2457 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2458 2459 uint64_t Size = getContext().getTypeSize(Ty); 2460 if (ET->isIntegralOrEnumerationType()) { 2461 if (Size <= 64) 2462 Current = Integer; 2463 else if (Size <= 128) 2464 Lo = Hi = Integer; 2465 } else if (ET == getContext().FloatTy) { 2466 Current = SSE; 2467 } else if (ET == getContext().DoubleTy) { 2468 Lo = Hi = SSE; 2469 } else if (ET == getContext().LongDoubleTy) { 2470 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2471 if (LDF == &llvm::APFloat::IEEEquad) 2472 Current = Memory; 2473 else if (LDF == &llvm::APFloat::x87DoubleExtended) 2474 Current = ComplexX87; 2475 else if (LDF == &llvm::APFloat::IEEEdouble) 2476 Lo = Hi = SSE; 2477 else 2478 llvm_unreachable("unexpected long double representation!"); 2479 } 2480 2481 // If this complex type crosses an eightbyte boundary then it 2482 // should be split. 2483 uint64_t EB_Real = (OffsetBase) / 64; 2484 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2485 if (Hi == NoClass && EB_Real != EB_Imag) 2486 Hi = Lo; 2487 2488 return; 2489 } 2490 2491 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2492 // Arrays are treated like structures. 2493 2494 uint64_t Size = getContext().getTypeSize(Ty); 2495 2496 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2497 // than four eightbytes, ..., it has class MEMORY. 2498 if (Size > 256) 2499 return; 2500 2501 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2502 // fields, it has class MEMORY. 2503 // 2504 // Only need to check alignment of array base. 2505 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2506 return; 2507 2508 // Otherwise implement simplified merge. We could be smarter about 2509 // this, but it isn't worth it and would be harder to verify. 2510 Current = NoClass; 2511 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2512 uint64_t ArraySize = AT->getSize().getZExtValue(); 2513 2514 // The only case a 256-bit wide vector could be used is when the array 2515 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2516 // to work for sizes wider than 128, early check and fallback to memory. 2517 if (Size > 128 && EltSize != 256) 2518 return; 2519 2520 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2521 Class FieldLo, FieldHi; 2522 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2523 Lo = merge(Lo, FieldLo); 2524 Hi = merge(Hi, FieldHi); 2525 if (Lo == Memory || Hi == Memory) 2526 break; 2527 } 2528 2529 postMerge(Size, Lo, Hi); 2530 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2531 return; 2532 } 2533 2534 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2535 uint64_t Size = getContext().getTypeSize(Ty); 2536 2537 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2538 // than four eightbytes, ..., it has class MEMORY. 2539 if (Size > 256) 2540 return; 2541 2542 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2543 // copy constructor or a non-trivial destructor, it is passed by invisible 2544 // reference. 2545 if (getRecordArgABI(RT, getCXXABI())) 2546 return; 2547 2548 const RecordDecl *RD = RT->getDecl(); 2549 2550 // Assume variable sized types are passed in memory. 2551 if (RD->hasFlexibleArrayMember()) 2552 return; 2553 2554 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2555 2556 // Reset Lo class, this will be recomputed. 2557 Current = NoClass; 2558 2559 // If this is a C++ record, classify the bases first. 2560 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2561 for (const auto &I : CXXRD->bases()) { 2562 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2563 "Unexpected base class!"); 2564 const CXXRecordDecl *Base = 2565 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2566 2567 // Classify this field. 2568 // 2569 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2570 // single eightbyte, each is classified separately. Each eightbyte gets 2571 // initialized to class NO_CLASS. 2572 Class FieldLo, FieldHi; 2573 uint64_t Offset = 2574 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2575 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2576 Lo = merge(Lo, FieldLo); 2577 Hi = merge(Hi, FieldHi); 2578 if (Lo == Memory || Hi == Memory) { 2579 postMerge(Size, Lo, Hi); 2580 return; 2581 } 2582 } 2583 } 2584 2585 // Classify the fields one at a time, merging the results. 2586 unsigned idx = 0; 2587 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2588 i != e; ++i, ++idx) { 2589 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2590 bool BitField = i->isBitField(); 2591 2592 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2593 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2594 // 2595 // The only case a 256-bit wide vector could be used is when the struct 2596 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2597 // to work for sizes wider than 128, early check and fallback to memory. 2598 // 2599 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2600 Lo = Memory; 2601 postMerge(Size, Lo, Hi); 2602 return; 2603 } 2604 // Note, skip this test for bit-fields, see below. 2605 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2606 Lo = Memory; 2607 postMerge(Size, Lo, Hi); 2608 return; 2609 } 2610 2611 // Classify this field. 2612 // 2613 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2614 // exceeds a single eightbyte, each is classified 2615 // separately. Each eightbyte gets initialized to class 2616 // NO_CLASS. 2617 Class FieldLo, FieldHi; 2618 2619 // Bit-fields require special handling, they do not force the 2620 // structure to be passed in memory even if unaligned, and 2621 // therefore they can straddle an eightbyte. 2622 if (BitField) { 2623 // Ignore padding bit-fields. 2624 if (i->isUnnamedBitfield()) 2625 continue; 2626 2627 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2628 uint64_t Size = i->getBitWidthValue(getContext()); 2629 2630 uint64_t EB_Lo = Offset / 64; 2631 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2632 2633 if (EB_Lo) { 2634 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2635 FieldLo = NoClass; 2636 FieldHi = Integer; 2637 } else { 2638 FieldLo = Integer; 2639 FieldHi = EB_Hi ? Integer : NoClass; 2640 } 2641 } else 2642 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2643 Lo = merge(Lo, FieldLo); 2644 Hi = merge(Hi, FieldHi); 2645 if (Lo == Memory || Hi == Memory) 2646 break; 2647 } 2648 2649 postMerge(Size, Lo, Hi); 2650 } 2651 } 2652 2653 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2654 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2655 // place naturally. 2656 if (!isAggregateTypeForABI(Ty)) { 2657 // Treat an enum type as its underlying type. 2658 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2659 Ty = EnumTy->getDecl()->getIntegerType(); 2660 2661 return (Ty->isPromotableIntegerType() ? 2662 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2663 } 2664 2665 return getNaturalAlignIndirect(Ty); 2666 } 2667 2668 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2669 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2670 uint64_t Size = getContext().getTypeSize(VecTy); 2671 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2672 if (Size <= 64 || Size > LargestVector) 2673 return true; 2674 } 2675 2676 return false; 2677 } 2678 2679 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2680 unsigned freeIntRegs) const { 2681 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2682 // place naturally. 2683 // 2684 // This assumption is optimistic, as there could be free registers available 2685 // when we need to pass this argument in memory, and LLVM could try to pass 2686 // the argument in the free register. This does not seem to happen currently, 2687 // but this code would be much safer if we could mark the argument with 2688 // 'onstack'. See PR12193. 2689 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2690 // Treat an enum type as its underlying type. 2691 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2692 Ty = EnumTy->getDecl()->getIntegerType(); 2693 2694 return (Ty->isPromotableIntegerType() ? 2695 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2696 } 2697 2698 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2699 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2700 2701 // Compute the byval alignment. We specify the alignment of the byval in all 2702 // cases so that the mid-level optimizer knows the alignment of the byval. 2703 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2704 2705 // Attempt to avoid passing indirect results using byval when possible. This 2706 // is important for good codegen. 2707 // 2708 // We do this by coercing the value into a scalar type which the backend can 2709 // handle naturally (i.e., without using byval). 2710 // 2711 // For simplicity, we currently only do this when we have exhausted all of the 2712 // free integer registers. Doing this when there are free integer registers 2713 // would require more care, as we would have to ensure that the coerced value 2714 // did not claim the unused register. That would require either reording the 2715 // arguments to the function (so that any subsequent inreg values came first), 2716 // or only doing this optimization when there were no following arguments that 2717 // might be inreg. 2718 // 2719 // We currently expect it to be rare (particularly in well written code) for 2720 // arguments to be passed on the stack when there are still free integer 2721 // registers available (this would typically imply large structs being passed 2722 // by value), so this seems like a fair tradeoff for now. 2723 // 2724 // We can revisit this if the backend grows support for 'onstack' parameter 2725 // attributes. See PR12193. 2726 if (freeIntRegs == 0) { 2727 uint64_t Size = getContext().getTypeSize(Ty); 2728 2729 // If this type fits in an eightbyte, coerce it into the matching integral 2730 // type, which will end up on the stack (with alignment 8). 2731 if (Align == 8 && Size <= 64) 2732 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2733 Size)); 2734 } 2735 2736 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2737 } 2738 2739 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2740 /// register. Pick an LLVM IR type that will be passed as a vector register. 2741 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2742 // Wrapper structs/arrays that only contain vectors are passed just like 2743 // vectors; strip them off if present. 2744 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2745 Ty = QualType(InnerTy, 0); 2746 2747 llvm::Type *IRType = CGT.ConvertType(Ty); 2748 if (isa<llvm::VectorType>(IRType) || 2749 IRType->getTypeID() == llvm::Type::FP128TyID) 2750 return IRType; 2751 2752 // We couldn't find the preferred IR vector type for 'Ty'. 2753 uint64_t Size = getContext().getTypeSize(Ty); 2754 assert((Size == 128 || Size == 256) && "Invalid type found!"); 2755 2756 // Return a LLVM IR vector type based on the size of 'Ty'. 2757 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2758 Size / 64); 2759 } 2760 2761 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2762 /// is known to either be off the end of the specified type or being in 2763 /// alignment padding. The user type specified is known to be at most 128 bits 2764 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2765 /// classification that put one of the two halves in the INTEGER class. 2766 /// 2767 /// It is conservatively correct to return false. 2768 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2769 unsigned EndBit, ASTContext &Context) { 2770 // If the bytes being queried are off the end of the type, there is no user 2771 // data hiding here. This handles analysis of builtins, vectors and other 2772 // types that don't contain interesting padding. 2773 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2774 if (TySize <= StartBit) 2775 return true; 2776 2777 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2778 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2779 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2780 2781 // Check each element to see if the element overlaps with the queried range. 2782 for (unsigned i = 0; i != NumElts; ++i) { 2783 // If the element is after the span we care about, then we're done.. 2784 unsigned EltOffset = i*EltSize; 2785 if (EltOffset >= EndBit) break; 2786 2787 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2788 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2789 EndBit-EltOffset, Context)) 2790 return false; 2791 } 2792 // If it overlaps no elements, then it is safe to process as padding. 2793 return true; 2794 } 2795 2796 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2797 const RecordDecl *RD = RT->getDecl(); 2798 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2799 2800 // If this is a C++ record, check the bases first. 2801 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2802 for (const auto &I : CXXRD->bases()) { 2803 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2804 "Unexpected base class!"); 2805 const CXXRecordDecl *Base = 2806 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2807 2808 // If the base is after the span we care about, ignore it. 2809 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2810 if (BaseOffset >= EndBit) continue; 2811 2812 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2813 if (!BitsContainNoUserData(I.getType(), BaseStart, 2814 EndBit-BaseOffset, Context)) 2815 return false; 2816 } 2817 } 2818 2819 // Verify that no field has data that overlaps the region of interest. Yes 2820 // this could be sped up a lot by being smarter about queried fields, 2821 // however we're only looking at structs up to 16 bytes, so we don't care 2822 // much. 2823 unsigned idx = 0; 2824 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2825 i != e; ++i, ++idx) { 2826 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2827 2828 // If we found a field after the region we care about, then we're done. 2829 if (FieldOffset >= EndBit) break; 2830 2831 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2832 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2833 Context)) 2834 return false; 2835 } 2836 2837 // If nothing in this record overlapped the area of interest, then we're 2838 // clean. 2839 return true; 2840 } 2841 2842 return false; 2843 } 2844 2845 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2846 /// float member at the specified offset. For example, {int,{float}} has a 2847 /// float at offset 4. It is conservatively correct for this routine to return 2848 /// false. 2849 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2850 const llvm::DataLayout &TD) { 2851 // Base case if we find a float. 2852 if (IROffset == 0 && IRType->isFloatTy()) 2853 return true; 2854 2855 // If this is a struct, recurse into the field at the specified offset. 2856 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2857 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2858 unsigned Elt = SL->getElementContainingOffset(IROffset); 2859 IROffset -= SL->getElementOffset(Elt); 2860 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2861 } 2862 2863 // If this is an array, recurse into the field at the specified offset. 2864 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2865 llvm::Type *EltTy = ATy->getElementType(); 2866 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2867 IROffset -= IROffset/EltSize*EltSize; 2868 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2869 } 2870 2871 return false; 2872 } 2873 2874 2875 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2876 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2877 llvm::Type *X86_64ABIInfo:: 2878 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2879 QualType SourceTy, unsigned SourceOffset) const { 2880 // The only three choices we have are either double, <2 x float>, or float. We 2881 // pass as float if the last 4 bytes is just padding. This happens for 2882 // structs that contain 3 floats. 2883 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2884 SourceOffset*8+64, getContext())) 2885 return llvm::Type::getFloatTy(getVMContext()); 2886 2887 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2888 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2889 // case. 2890 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2891 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2892 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2893 2894 return llvm::Type::getDoubleTy(getVMContext()); 2895 } 2896 2897 2898 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2899 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2900 /// about the high or low part of an up-to-16-byte struct. This routine picks 2901 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2902 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2903 /// etc). 2904 /// 2905 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2906 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2907 /// the 8-byte value references. PrefType may be null. 2908 /// 2909 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2910 /// an offset into this that we're processing (which is always either 0 or 8). 2911 /// 2912 llvm::Type *X86_64ABIInfo:: 2913 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2914 QualType SourceTy, unsigned SourceOffset) const { 2915 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2916 // returning an 8-byte unit starting with it. See if we can safely use it. 2917 if (IROffset == 0) { 2918 // Pointers and int64's always fill the 8-byte unit. 2919 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2920 IRType->isIntegerTy(64)) 2921 return IRType; 2922 2923 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2924 // goodness in the source type is just tail padding. This is allowed to 2925 // kick in for struct {double,int} on the int, but not on 2926 // struct{double,int,int} because we wouldn't return the second int. We 2927 // have to do this analysis on the source type because we can't depend on 2928 // unions being lowered a specific way etc. 2929 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2930 IRType->isIntegerTy(32) || 2931 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2932 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2933 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2934 2935 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2936 SourceOffset*8+64, getContext())) 2937 return IRType; 2938 } 2939 } 2940 2941 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2942 // If this is a struct, recurse into the field at the specified offset. 2943 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2944 if (IROffset < SL->getSizeInBytes()) { 2945 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2946 IROffset -= SL->getElementOffset(FieldIdx); 2947 2948 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2949 SourceTy, SourceOffset); 2950 } 2951 } 2952 2953 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2954 llvm::Type *EltTy = ATy->getElementType(); 2955 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2956 unsigned EltOffset = IROffset/EltSize*EltSize; 2957 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2958 SourceOffset); 2959 } 2960 2961 // Okay, we don't have any better idea of what to pass, so we pass this in an 2962 // integer register that isn't too big to fit the rest of the struct. 2963 unsigned TySizeInBytes = 2964 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2965 2966 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2967 2968 // It is always safe to classify this as an integer type up to i64 that 2969 // isn't larger than the structure. 2970 return llvm::IntegerType::get(getVMContext(), 2971 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2972 } 2973 2974 2975 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2976 /// be used as elements of a two register pair to pass or return, return a 2977 /// first class aggregate to represent them. For example, if the low part of 2978 /// a by-value argument should be passed as i32* and the high part as float, 2979 /// return {i32*, float}. 2980 static llvm::Type * 2981 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2982 const llvm::DataLayout &TD) { 2983 // In order to correctly satisfy the ABI, we need to the high part to start 2984 // at offset 8. If the high and low parts we inferred are both 4-byte types 2985 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2986 // the second element at offset 8. Check for this: 2987 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2988 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2989 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 2990 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2991 2992 // To handle this, we have to increase the size of the low part so that the 2993 // second element will start at an 8 byte offset. We can't increase the size 2994 // of the second element because it might make us access off the end of the 2995 // struct. 2996 if (HiStart != 8) { 2997 // There are usually two sorts of types the ABI generation code can produce 2998 // for the low part of a pair that aren't 8 bytes in size: float or 2999 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3000 // NaCl). 3001 // Promote these to a larger type. 3002 if (Lo->isFloatTy()) 3003 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3004 else { 3005 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3006 && "Invalid/unknown lo type"); 3007 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3008 } 3009 } 3010 3011 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 3012 3013 3014 // Verify that the second element is at an 8-byte offset. 3015 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3016 "Invalid x86-64 argument pair!"); 3017 return Result; 3018 } 3019 3020 ABIArgInfo X86_64ABIInfo:: 3021 classifyReturnType(QualType RetTy) const { 3022 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3023 // classification algorithm. 3024 X86_64ABIInfo::Class Lo, Hi; 3025 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3026 3027 // Check some invariants. 3028 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3029 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3030 3031 llvm::Type *ResType = nullptr; 3032 switch (Lo) { 3033 case NoClass: 3034 if (Hi == NoClass) 3035 return ABIArgInfo::getIgnore(); 3036 // If the low part is just padding, it takes no register, leave ResType 3037 // null. 3038 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3039 "Unknown missing lo part"); 3040 break; 3041 3042 case SSEUp: 3043 case X87Up: 3044 llvm_unreachable("Invalid classification for lo word."); 3045 3046 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3047 // hidden argument. 3048 case Memory: 3049 return getIndirectReturnResult(RetTy); 3050 3051 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3052 // available register of the sequence %rax, %rdx is used. 3053 case Integer: 3054 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3055 3056 // If we have a sign or zero extended integer, make sure to return Extend 3057 // so that the parameter gets the right LLVM IR attributes. 3058 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3059 // Treat an enum type as its underlying type. 3060 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3061 RetTy = EnumTy->getDecl()->getIntegerType(); 3062 3063 if (RetTy->isIntegralOrEnumerationType() && 3064 RetTy->isPromotableIntegerType()) 3065 return ABIArgInfo::getExtend(); 3066 } 3067 break; 3068 3069 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3070 // available SSE register of the sequence %xmm0, %xmm1 is used. 3071 case SSE: 3072 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3073 break; 3074 3075 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3076 // returned on the X87 stack in %st0 as 80-bit x87 number. 3077 case X87: 3078 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3079 break; 3080 3081 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3082 // part of the value is returned in %st0 and the imaginary part in 3083 // %st1. 3084 case ComplexX87: 3085 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3086 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3087 llvm::Type::getX86_FP80Ty(getVMContext()), 3088 nullptr); 3089 break; 3090 } 3091 3092 llvm::Type *HighPart = nullptr; 3093 switch (Hi) { 3094 // Memory was handled previously and X87 should 3095 // never occur as a hi class. 3096 case Memory: 3097 case X87: 3098 llvm_unreachable("Invalid classification for hi word."); 3099 3100 case ComplexX87: // Previously handled. 3101 case NoClass: 3102 break; 3103 3104 case Integer: 3105 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3106 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3107 return ABIArgInfo::getDirect(HighPart, 8); 3108 break; 3109 case SSE: 3110 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3111 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3112 return ABIArgInfo::getDirect(HighPart, 8); 3113 break; 3114 3115 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3116 // is passed in the next available eightbyte chunk if the last used 3117 // vector register. 3118 // 3119 // SSEUP should always be preceded by SSE, just widen. 3120 case SSEUp: 3121 assert(Lo == SSE && "Unexpected SSEUp classification."); 3122 ResType = GetByteVectorType(RetTy); 3123 break; 3124 3125 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3126 // returned together with the previous X87 value in %st0. 3127 case X87Up: 3128 // If X87Up is preceded by X87, we don't need to do 3129 // anything. However, in some cases with unions it may not be 3130 // preceded by X87. In such situations we follow gcc and pass the 3131 // extra bits in an SSE reg. 3132 if (Lo != X87) { 3133 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3134 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3135 return ABIArgInfo::getDirect(HighPart, 8); 3136 } 3137 break; 3138 } 3139 3140 // If a high part was specified, merge it together with the low part. It is 3141 // known to pass in the high eightbyte of the result. We do this by forming a 3142 // first class struct aggregate with the high and low part: {low, high} 3143 if (HighPart) 3144 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3145 3146 return ABIArgInfo::getDirect(ResType); 3147 } 3148 3149 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3150 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3151 bool isNamedArg) 3152 const 3153 { 3154 Ty = useFirstFieldIfTransparentUnion(Ty); 3155 3156 X86_64ABIInfo::Class Lo, Hi; 3157 classify(Ty, 0, Lo, Hi, isNamedArg); 3158 3159 // Check some invariants. 3160 // FIXME: Enforce these by construction. 3161 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3162 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3163 3164 neededInt = 0; 3165 neededSSE = 0; 3166 llvm::Type *ResType = nullptr; 3167 switch (Lo) { 3168 case NoClass: 3169 if (Hi == NoClass) 3170 return ABIArgInfo::getIgnore(); 3171 // If the low part is just padding, it takes no register, leave ResType 3172 // null. 3173 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3174 "Unknown missing lo part"); 3175 break; 3176 3177 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3178 // on the stack. 3179 case Memory: 3180 3181 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3182 // COMPLEX_X87, it is passed in memory. 3183 case X87: 3184 case ComplexX87: 3185 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3186 ++neededInt; 3187 return getIndirectResult(Ty, freeIntRegs); 3188 3189 case SSEUp: 3190 case X87Up: 3191 llvm_unreachable("Invalid classification for lo word."); 3192 3193 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3194 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3195 // and %r9 is used. 3196 case Integer: 3197 ++neededInt; 3198 3199 // Pick an 8-byte type based on the preferred type. 3200 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3201 3202 // If we have a sign or zero extended integer, make sure to return Extend 3203 // so that the parameter gets the right LLVM IR attributes. 3204 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3205 // Treat an enum type as its underlying type. 3206 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3207 Ty = EnumTy->getDecl()->getIntegerType(); 3208 3209 if (Ty->isIntegralOrEnumerationType() && 3210 Ty->isPromotableIntegerType()) 3211 return ABIArgInfo::getExtend(); 3212 } 3213 3214 break; 3215 3216 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3217 // available SSE register is used, the registers are taken in the 3218 // order from %xmm0 to %xmm7. 3219 case SSE: { 3220 llvm::Type *IRType = CGT.ConvertType(Ty); 3221 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3222 ++neededSSE; 3223 break; 3224 } 3225 } 3226 3227 llvm::Type *HighPart = nullptr; 3228 switch (Hi) { 3229 // Memory was handled previously, ComplexX87 and X87 should 3230 // never occur as hi classes, and X87Up must be preceded by X87, 3231 // which is passed in memory. 3232 case Memory: 3233 case X87: 3234 case ComplexX87: 3235 llvm_unreachable("Invalid classification for hi word."); 3236 3237 case NoClass: break; 3238 3239 case Integer: 3240 ++neededInt; 3241 // Pick an 8-byte type based on the preferred type. 3242 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3243 3244 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3245 return ABIArgInfo::getDirect(HighPart, 8); 3246 break; 3247 3248 // X87Up generally doesn't occur here (long double is passed in 3249 // memory), except in situations involving unions. 3250 case X87Up: 3251 case SSE: 3252 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3253 3254 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3255 return ABIArgInfo::getDirect(HighPart, 8); 3256 3257 ++neededSSE; 3258 break; 3259 3260 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3261 // eightbyte is passed in the upper half of the last used SSE 3262 // register. This only happens when 128-bit vectors are passed. 3263 case SSEUp: 3264 assert(Lo == SSE && "Unexpected SSEUp classification"); 3265 ResType = GetByteVectorType(Ty); 3266 break; 3267 } 3268 3269 // If a high part was specified, merge it together with the low part. It is 3270 // known to pass in the high eightbyte of the result. We do this by forming a 3271 // first class struct aggregate with the high and low part: {low, high} 3272 if (HighPart) 3273 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3274 3275 return ABIArgInfo::getDirect(ResType); 3276 } 3277 3278 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3279 3280 if (!getCXXABI().classifyReturnType(FI)) 3281 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3282 3283 // Keep track of the number of assigned registers. 3284 unsigned freeIntRegs = 6, freeSSERegs = 8; 3285 3286 // If the return value is indirect, then the hidden argument is consuming one 3287 // integer register. 3288 if (FI.getReturnInfo().isIndirect()) 3289 --freeIntRegs; 3290 3291 // The chain argument effectively gives us another free register. 3292 if (FI.isChainCall()) 3293 ++freeIntRegs; 3294 3295 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3296 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3297 // get assigned (in left-to-right order) for passing as follows... 3298 unsigned ArgNo = 0; 3299 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3300 it != ie; ++it, ++ArgNo) { 3301 bool IsNamedArg = ArgNo < NumRequiredArgs; 3302 3303 unsigned neededInt, neededSSE; 3304 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 3305 neededSSE, IsNamedArg); 3306 3307 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3308 // eightbyte of an argument, the whole argument is passed on the 3309 // stack. If registers have already been assigned for some 3310 // eightbytes of such an argument, the assignments get reverted. 3311 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 3312 freeIntRegs -= neededInt; 3313 freeSSERegs -= neededSSE; 3314 } else { 3315 it->info = getIndirectResult(it->type, freeIntRegs); 3316 } 3317 } 3318 } 3319 3320 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3321 Address VAListAddr, QualType Ty) { 3322 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3323 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3324 llvm::Value *overflow_arg_area = 3325 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3326 3327 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3328 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3329 // It isn't stated explicitly in the standard, but in practice we use 3330 // alignment greater than 16 where necessary. 3331 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3332 if (Align > CharUnits::fromQuantity(8)) { 3333 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3334 Align); 3335 } 3336 3337 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3338 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3339 llvm::Value *Res = 3340 CGF.Builder.CreateBitCast(overflow_arg_area, 3341 llvm::PointerType::getUnqual(LTy)); 3342 3343 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3344 // l->overflow_arg_area + sizeof(type). 3345 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3346 // an 8 byte boundary. 3347 3348 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3349 llvm::Value *Offset = 3350 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3351 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3352 "overflow_arg_area.next"); 3353 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3354 3355 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3356 return Address(Res, Align); 3357 } 3358 3359 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3360 QualType Ty) const { 3361 // Assume that va_list type is correct; should be pointer to LLVM type: 3362 // struct { 3363 // i32 gp_offset; 3364 // i32 fp_offset; 3365 // i8* overflow_arg_area; 3366 // i8* reg_save_area; 3367 // }; 3368 unsigned neededInt, neededSSE; 3369 3370 Ty = getContext().getCanonicalType(Ty); 3371 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3372 /*isNamedArg*/false); 3373 3374 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3375 // in the registers. If not go to step 7. 3376 if (!neededInt && !neededSSE) 3377 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3378 3379 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3380 // general purpose registers needed to pass type and num_fp to hold 3381 // the number of floating point registers needed. 3382 3383 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3384 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3385 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3386 // 3387 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3388 // register save space). 3389 3390 llvm::Value *InRegs = nullptr; 3391 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3392 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3393 if (neededInt) { 3394 gp_offset_p = 3395 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3396 "gp_offset_p"); 3397 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3398 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3399 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3400 } 3401 3402 if (neededSSE) { 3403 fp_offset_p = 3404 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3405 "fp_offset_p"); 3406 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3407 llvm::Value *FitsInFP = 3408 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3409 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3410 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3411 } 3412 3413 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3414 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3415 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3416 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3417 3418 // Emit code to load the value if it was passed in registers. 3419 3420 CGF.EmitBlock(InRegBlock); 3421 3422 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3423 // an offset of l->gp_offset and/or l->fp_offset. This may require 3424 // copying to a temporary location in case the parameter is passed 3425 // in different register classes or requires an alignment greater 3426 // than 8 for general purpose registers and 16 for XMM registers. 3427 // 3428 // FIXME: This really results in shameful code when we end up needing to 3429 // collect arguments from different places; often what should result in a 3430 // simple assembling of a structure from scattered addresses has many more 3431 // loads than necessary. Can we clean this up? 3432 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3433 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3434 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3435 "reg_save_area"); 3436 3437 Address RegAddr = Address::invalid(); 3438 if (neededInt && neededSSE) { 3439 // FIXME: Cleanup. 3440 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3441 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3442 Address Tmp = CGF.CreateMemTemp(Ty); 3443 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3444 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3445 llvm::Type *TyLo = ST->getElementType(0); 3446 llvm::Type *TyHi = ST->getElementType(1); 3447 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3448 "Unexpected ABI info for mixed regs"); 3449 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3450 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3451 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3452 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3453 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3454 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3455 3456 // Copy the first element. 3457 llvm::Value *V = 3458 CGF.Builder.CreateDefaultAlignedLoad( 3459 CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 3460 CGF.Builder.CreateStore(V, 3461 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3462 3463 // Copy the second element. 3464 V = CGF.Builder.CreateDefaultAlignedLoad( 3465 CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 3466 CharUnits Offset = CharUnits::fromQuantity( 3467 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3468 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3469 3470 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3471 } else if (neededInt) { 3472 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3473 CharUnits::fromQuantity(8)); 3474 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3475 3476 // Copy to a temporary if necessary to ensure the appropriate alignment. 3477 std::pair<CharUnits, CharUnits> SizeAlign = 3478 getContext().getTypeInfoInChars(Ty); 3479 uint64_t TySize = SizeAlign.first.getQuantity(); 3480 CharUnits TyAlign = SizeAlign.second; 3481 3482 // Copy into a temporary if the type is more aligned than the 3483 // register save area. 3484 if (TyAlign.getQuantity() > 8) { 3485 Address Tmp = CGF.CreateMemTemp(Ty); 3486 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3487 RegAddr = Tmp; 3488 } 3489 3490 } else if (neededSSE == 1) { 3491 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3492 CharUnits::fromQuantity(16)); 3493 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3494 } else { 3495 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3496 // SSE registers are spaced 16 bytes apart in the register save 3497 // area, we need to collect the two eightbytes together. 3498 // The ABI isn't explicit about this, but it seems reasonable 3499 // to assume that the slots are 16-byte aligned, since the stack is 3500 // naturally 16-byte aligned and the prologue is expected to store 3501 // all the SSE registers to the RSA. 3502 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3503 CharUnits::fromQuantity(16)); 3504 Address RegAddrHi = 3505 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3506 CharUnits::fromQuantity(16)); 3507 llvm::Type *DoubleTy = CGF.DoubleTy; 3508 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3509 llvm::Value *V; 3510 Address Tmp = CGF.CreateMemTemp(Ty); 3511 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3512 V = CGF.Builder.CreateLoad( 3513 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3514 CGF.Builder.CreateStore(V, 3515 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3516 V = CGF.Builder.CreateLoad( 3517 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3518 CGF.Builder.CreateStore(V, 3519 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3520 3521 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3522 } 3523 3524 // AMD64-ABI 3.5.7p5: Step 5. Set: 3525 // l->gp_offset = l->gp_offset + num_gp * 8 3526 // l->fp_offset = l->fp_offset + num_fp * 16. 3527 if (neededInt) { 3528 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3529 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3530 gp_offset_p); 3531 } 3532 if (neededSSE) { 3533 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3534 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3535 fp_offset_p); 3536 } 3537 CGF.EmitBranch(ContBlock); 3538 3539 // Emit code to load the value if it was passed in memory. 3540 3541 CGF.EmitBlock(InMemBlock); 3542 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3543 3544 // Return the appropriate result. 3545 3546 CGF.EmitBlock(ContBlock); 3547 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3548 "vaarg.addr"); 3549 return ResAddr; 3550 } 3551 3552 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3553 QualType Ty) const { 3554 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3555 CGF.getContext().getTypeInfoInChars(Ty), 3556 CharUnits::fromQuantity(8), 3557 /*allowHigherAlign*/ false); 3558 } 3559 3560 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3561 bool IsReturnType) const { 3562 3563 if (Ty->isVoidType()) 3564 return ABIArgInfo::getIgnore(); 3565 3566 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3567 Ty = EnumTy->getDecl()->getIntegerType(); 3568 3569 TypeInfo Info = getContext().getTypeInfo(Ty); 3570 uint64_t Width = Info.Width; 3571 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3572 3573 const RecordType *RT = Ty->getAs<RecordType>(); 3574 if (RT) { 3575 if (!IsReturnType) { 3576 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3577 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3578 } 3579 3580 if (RT->getDecl()->hasFlexibleArrayMember()) 3581 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3582 3583 } 3584 3585 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3586 // other targets. 3587 const Type *Base = nullptr; 3588 uint64_t NumElts = 0; 3589 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3590 if (FreeSSERegs >= NumElts) { 3591 FreeSSERegs -= NumElts; 3592 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3593 return ABIArgInfo::getDirect(); 3594 return ABIArgInfo::getExpand(); 3595 } 3596 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3597 } 3598 3599 3600 if (Ty->isMemberPointerType()) { 3601 // If the member pointer is represented by an LLVM int or ptr, pass it 3602 // directly. 3603 llvm::Type *LLTy = CGT.ConvertType(Ty); 3604 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3605 return ABIArgInfo::getDirect(); 3606 } 3607 3608 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3609 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3610 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3611 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3612 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3613 3614 // Otherwise, coerce it to a small integer. 3615 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3616 } 3617 3618 // Bool type is always extended to the ABI, other builtin types are not 3619 // extended. 3620 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3621 if (BT && BT->getKind() == BuiltinType::Bool) 3622 return ABIArgInfo::getExtend(); 3623 3624 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3625 // passes them indirectly through memory. 3626 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3627 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3628 if (LDF == &llvm::APFloat::x87DoubleExtended) 3629 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3630 } 3631 3632 return ABIArgInfo::getDirect(); 3633 } 3634 3635 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3636 bool IsVectorCall = 3637 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3638 3639 // We can use up to 4 SSE return registers with vectorcall. 3640 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3641 if (!getCXXABI().classifyReturnType(FI)) 3642 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3643 3644 // We can use up to 6 SSE register parameters with vectorcall. 3645 FreeSSERegs = IsVectorCall ? 6 : 0; 3646 for (auto &I : FI.arguments()) 3647 I.info = classify(I.type, FreeSSERegs, false); 3648 } 3649 3650 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3651 QualType Ty) const { 3652 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3653 CGF.getContext().getTypeInfoInChars(Ty), 3654 CharUnits::fromQuantity(8), 3655 /*allowHigherAlign*/ false); 3656 } 3657 3658 // PowerPC-32 3659 namespace { 3660 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3661 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3662 bool IsSoftFloatABI; 3663 public: 3664 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3665 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3666 3667 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3668 QualType Ty) const override; 3669 }; 3670 3671 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3672 public: 3673 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3674 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3675 3676 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3677 // This is recovered from gcc output. 3678 return 1; // r1 is the dedicated stack pointer 3679 } 3680 3681 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3682 llvm::Value *Address) const override; 3683 }; 3684 3685 } 3686 3687 // TODO: this implementation is now likely redundant with 3688 // DefaultABIInfo::EmitVAArg. 3689 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3690 QualType Ty) const { 3691 const unsigned OverflowLimit = 8; 3692 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3693 // TODO: Implement this. For now ignore. 3694 (void)CTy; 3695 return Address::invalid(); // FIXME? 3696 } 3697 3698 // struct __va_list_tag { 3699 // unsigned char gpr; 3700 // unsigned char fpr; 3701 // unsigned short reserved; 3702 // void *overflow_arg_area; 3703 // void *reg_save_area; 3704 // }; 3705 3706 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3707 bool isInt = 3708 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3709 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 3710 3711 // All aggregates are passed indirectly? That doesn't seem consistent 3712 // with the argument-lowering code. 3713 bool isIndirect = Ty->isAggregateType(); 3714 3715 CGBuilderTy &Builder = CGF.Builder; 3716 3717 // The calling convention either uses 1-2 GPRs or 1 FPR. 3718 Address NumRegsAddr = Address::invalid(); 3719 if (isInt || IsSoftFloatABI) { 3720 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 3721 } else { 3722 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 3723 } 3724 3725 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 3726 3727 // "Align" the register count when TY is i64. 3728 if (isI64 || (isF64 && IsSoftFloatABI)) { 3729 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 3730 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 3731 } 3732 3733 llvm::Value *CC = 3734 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 3735 3736 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3737 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3738 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3739 3740 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3741 3742 llvm::Type *DirectTy = CGF.ConvertType(Ty); 3743 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 3744 3745 // Case 1: consume registers. 3746 Address RegAddr = Address::invalid(); 3747 { 3748 CGF.EmitBlock(UsingRegs); 3749 3750 Address RegSaveAreaPtr = 3751 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 3752 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 3753 CharUnits::fromQuantity(8)); 3754 assert(RegAddr.getElementType() == CGF.Int8Ty); 3755 3756 // Floating-point registers start after the general-purpose registers. 3757 if (!(isInt || IsSoftFloatABI)) { 3758 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 3759 CharUnits::fromQuantity(32)); 3760 } 3761 3762 // Get the address of the saved value by scaling the number of 3763 // registers we've used by the number of 3764 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 3765 llvm::Value *RegOffset = 3766 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 3767 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 3768 RegAddr.getPointer(), RegOffset), 3769 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 3770 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 3771 3772 // Increase the used-register count. 3773 NumRegs = 3774 Builder.CreateAdd(NumRegs, 3775 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 3776 Builder.CreateStore(NumRegs, NumRegsAddr); 3777 3778 CGF.EmitBranch(Cont); 3779 } 3780 3781 // Case 2: consume space in the overflow area. 3782 Address MemAddr = Address::invalid(); 3783 { 3784 CGF.EmitBlock(UsingOverflow); 3785 3786 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 3787 3788 // Everything in the overflow area is rounded up to a size of at least 4. 3789 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 3790 3791 CharUnits Size; 3792 if (!isIndirect) { 3793 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 3794 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 3795 } else { 3796 Size = CGF.getPointerSize(); 3797 } 3798 3799 Address OverflowAreaAddr = 3800 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 3801 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 3802 OverflowAreaAlign); 3803 // Round up address of argument to alignment 3804 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3805 if (Align > OverflowAreaAlign) { 3806 llvm::Value *Ptr = OverflowArea.getPointer(); 3807 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 3808 Align); 3809 } 3810 3811 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 3812 3813 // Increase the overflow area. 3814 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 3815 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 3816 CGF.EmitBranch(Cont); 3817 } 3818 3819 CGF.EmitBlock(Cont); 3820 3821 // Merge the cases with a phi. 3822 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 3823 "vaarg.addr"); 3824 3825 // Load the pointer if the argument was passed indirectly. 3826 if (isIndirect) { 3827 Result = Address(Builder.CreateLoad(Result, "aggr"), 3828 getContext().getTypeAlignInChars(Ty)); 3829 } 3830 3831 return Result; 3832 } 3833 3834 bool 3835 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3836 llvm::Value *Address) const { 3837 // This is calculated from the LLVM and GCC tables and verified 3838 // against gcc output. AFAIK all ABIs use the same encoding. 3839 3840 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3841 3842 llvm::IntegerType *i8 = CGF.Int8Ty; 3843 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3844 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3845 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3846 3847 // 0-31: r0-31, the 4-byte general-purpose registers 3848 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3849 3850 // 32-63: fp0-31, the 8-byte floating-point registers 3851 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3852 3853 // 64-76 are various 4-byte special-purpose registers: 3854 // 64: mq 3855 // 65: lr 3856 // 66: ctr 3857 // 67: ap 3858 // 68-75 cr0-7 3859 // 76: xer 3860 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3861 3862 // 77-108: v0-31, the 16-byte vector registers 3863 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3864 3865 // 109: vrsave 3866 // 110: vscr 3867 // 111: spe_acc 3868 // 112: spefscr 3869 // 113: sfp 3870 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3871 3872 return false; 3873 } 3874 3875 // PowerPC-64 3876 3877 namespace { 3878 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3879 class PPC64_SVR4_ABIInfo : public ABIInfo { 3880 public: 3881 enum ABIKind { 3882 ELFv1 = 0, 3883 ELFv2 3884 }; 3885 3886 private: 3887 static const unsigned GPRBits = 64; 3888 ABIKind Kind; 3889 bool HasQPX; 3890 3891 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3892 // will be passed in a QPX register. 3893 bool IsQPXVectorTy(const Type *Ty) const { 3894 if (!HasQPX) 3895 return false; 3896 3897 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3898 unsigned NumElements = VT->getNumElements(); 3899 if (NumElements == 1) 3900 return false; 3901 3902 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3903 if (getContext().getTypeSize(Ty) <= 256) 3904 return true; 3905 } else if (VT->getElementType()-> 3906 isSpecificBuiltinType(BuiltinType::Float)) { 3907 if (getContext().getTypeSize(Ty) <= 128) 3908 return true; 3909 } 3910 } 3911 3912 return false; 3913 } 3914 3915 bool IsQPXVectorTy(QualType Ty) const { 3916 return IsQPXVectorTy(Ty.getTypePtr()); 3917 } 3918 3919 public: 3920 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3921 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3922 3923 bool isPromotableTypeForABI(QualType Ty) const; 3924 CharUnits getParamTypeAlignment(QualType Ty) const; 3925 3926 ABIArgInfo classifyReturnType(QualType RetTy) const; 3927 ABIArgInfo classifyArgumentType(QualType Ty) const; 3928 3929 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3930 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3931 uint64_t Members) const override; 3932 3933 // TODO: We can add more logic to computeInfo to improve performance. 3934 // Example: For aggregate arguments that fit in a register, we could 3935 // use getDirectInReg (as is done below for structs containing a single 3936 // floating-point value) to avoid pushing them to memory on function 3937 // entry. This would require changing the logic in PPCISelLowering 3938 // when lowering the parameters in the caller and args in the callee. 3939 void computeInfo(CGFunctionInfo &FI) const override { 3940 if (!getCXXABI().classifyReturnType(FI)) 3941 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3942 for (auto &I : FI.arguments()) { 3943 // We rely on the default argument classification for the most part. 3944 // One exception: An aggregate containing a single floating-point 3945 // or vector item must be passed in a register if one is available. 3946 const Type *T = isSingleElementStruct(I.type, getContext()); 3947 if (T) { 3948 const BuiltinType *BT = T->getAs<BuiltinType>(); 3949 if (IsQPXVectorTy(T) || 3950 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3951 (BT && BT->isFloatingPoint())) { 3952 QualType QT(T, 0); 3953 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3954 continue; 3955 } 3956 } 3957 I.info = classifyArgumentType(I.type); 3958 } 3959 } 3960 3961 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3962 QualType Ty) const override; 3963 }; 3964 3965 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3966 3967 public: 3968 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3969 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3970 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} 3971 3972 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3973 // This is recovered from gcc output. 3974 return 1; // r1 is the dedicated stack pointer 3975 } 3976 3977 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3978 llvm::Value *Address) const override; 3979 }; 3980 3981 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3982 public: 3983 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3984 3985 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3986 // This is recovered from gcc output. 3987 return 1; // r1 is the dedicated stack pointer 3988 } 3989 3990 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3991 llvm::Value *Address) const override; 3992 }; 3993 3994 } 3995 3996 // Return true if the ABI requires Ty to be passed sign- or zero- 3997 // extended to 64 bits. 3998 bool 3999 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4000 // Treat an enum type as its underlying type. 4001 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4002 Ty = EnumTy->getDecl()->getIntegerType(); 4003 4004 // Promotable integer types are required to be promoted by the ABI. 4005 if (Ty->isPromotableIntegerType()) 4006 return true; 4007 4008 // In addition to the usual promotable integer types, we also need to 4009 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4010 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4011 switch (BT->getKind()) { 4012 case BuiltinType::Int: 4013 case BuiltinType::UInt: 4014 return true; 4015 default: 4016 break; 4017 } 4018 4019 return false; 4020 } 4021 4022 /// isAlignedParamType - Determine whether a type requires 16-byte or 4023 /// higher alignment in the parameter area. Always returns at least 8. 4024 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4025 // Complex types are passed just like their elements. 4026 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4027 Ty = CTy->getElementType(); 4028 4029 // Only vector types of size 16 bytes need alignment (larger types are 4030 // passed via reference, smaller types are not aligned). 4031 if (IsQPXVectorTy(Ty)) { 4032 if (getContext().getTypeSize(Ty) > 128) 4033 return CharUnits::fromQuantity(32); 4034 4035 return CharUnits::fromQuantity(16); 4036 } else if (Ty->isVectorType()) { 4037 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4038 } 4039 4040 // For single-element float/vector structs, we consider the whole type 4041 // to have the same alignment requirements as its single element. 4042 const Type *AlignAsType = nullptr; 4043 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4044 if (EltType) { 4045 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4046 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4047 getContext().getTypeSize(EltType) == 128) || 4048 (BT && BT->isFloatingPoint())) 4049 AlignAsType = EltType; 4050 } 4051 4052 // Likewise for ELFv2 homogeneous aggregates. 4053 const Type *Base = nullptr; 4054 uint64_t Members = 0; 4055 if (!AlignAsType && Kind == ELFv2 && 4056 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4057 AlignAsType = Base; 4058 4059 // With special case aggregates, only vector base types need alignment. 4060 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4061 if (getContext().getTypeSize(AlignAsType) > 128) 4062 return CharUnits::fromQuantity(32); 4063 4064 return CharUnits::fromQuantity(16); 4065 } else if (AlignAsType) { 4066 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4067 } 4068 4069 // Otherwise, we only need alignment for any aggregate type that 4070 // has an alignment requirement of >= 16 bytes. 4071 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4072 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4073 return CharUnits::fromQuantity(32); 4074 return CharUnits::fromQuantity(16); 4075 } 4076 4077 return CharUnits::fromQuantity(8); 4078 } 4079 4080 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4081 /// aggregate. Base is set to the base element type, and Members is set 4082 /// to the number of base elements. 4083 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4084 uint64_t &Members) const { 4085 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4086 uint64_t NElements = AT->getSize().getZExtValue(); 4087 if (NElements == 0) 4088 return false; 4089 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4090 return false; 4091 Members *= NElements; 4092 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4093 const RecordDecl *RD = RT->getDecl(); 4094 if (RD->hasFlexibleArrayMember()) 4095 return false; 4096 4097 Members = 0; 4098 4099 // If this is a C++ record, check the bases first. 4100 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4101 for (const auto &I : CXXRD->bases()) { 4102 // Ignore empty records. 4103 if (isEmptyRecord(getContext(), I.getType(), true)) 4104 continue; 4105 4106 uint64_t FldMembers; 4107 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4108 return false; 4109 4110 Members += FldMembers; 4111 } 4112 } 4113 4114 for (const auto *FD : RD->fields()) { 4115 // Ignore (non-zero arrays of) empty records. 4116 QualType FT = FD->getType(); 4117 while (const ConstantArrayType *AT = 4118 getContext().getAsConstantArrayType(FT)) { 4119 if (AT->getSize().getZExtValue() == 0) 4120 return false; 4121 FT = AT->getElementType(); 4122 } 4123 if (isEmptyRecord(getContext(), FT, true)) 4124 continue; 4125 4126 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4127 if (getContext().getLangOpts().CPlusPlus && 4128 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4129 continue; 4130 4131 uint64_t FldMembers; 4132 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4133 return false; 4134 4135 Members = (RD->isUnion() ? 4136 std::max(Members, FldMembers) : Members + FldMembers); 4137 } 4138 4139 if (!Base) 4140 return false; 4141 4142 // Ensure there is no padding. 4143 if (getContext().getTypeSize(Base) * Members != 4144 getContext().getTypeSize(Ty)) 4145 return false; 4146 } else { 4147 Members = 1; 4148 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4149 Members = 2; 4150 Ty = CT->getElementType(); 4151 } 4152 4153 // Most ABIs only support float, double, and some vector type widths. 4154 if (!isHomogeneousAggregateBaseType(Ty)) 4155 return false; 4156 4157 // The base type must be the same for all members. Types that 4158 // agree in both total size and mode (float vs. vector) are 4159 // treated as being equivalent here. 4160 const Type *TyPtr = Ty.getTypePtr(); 4161 if (!Base) { 4162 Base = TyPtr; 4163 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4164 // so make sure to widen it explicitly. 4165 if (const VectorType *VT = Base->getAs<VectorType>()) { 4166 QualType EltTy = VT->getElementType(); 4167 unsigned NumElements = 4168 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4169 Base = getContext() 4170 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4171 .getTypePtr(); 4172 } 4173 } 4174 4175 if (Base->isVectorType() != TyPtr->isVectorType() || 4176 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4177 return false; 4178 } 4179 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4180 } 4181 4182 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4183 // Homogeneous aggregates for ELFv2 must have base types of float, 4184 // double, long double, or 128-bit vectors. 4185 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4186 if (BT->getKind() == BuiltinType::Float || 4187 BT->getKind() == BuiltinType::Double || 4188 BT->getKind() == BuiltinType::LongDouble) 4189 return true; 4190 } 4191 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4192 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4193 return true; 4194 } 4195 return false; 4196 } 4197 4198 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4199 const Type *Base, uint64_t Members) const { 4200 // Vector types require one register, floating point types require one 4201 // or two registers depending on their size. 4202 uint32_t NumRegs = 4203 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4204 4205 // Homogeneous Aggregates may occupy at most 8 registers. 4206 return Members * NumRegs <= 8; 4207 } 4208 4209 ABIArgInfo 4210 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4211 Ty = useFirstFieldIfTransparentUnion(Ty); 4212 4213 if (Ty->isAnyComplexType()) 4214 return ABIArgInfo::getDirect(); 4215 4216 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4217 // or via reference (larger than 16 bytes). 4218 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4219 uint64_t Size = getContext().getTypeSize(Ty); 4220 if (Size > 128) 4221 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4222 else if (Size < 128) { 4223 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4224 return ABIArgInfo::getDirect(CoerceTy); 4225 } 4226 } 4227 4228 if (isAggregateTypeForABI(Ty)) { 4229 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4230 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4231 4232 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4233 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4234 4235 // ELFv2 homogeneous aggregates are passed as array types. 4236 const Type *Base = nullptr; 4237 uint64_t Members = 0; 4238 if (Kind == ELFv2 && 4239 isHomogeneousAggregate(Ty, Base, Members)) { 4240 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4241 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4242 return ABIArgInfo::getDirect(CoerceTy); 4243 } 4244 4245 // If an aggregate may end up fully in registers, we do not 4246 // use the ByVal method, but pass the aggregate as array. 4247 // This is usually beneficial since we avoid forcing the 4248 // back-end to store the argument to memory. 4249 uint64_t Bits = getContext().getTypeSize(Ty); 4250 if (Bits > 0 && Bits <= 8 * GPRBits) { 4251 llvm::Type *CoerceTy; 4252 4253 // Types up to 8 bytes are passed as integer type (which will be 4254 // properly aligned in the argument save area doubleword). 4255 if (Bits <= GPRBits) 4256 CoerceTy = 4257 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4258 // Larger types are passed as arrays, with the base type selected 4259 // according to the required alignment in the save area. 4260 else { 4261 uint64_t RegBits = ABIAlign * 8; 4262 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4263 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4264 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4265 } 4266 4267 return ABIArgInfo::getDirect(CoerceTy); 4268 } 4269 4270 // All other aggregates are passed ByVal. 4271 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4272 /*ByVal=*/true, 4273 /*Realign=*/TyAlign > ABIAlign); 4274 } 4275 4276 return (isPromotableTypeForABI(Ty) ? 4277 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4278 } 4279 4280 ABIArgInfo 4281 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4282 if (RetTy->isVoidType()) 4283 return ABIArgInfo::getIgnore(); 4284 4285 if (RetTy->isAnyComplexType()) 4286 return ABIArgInfo::getDirect(); 4287 4288 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4289 // or via reference (larger than 16 bytes). 4290 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4291 uint64_t Size = getContext().getTypeSize(RetTy); 4292 if (Size > 128) 4293 return getNaturalAlignIndirect(RetTy); 4294 else if (Size < 128) { 4295 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4296 return ABIArgInfo::getDirect(CoerceTy); 4297 } 4298 } 4299 4300 if (isAggregateTypeForABI(RetTy)) { 4301 // ELFv2 homogeneous aggregates are returned as array types. 4302 const Type *Base = nullptr; 4303 uint64_t Members = 0; 4304 if (Kind == ELFv2 && 4305 isHomogeneousAggregate(RetTy, Base, Members)) { 4306 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4307 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4308 return ABIArgInfo::getDirect(CoerceTy); 4309 } 4310 4311 // ELFv2 small aggregates are returned in up to two registers. 4312 uint64_t Bits = getContext().getTypeSize(RetTy); 4313 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4314 if (Bits == 0) 4315 return ABIArgInfo::getIgnore(); 4316 4317 llvm::Type *CoerceTy; 4318 if (Bits > GPRBits) { 4319 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4320 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4321 } else 4322 CoerceTy = 4323 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4324 return ABIArgInfo::getDirect(CoerceTy); 4325 } 4326 4327 // All other aggregates are returned indirectly. 4328 return getNaturalAlignIndirect(RetTy); 4329 } 4330 4331 return (isPromotableTypeForABI(RetTy) ? 4332 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4333 } 4334 4335 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4336 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4337 QualType Ty) const { 4338 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4339 TypeInfo.second = getParamTypeAlignment(Ty); 4340 4341 CharUnits SlotSize = CharUnits::fromQuantity(8); 4342 4343 // If we have a complex type and the base type is smaller than 8 bytes, 4344 // the ABI calls for the real and imaginary parts to be right-adjusted 4345 // in separate doublewords. However, Clang expects us to produce a 4346 // pointer to a structure with the two parts packed tightly. So generate 4347 // loads of the real and imaginary parts relative to the va_list pointer, 4348 // and store them to a temporary structure. 4349 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4350 CharUnits EltSize = TypeInfo.first / 2; 4351 if (EltSize < SlotSize) { 4352 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4353 SlotSize * 2, SlotSize, 4354 SlotSize, /*AllowHigher*/ true); 4355 4356 Address RealAddr = Addr; 4357 Address ImagAddr = RealAddr; 4358 if (CGF.CGM.getDataLayout().isBigEndian()) { 4359 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4360 SlotSize - EltSize); 4361 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4362 2 * SlotSize - EltSize); 4363 } else { 4364 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4365 } 4366 4367 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4368 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4369 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4370 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4371 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4372 4373 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4374 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4375 /*init*/ true); 4376 return Temp; 4377 } 4378 } 4379 4380 // Otherwise, just use the general rule. 4381 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4382 TypeInfo, SlotSize, /*AllowHigher*/ true); 4383 } 4384 4385 static bool 4386 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4387 llvm::Value *Address) { 4388 // This is calculated from the LLVM and GCC tables and verified 4389 // against gcc output. AFAIK all ABIs use the same encoding. 4390 4391 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4392 4393 llvm::IntegerType *i8 = CGF.Int8Ty; 4394 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4395 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4396 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4397 4398 // 0-31: r0-31, the 8-byte general-purpose registers 4399 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4400 4401 // 32-63: fp0-31, the 8-byte floating-point registers 4402 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4403 4404 // 64-76 are various 4-byte special-purpose registers: 4405 // 64: mq 4406 // 65: lr 4407 // 66: ctr 4408 // 67: ap 4409 // 68-75 cr0-7 4410 // 76: xer 4411 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4412 4413 // 77-108: v0-31, the 16-byte vector registers 4414 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4415 4416 // 109: vrsave 4417 // 110: vscr 4418 // 111: spe_acc 4419 // 112: spefscr 4420 // 113: sfp 4421 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4422 4423 return false; 4424 } 4425 4426 bool 4427 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4428 CodeGen::CodeGenFunction &CGF, 4429 llvm::Value *Address) const { 4430 4431 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4432 } 4433 4434 bool 4435 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4436 llvm::Value *Address) const { 4437 4438 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4439 } 4440 4441 //===----------------------------------------------------------------------===// 4442 // AArch64 ABI Implementation 4443 //===----------------------------------------------------------------------===// 4444 4445 namespace { 4446 4447 class AArch64ABIInfo : public SwiftABIInfo { 4448 public: 4449 enum ABIKind { 4450 AAPCS = 0, 4451 DarwinPCS 4452 }; 4453 4454 private: 4455 ABIKind Kind; 4456 4457 public: 4458 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4459 : SwiftABIInfo(CGT), Kind(Kind) {} 4460 4461 private: 4462 ABIKind getABIKind() const { return Kind; } 4463 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4464 4465 ABIArgInfo classifyReturnType(QualType RetTy) const; 4466 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4467 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4468 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4469 uint64_t Members) const override; 4470 4471 bool isIllegalVectorType(QualType Ty) const; 4472 4473 void computeInfo(CGFunctionInfo &FI) const override { 4474 if (!getCXXABI().classifyReturnType(FI)) 4475 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4476 4477 for (auto &it : FI.arguments()) 4478 it.info = classifyArgumentType(it.type); 4479 } 4480 4481 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4482 CodeGenFunction &CGF) const; 4483 4484 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4485 CodeGenFunction &CGF) const; 4486 4487 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4488 QualType Ty) const override { 4489 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4490 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4491 } 4492 4493 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4494 ArrayRef<llvm::Type*> scalars, 4495 bool asReturnValue) const override { 4496 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4497 } 4498 }; 4499 4500 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4501 public: 4502 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4503 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4504 4505 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4506 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4507 } 4508 4509 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4510 return 31; 4511 } 4512 4513 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4514 }; 4515 } 4516 4517 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4518 Ty = useFirstFieldIfTransparentUnion(Ty); 4519 4520 // Handle illegal vector types here. 4521 if (isIllegalVectorType(Ty)) { 4522 uint64_t Size = getContext().getTypeSize(Ty); 4523 // Android promotes <2 x i8> to i16, not i32 4524 if (isAndroid() && (Size <= 16)) { 4525 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4526 return ABIArgInfo::getDirect(ResType); 4527 } 4528 if (Size <= 32) { 4529 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4530 return ABIArgInfo::getDirect(ResType); 4531 } 4532 if (Size == 64) { 4533 llvm::Type *ResType = 4534 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4535 return ABIArgInfo::getDirect(ResType); 4536 } 4537 if (Size == 128) { 4538 llvm::Type *ResType = 4539 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4540 return ABIArgInfo::getDirect(ResType); 4541 } 4542 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4543 } 4544 4545 if (!isAggregateTypeForABI(Ty)) { 4546 // Treat an enum type as its underlying type. 4547 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4548 Ty = EnumTy->getDecl()->getIntegerType(); 4549 4550 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4551 ? ABIArgInfo::getExtend() 4552 : ABIArgInfo::getDirect()); 4553 } 4554 4555 // Structures with either a non-trivial destructor or a non-trivial 4556 // copy constructor are always indirect. 4557 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4558 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4559 CGCXXABI::RAA_DirectInMemory); 4560 } 4561 4562 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4563 // elsewhere for GNU compatibility. 4564 if (isEmptyRecord(getContext(), Ty, true)) { 4565 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4566 return ABIArgInfo::getIgnore(); 4567 4568 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4569 } 4570 4571 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4572 const Type *Base = nullptr; 4573 uint64_t Members = 0; 4574 if (isHomogeneousAggregate(Ty, Base, Members)) { 4575 return ABIArgInfo::getDirect( 4576 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4577 } 4578 4579 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4580 uint64_t Size = getContext().getTypeSize(Ty); 4581 if (Size <= 128) { 4582 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4583 // same size and alignment. 4584 if (getTarget().isRenderScriptTarget()) { 4585 return coerceToIntArray(Ty, getContext(), getVMContext()); 4586 } 4587 unsigned Alignment = getContext().getTypeAlign(Ty); 4588 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4589 4590 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4591 // For aggregates with 16-byte alignment, we use i128. 4592 if (Alignment < 128 && Size == 128) { 4593 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4594 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4595 } 4596 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4597 } 4598 4599 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4600 } 4601 4602 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4603 if (RetTy->isVoidType()) 4604 return ABIArgInfo::getIgnore(); 4605 4606 // Large vector types should be returned via memory. 4607 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4608 return getNaturalAlignIndirect(RetTy); 4609 4610 if (!isAggregateTypeForABI(RetTy)) { 4611 // Treat an enum type as its underlying type. 4612 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4613 RetTy = EnumTy->getDecl()->getIntegerType(); 4614 4615 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4616 ? ABIArgInfo::getExtend() 4617 : ABIArgInfo::getDirect()); 4618 } 4619 4620 if (isEmptyRecord(getContext(), RetTy, true)) 4621 return ABIArgInfo::getIgnore(); 4622 4623 const Type *Base = nullptr; 4624 uint64_t Members = 0; 4625 if (isHomogeneousAggregate(RetTy, Base, Members)) 4626 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4627 return ABIArgInfo::getDirect(); 4628 4629 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4630 uint64_t Size = getContext().getTypeSize(RetTy); 4631 if (Size <= 128) { 4632 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4633 // same size and alignment. 4634 if (getTarget().isRenderScriptTarget()) { 4635 return coerceToIntArray(RetTy, getContext(), getVMContext()); 4636 } 4637 unsigned Alignment = getContext().getTypeAlign(RetTy); 4638 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4639 4640 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4641 // For aggregates with 16-byte alignment, we use i128. 4642 if (Alignment < 128 && Size == 128) { 4643 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4644 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4645 } 4646 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4647 } 4648 4649 return getNaturalAlignIndirect(RetTy); 4650 } 4651 4652 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4653 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4654 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4655 // Check whether VT is legal. 4656 unsigned NumElements = VT->getNumElements(); 4657 uint64_t Size = getContext().getTypeSize(VT); 4658 // NumElements should be power of 2. 4659 if (!llvm::isPowerOf2_32(NumElements)) 4660 return true; 4661 return Size != 64 && (Size != 128 || NumElements == 1); 4662 } 4663 return false; 4664 } 4665 4666 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4667 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4668 // point type or a short-vector type. This is the same as the 32-bit ABI, 4669 // but with the difference that any floating-point type is allowed, 4670 // including __fp16. 4671 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4672 if (BT->isFloatingPoint()) 4673 return true; 4674 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4675 unsigned VecSize = getContext().getTypeSize(VT); 4676 if (VecSize == 64 || VecSize == 128) 4677 return true; 4678 } 4679 return false; 4680 } 4681 4682 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4683 uint64_t Members) const { 4684 return Members <= 4; 4685 } 4686 4687 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 4688 QualType Ty, 4689 CodeGenFunction &CGF) const { 4690 ABIArgInfo AI = classifyArgumentType(Ty); 4691 bool IsIndirect = AI.isIndirect(); 4692 4693 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4694 if (IsIndirect) 4695 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4696 else if (AI.getCoerceToType()) 4697 BaseTy = AI.getCoerceToType(); 4698 4699 unsigned NumRegs = 1; 4700 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4701 BaseTy = ArrTy->getElementType(); 4702 NumRegs = ArrTy->getNumElements(); 4703 } 4704 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4705 4706 // The AArch64 va_list type and handling is specified in the Procedure Call 4707 // Standard, section B.4: 4708 // 4709 // struct { 4710 // void *__stack; 4711 // void *__gr_top; 4712 // void *__vr_top; 4713 // int __gr_offs; 4714 // int __vr_offs; 4715 // }; 4716 4717 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4718 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4719 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4720 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4721 4722 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4723 CharUnits TyAlign = TyInfo.second; 4724 4725 Address reg_offs_p = Address::invalid(); 4726 llvm::Value *reg_offs = nullptr; 4727 int reg_top_index; 4728 CharUnits reg_top_offset; 4729 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 4730 if (!IsFPR) { 4731 // 3 is the field number of __gr_offs 4732 reg_offs_p = 4733 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 4734 "gr_offs_p"); 4735 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4736 reg_top_index = 1; // field number for __gr_top 4737 reg_top_offset = CharUnits::fromQuantity(8); 4738 RegSize = llvm::alignTo(RegSize, 8); 4739 } else { 4740 // 4 is the field number of __vr_offs. 4741 reg_offs_p = 4742 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 4743 "vr_offs_p"); 4744 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4745 reg_top_index = 2; // field number for __vr_top 4746 reg_top_offset = CharUnits::fromQuantity(16); 4747 RegSize = 16 * NumRegs; 4748 } 4749 4750 //======================================= 4751 // Find out where argument was passed 4752 //======================================= 4753 4754 // If reg_offs >= 0 we're already using the stack for this type of 4755 // argument. We don't want to keep updating reg_offs (in case it overflows, 4756 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4757 // whatever they get). 4758 llvm::Value *UsingStack = nullptr; 4759 UsingStack = CGF.Builder.CreateICmpSGE( 4760 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4761 4762 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4763 4764 // Otherwise, at least some kind of argument could go in these registers, the 4765 // question is whether this particular type is too big. 4766 CGF.EmitBlock(MaybeRegBlock); 4767 4768 // Integer arguments may need to correct register alignment (for example a 4769 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4770 // align __gr_offs to calculate the potential address. 4771 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 4772 int Align = TyAlign.getQuantity(); 4773 4774 reg_offs = CGF.Builder.CreateAdd( 4775 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4776 "align_regoffs"); 4777 reg_offs = CGF.Builder.CreateAnd( 4778 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4779 "aligned_regoffs"); 4780 } 4781 4782 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4783 // The fact that this is done unconditionally reflects the fact that 4784 // allocating an argument to the stack also uses up all the remaining 4785 // registers of the appropriate kind. 4786 llvm::Value *NewOffset = nullptr; 4787 NewOffset = CGF.Builder.CreateAdd( 4788 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4789 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4790 4791 // Now we're in a position to decide whether this argument really was in 4792 // registers or not. 4793 llvm::Value *InRegs = nullptr; 4794 InRegs = CGF.Builder.CreateICmpSLE( 4795 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4796 4797 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4798 4799 //======================================= 4800 // Argument was in registers 4801 //======================================= 4802 4803 // Now we emit the code for if the argument was originally passed in 4804 // registers. First start the appropriate block: 4805 CGF.EmitBlock(InRegBlock); 4806 4807 llvm::Value *reg_top = nullptr; 4808 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 4809 reg_top_offset, "reg_top_p"); 4810 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4811 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 4812 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 4813 Address RegAddr = Address::invalid(); 4814 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 4815 4816 if (IsIndirect) { 4817 // If it's been passed indirectly (actually a struct), whatever we find from 4818 // stored registers or on the stack will actually be a struct **. 4819 MemTy = llvm::PointerType::getUnqual(MemTy); 4820 } 4821 4822 const Type *Base = nullptr; 4823 uint64_t NumMembers = 0; 4824 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4825 if (IsHFA && NumMembers > 1) { 4826 // Homogeneous aggregates passed in registers will have their elements split 4827 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4828 // qN+1, ...). We reload and store into a temporary local variable 4829 // contiguously. 4830 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4831 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 4832 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4833 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4834 Address Tmp = CGF.CreateTempAlloca(HFATy, 4835 std::max(TyAlign, BaseTyInfo.second)); 4836 4837 // On big-endian platforms, the value will be right-aligned in its slot. 4838 int Offset = 0; 4839 if (CGF.CGM.getDataLayout().isBigEndian() && 4840 BaseTyInfo.first.getQuantity() < 16) 4841 Offset = 16 - BaseTyInfo.first.getQuantity(); 4842 4843 for (unsigned i = 0; i < NumMembers; ++i) { 4844 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 4845 Address LoadAddr = 4846 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 4847 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 4848 4849 Address StoreAddr = 4850 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 4851 4852 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4853 CGF.Builder.CreateStore(Elem, StoreAddr); 4854 } 4855 4856 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 4857 } else { 4858 // Otherwise the object is contiguous in memory. 4859 4860 // It might be right-aligned in its slot. 4861 CharUnits SlotSize = BaseAddr.getAlignment(); 4862 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 4863 (IsHFA || !isAggregateTypeForABI(Ty)) && 4864 TyInfo.first < SlotSize) { 4865 CharUnits Offset = SlotSize - TyInfo.first; 4866 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 4867 } 4868 4869 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 4870 } 4871 4872 CGF.EmitBranch(ContBlock); 4873 4874 //======================================= 4875 // Argument was on the stack 4876 //======================================= 4877 CGF.EmitBlock(OnStackBlock); 4878 4879 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 4880 CharUnits::Zero(), "stack_p"); 4881 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 4882 4883 // Again, stack arguments may need realignment. In this case both integer and 4884 // floating-point ones might be affected. 4885 if (!IsIndirect && TyAlign.getQuantity() > 8) { 4886 int Align = TyAlign.getQuantity(); 4887 4888 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 4889 4890 OnStackPtr = CGF.Builder.CreateAdd( 4891 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4892 "align_stack"); 4893 OnStackPtr = CGF.Builder.CreateAnd( 4894 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4895 "align_stack"); 4896 4897 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 4898 } 4899 Address OnStackAddr(OnStackPtr, 4900 std::max(CharUnits::fromQuantity(8), TyAlign)); 4901 4902 // All stack slots are multiples of 8 bytes. 4903 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 4904 CharUnits StackSize; 4905 if (IsIndirect) 4906 StackSize = StackSlotSize; 4907 else 4908 StackSize = TyInfo.first.alignTo(StackSlotSize); 4909 4910 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 4911 llvm::Value *NewStack = 4912 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 4913 4914 // Write the new value of __stack for the next call to va_arg 4915 CGF.Builder.CreateStore(NewStack, stack_p); 4916 4917 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4918 TyInfo.first < StackSlotSize) { 4919 CharUnits Offset = StackSlotSize - TyInfo.first; 4920 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 4921 } 4922 4923 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 4924 4925 CGF.EmitBranch(ContBlock); 4926 4927 //======================================= 4928 // Tidy up 4929 //======================================= 4930 CGF.EmitBlock(ContBlock); 4931 4932 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 4933 OnStackAddr, OnStackBlock, "vaargs.addr"); 4934 4935 if (IsIndirect) 4936 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 4937 TyInfo.second); 4938 4939 return ResAddr; 4940 } 4941 4942 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4943 CodeGenFunction &CGF) const { 4944 // The backend's lowering doesn't support va_arg for aggregates or 4945 // illegal vector types. Lower VAArg here for these cases and use 4946 // the LLVM va_arg instruction for everything else. 4947 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4948 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 4949 4950 CharUnits SlotSize = CharUnits::fromQuantity(8); 4951 4952 // Empty records are ignored for parameter passing purposes. 4953 if (isEmptyRecord(getContext(), Ty, true)) { 4954 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 4955 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 4956 return Addr; 4957 } 4958 4959 // The size of the actual thing passed, which might end up just 4960 // being a pointer for indirect types. 4961 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4962 4963 // Arguments bigger than 16 bytes which aren't homogeneous 4964 // aggregates should be passed indirectly. 4965 bool IsIndirect = false; 4966 if (TyInfo.first.getQuantity() > 16) { 4967 const Type *Base = nullptr; 4968 uint64_t Members = 0; 4969 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 4970 } 4971 4972 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4973 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 4974 } 4975 4976 //===----------------------------------------------------------------------===// 4977 // ARM ABI Implementation 4978 //===----------------------------------------------------------------------===// 4979 4980 namespace { 4981 4982 class ARMABIInfo : public SwiftABIInfo { 4983 public: 4984 enum ABIKind { 4985 APCS = 0, 4986 AAPCS = 1, 4987 AAPCS_VFP = 2, 4988 AAPCS16_VFP = 3, 4989 }; 4990 4991 private: 4992 ABIKind Kind; 4993 4994 public: 4995 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 4996 : SwiftABIInfo(CGT), Kind(_Kind) { 4997 setCCs(); 4998 } 4999 5000 bool isEABI() const { 5001 switch (getTarget().getTriple().getEnvironment()) { 5002 case llvm::Triple::Android: 5003 case llvm::Triple::EABI: 5004 case llvm::Triple::EABIHF: 5005 case llvm::Triple::GNUEABI: 5006 case llvm::Triple::GNUEABIHF: 5007 case llvm::Triple::MuslEABI: 5008 case llvm::Triple::MuslEABIHF: 5009 return true; 5010 default: 5011 return false; 5012 } 5013 } 5014 5015 bool isEABIHF() const { 5016 switch (getTarget().getTriple().getEnvironment()) { 5017 case llvm::Triple::EABIHF: 5018 case llvm::Triple::GNUEABIHF: 5019 case llvm::Triple::MuslEABIHF: 5020 return true; 5021 default: 5022 return false; 5023 } 5024 } 5025 5026 ABIKind getABIKind() const { return Kind; } 5027 5028 private: 5029 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5030 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5031 bool isIllegalVectorType(QualType Ty) const; 5032 5033 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5034 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5035 uint64_t Members) const override; 5036 5037 void computeInfo(CGFunctionInfo &FI) const override; 5038 5039 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5040 QualType Ty) const override; 5041 5042 llvm::CallingConv::ID getLLVMDefaultCC() const; 5043 llvm::CallingConv::ID getABIDefaultCC() const; 5044 void setCCs(); 5045 5046 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5047 ArrayRef<llvm::Type*> scalars, 5048 bool asReturnValue) const override { 5049 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5050 } 5051 }; 5052 5053 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5054 public: 5055 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5056 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5057 5058 const ARMABIInfo &getABIInfo() const { 5059 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5060 } 5061 5062 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5063 return 13; 5064 } 5065 5066 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5067 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5068 } 5069 5070 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5071 llvm::Value *Address) const override { 5072 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5073 5074 // 0-15 are the 16 integer registers. 5075 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5076 return false; 5077 } 5078 5079 unsigned getSizeOfUnwindException() const override { 5080 if (getABIInfo().isEABI()) return 88; 5081 return TargetCodeGenInfo::getSizeOfUnwindException(); 5082 } 5083 5084 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5085 CodeGen::CodeGenModule &CGM) const override { 5086 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5087 if (!FD) 5088 return; 5089 5090 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5091 if (!Attr) 5092 return; 5093 5094 const char *Kind; 5095 switch (Attr->getInterrupt()) { 5096 case ARMInterruptAttr::Generic: Kind = ""; break; 5097 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5098 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5099 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5100 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5101 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5102 } 5103 5104 llvm::Function *Fn = cast<llvm::Function>(GV); 5105 5106 Fn->addFnAttr("interrupt", Kind); 5107 5108 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5109 if (ABI == ARMABIInfo::APCS) 5110 return; 5111 5112 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5113 // however this is not necessarily true on taking any interrupt. Instruct 5114 // the backend to perform a realignment as part of the function prologue. 5115 llvm::AttrBuilder B; 5116 B.addStackAlignmentAttr(8); 5117 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 5118 llvm::AttributeSet::get(CGM.getLLVMContext(), 5119 llvm::AttributeSet::FunctionIndex, 5120 B)); 5121 } 5122 }; 5123 5124 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5125 public: 5126 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5127 : ARMTargetCodeGenInfo(CGT, K) {} 5128 5129 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5130 CodeGen::CodeGenModule &CGM) const override; 5131 5132 void getDependentLibraryOption(llvm::StringRef Lib, 5133 llvm::SmallString<24> &Opt) const override { 5134 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5135 } 5136 5137 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5138 llvm::SmallString<32> &Opt) const override { 5139 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5140 } 5141 }; 5142 5143 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5144 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5145 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5146 addStackProbeSizeTargetAttribute(D, GV, CGM); 5147 } 5148 } 5149 5150 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5151 if (!getCXXABI().classifyReturnType(FI)) 5152 FI.getReturnInfo() = 5153 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5154 5155 for (auto &I : FI.arguments()) 5156 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5157 5158 // Always honor user-specified calling convention. 5159 if (FI.getCallingConvention() != llvm::CallingConv::C) 5160 return; 5161 5162 llvm::CallingConv::ID cc = getRuntimeCC(); 5163 if (cc != llvm::CallingConv::C) 5164 FI.setEffectiveCallingConvention(cc); 5165 } 5166 5167 /// Return the default calling convention that LLVM will use. 5168 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5169 // The default calling convention that LLVM will infer. 5170 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5171 return llvm::CallingConv::ARM_AAPCS_VFP; 5172 else if (isEABI()) 5173 return llvm::CallingConv::ARM_AAPCS; 5174 else 5175 return llvm::CallingConv::ARM_APCS; 5176 } 5177 5178 /// Return the calling convention that our ABI would like us to use 5179 /// as the C calling convention. 5180 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5181 switch (getABIKind()) { 5182 case APCS: return llvm::CallingConv::ARM_APCS; 5183 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5184 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5185 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5186 } 5187 llvm_unreachable("bad ABI kind"); 5188 } 5189 5190 void ARMABIInfo::setCCs() { 5191 assert(getRuntimeCC() == llvm::CallingConv::C); 5192 5193 // Don't muddy up the IR with a ton of explicit annotations if 5194 // they'd just match what LLVM will infer from the triple. 5195 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5196 if (abiCC != getLLVMDefaultCC()) 5197 RuntimeCC = abiCC; 5198 5199 // AAPCS apparently requires runtime support functions to be soft-float, but 5200 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5201 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5202 switch (getABIKind()) { 5203 case APCS: 5204 case AAPCS16_VFP: 5205 if (abiCC != getLLVMDefaultCC()) 5206 BuiltinCC = abiCC; 5207 break; 5208 case AAPCS: 5209 case AAPCS_VFP: 5210 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5211 break; 5212 } 5213 } 5214 5215 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5216 bool isVariadic) const { 5217 // 6.1.2.1 The following argument types are VFP CPRCs: 5218 // A single-precision floating-point type (including promoted 5219 // half-precision types); A double-precision floating-point type; 5220 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5221 // with a Base Type of a single- or double-precision floating-point type, 5222 // 64-bit containerized vectors or 128-bit containerized vectors with one 5223 // to four Elements. 5224 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5225 5226 Ty = useFirstFieldIfTransparentUnion(Ty); 5227 5228 // Handle illegal vector types here. 5229 if (isIllegalVectorType(Ty)) { 5230 uint64_t Size = getContext().getTypeSize(Ty); 5231 if (Size <= 32) { 5232 llvm::Type *ResType = 5233 llvm::Type::getInt32Ty(getVMContext()); 5234 return ABIArgInfo::getDirect(ResType); 5235 } 5236 if (Size == 64) { 5237 llvm::Type *ResType = llvm::VectorType::get( 5238 llvm::Type::getInt32Ty(getVMContext()), 2); 5239 return ABIArgInfo::getDirect(ResType); 5240 } 5241 if (Size == 128) { 5242 llvm::Type *ResType = llvm::VectorType::get( 5243 llvm::Type::getInt32Ty(getVMContext()), 4); 5244 return ABIArgInfo::getDirect(ResType); 5245 } 5246 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5247 } 5248 5249 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5250 // unspecified. This is not done for OpenCL as it handles the half type 5251 // natively, and does not need to interwork with AAPCS code. 5252 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5253 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5254 llvm::Type::getFloatTy(getVMContext()) : 5255 llvm::Type::getInt32Ty(getVMContext()); 5256 return ABIArgInfo::getDirect(ResType); 5257 } 5258 5259 if (!isAggregateTypeForABI(Ty)) { 5260 // Treat an enum type as its underlying type. 5261 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5262 Ty = EnumTy->getDecl()->getIntegerType(); 5263 } 5264 5265 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5266 : ABIArgInfo::getDirect()); 5267 } 5268 5269 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5270 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5271 } 5272 5273 // Ignore empty records. 5274 if (isEmptyRecord(getContext(), Ty, true)) 5275 return ABIArgInfo::getIgnore(); 5276 5277 if (IsEffectivelyAAPCS_VFP) { 5278 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5279 // into VFP registers. 5280 const Type *Base = nullptr; 5281 uint64_t Members = 0; 5282 if (isHomogeneousAggregate(Ty, Base, Members)) { 5283 assert(Base && "Base class should be set for homogeneous aggregate"); 5284 // Base can be a floating-point or a vector. 5285 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5286 } 5287 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5288 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5289 // this convention even for a variadic function: the backend will use GPRs 5290 // if needed. 5291 const Type *Base = nullptr; 5292 uint64_t Members = 0; 5293 if (isHomogeneousAggregate(Ty, Base, Members)) { 5294 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5295 llvm::Type *Ty = 5296 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5297 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5298 } 5299 } 5300 5301 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5302 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5303 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5304 // bigger than 128-bits, they get placed in space allocated by the caller, 5305 // and a pointer is passed. 5306 return ABIArgInfo::getIndirect( 5307 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5308 } 5309 5310 // Support byval for ARM. 5311 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5312 // most 8-byte. We realign the indirect argument if type alignment is bigger 5313 // than ABI alignment. 5314 uint64_t ABIAlign = 4; 5315 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5316 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5317 getABIKind() == ARMABIInfo::AAPCS) 5318 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5319 5320 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5321 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5322 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5323 /*ByVal=*/true, 5324 /*Realign=*/TyAlign > ABIAlign); 5325 } 5326 5327 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5328 // same size and alignment. 5329 if (getTarget().isRenderScriptTarget()) { 5330 return coerceToIntArray(Ty, getContext(), getVMContext()); 5331 } 5332 5333 // Otherwise, pass by coercing to a structure of the appropriate size. 5334 llvm::Type* ElemTy; 5335 unsigned SizeRegs; 5336 // FIXME: Try to match the types of the arguments more accurately where 5337 // we can. 5338 if (getContext().getTypeAlign(Ty) <= 32) { 5339 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5340 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5341 } else { 5342 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5343 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5344 } 5345 5346 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5347 } 5348 5349 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5350 llvm::LLVMContext &VMContext) { 5351 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5352 // is called integer-like if its size is less than or equal to one word, and 5353 // the offset of each of its addressable sub-fields is zero. 5354 5355 uint64_t Size = Context.getTypeSize(Ty); 5356 5357 // Check that the type fits in a word. 5358 if (Size > 32) 5359 return false; 5360 5361 // FIXME: Handle vector types! 5362 if (Ty->isVectorType()) 5363 return false; 5364 5365 // Float types are never treated as "integer like". 5366 if (Ty->isRealFloatingType()) 5367 return false; 5368 5369 // If this is a builtin or pointer type then it is ok. 5370 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5371 return true; 5372 5373 // Small complex integer types are "integer like". 5374 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5375 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5376 5377 // Single element and zero sized arrays should be allowed, by the definition 5378 // above, but they are not. 5379 5380 // Otherwise, it must be a record type. 5381 const RecordType *RT = Ty->getAs<RecordType>(); 5382 if (!RT) return false; 5383 5384 // Ignore records with flexible arrays. 5385 const RecordDecl *RD = RT->getDecl(); 5386 if (RD->hasFlexibleArrayMember()) 5387 return false; 5388 5389 // Check that all sub-fields are at offset 0, and are themselves "integer 5390 // like". 5391 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5392 5393 bool HadField = false; 5394 unsigned idx = 0; 5395 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5396 i != e; ++i, ++idx) { 5397 const FieldDecl *FD = *i; 5398 5399 // Bit-fields are not addressable, we only need to verify they are "integer 5400 // like". We still have to disallow a subsequent non-bitfield, for example: 5401 // struct { int : 0; int x } 5402 // is non-integer like according to gcc. 5403 if (FD->isBitField()) { 5404 if (!RD->isUnion()) 5405 HadField = true; 5406 5407 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5408 return false; 5409 5410 continue; 5411 } 5412 5413 // Check if this field is at offset 0. 5414 if (Layout.getFieldOffset(idx) != 0) 5415 return false; 5416 5417 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5418 return false; 5419 5420 // Only allow at most one field in a structure. This doesn't match the 5421 // wording above, but follows gcc in situations with a field following an 5422 // empty structure. 5423 if (!RD->isUnion()) { 5424 if (HadField) 5425 return false; 5426 5427 HadField = true; 5428 } 5429 } 5430 5431 return true; 5432 } 5433 5434 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5435 bool isVariadic) const { 5436 bool IsEffectivelyAAPCS_VFP = 5437 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5438 5439 if (RetTy->isVoidType()) 5440 return ABIArgInfo::getIgnore(); 5441 5442 // Large vector types should be returned via memory. 5443 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5444 return getNaturalAlignIndirect(RetTy); 5445 } 5446 5447 // __fp16 gets returned as if it were an int or float, but with the top 16 5448 // bits unspecified. This is not done for OpenCL as it handles the half type 5449 // natively, and does not need to interwork with AAPCS code. 5450 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5451 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5452 llvm::Type::getFloatTy(getVMContext()) : 5453 llvm::Type::getInt32Ty(getVMContext()); 5454 return ABIArgInfo::getDirect(ResType); 5455 } 5456 5457 if (!isAggregateTypeForABI(RetTy)) { 5458 // Treat an enum type as its underlying type. 5459 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5460 RetTy = EnumTy->getDecl()->getIntegerType(); 5461 5462 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5463 : ABIArgInfo::getDirect(); 5464 } 5465 5466 // Are we following APCS? 5467 if (getABIKind() == APCS) { 5468 if (isEmptyRecord(getContext(), RetTy, false)) 5469 return ABIArgInfo::getIgnore(); 5470 5471 // Complex types are all returned as packed integers. 5472 // 5473 // FIXME: Consider using 2 x vector types if the back end handles them 5474 // correctly. 5475 if (RetTy->isAnyComplexType()) 5476 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5477 getVMContext(), getContext().getTypeSize(RetTy))); 5478 5479 // Integer like structures are returned in r0. 5480 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5481 // Return in the smallest viable integer type. 5482 uint64_t Size = getContext().getTypeSize(RetTy); 5483 if (Size <= 8) 5484 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5485 if (Size <= 16) 5486 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5487 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5488 } 5489 5490 // Otherwise return in memory. 5491 return getNaturalAlignIndirect(RetTy); 5492 } 5493 5494 // Otherwise this is an AAPCS variant. 5495 5496 if (isEmptyRecord(getContext(), RetTy, true)) 5497 return ABIArgInfo::getIgnore(); 5498 5499 // Check for homogeneous aggregates with AAPCS-VFP. 5500 if (IsEffectivelyAAPCS_VFP) { 5501 const Type *Base = nullptr; 5502 uint64_t Members = 0; 5503 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5504 assert(Base && "Base class should be set for homogeneous aggregate"); 5505 // Homogeneous Aggregates are returned directly. 5506 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5507 } 5508 } 5509 5510 // Aggregates <= 4 bytes are returned in r0; other aggregates 5511 // are returned indirectly. 5512 uint64_t Size = getContext().getTypeSize(RetTy); 5513 if (Size <= 32) { 5514 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5515 // same size and alignment. 5516 if (getTarget().isRenderScriptTarget()) { 5517 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5518 } 5519 if (getDataLayout().isBigEndian()) 5520 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5521 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5522 5523 // Return in the smallest viable integer type. 5524 if (Size <= 8) 5525 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5526 if (Size <= 16) 5527 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5528 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5529 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5530 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5531 llvm::Type *CoerceTy = 5532 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5533 return ABIArgInfo::getDirect(CoerceTy); 5534 } 5535 5536 return getNaturalAlignIndirect(RetTy); 5537 } 5538 5539 /// isIllegalVector - check whether Ty is an illegal vector type. 5540 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5541 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5542 if (isAndroid()) { 5543 // Android shipped using Clang 3.1, which supported a slightly different 5544 // vector ABI. The primary differences were that 3-element vector types 5545 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5546 // accepts that legacy behavior for Android only. 5547 // Check whether VT is legal. 5548 unsigned NumElements = VT->getNumElements(); 5549 // NumElements should be power of 2 or equal to 3. 5550 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5551 return true; 5552 } else { 5553 // Check whether VT is legal. 5554 unsigned NumElements = VT->getNumElements(); 5555 uint64_t Size = getContext().getTypeSize(VT); 5556 // NumElements should be power of 2. 5557 if (!llvm::isPowerOf2_32(NumElements)) 5558 return true; 5559 // Size should be greater than 32 bits. 5560 return Size <= 32; 5561 } 5562 } 5563 return false; 5564 } 5565 5566 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5567 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5568 // double, or 64-bit or 128-bit vectors. 5569 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5570 if (BT->getKind() == BuiltinType::Float || 5571 BT->getKind() == BuiltinType::Double || 5572 BT->getKind() == BuiltinType::LongDouble) 5573 return true; 5574 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5575 unsigned VecSize = getContext().getTypeSize(VT); 5576 if (VecSize == 64 || VecSize == 128) 5577 return true; 5578 } 5579 return false; 5580 } 5581 5582 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5583 uint64_t Members) const { 5584 return Members <= 4; 5585 } 5586 5587 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5588 QualType Ty) const { 5589 CharUnits SlotSize = CharUnits::fromQuantity(4); 5590 5591 // Empty records are ignored for parameter passing purposes. 5592 if (isEmptyRecord(getContext(), Ty, true)) { 5593 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5594 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5595 return Addr; 5596 } 5597 5598 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5599 CharUnits TyAlignForABI = TyInfo.second; 5600 5601 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5602 bool IsIndirect = false; 5603 const Type *Base = nullptr; 5604 uint64_t Members = 0; 5605 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5606 IsIndirect = true; 5607 5608 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5609 // allocated by the caller. 5610 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5611 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5612 !isHomogeneousAggregate(Ty, Base, Members)) { 5613 IsIndirect = true; 5614 5615 // Otherwise, bound the type's ABI alignment. 5616 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5617 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5618 // Our callers should be prepared to handle an under-aligned address. 5619 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5620 getABIKind() == ARMABIInfo::AAPCS) { 5621 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5622 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5623 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5624 // ARMv7k allows type alignment up to 16 bytes. 5625 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5626 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5627 } else { 5628 TyAlignForABI = CharUnits::fromQuantity(4); 5629 } 5630 TyInfo.second = TyAlignForABI; 5631 5632 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5633 SlotSize, /*AllowHigherAlign*/ true); 5634 } 5635 5636 //===----------------------------------------------------------------------===// 5637 // NVPTX ABI Implementation 5638 //===----------------------------------------------------------------------===// 5639 5640 namespace { 5641 5642 class NVPTXABIInfo : public ABIInfo { 5643 public: 5644 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5645 5646 ABIArgInfo classifyReturnType(QualType RetTy) const; 5647 ABIArgInfo classifyArgumentType(QualType Ty) const; 5648 5649 void computeInfo(CGFunctionInfo &FI) const override; 5650 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5651 QualType Ty) const override; 5652 }; 5653 5654 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5655 public: 5656 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5657 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5658 5659 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5660 CodeGen::CodeGenModule &M) const override; 5661 private: 5662 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5663 // resulting MDNode to the nvvm.annotations MDNode. 5664 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5665 }; 5666 5667 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5668 if (RetTy->isVoidType()) 5669 return ABIArgInfo::getIgnore(); 5670 5671 // note: this is different from default ABI 5672 if (!RetTy->isScalarType()) 5673 return ABIArgInfo::getDirect(); 5674 5675 // Treat an enum type as its underlying type. 5676 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5677 RetTy = EnumTy->getDecl()->getIntegerType(); 5678 5679 return (RetTy->isPromotableIntegerType() ? 5680 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5681 } 5682 5683 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5684 // Treat an enum type as its underlying type. 5685 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5686 Ty = EnumTy->getDecl()->getIntegerType(); 5687 5688 // Return aggregates type as indirect by value 5689 if (isAggregateTypeForABI(Ty)) 5690 return getNaturalAlignIndirect(Ty, /* byval */ true); 5691 5692 return (Ty->isPromotableIntegerType() ? 5693 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5694 } 5695 5696 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5697 if (!getCXXABI().classifyReturnType(FI)) 5698 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5699 for (auto &I : FI.arguments()) 5700 I.info = classifyArgumentType(I.type); 5701 5702 // Always honor user-specified calling convention. 5703 if (FI.getCallingConvention() != llvm::CallingConv::C) 5704 return; 5705 5706 FI.setEffectiveCallingConvention(getRuntimeCC()); 5707 } 5708 5709 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5710 QualType Ty) const { 5711 llvm_unreachable("NVPTX does not support varargs"); 5712 } 5713 5714 void NVPTXTargetCodeGenInfo:: 5715 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5716 CodeGen::CodeGenModule &M) const{ 5717 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5718 if (!FD) return; 5719 5720 llvm::Function *F = cast<llvm::Function>(GV); 5721 5722 // Perform special handling in OpenCL mode 5723 if (M.getLangOpts().OpenCL) { 5724 // Use OpenCL function attributes to check for kernel functions 5725 // By default, all functions are device functions 5726 if (FD->hasAttr<OpenCLKernelAttr>()) { 5727 // OpenCL __kernel functions get kernel metadata 5728 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5729 addNVVMMetadata(F, "kernel", 1); 5730 // And kernel functions are not subject to inlining 5731 F->addFnAttr(llvm::Attribute::NoInline); 5732 } 5733 } 5734 5735 // Perform special handling in CUDA mode. 5736 if (M.getLangOpts().CUDA) { 5737 // CUDA __global__ functions get a kernel metadata entry. Since 5738 // __global__ functions cannot be called from the device, we do not 5739 // need to set the noinline attribute. 5740 if (FD->hasAttr<CUDAGlobalAttr>()) { 5741 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5742 addNVVMMetadata(F, "kernel", 1); 5743 } 5744 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5745 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5746 llvm::APSInt MaxThreads(32); 5747 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5748 if (MaxThreads > 0) 5749 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5750 5751 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5752 // not specified in __launch_bounds__ or if the user specified a 0 value, 5753 // we don't have to add a PTX directive. 5754 if (Attr->getMinBlocks()) { 5755 llvm::APSInt MinBlocks(32); 5756 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5757 if (MinBlocks > 0) 5758 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5759 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5760 } 5761 } 5762 } 5763 } 5764 5765 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5766 int Operand) { 5767 llvm::Module *M = F->getParent(); 5768 llvm::LLVMContext &Ctx = M->getContext(); 5769 5770 // Get "nvvm.annotations" metadata node 5771 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5772 5773 llvm::Metadata *MDVals[] = { 5774 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5775 llvm::ConstantAsMetadata::get( 5776 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5777 // Append metadata to nvvm.annotations 5778 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5779 } 5780 } 5781 5782 //===----------------------------------------------------------------------===// 5783 // SystemZ ABI Implementation 5784 //===----------------------------------------------------------------------===// 5785 5786 namespace { 5787 5788 class SystemZABIInfo : public SwiftABIInfo { 5789 bool HasVector; 5790 5791 public: 5792 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5793 : SwiftABIInfo(CGT), HasVector(HV) {} 5794 5795 bool isPromotableIntegerType(QualType Ty) const; 5796 bool isCompoundType(QualType Ty) const; 5797 bool isVectorArgumentType(QualType Ty) const; 5798 bool isFPArgumentType(QualType Ty) const; 5799 QualType GetSingleElementType(QualType Ty) const; 5800 5801 ABIArgInfo classifyReturnType(QualType RetTy) const; 5802 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5803 5804 void computeInfo(CGFunctionInfo &FI) const override { 5805 if (!getCXXABI().classifyReturnType(FI)) 5806 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5807 for (auto &I : FI.arguments()) 5808 I.info = classifyArgumentType(I.type); 5809 } 5810 5811 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5812 QualType Ty) const override; 5813 5814 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5815 ArrayRef<llvm::Type*> scalars, 5816 bool asReturnValue) const override { 5817 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5818 } 5819 }; 5820 5821 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5822 public: 5823 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5824 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5825 }; 5826 5827 } 5828 5829 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5830 // Treat an enum type as its underlying type. 5831 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5832 Ty = EnumTy->getDecl()->getIntegerType(); 5833 5834 // Promotable integer types are required to be promoted by the ABI. 5835 if (Ty->isPromotableIntegerType()) 5836 return true; 5837 5838 // 32-bit values must also be promoted. 5839 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5840 switch (BT->getKind()) { 5841 case BuiltinType::Int: 5842 case BuiltinType::UInt: 5843 return true; 5844 default: 5845 return false; 5846 } 5847 return false; 5848 } 5849 5850 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5851 return (Ty->isAnyComplexType() || 5852 Ty->isVectorType() || 5853 isAggregateTypeForABI(Ty)); 5854 } 5855 5856 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5857 return (HasVector && 5858 Ty->isVectorType() && 5859 getContext().getTypeSize(Ty) <= 128); 5860 } 5861 5862 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5863 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5864 switch (BT->getKind()) { 5865 case BuiltinType::Float: 5866 case BuiltinType::Double: 5867 return true; 5868 default: 5869 return false; 5870 } 5871 5872 return false; 5873 } 5874 5875 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5876 if (const RecordType *RT = Ty->getAsStructureType()) { 5877 const RecordDecl *RD = RT->getDecl(); 5878 QualType Found; 5879 5880 // If this is a C++ record, check the bases first. 5881 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5882 for (const auto &I : CXXRD->bases()) { 5883 QualType Base = I.getType(); 5884 5885 // Empty bases don't affect things either way. 5886 if (isEmptyRecord(getContext(), Base, true)) 5887 continue; 5888 5889 if (!Found.isNull()) 5890 return Ty; 5891 Found = GetSingleElementType(Base); 5892 } 5893 5894 // Check the fields. 5895 for (const auto *FD : RD->fields()) { 5896 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5897 // Unlike isSingleElementStruct(), empty structure and array fields 5898 // do count. So do anonymous bitfields that aren't zero-sized. 5899 if (getContext().getLangOpts().CPlusPlus && 5900 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5901 continue; 5902 5903 // Unlike isSingleElementStruct(), arrays do not count. 5904 // Nested structures still do though. 5905 if (!Found.isNull()) 5906 return Ty; 5907 Found = GetSingleElementType(FD->getType()); 5908 } 5909 5910 // Unlike isSingleElementStruct(), trailing padding is allowed. 5911 // An 8-byte aligned struct s { float f; } is passed as a double. 5912 if (!Found.isNull()) 5913 return Found; 5914 } 5915 5916 return Ty; 5917 } 5918 5919 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5920 QualType Ty) const { 5921 // Assume that va_list type is correct; should be pointer to LLVM type: 5922 // struct { 5923 // i64 __gpr; 5924 // i64 __fpr; 5925 // i8 *__overflow_arg_area; 5926 // i8 *__reg_save_area; 5927 // }; 5928 5929 // Every non-vector argument occupies 8 bytes and is passed by preference 5930 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5931 // always passed on the stack. 5932 Ty = getContext().getCanonicalType(Ty); 5933 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5934 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5935 llvm::Type *DirectTy = ArgTy; 5936 ABIArgInfo AI = classifyArgumentType(Ty); 5937 bool IsIndirect = AI.isIndirect(); 5938 bool InFPRs = false; 5939 bool IsVector = false; 5940 CharUnits UnpaddedSize; 5941 CharUnits DirectAlign; 5942 if (IsIndirect) { 5943 DirectTy = llvm::PointerType::getUnqual(DirectTy); 5944 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 5945 } else { 5946 if (AI.getCoerceToType()) 5947 ArgTy = AI.getCoerceToType(); 5948 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5949 IsVector = ArgTy->isVectorTy(); 5950 UnpaddedSize = TyInfo.first; 5951 DirectAlign = TyInfo.second; 5952 } 5953 CharUnits PaddedSize = CharUnits::fromQuantity(8); 5954 if (IsVector && UnpaddedSize > PaddedSize) 5955 PaddedSize = CharUnits::fromQuantity(16); 5956 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 5957 5958 CharUnits Padding = (PaddedSize - UnpaddedSize); 5959 5960 llvm::Type *IndexTy = CGF.Int64Ty; 5961 llvm::Value *PaddedSizeV = 5962 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 5963 5964 if (IsVector) { 5965 // Work out the address of a vector argument on the stack. 5966 // Vector arguments are always passed in the high bits of a 5967 // single (8 byte) or double (16 byte) stack slot. 5968 Address OverflowArgAreaPtr = 5969 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 5970 "overflow_arg_area_ptr"); 5971 Address OverflowArgArea = 5972 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 5973 TyInfo.second); 5974 Address MemAddr = 5975 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 5976 5977 // Update overflow_arg_area_ptr pointer 5978 llvm::Value *NewOverflowArgArea = 5979 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 5980 "overflow_arg_area"); 5981 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5982 5983 return MemAddr; 5984 } 5985 5986 assert(PaddedSize.getQuantity() == 8); 5987 5988 unsigned MaxRegs, RegCountField, RegSaveIndex; 5989 CharUnits RegPadding; 5990 if (InFPRs) { 5991 MaxRegs = 4; // Maximum of 4 FPR arguments 5992 RegCountField = 1; // __fpr 5993 RegSaveIndex = 16; // save offset for f0 5994 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 5995 } else { 5996 MaxRegs = 5; // Maximum of 5 GPR arguments 5997 RegCountField = 0; // __gpr 5998 RegSaveIndex = 2; // save offset for r2 5999 RegPadding = Padding; // values are passed in the low bits of a GPR 6000 } 6001 6002 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6003 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6004 "reg_count_ptr"); 6005 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6006 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6007 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6008 "fits_in_regs"); 6009 6010 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6011 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6012 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6013 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6014 6015 // Emit code to load the value if it was passed in registers. 6016 CGF.EmitBlock(InRegBlock); 6017 6018 // Work out the address of an argument register. 6019 llvm::Value *ScaledRegCount = 6020 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6021 llvm::Value *RegBase = 6022 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6023 + RegPadding.getQuantity()); 6024 llvm::Value *RegOffset = 6025 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6026 Address RegSaveAreaPtr = 6027 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6028 "reg_save_area_ptr"); 6029 llvm::Value *RegSaveArea = 6030 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6031 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6032 "raw_reg_addr"), 6033 PaddedSize); 6034 Address RegAddr = 6035 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6036 6037 // Update the register count 6038 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6039 llvm::Value *NewRegCount = 6040 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6041 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6042 CGF.EmitBranch(ContBlock); 6043 6044 // Emit code to load the value if it was passed in memory. 6045 CGF.EmitBlock(InMemBlock); 6046 6047 // Work out the address of a stack argument. 6048 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6049 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6050 Address OverflowArgArea = 6051 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6052 PaddedSize); 6053 Address RawMemAddr = 6054 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6055 Address MemAddr = 6056 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6057 6058 // Update overflow_arg_area_ptr pointer 6059 llvm::Value *NewOverflowArgArea = 6060 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6061 "overflow_arg_area"); 6062 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6063 CGF.EmitBranch(ContBlock); 6064 6065 // Return the appropriate result. 6066 CGF.EmitBlock(ContBlock); 6067 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6068 MemAddr, InMemBlock, "va_arg.addr"); 6069 6070 if (IsIndirect) 6071 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6072 TyInfo.second); 6073 6074 return ResAddr; 6075 } 6076 6077 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6078 if (RetTy->isVoidType()) 6079 return ABIArgInfo::getIgnore(); 6080 if (isVectorArgumentType(RetTy)) 6081 return ABIArgInfo::getDirect(); 6082 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6083 return getNaturalAlignIndirect(RetTy); 6084 return (isPromotableIntegerType(RetTy) ? 6085 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6086 } 6087 6088 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6089 // Handle the generic C++ ABI. 6090 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6091 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6092 6093 // Integers and enums are extended to full register width. 6094 if (isPromotableIntegerType(Ty)) 6095 return ABIArgInfo::getExtend(); 6096 6097 // Handle vector types and vector-like structure types. Note that 6098 // as opposed to float-like structure types, we do not allow any 6099 // padding for vector-like structures, so verify the sizes match. 6100 uint64_t Size = getContext().getTypeSize(Ty); 6101 QualType SingleElementTy = GetSingleElementType(Ty); 6102 if (isVectorArgumentType(SingleElementTy) && 6103 getContext().getTypeSize(SingleElementTy) == Size) 6104 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6105 6106 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6107 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6108 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6109 6110 // Handle small structures. 6111 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6112 // Structures with flexible arrays have variable length, so really 6113 // fail the size test above. 6114 const RecordDecl *RD = RT->getDecl(); 6115 if (RD->hasFlexibleArrayMember()) 6116 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6117 6118 // The structure is passed as an unextended integer, a float, or a double. 6119 llvm::Type *PassTy; 6120 if (isFPArgumentType(SingleElementTy)) { 6121 assert(Size == 32 || Size == 64); 6122 if (Size == 32) 6123 PassTy = llvm::Type::getFloatTy(getVMContext()); 6124 else 6125 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6126 } else 6127 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6128 return ABIArgInfo::getDirect(PassTy); 6129 } 6130 6131 // Non-structure compounds are passed indirectly. 6132 if (isCompoundType(Ty)) 6133 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6134 6135 return ABIArgInfo::getDirect(nullptr); 6136 } 6137 6138 //===----------------------------------------------------------------------===// 6139 // MSP430 ABI Implementation 6140 //===----------------------------------------------------------------------===// 6141 6142 namespace { 6143 6144 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6145 public: 6146 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6147 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6148 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6149 CodeGen::CodeGenModule &M) const override; 6150 }; 6151 6152 } 6153 6154 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6155 llvm::GlobalValue *GV, 6156 CodeGen::CodeGenModule &M) const { 6157 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6158 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6159 // Handle 'interrupt' attribute: 6160 llvm::Function *F = cast<llvm::Function>(GV); 6161 6162 // Step 1: Set ISR calling convention. 6163 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6164 6165 // Step 2: Add attributes goodness. 6166 F->addFnAttr(llvm::Attribute::NoInline); 6167 6168 // Step 3: Emit ISR vector alias. 6169 unsigned Num = attr->getNumber() / 2; 6170 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6171 "__isr_" + Twine(Num), F); 6172 } 6173 } 6174 } 6175 6176 //===----------------------------------------------------------------------===// 6177 // MIPS ABI Implementation. This works for both little-endian and 6178 // big-endian variants. 6179 //===----------------------------------------------------------------------===// 6180 6181 namespace { 6182 class MipsABIInfo : public ABIInfo { 6183 bool IsO32; 6184 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6185 void CoerceToIntArgs(uint64_t TySize, 6186 SmallVectorImpl<llvm::Type *> &ArgList) const; 6187 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6188 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6189 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6190 public: 6191 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6192 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6193 StackAlignInBytes(IsO32 ? 8 : 16) {} 6194 6195 ABIArgInfo classifyReturnType(QualType RetTy) const; 6196 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6197 void computeInfo(CGFunctionInfo &FI) const override; 6198 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6199 QualType Ty) const override; 6200 bool shouldSignExtUnsignedType(QualType Ty) const override; 6201 }; 6202 6203 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6204 unsigned SizeOfUnwindException; 6205 public: 6206 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6207 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6208 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6209 6210 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6211 return 29; 6212 } 6213 6214 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6215 CodeGen::CodeGenModule &CGM) const override { 6216 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6217 if (!FD) return; 6218 llvm::Function *Fn = cast<llvm::Function>(GV); 6219 if (FD->hasAttr<Mips16Attr>()) { 6220 Fn->addFnAttr("mips16"); 6221 } 6222 else if (FD->hasAttr<NoMips16Attr>()) { 6223 Fn->addFnAttr("nomips16"); 6224 } 6225 6226 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6227 if (!Attr) 6228 return; 6229 6230 const char *Kind; 6231 switch (Attr->getInterrupt()) { 6232 case MipsInterruptAttr::eic: Kind = "eic"; break; 6233 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6234 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6235 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6236 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6237 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6238 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6239 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6240 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6241 } 6242 6243 Fn->addFnAttr("interrupt", Kind); 6244 6245 } 6246 6247 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6248 llvm::Value *Address) const override; 6249 6250 unsigned getSizeOfUnwindException() const override { 6251 return SizeOfUnwindException; 6252 } 6253 }; 6254 } 6255 6256 void MipsABIInfo::CoerceToIntArgs( 6257 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6258 llvm::IntegerType *IntTy = 6259 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6260 6261 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6262 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6263 ArgList.push_back(IntTy); 6264 6265 // If necessary, add one more integer type to ArgList. 6266 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6267 6268 if (R) 6269 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6270 } 6271 6272 // In N32/64, an aligned double precision floating point field is passed in 6273 // a register. 6274 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6275 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6276 6277 if (IsO32) { 6278 CoerceToIntArgs(TySize, ArgList); 6279 return llvm::StructType::get(getVMContext(), ArgList); 6280 } 6281 6282 if (Ty->isComplexType()) 6283 return CGT.ConvertType(Ty); 6284 6285 const RecordType *RT = Ty->getAs<RecordType>(); 6286 6287 // Unions/vectors are passed in integer registers. 6288 if (!RT || !RT->isStructureOrClassType()) { 6289 CoerceToIntArgs(TySize, ArgList); 6290 return llvm::StructType::get(getVMContext(), ArgList); 6291 } 6292 6293 const RecordDecl *RD = RT->getDecl(); 6294 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6295 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6296 6297 uint64_t LastOffset = 0; 6298 unsigned idx = 0; 6299 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6300 6301 // Iterate over fields in the struct/class and check if there are any aligned 6302 // double fields. 6303 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6304 i != e; ++i, ++idx) { 6305 const QualType Ty = i->getType(); 6306 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6307 6308 if (!BT || BT->getKind() != BuiltinType::Double) 6309 continue; 6310 6311 uint64_t Offset = Layout.getFieldOffset(idx); 6312 if (Offset % 64) // Ignore doubles that are not aligned. 6313 continue; 6314 6315 // Add ((Offset - LastOffset) / 64) args of type i64. 6316 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6317 ArgList.push_back(I64); 6318 6319 // Add double type. 6320 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6321 LastOffset = Offset + 64; 6322 } 6323 6324 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6325 ArgList.append(IntArgList.begin(), IntArgList.end()); 6326 6327 return llvm::StructType::get(getVMContext(), ArgList); 6328 } 6329 6330 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6331 uint64_t Offset) const { 6332 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6333 return nullptr; 6334 6335 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6336 } 6337 6338 ABIArgInfo 6339 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6340 Ty = useFirstFieldIfTransparentUnion(Ty); 6341 6342 uint64_t OrigOffset = Offset; 6343 uint64_t TySize = getContext().getTypeSize(Ty); 6344 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6345 6346 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6347 (uint64_t)StackAlignInBytes); 6348 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6349 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6350 6351 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6352 // Ignore empty aggregates. 6353 if (TySize == 0) 6354 return ABIArgInfo::getIgnore(); 6355 6356 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6357 Offset = OrigOffset + MinABIStackAlignInBytes; 6358 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6359 } 6360 6361 // If we have reached here, aggregates are passed directly by coercing to 6362 // another structure type. Padding is inserted if the offset of the 6363 // aggregate is unaligned. 6364 ABIArgInfo ArgInfo = 6365 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6366 getPaddingType(OrigOffset, CurrOffset)); 6367 ArgInfo.setInReg(true); 6368 return ArgInfo; 6369 } 6370 6371 // Treat an enum type as its underlying type. 6372 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6373 Ty = EnumTy->getDecl()->getIntegerType(); 6374 6375 // All integral types are promoted to the GPR width. 6376 if (Ty->isIntegralOrEnumerationType()) 6377 return ABIArgInfo::getExtend(); 6378 6379 return ABIArgInfo::getDirect( 6380 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6381 } 6382 6383 llvm::Type* 6384 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6385 const RecordType *RT = RetTy->getAs<RecordType>(); 6386 SmallVector<llvm::Type*, 8> RTList; 6387 6388 if (RT && RT->isStructureOrClassType()) { 6389 const RecordDecl *RD = RT->getDecl(); 6390 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6391 unsigned FieldCnt = Layout.getFieldCount(); 6392 6393 // N32/64 returns struct/classes in floating point registers if the 6394 // following conditions are met: 6395 // 1. The size of the struct/class is no larger than 128-bit. 6396 // 2. The struct/class has one or two fields all of which are floating 6397 // point types. 6398 // 3. The offset of the first field is zero (this follows what gcc does). 6399 // 6400 // Any other composite results are returned in integer registers. 6401 // 6402 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6403 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6404 for (; b != e; ++b) { 6405 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6406 6407 if (!BT || !BT->isFloatingPoint()) 6408 break; 6409 6410 RTList.push_back(CGT.ConvertType(b->getType())); 6411 } 6412 6413 if (b == e) 6414 return llvm::StructType::get(getVMContext(), RTList, 6415 RD->hasAttr<PackedAttr>()); 6416 6417 RTList.clear(); 6418 } 6419 } 6420 6421 CoerceToIntArgs(Size, RTList); 6422 return llvm::StructType::get(getVMContext(), RTList); 6423 } 6424 6425 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6426 uint64_t Size = getContext().getTypeSize(RetTy); 6427 6428 if (RetTy->isVoidType()) 6429 return ABIArgInfo::getIgnore(); 6430 6431 // O32 doesn't treat zero-sized structs differently from other structs. 6432 // However, N32/N64 ignores zero sized return values. 6433 if (!IsO32 && Size == 0) 6434 return ABIArgInfo::getIgnore(); 6435 6436 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6437 if (Size <= 128) { 6438 if (RetTy->isAnyComplexType()) 6439 return ABIArgInfo::getDirect(); 6440 6441 // O32 returns integer vectors in registers and N32/N64 returns all small 6442 // aggregates in registers. 6443 if (!IsO32 || 6444 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6445 ABIArgInfo ArgInfo = 6446 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6447 ArgInfo.setInReg(true); 6448 return ArgInfo; 6449 } 6450 } 6451 6452 return getNaturalAlignIndirect(RetTy); 6453 } 6454 6455 // Treat an enum type as its underlying type. 6456 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6457 RetTy = EnumTy->getDecl()->getIntegerType(); 6458 6459 return (RetTy->isPromotableIntegerType() ? 6460 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6461 } 6462 6463 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6464 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6465 if (!getCXXABI().classifyReturnType(FI)) 6466 RetInfo = classifyReturnType(FI.getReturnType()); 6467 6468 // Check if a pointer to an aggregate is passed as a hidden argument. 6469 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6470 6471 for (auto &I : FI.arguments()) 6472 I.info = classifyArgumentType(I.type, Offset); 6473 } 6474 6475 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6476 QualType OrigTy) const { 6477 QualType Ty = OrigTy; 6478 6479 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6480 // Pointers are also promoted in the same way but this only matters for N32. 6481 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6482 unsigned PtrWidth = getTarget().getPointerWidth(0); 6483 bool DidPromote = false; 6484 if ((Ty->isIntegerType() && 6485 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6486 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6487 DidPromote = true; 6488 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6489 Ty->isSignedIntegerType()); 6490 } 6491 6492 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6493 6494 // The alignment of things in the argument area is never larger than 6495 // StackAlignInBytes. 6496 TyInfo.second = 6497 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6498 6499 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6500 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6501 6502 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6503 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6504 6505 6506 // If there was a promotion, "unpromote" into a temporary. 6507 // TODO: can we just use a pointer into a subset of the original slot? 6508 if (DidPromote) { 6509 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6510 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6511 6512 // Truncate down to the right width. 6513 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6514 : CGF.IntPtrTy); 6515 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6516 if (OrigTy->isPointerType()) 6517 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6518 6519 CGF.Builder.CreateStore(V, Temp); 6520 Addr = Temp; 6521 } 6522 6523 return Addr; 6524 } 6525 6526 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6527 int TySize = getContext().getTypeSize(Ty); 6528 6529 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6530 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6531 return true; 6532 6533 return false; 6534 } 6535 6536 bool 6537 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6538 llvm::Value *Address) const { 6539 // This information comes from gcc's implementation, which seems to 6540 // as canonical as it gets. 6541 6542 // Everything on MIPS is 4 bytes. Double-precision FP registers 6543 // are aliased to pairs of single-precision FP registers. 6544 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6545 6546 // 0-31 are the general purpose registers, $0 - $31. 6547 // 32-63 are the floating-point registers, $f0 - $f31. 6548 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6549 // 66 is the (notional, I think) register for signal-handler return. 6550 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6551 6552 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6553 // They are one bit wide and ignored here. 6554 6555 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6556 // (coprocessor 1 is the FP unit) 6557 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6558 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6559 // 176-181 are the DSP accumulator registers. 6560 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6561 return false; 6562 } 6563 6564 //===----------------------------------------------------------------------===// 6565 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6566 // Currently subclassed only to implement custom OpenCL C function attribute 6567 // handling. 6568 //===----------------------------------------------------------------------===// 6569 6570 namespace { 6571 6572 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6573 public: 6574 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6575 : DefaultTargetCodeGenInfo(CGT) {} 6576 6577 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6578 CodeGen::CodeGenModule &M) const override; 6579 }; 6580 6581 void TCETargetCodeGenInfo::setTargetAttributes( 6582 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6583 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6584 if (!FD) return; 6585 6586 llvm::Function *F = cast<llvm::Function>(GV); 6587 6588 if (M.getLangOpts().OpenCL) { 6589 if (FD->hasAttr<OpenCLKernelAttr>()) { 6590 // OpenCL C Kernel functions are not subject to inlining 6591 F->addFnAttr(llvm::Attribute::NoInline); 6592 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6593 if (Attr) { 6594 // Convert the reqd_work_group_size() attributes to metadata. 6595 llvm::LLVMContext &Context = F->getContext(); 6596 llvm::NamedMDNode *OpenCLMetadata = 6597 M.getModule().getOrInsertNamedMetadata( 6598 "opencl.kernel_wg_size_info"); 6599 6600 SmallVector<llvm::Metadata *, 5> Operands; 6601 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6602 6603 Operands.push_back( 6604 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6605 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6606 Operands.push_back( 6607 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6608 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6609 Operands.push_back( 6610 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6611 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6612 6613 // Add a boolean constant operand for "required" (true) or "hint" 6614 // (false) for implementing the work_group_size_hint attr later. 6615 // Currently always true as the hint is not yet implemented. 6616 Operands.push_back( 6617 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6618 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6619 } 6620 } 6621 } 6622 } 6623 6624 } 6625 6626 //===----------------------------------------------------------------------===// 6627 // Hexagon ABI Implementation 6628 //===----------------------------------------------------------------------===// 6629 6630 namespace { 6631 6632 class HexagonABIInfo : public ABIInfo { 6633 6634 6635 public: 6636 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6637 6638 private: 6639 6640 ABIArgInfo classifyReturnType(QualType RetTy) const; 6641 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6642 6643 void computeInfo(CGFunctionInfo &FI) const override; 6644 6645 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6646 QualType Ty) const override; 6647 }; 6648 6649 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6650 public: 6651 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6652 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6653 6654 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6655 return 29; 6656 } 6657 }; 6658 6659 } 6660 6661 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6662 if (!getCXXABI().classifyReturnType(FI)) 6663 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6664 for (auto &I : FI.arguments()) 6665 I.info = classifyArgumentType(I.type); 6666 } 6667 6668 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6669 if (!isAggregateTypeForABI(Ty)) { 6670 // Treat an enum type as its underlying type. 6671 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6672 Ty = EnumTy->getDecl()->getIntegerType(); 6673 6674 return (Ty->isPromotableIntegerType() ? 6675 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6676 } 6677 6678 // Ignore empty records. 6679 if (isEmptyRecord(getContext(), Ty, true)) 6680 return ABIArgInfo::getIgnore(); 6681 6682 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6683 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6684 6685 uint64_t Size = getContext().getTypeSize(Ty); 6686 if (Size > 64) 6687 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6688 // Pass in the smallest viable integer type. 6689 else if (Size > 32) 6690 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6691 else if (Size > 16) 6692 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6693 else if (Size > 8) 6694 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6695 else 6696 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6697 } 6698 6699 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6700 if (RetTy->isVoidType()) 6701 return ABIArgInfo::getIgnore(); 6702 6703 // Large vector types should be returned via memory. 6704 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6705 return getNaturalAlignIndirect(RetTy); 6706 6707 if (!isAggregateTypeForABI(RetTy)) { 6708 // Treat an enum type as its underlying type. 6709 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6710 RetTy = EnumTy->getDecl()->getIntegerType(); 6711 6712 return (RetTy->isPromotableIntegerType() ? 6713 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6714 } 6715 6716 if (isEmptyRecord(getContext(), RetTy, true)) 6717 return ABIArgInfo::getIgnore(); 6718 6719 // Aggregates <= 8 bytes are returned in r0; other aggregates 6720 // are returned indirectly. 6721 uint64_t Size = getContext().getTypeSize(RetTy); 6722 if (Size <= 64) { 6723 // Return in the smallest viable integer type. 6724 if (Size <= 8) 6725 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6726 if (Size <= 16) 6727 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6728 if (Size <= 32) 6729 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6730 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6731 } 6732 6733 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 6734 } 6735 6736 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6737 QualType Ty) const { 6738 // FIXME: Someone needs to audit that this handle alignment correctly. 6739 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6740 getContext().getTypeInfoInChars(Ty), 6741 CharUnits::fromQuantity(4), 6742 /*AllowHigherAlign*/ true); 6743 } 6744 6745 //===----------------------------------------------------------------------===// 6746 // Lanai ABI Implementation 6747 //===----------------------------------------------------------------------===// 6748 6749 namespace { 6750 class LanaiABIInfo : public DefaultABIInfo { 6751 public: 6752 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6753 6754 bool shouldUseInReg(QualType Ty, CCState &State) const; 6755 6756 void computeInfo(CGFunctionInfo &FI) const override { 6757 CCState State(FI.getCallingConvention()); 6758 // Lanai uses 4 registers to pass arguments unless the function has the 6759 // regparm attribute set. 6760 if (FI.getHasRegParm()) { 6761 State.FreeRegs = FI.getRegParm(); 6762 } else { 6763 State.FreeRegs = 4; 6764 } 6765 6766 if (!getCXXABI().classifyReturnType(FI)) 6767 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6768 for (auto &I : FI.arguments()) 6769 I.info = classifyArgumentType(I.type, State); 6770 } 6771 6772 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 6773 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 6774 }; 6775 } // end anonymous namespace 6776 6777 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 6778 unsigned Size = getContext().getTypeSize(Ty); 6779 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 6780 6781 if (SizeInRegs == 0) 6782 return false; 6783 6784 if (SizeInRegs > State.FreeRegs) { 6785 State.FreeRegs = 0; 6786 return false; 6787 } 6788 6789 State.FreeRegs -= SizeInRegs; 6790 6791 return true; 6792 } 6793 6794 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 6795 CCState &State) const { 6796 if (!ByVal) { 6797 if (State.FreeRegs) { 6798 --State.FreeRegs; // Non-byval indirects just use one pointer. 6799 return getNaturalAlignIndirectInReg(Ty); 6800 } 6801 return getNaturalAlignIndirect(Ty, false); 6802 } 6803 6804 // Compute the byval alignment. 6805 const unsigned MinABIStackAlignInBytes = 4; 6806 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 6807 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 6808 /*Realign=*/TypeAlign > 6809 MinABIStackAlignInBytes); 6810 } 6811 6812 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 6813 CCState &State) const { 6814 // Check with the C++ ABI first. 6815 const RecordType *RT = Ty->getAs<RecordType>(); 6816 if (RT) { 6817 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 6818 if (RAA == CGCXXABI::RAA_Indirect) { 6819 return getIndirectResult(Ty, /*ByVal=*/false, State); 6820 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 6821 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 6822 } 6823 } 6824 6825 if (isAggregateTypeForABI(Ty)) { 6826 // Structures with flexible arrays are always indirect. 6827 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 6828 return getIndirectResult(Ty, /*ByVal=*/true, State); 6829 6830 // Ignore empty structs/unions. 6831 if (isEmptyRecord(getContext(), Ty, true)) 6832 return ABIArgInfo::getIgnore(); 6833 6834 llvm::LLVMContext &LLVMContext = getVMContext(); 6835 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6836 if (SizeInRegs <= State.FreeRegs) { 6837 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 6838 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 6839 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 6840 State.FreeRegs -= SizeInRegs; 6841 return ABIArgInfo::getDirectInReg(Result); 6842 } else { 6843 State.FreeRegs = 0; 6844 } 6845 return getIndirectResult(Ty, true, State); 6846 } 6847 6848 // Treat an enum type as its underlying type. 6849 if (const auto *EnumTy = Ty->getAs<EnumType>()) 6850 Ty = EnumTy->getDecl()->getIntegerType(); 6851 6852 bool InReg = shouldUseInReg(Ty, State); 6853 if (Ty->isPromotableIntegerType()) { 6854 if (InReg) 6855 return ABIArgInfo::getDirectInReg(); 6856 return ABIArgInfo::getExtend(); 6857 } 6858 if (InReg) 6859 return ABIArgInfo::getDirectInReg(); 6860 return ABIArgInfo::getDirect(); 6861 } 6862 6863 namespace { 6864 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 6865 public: 6866 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 6867 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 6868 }; 6869 } 6870 6871 //===----------------------------------------------------------------------===// 6872 // AMDGPU ABI Implementation 6873 //===----------------------------------------------------------------------===// 6874 6875 namespace { 6876 6877 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6878 public: 6879 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6880 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6881 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6882 CodeGen::CodeGenModule &M) const override; 6883 unsigned getOpenCLKernelCallingConv() const override; 6884 }; 6885 6886 } 6887 6888 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6889 const Decl *D, 6890 llvm::GlobalValue *GV, 6891 CodeGen::CodeGenModule &M) const { 6892 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6893 if (!FD) 6894 return; 6895 6896 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6897 llvm::Function *F = cast<llvm::Function>(GV); 6898 uint32_t NumVGPR = Attr->getNumVGPR(); 6899 if (NumVGPR != 0) 6900 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6901 } 6902 6903 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6904 llvm::Function *F = cast<llvm::Function>(GV); 6905 unsigned NumSGPR = Attr->getNumSGPR(); 6906 if (NumSGPR != 0) 6907 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6908 } 6909 } 6910 6911 6912 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 6913 return llvm::CallingConv::AMDGPU_KERNEL; 6914 } 6915 6916 //===----------------------------------------------------------------------===// 6917 // SPARC v8 ABI Implementation. 6918 // Based on the SPARC Compliance Definition version 2.4.1. 6919 // 6920 // Ensures that complex values are passed in registers. 6921 // 6922 namespace { 6923 class SparcV8ABIInfo : public DefaultABIInfo { 6924 public: 6925 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6926 6927 private: 6928 ABIArgInfo classifyReturnType(QualType RetTy) const; 6929 void computeInfo(CGFunctionInfo &FI) const override; 6930 }; 6931 } // end anonymous namespace 6932 6933 6934 ABIArgInfo 6935 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 6936 if (Ty->isAnyComplexType()) { 6937 return ABIArgInfo::getDirect(); 6938 } 6939 else { 6940 return DefaultABIInfo::classifyReturnType(Ty); 6941 } 6942 } 6943 6944 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6945 6946 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6947 for (auto &Arg : FI.arguments()) 6948 Arg.info = classifyArgumentType(Arg.type); 6949 } 6950 6951 namespace { 6952 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 6953 public: 6954 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 6955 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 6956 }; 6957 } // end anonymous namespace 6958 6959 //===----------------------------------------------------------------------===// 6960 // SPARC v9 ABI Implementation. 6961 // Based on the SPARC Compliance Definition version 2.4.1. 6962 // 6963 // Function arguments a mapped to a nominal "parameter array" and promoted to 6964 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6965 // the array, structs larger than 16 bytes are passed indirectly. 6966 // 6967 // One case requires special care: 6968 // 6969 // struct mixed { 6970 // int i; 6971 // float f; 6972 // }; 6973 // 6974 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6975 // parameter array, but the int is passed in an integer register, and the float 6976 // is passed in a floating point register. This is represented as two arguments 6977 // with the LLVM IR inreg attribute: 6978 // 6979 // declare void f(i32 inreg %i, float inreg %f) 6980 // 6981 // The code generator will only allocate 4 bytes from the parameter array for 6982 // the inreg arguments. All other arguments are allocated a multiple of 8 6983 // bytes. 6984 // 6985 namespace { 6986 class SparcV9ABIInfo : public ABIInfo { 6987 public: 6988 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6989 6990 private: 6991 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6992 void computeInfo(CGFunctionInfo &FI) const override; 6993 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6994 QualType Ty) const override; 6995 6996 // Coercion type builder for structs passed in registers. The coercion type 6997 // serves two purposes: 6998 // 6999 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7000 // in registers. 7001 // 2. Expose aligned floating point elements as first-level elements, so the 7002 // code generator knows to pass them in floating point registers. 7003 // 7004 // We also compute the InReg flag which indicates that the struct contains 7005 // aligned 32-bit floats. 7006 // 7007 struct CoerceBuilder { 7008 llvm::LLVMContext &Context; 7009 const llvm::DataLayout &DL; 7010 SmallVector<llvm::Type*, 8> Elems; 7011 uint64_t Size; 7012 bool InReg; 7013 7014 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7015 : Context(c), DL(dl), Size(0), InReg(false) {} 7016 7017 // Pad Elems with integers until Size is ToSize. 7018 void pad(uint64_t ToSize) { 7019 assert(ToSize >= Size && "Cannot remove elements"); 7020 if (ToSize == Size) 7021 return; 7022 7023 // Finish the current 64-bit word. 7024 uint64_t Aligned = llvm::alignTo(Size, 64); 7025 if (Aligned > Size && Aligned <= ToSize) { 7026 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7027 Size = Aligned; 7028 } 7029 7030 // Add whole 64-bit words. 7031 while (Size + 64 <= ToSize) { 7032 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7033 Size += 64; 7034 } 7035 7036 // Final in-word padding. 7037 if (Size < ToSize) { 7038 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7039 Size = ToSize; 7040 } 7041 } 7042 7043 // Add a floating point element at Offset. 7044 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7045 // Unaligned floats are treated as integers. 7046 if (Offset % Bits) 7047 return; 7048 // The InReg flag is only required if there are any floats < 64 bits. 7049 if (Bits < 64) 7050 InReg = true; 7051 pad(Offset); 7052 Elems.push_back(Ty); 7053 Size = Offset + Bits; 7054 } 7055 7056 // Add a struct type to the coercion type, starting at Offset (in bits). 7057 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7058 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7059 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7060 llvm::Type *ElemTy = StrTy->getElementType(i); 7061 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7062 switch (ElemTy->getTypeID()) { 7063 case llvm::Type::StructTyID: 7064 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7065 break; 7066 case llvm::Type::FloatTyID: 7067 addFloat(ElemOffset, ElemTy, 32); 7068 break; 7069 case llvm::Type::DoubleTyID: 7070 addFloat(ElemOffset, ElemTy, 64); 7071 break; 7072 case llvm::Type::FP128TyID: 7073 addFloat(ElemOffset, ElemTy, 128); 7074 break; 7075 case llvm::Type::PointerTyID: 7076 if (ElemOffset % 64 == 0) { 7077 pad(ElemOffset); 7078 Elems.push_back(ElemTy); 7079 Size += 64; 7080 } 7081 break; 7082 default: 7083 break; 7084 } 7085 } 7086 } 7087 7088 // Check if Ty is a usable substitute for the coercion type. 7089 bool isUsableType(llvm::StructType *Ty) const { 7090 return llvm::makeArrayRef(Elems) == Ty->elements(); 7091 } 7092 7093 // Get the coercion type as a literal struct type. 7094 llvm::Type *getType() const { 7095 if (Elems.size() == 1) 7096 return Elems.front(); 7097 else 7098 return llvm::StructType::get(Context, Elems); 7099 } 7100 }; 7101 }; 7102 } // end anonymous namespace 7103 7104 ABIArgInfo 7105 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7106 if (Ty->isVoidType()) 7107 return ABIArgInfo::getIgnore(); 7108 7109 uint64_t Size = getContext().getTypeSize(Ty); 7110 7111 // Anything too big to fit in registers is passed with an explicit indirect 7112 // pointer / sret pointer. 7113 if (Size > SizeLimit) 7114 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7115 7116 // Treat an enum type as its underlying type. 7117 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7118 Ty = EnumTy->getDecl()->getIntegerType(); 7119 7120 // Integer types smaller than a register are extended. 7121 if (Size < 64 && Ty->isIntegerType()) 7122 return ABIArgInfo::getExtend(); 7123 7124 // Other non-aggregates go in registers. 7125 if (!isAggregateTypeForABI(Ty)) 7126 return ABIArgInfo::getDirect(); 7127 7128 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7129 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7130 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7131 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7132 7133 // This is a small aggregate type that should be passed in registers. 7134 // Build a coercion type from the LLVM struct type. 7135 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7136 if (!StrTy) 7137 return ABIArgInfo::getDirect(); 7138 7139 CoerceBuilder CB(getVMContext(), getDataLayout()); 7140 CB.addStruct(0, StrTy); 7141 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7142 7143 // Try to use the original type for coercion. 7144 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7145 7146 if (CB.InReg) 7147 return ABIArgInfo::getDirectInReg(CoerceTy); 7148 else 7149 return ABIArgInfo::getDirect(CoerceTy); 7150 } 7151 7152 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7153 QualType Ty) const { 7154 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7155 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7156 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7157 AI.setCoerceToType(ArgTy); 7158 7159 CharUnits SlotSize = CharUnits::fromQuantity(8); 7160 7161 CGBuilderTy &Builder = CGF.Builder; 7162 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7163 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7164 7165 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7166 7167 Address ArgAddr = Address::invalid(); 7168 CharUnits Stride; 7169 switch (AI.getKind()) { 7170 case ABIArgInfo::Expand: 7171 case ABIArgInfo::CoerceAndExpand: 7172 case ABIArgInfo::InAlloca: 7173 llvm_unreachable("Unsupported ABI kind for va_arg"); 7174 7175 case ABIArgInfo::Extend: { 7176 Stride = SlotSize; 7177 CharUnits Offset = SlotSize - TypeInfo.first; 7178 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 7179 break; 7180 } 7181 7182 case ABIArgInfo::Direct: { 7183 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 7184 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 7185 ArgAddr = Addr; 7186 break; 7187 } 7188 7189 case ABIArgInfo::Indirect: 7190 Stride = SlotSize; 7191 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7192 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7193 TypeInfo.second); 7194 break; 7195 7196 case ABIArgInfo::Ignore: 7197 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7198 } 7199 7200 // Update VAList. 7201 llvm::Value *NextPtr = 7202 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7203 Builder.CreateStore(NextPtr, VAListAddr); 7204 7205 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7206 } 7207 7208 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7209 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7210 for (auto &I : FI.arguments()) 7211 I.info = classifyType(I.type, 16 * 8); 7212 } 7213 7214 namespace { 7215 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7216 public: 7217 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7218 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7219 7220 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7221 return 14; 7222 } 7223 7224 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7225 llvm::Value *Address) const override; 7226 }; 7227 } // end anonymous namespace 7228 7229 bool 7230 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7231 llvm::Value *Address) const { 7232 // This is calculated from the LLVM and GCC tables and verified 7233 // against gcc output. AFAIK all ABIs use the same encoding. 7234 7235 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7236 7237 llvm::IntegerType *i8 = CGF.Int8Ty; 7238 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7239 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7240 7241 // 0-31: the 8-byte general-purpose registers 7242 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7243 7244 // 32-63: f0-31, the 4-byte floating-point registers 7245 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7246 7247 // Y = 64 7248 // PSR = 65 7249 // WIM = 66 7250 // TBR = 67 7251 // PC = 68 7252 // NPC = 69 7253 // FSR = 70 7254 // CSR = 71 7255 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7256 7257 // 72-87: d0-15, the 8-byte floating-point registers 7258 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7259 7260 return false; 7261 } 7262 7263 7264 //===----------------------------------------------------------------------===// 7265 // XCore ABI Implementation 7266 //===----------------------------------------------------------------------===// 7267 7268 namespace { 7269 7270 /// A SmallStringEnc instance is used to build up the TypeString by passing 7271 /// it by reference between functions that append to it. 7272 typedef llvm::SmallString<128> SmallStringEnc; 7273 7274 /// TypeStringCache caches the meta encodings of Types. 7275 /// 7276 /// The reason for caching TypeStrings is two fold: 7277 /// 1. To cache a type's encoding for later uses; 7278 /// 2. As a means to break recursive member type inclusion. 7279 /// 7280 /// A cache Entry can have a Status of: 7281 /// NonRecursive: The type encoding is not recursive; 7282 /// Recursive: The type encoding is recursive; 7283 /// Incomplete: An incomplete TypeString; 7284 /// IncompleteUsed: An incomplete TypeString that has been used in a 7285 /// Recursive type encoding. 7286 /// 7287 /// A NonRecursive entry will have all of its sub-members expanded as fully 7288 /// as possible. Whilst it may contain types which are recursive, the type 7289 /// itself is not recursive and thus its encoding may be safely used whenever 7290 /// the type is encountered. 7291 /// 7292 /// A Recursive entry will have all of its sub-members expanded as fully as 7293 /// possible. The type itself is recursive and it may contain other types which 7294 /// are recursive. The Recursive encoding must not be used during the expansion 7295 /// of a recursive type's recursive branch. For simplicity the code uses 7296 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7297 /// 7298 /// An Incomplete entry is always a RecordType and only encodes its 7299 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7300 /// are placed into the cache during type expansion as a means to identify and 7301 /// handle recursive inclusion of types as sub-members. If there is recursion 7302 /// the entry becomes IncompleteUsed. 7303 /// 7304 /// During the expansion of a RecordType's members: 7305 /// 7306 /// If the cache contains a NonRecursive encoding for the member type, the 7307 /// cached encoding is used; 7308 /// 7309 /// If the cache contains a Recursive encoding for the member type, the 7310 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7311 /// 7312 /// If the member is a RecordType, an Incomplete encoding is placed into the 7313 /// cache to break potential recursive inclusion of itself as a sub-member; 7314 /// 7315 /// Once a member RecordType has been expanded, its temporary incomplete 7316 /// entry is removed from the cache. If a Recursive encoding was swapped out 7317 /// it is swapped back in; 7318 /// 7319 /// If an incomplete entry is used to expand a sub-member, the incomplete 7320 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7321 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7322 /// 7323 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7324 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7325 /// Else the member is part of a recursive type and thus the recursion has 7326 /// been exited too soon for the encoding to be correct for the member. 7327 /// 7328 class TypeStringCache { 7329 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7330 struct Entry { 7331 std::string Str; // The encoded TypeString for the type. 7332 enum Status State; // Information about the encoding in 'Str'. 7333 std::string Swapped; // A temporary place holder for a Recursive encoding 7334 // during the expansion of RecordType's members. 7335 }; 7336 std::map<const IdentifierInfo *, struct Entry> Map; 7337 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7338 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7339 public: 7340 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7341 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7342 bool removeIncomplete(const IdentifierInfo *ID); 7343 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7344 bool IsRecursive); 7345 StringRef lookupStr(const IdentifierInfo *ID); 7346 }; 7347 7348 /// TypeString encodings for enum & union fields must be order. 7349 /// FieldEncoding is a helper for this ordering process. 7350 class FieldEncoding { 7351 bool HasName; 7352 std::string Enc; 7353 public: 7354 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7355 StringRef str() {return Enc.c_str();} 7356 bool operator<(const FieldEncoding &rhs) const { 7357 if (HasName != rhs.HasName) return HasName; 7358 return Enc < rhs.Enc; 7359 } 7360 }; 7361 7362 class XCoreABIInfo : public DefaultABIInfo { 7363 public: 7364 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7365 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7366 QualType Ty) const override; 7367 }; 7368 7369 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7370 mutable TypeStringCache TSC; 7371 public: 7372 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7373 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7374 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7375 CodeGen::CodeGenModule &M) const override; 7376 }; 7377 7378 } // End anonymous namespace. 7379 7380 // TODO: this implementation is likely now redundant with the default 7381 // EmitVAArg. 7382 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7383 QualType Ty) const { 7384 CGBuilderTy &Builder = CGF.Builder; 7385 7386 // Get the VAList. 7387 CharUnits SlotSize = CharUnits::fromQuantity(4); 7388 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7389 7390 // Handle the argument. 7391 ABIArgInfo AI = classifyArgumentType(Ty); 7392 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7393 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7394 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7395 AI.setCoerceToType(ArgTy); 7396 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7397 7398 Address Val = Address::invalid(); 7399 CharUnits ArgSize = CharUnits::Zero(); 7400 switch (AI.getKind()) { 7401 case ABIArgInfo::Expand: 7402 case ABIArgInfo::CoerceAndExpand: 7403 case ABIArgInfo::InAlloca: 7404 llvm_unreachable("Unsupported ABI kind for va_arg"); 7405 case ABIArgInfo::Ignore: 7406 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7407 ArgSize = CharUnits::Zero(); 7408 break; 7409 case ABIArgInfo::Extend: 7410 case ABIArgInfo::Direct: 7411 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7412 ArgSize = CharUnits::fromQuantity( 7413 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7414 ArgSize = ArgSize.alignTo(SlotSize); 7415 break; 7416 case ABIArgInfo::Indirect: 7417 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7418 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7419 ArgSize = SlotSize; 7420 break; 7421 } 7422 7423 // Increment the VAList. 7424 if (!ArgSize.isZero()) { 7425 llvm::Value *APN = 7426 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7427 Builder.CreateStore(APN, VAListAddr); 7428 } 7429 7430 return Val; 7431 } 7432 7433 /// During the expansion of a RecordType, an incomplete TypeString is placed 7434 /// into the cache as a means to identify and break recursion. 7435 /// If there is a Recursive encoding in the cache, it is swapped out and will 7436 /// be reinserted by removeIncomplete(). 7437 /// All other types of encoding should have been used rather than arriving here. 7438 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7439 std::string StubEnc) { 7440 if (!ID) 7441 return; 7442 Entry &E = Map[ID]; 7443 assert( (E.Str.empty() || E.State == Recursive) && 7444 "Incorrectly use of addIncomplete"); 7445 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7446 E.Swapped.swap(E.Str); // swap out the Recursive 7447 E.Str.swap(StubEnc); 7448 E.State = Incomplete; 7449 ++IncompleteCount; 7450 } 7451 7452 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7453 /// must be removed from the cache. 7454 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7455 /// Returns true if the RecordType was defined recursively. 7456 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7457 if (!ID) 7458 return false; 7459 auto I = Map.find(ID); 7460 assert(I != Map.end() && "Entry not present"); 7461 Entry &E = I->second; 7462 assert( (E.State == Incomplete || 7463 E.State == IncompleteUsed) && 7464 "Entry must be an incomplete type"); 7465 bool IsRecursive = false; 7466 if (E.State == IncompleteUsed) { 7467 // We made use of our Incomplete encoding, thus we are recursive. 7468 IsRecursive = true; 7469 --IncompleteUsedCount; 7470 } 7471 if (E.Swapped.empty()) 7472 Map.erase(I); 7473 else { 7474 // Swap the Recursive back. 7475 E.Swapped.swap(E.Str); 7476 E.Swapped.clear(); 7477 E.State = Recursive; 7478 } 7479 --IncompleteCount; 7480 return IsRecursive; 7481 } 7482 7483 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7484 /// Recursive (viz: all sub-members were expanded as fully as possible). 7485 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7486 bool IsRecursive) { 7487 if (!ID || IncompleteUsedCount) 7488 return; // No key or it is is an incomplete sub-type so don't add. 7489 Entry &E = Map[ID]; 7490 if (IsRecursive && !E.Str.empty()) { 7491 assert(E.State==Recursive && E.Str.size() == Str.size() && 7492 "This is not the same Recursive entry"); 7493 // The parent container was not recursive after all, so we could have used 7494 // this Recursive sub-member entry after all, but we assumed the worse when 7495 // we started viz: IncompleteCount!=0. 7496 return; 7497 } 7498 assert(E.Str.empty() && "Entry already present"); 7499 E.Str = Str.str(); 7500 E.State = IsRecursive? Recursive : NonRecursive; 7501 } 7502 7503 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7504 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7505 /// encoding is Recursive, return an empty StringRef. 7506 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7507 if (!ID) 7508 return StringRef(); // We have no key. 7509 auto I = Map.find(ID); 7510 if (I == Map.end()) 7511 return StringRef(); // We have no encoding. 7512 Entry &E = I->second; 7513 if (E.State == Recursive && IncompleteCount) 7514 return StringRef(); // We don't use Recursive encodings for member types. 7515 7516 if (E.State == Incomplete) { 7517 // The incomplete type is being used to break out of recursion. 7518 E.State = IncompleteUsed; 7519 ++IncompleteUsedCount; 7520 } 7521 return E.Str.c_str(); 7522 } 7523 7524 /// The XCore ABI includes a type information section that communicates symbol 7525 /// type information to the linker. The linker uses this information to verify 7526 /// safety/correctness of things such as array bound and pointers et al. 7527 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7528 /// This type information (TypeString) is emitted into meta data for all global 7529 /// symbols: definitions, declarations, functions & variables. 7530 /// 7531 /// The TypeString carries type, qualifier, name, size & value details. 7532 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7533 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7534 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7535 /// 7536 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7537 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7538 7539 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7540 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7541 CodeGen::CodeGenModule &CGM) const { 7542 SmallStringEnc Enc; 7543 if (getTypeString(Enc, D, CGM, TSC)) { 7544 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7545 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 7546 llvm::MDString::get(Ctx, Enc.str())}; 7547 llvm::NamedMDNode *MD = 7548 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7549 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7550 } 7551 } 7552 7553 //===----------------------------------------------------------------------===// 7554 // SPIR ABI Implementation 7555 //===----------------------------------------------------------------------===// 7556 7557 namespace { 7558 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 7559 public: 7560 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7561 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 7562 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7563 CodeGen::CodeGenModule &M) const override; 7564 unsigned getOpenCLKernelCallingConv() const override; 7565 }; 7566 } // End anonymous namespace. 7567 7568 /// Emit SPIR specific metadata: OpenCL and SPIR version. 7569 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7570 CodeGen::CodeGenModule &CGM) const { 7571 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7572 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7573 llvm::Module &M = CGM.getModule(); 7574 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 7575 // opencl.spir.version named metadata. 7576 llvm::Metadata *SPIRVerElts[] = { 7577 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)), 7578 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))}; 7579 llvm::NamedMDNode *SPIRVerMD = 7580 M.getOrInsertNamedMetadata("opencl.spir.version"); 7581 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 7582 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 7583 // opencl.ocl.version named metadata node. 7584 llvm::Metadata *OCLVerElts[] = { 7585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7586 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7587 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7588 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 7589 llvm::NamedMDNode *OCLVerMD = 7590 M.getOrInsertNamedMetadata("opencl.ocl.version"); 7591 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 7592 } 7593 7594 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7595 return llvm::CallingConv::SPIR_KERNEL; 7596 } 7597 7598 static bool appendType(SmallStringEnc &Enc, QualType QType, 7599 const CodeGen::CodeGenModule &CGM, 7600 TypeStringCache &TSC); 7601 7602 /// Helper function for appendRecordType(). 7603 /// Builds a SmallVector containing the encoded field types in declaration 7604 /// order. 7605 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 7606 const RecordDecl *RD, 7607 const CodeGen::CodeGenModule &CGM, 7608 TypeStringCache &TSC) { 7609 for (const auto *Field : RD->fields()) { 7610 SmallStringEnc Enc; 7611 Enc += "m("; 7612 Enc += Field->getName(); 7613 Enc += "){"; 7614 if (Field->isBitField()) { 7615 Enc += "b("; 7616 llvm::raw_svector_ostream OS(Enc); 7617 OS << Field->getBitWidthValue(CGM.getContext()); 7618 Enc += ':'; 7619 } 7620 if (!appendType(Enc, Field->getType(), CGM, TSC)) 7621 return false; 7622 if (Field->isBitField()) 7623 Enc += ')'; 7624 Enc += '}'; 7625 FE.emplace_back(!Field->getName().empty(), Enc); 7626 } 7627 return true; 7628 } 7629 7630 /// Appends structure and union types to Enc and adds encoding to cache. 7631 /// Recursively calls appendType (via extractFieldType) for each field. 7632 /// Union types have their fields ordered according to the ABI. 7633 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 7634 const CodeGen::CodeGenModule &CGM, 7635 TypeStringCache &TSC, const IdentifierInfo *ID) { 7636 // Append the cached TypeString if we have one. 7637 StringRef TypeString = TSC.lookupStr(ID); 7638 if (!TypeString.empty()) { 7639 Enc += TypeString; 7640 return true; 7641 } 7642 7643 // Start to emit an incomplete TypeString. 7644 size_t Start = Enc.size(); 7645 Enc += (RT->isUnionType()? 'u' : 's'); 7646 Enc += '('; 7647 if (ID) 7648 Enc += ID->getName(); 7649 Enc += "){"; 7650 7651 // We collect all encoded fields and order as necessary. 7652 bool IsRecursive = false; 7653 const RecordDecl *RD = RT->getDecl()->getDefinition(); 7654 if (RD && !RD->field_empty()) { 7655 // An incomplete TypeString stub is placed in the cache for this RecordType 7656 // so that recursive calls to this RecordType will use it whilst building a 7657 // complete TypeString for this RecordType. 7658 SmallVector<FieldEncoding, 16> FE; 7659 std::string StubEnc(Enc.substr(Start).str()); 7660 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 7661 TSC.addIncomplete(ID, std::move(StubEnc)); 7662 if (!extractFieldType(FE, RD, CGM, TSC)) { 7663 (void) TSC.removeIncomplete(ID); 7664 return false; 7665 } 7666 IsRecursive = TSC.removeIncomplete(ID); 7667 // The ABI requires unions to be sorted but not structures. 7668 // See FieldEncoding::operator< for sort algorithm. 7669 if (RT->isUnionType()) 7670 std::sort(FE.begin(), FE.end()); 7671 // We can now complete the TypeString. 7672 unsigned E = FE.size(); 7673 for (unsigned I = 0; I != E; ++I) { 7674 if (I) 7675 Enc += ','; 7676 Enc += FE[I].str(); 7677 } 7678 } 7679 Enc += '}'; 7680 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 7681 return true; 7682 } 7683 7684 /// Appends enum types to Enc and adds the encoding to the cache. 7685 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 7686 TypeStringCache &TSC, 7687 const IdentifierInfo *ID) { 7688 // Append the cached TypeString if we have one. 7689 StringRef TypeString = TSC.lookupStr(ID); 7690 if (!TypeString.empty()) { 7691 Enc += TypeString; 7692 return true; 7693 } 7694 7695 size_t Start = Enc.size(); 7696 Enc += "e("; 7697 if (ID) 7698 Enc += ID->getName(); 7699 Enc += "){"; 7700 7701 // We collect all encoded enumerations and order them alphanumerically. 7702 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 7703 SmallVector<FieldEncoding, 16> FE; 7704 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 7705 ++I) { 7706 SmallStringEnc EnumEnc; 7707 EnumEnc += "m("; 7708 EnumEnc += I->getName(); 7709 EnumEnc += "){"; 7710 I->getInitVal().toString(EnumEnc); 7711 EnumEnc += '}'; 7712 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 7713 } 7714 std::sort(FE.begin(), FE.end()); 7715 unsigned E = FE.size(); 7716 for (unsigned I = 0; I != E; ++I) { 7717 if (I) 7718 Enc += ','; 7719 Enc += FE[I].str(); 7720 } 7721 } 7722 Enc += '}'; 7723 TSC.addIfComplete(ID, Enc.substr(Start), false); 7724 return true; 7725 } 7726 7727 /// Appends type's qualifier to Enc. 7728 /// This is done prior to appending the type's encoding. 7729 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 7730 // Qualifiers are emitted in alphabetical order. 7731 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 7732 int Lookup = 0; 7733 if (QT.isConstQualified()) 7734 Lookup += 1<<0; 7735 if (QT.isRestrictQualified()) 7736 Lookup += 1<<1; 7737 if (QT.isVolatileQualified()) 7738 Lookup += 1<<2; 7739 Enc += Table[Lookup]; 7740 } 7741 7742 /// Appends built-in types to Enc. 7743 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 7744 const char *EncType; 7745 switch (BT->getKind()) { 7746 case BuiltinType::Void: 7747 EncType = "0"; 7748 break; 7749 case BuiltinType::Bool: 7750 EncType = "b"; 7751 break; 7752 case BuiltinType::Char_U: 7753 EncType = "uc"; 7754 break; 7755 case BuiltinType::UChar: 7756 EncType = "uc"; 7757 break; 7758 case BuiltinType::SChar: 7759 EncType = "sc"; 7760 break; 7761 case BuiltinType::UShort: 7762 EncType = "us"; 7763 break; 7764 case BuiltinType::Short: 7765 EncType = "ss"; 7766 break; 7767 case BuiltinType::UInt: 7768 EncType = "ui"; 7769 break; 7770 case BuiltinType::Int: 7771 EncType = "si"; 7772 break; 7773 case BuiltinType::ULong: 7774 EncType = "ul"; 7775 break; 7776 case BuiltinType::Long: 7777 EncType = "sl"; 7778 break; 7779 case BuiltinType::ULongLong: 7780 EncType = "ull"; 7781 break; 7782 case BuiltinType::LongLong: 7783 EncType = "sll"; 7784 break; 7785 case BuiltinType::Float: 7786 EncType = "ft"; 7787 break; 7788 case BuiltinType::Double: 7789 EncType = "d"; 7790 break; 7791 case BuiltinType::LongDouble: 7792 EncType = "ld"; 7793 break; 7794 default: 7795 return false; 7796 } 7797 Enc += EncType; 7798 return true; 7799 } 7800 7801 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 7802 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 7803 const CodeGen::CodeGenModule &CGM, 7804 TypeStringCache &TSC) { 7805 Enc += "p("; 7806 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 7807 return false; 7808 Enc += ')'; 7809 return true; 7810 } 7811 7812 /// Appends array encoding to Enc before calling appendType for the element. 7813 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 7814 const ArrayType *AT, 7815 const CodeGen::CodeGenModule &CGM, 7816 TypeStringCache &TSC, StringRef NoSizeEnc) { 7817 if (AT->getSizeModifier() != ArrayType::Normal) 7818 return false; 7819 Enc += "a("; 7820 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 7821 CAT->getSize().toStringUnsigned(Enc); 7822 else 7823 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 7824 Enc += ':'; 7825 // The Qualifiers should be attached to the type rather than the array. 7826 appendQualifier(Enc, QT); 7827 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 7828 return false; 7829 Enc += ')'; 7830 return true; 7831 } 7832 7833 /// Appends a function encoding to Enc, calling appendType for the return type 7834 /// and the arguments. 7835 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 7836 const CodeGen::CodeGenModule &CGM, 7837 TypeStringCache &TSC) { 7838 Enc += "f{"; 7839 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 7840 return false; 7841 Enc += "}("; 7842 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 7843 // N.B. we are only interested in the adjusted param types. 7844 auto I = FPT->param_type_begin(); 7845 auto E = FPT->param_type_end(); 7846 if (I != E) { 7847 do { 7848 if (!appendType(Enc, *I, CGM, TSC)) 7849 return false; 7850 ++I; 7851 if (I != E) 7852 Enc += ','; 7853 } while (I != E); 7854 if (FPT->isVariadic()) 7855 Enc += ",va"; 7856 } else { 7857 if (FPT->isVariadic()) 7858 Enc += "va"; 7859 else 7860 Enc += '0'; 7861 } 7862 } 7863 Enc += ')'; 7864 return true; 7865 } 7866 7867 /// Handles the type's qualifier before dispatching a call to handle specific 7868 /// type encodings. 7869 static bool appendType(SmallStringEnc &Enc, QualType QType, 7870 const CodeGen::CodeGenModule &CGM, 7871 TypeStringCache &TSC) { 7872 7873 QualType QT = QType.getCanonicalType(); 7874 7875 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7876 // The Qualifiers should be attached to the type rather than the array. 7877 // Thus we don't call appendQualifier() here. 7878 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7879 7880 appendQualifier(Enc, QT); 7881 7882 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7883 return appendBuiltinType(Enc, BT); 7884 7885 if (const PointerType *PT = QT->getAs<PointerType>()) 7886 return appendPointerType(Enc, PT, CGM, TSC); 7887 7888 if (const EnumType *ET = QT->getAs<EnumType>()) 7889 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7890 7891 if (const RecordType *RT = QT->getAsStructureType()) 7892 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7893 7894 if (const RecordType *RT = QT->getAsUnionType()) 7895 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7896 7897 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7898 return appendFunctionType(Enc, FT, CGM, TSC); 7899 7900 return false; 7901 } 7902 7903 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7904 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7905 if (!D) 7906 return false; 7907 7908 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7909 if (FD->getLanguageLinkage() != CLanguageLinkage) 7910 return false; 7911 return appendType(Enc, FD->getType(), CGM, TSC); 7912 } 7913 7914 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7915 if (VD->getLanguageLinkage() != CLanguageLinkage) 7916 return false; 7917 QualType QT = VD->getType().getCanonicalType(); 7918 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7919 // Global ArrayTypes are given a size of '*' if the size is unknown. 7920 // The Qualifiers should be attached to the type rather than the array. 7921 // Thus we don't call appendQualifier() here. 7922 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7923 } 7924 return appendType(Enc, QT, CGM, TSC); 7925 } 7926 return false; 7927 } 7928 7929 7930 //===----------------------------------------------------------------------===// 7931 // Driver code 7932 //===----------------------------------------------------------------------===// 7933 7934 const llvm::Triple &CodeGenModule::getTriple() const { 7935 return getTarget().getTriple(); 7936 } 7937 7938 bool CodeGenModule::supportsCOMDAT() const { 7939 return getTriple().supportsCOMDAT(); 7940 } 7941 7942 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7943 if (TheTargetCodeGenInfo) 7944 return *TheTargetCodeGenInfo; 7945 7946 // Helper to set the unique_ptr while still keeping the return value. 7947 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 7948 this->TheTargetCodeGenInfo.reset(P); 7949 return *P; 7950 }; 7951 7952 const llvm::Triple &Triple = getTarget().getTriple(); 7953 switch (Triple.getArch()) { 7954 default: 7955 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 7956 7957 case llvm::Triple::le32: 7958 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 7959 case llvm::Triple::mips: 7960 case llvm::Triple::mipsel: 7961 if (Triple.getOS() == llvm::Triple::NaCl) 7962 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 7963 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 7964 7965 case llvm::Triple::mips64: 7966 case llvm::Triple::mips64el: 7967 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 7968 7969 case llvm::Triple::aarch64: 7970 case llvm::Triple::aarch64_be: { 7971 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7972 if (getTarget().getABI() == "darwinpcs") 7973 Kind = AArch64ABIInfo::DarwinPCS; 7974 7975 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 7976 } 7977 7978 case llvm::Triple::wasm32: 7979 case llvm::Triple::wasm64: 7980 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 7981 7982 case llvm::Triple::arm: 7983 case llvm::Triple::armeb: 7984 case llvm::Triple::thumb: 7985 case llvm::Triple::thumbeb: { 7986 if (Triple.getOS() == llvm::Triple::Win32) { 7987 return SetCGInfo( 7988 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 7989 } 7990 7991 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7992 StringRef ABIStr = getTarget().getABI(); 7993 if (ABIStr == "apcs-gnu") 7994 Kind = ARMABIInfo::APCS; 7995 else if (ABIStr == "aapcs16") 7996 Kind = ARMABIInfo::AAPCS16_VFP; 7997 else if (CodeGenOpts.FloatABI == "hard" || 7998 (CodeGenOpts.FloatABI != "soft" && 7999 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8000 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8001 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8002 Kind = ARMABIInfo::AAPCS_VFP; 8003 8004 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8005 } 8006 8007 case llvm::Triple::ppc: 8008 return SetCGInfo( 8009 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8010 case llvm::Triple::ppc64: 8011 if (Triple.isOSBinFormatELF()) { 8012 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8013 if (getTarget().getABI() == "elfv2") 8014 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8015 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8016 8017 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 8018 } else 8019 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8020 case llvm::Triple::ppc64le: { 8021 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8022 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8023 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8024 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8025 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8026 8027 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 8028 } 8029 8030 case llvm::Triple::nvptx: 8031 case llvm::Triple::nvptx64: 8032 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8033 8034 case llvm::Triple::msp430: 8035 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8036 8037 case llvm::Triple::systemz: { 8038 bool HasVector = getTarget().getABI() == "vector"; 8039 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8040 } 8041 8042 case llvm::Triple::tce: 8043 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8044 8045 case llvm::Triple::x86: { 8046 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8047 bool RetSmallStructInRegABI = 8048 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8049 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8050 8051 if (Triple.getOS() == llvm::Triple::Win32) { 8052 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8053 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8054 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8055 } else { 8056 return SetCGInfo(new X86_32TargetCodeGenInfo( 8057 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8058 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8059 CodeGenOpts.FloatABI == "soft")); 8060 } 8061 } 8062 8063 case llvm::Triple::x86_64: { 8064 StringRef ABI = getTarget().getABI(); 8065 X86AVXABILevel AVXLevel = 8066 (ABI == "avx512" 8067 ? X86AVXABILevel::AVX512 8068 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8069 8070 switch (Triple.getOS()) { 8071 case llvm::Triple::Win32: 8072 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8073 case llvm::Triple::PS4: 8074 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8075 default: 8076 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8077 } 8078 } 8079 case llvm::Triple::hexagon: 8080 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8081 case llvm::Triple::lanai: 8082 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8083 case llvm::Triple::r600: 8084 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8085 case llvm::Triple::amdgcn: 8086 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8087 case llvm::Triple::sparc: 8088 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8089 case llvm::Triple::sparcv9: 8090 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8091 case llvm::Triple::xcore: 8092 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8093 case llvm::Triple::spir: 8094 case llvm::Triple::spir64: 8095 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8096 } 8097 } 8098