Home | History | Annotate | Download | only in common
      1 /*-------------------------------------------------------------------------
      2  * drawElements Quality Program Tester Core
      3  * ----------------------------------------
      4  *
      5  * Copyright 2016 The Android Open Source Project
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief ASTC Utilities.
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "tcuAstcUtil.hpp"
     25 #include "deFloat16.h"
     26 #include "deRandom.hpp"
     27 #include "deMeta.hpp"
     28 
     29 #include <algorithm>
     30 
     31 namespace tcu
     32 {
     33 namespace astc
     34 {
     35 
     36 using std::vector;
     37 
     38 namespace
     39 {
     40 
     41 // Common utilities
     42 
     43 enum
     44 {
     45 	MAX_BLOCK_WIDTH		= 12,
     46 	MAX_BLOCK_HEIGHT	= 12
     47 };
     48 
     49 inline deUint32 getBit (deUint32 src, int ndx)
     50 {
     51 	DE_ASSERT(de::inBounds(ndx, 0, 32));
     52 	return (src >> ndx) & 1;
     53 }
     54 
     55 inline deUint32 getBits (deUint32 src, int low, int high)
     56 {
     57 	const int numBits = (high-low) + 1;
     58 
     59 	DE_ASSERT(de::inRange(numBits, 1, 32));
     60 
     61 	if (numBits < 32)
     62 		return (deUint32)((src >> low) & ((1u<<numBits)-1));
     63 	else
     64 		return (deUint32)((src >> low) & 0xFFFFFFFFu);
     65 }
     66 
     67 inline bool isBitSet (deUint32 src, int ndx)
     68 {
     69 	return getBit(src, ndx) != 0;
     70 }
     71 
     72 inline deUint32 reverseBits (deUint32 src, int numBits)
     73 {
     74 	DE_ASSERT(de::inRange(numBits, 0, 32));
     75 	deUint32 result = 0;
     76 	for (int i = 0; i < numBits; i++)
     77 		result |= ((src >> i) & 1) << (numBits-1-i);
     78 	return result;
     79 }
     80 
     81 inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
     82 {
     83 	DE_ASSERT(numSrcBits <= numDstBits);
     84 	DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
     85 	deUint32 dst = 0;
     86 	for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
     87 		dst |= shift >= 0 ? src << shift : src >> -shift;
     88 	return dst;
     89 }
     90 
     91 inline deInt32 signExtend (deInt32 src, int numSrcBits)
     92 {
     93 	DE_ASSERT(de::inRange(numSrcBits, 2, 31));
     94 	const bool negative = (src & (1 << (numSrcBits-1))) != 0;
     95 	return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
     96 }
     97 
     98 inline bool isFloat16InfOrNan (deFloat16 v)
     99 {
    100 	return getBits(v, 10, 14) == 31;
    101 }
    102 
    103 enum ISEMode
    104 {
    105 	ISEMODE_TRIT = 0,
    106 	ISEMODE_QUINT,
    107 	ISEMODE_PLAIN_BIT,
    108 
    109 	ISEMODE_LAST
    110 };
    111 
    112 struct ISEParams
    113 {
    114 	ISEMode		mode;
    115 	int			numBits;
    116 
    117 	ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
    118 };
    119 
    120 inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
    121 {
    122 	switch (iseParams.mode)
    123 	{
    124 		case ISEMODE_TRIT:			return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits;
    125 		case ISEMODE_QUINT:			return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits;
    126 		case ISEMODE_PLAIN_BIT:		return numValues*iseParams.numBits;
    127 		default:
    128 			DE_ASSERT(false);
    129 			return -1;
    130 	}
    131 }
    132 
    133 ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
    134 {
    135 	int curBitsForTritMode		= 6;
    136 	int curBitsForQuintMode		= 5;
    137 	int curBitsForPlainBitMode	= 8;
    138 
    139 	while (true)
    140 	{
    141 		DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
    142 
    143 		const int tritRange			= curBitsForTritMode > 0		? (3 << curBitsForTritMode) - 1			: -1;
    144 		const int quintRange		= curBitsForQuintMode > 0		? (5 << curBitsForQuintMode) - 1		: -1;
    145 		const int plainBitRange		= curBitsForPlainBitMode > 0	? (1 << curBitsForPlainBitMode) - 1		: -1;
    146 		const int maxRange			= de::max(de::max(tritRange, quintRange), plainBitRange);
    147 
    148 		if (maxRange == tritRange)
    149 		{
    150 			const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
    151 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
    152 				return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
    153 			curBitsForTritMode--;
    154 		}
    155 		else if (maxRange == quintRange)
    156 		{
    157 			const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
    158 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
    159 				return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
    160 			curBitsForQuintMode--;
    161 		}
    162 		else
    163 		{
    164 			const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
    165 			DE_ASSERT(maxRange == plainBitRange);
    166 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
    167 				return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
    168 			curBitsForPlainBitMode--;
    169 		}
    170 	}
    171 }
    172 
    173 inline int computeNumColorEndpointValues (deUint32 endpointMode)
    174 {
    175 	DE_ASSERT(endpointMode < 16);
    176 	return (endpointMode/4 + 1) * 2;
    177 }
    178 
    179 // Decompression utilities
    180 
    181 enum DecompressResult
    182 {
    183 	DECOMPRESS_RESULT_VALID_BLOCK	= 0,	//!< Decompressed valid block
    184 	DECOMPRESS_RESULT_ERROR,				//!< Encountered error while decompressing, error color written
    185 
    186 	DECOMPRESS_RESULT_LAST
    187 };
    188 
    189 // A helper for getting bits from a 128-bit block.
    190 class Block128
    191 {
    192 private:
    193 	typedef deUint64 Word;
    194 
    195 	enum
    196 	{
    197 		WORD_BYTES	= sizeof(Word),
    198 		WORD_BITS	= 8*WORD_BYTES,
    199 		NUM_WORDS	= 128 / WORD_BITS
    200 	};
    201 
    202 	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
    203 
    204 public:
    205 	Block128 (const deUint8* src)
    206 	{
    207 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
    208 		{
    209 			m_words[wordNdx] = 0;
    210 			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
    211 				m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
    212 		}
    213 	}
    214 
    215 	deUint32 getBit (int ndx) const
    216 	{
    217 		DE_ASSERT(de::inBounds(ndx, 0, 128));
    218 		return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
    219 	}
    220 
    221 	deUint32 getBits (int low, int high) const
    222 	{
    223 		DE_ASSERT(de::inBounds(low, 0, 128));
    224 		DE_ASSERT(de::inBounds(high, 0, 128));
    225 		DE_ASSERT(de::inRange(high-low+1, 0, 32));
    226 
    227 		if (high-low+1 == 0)
    228 			return 0;
    229 
    230 		const int word0Ndx = low / WORD_BITS;
    231 		const int word1Ndx = high / WORD_BITS;
    232 
    233 		// \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
    234 
    235 		if (word0Ndx == word1Ndx)
    236 			return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS));
    237 		else
    238 		{
    239 			DE_ASSERT(word1Ndx == word0Ndx + 1);
    240 
    241 			return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
    242 				   (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
    243 		}
    244 	}
    245 
    246 	bool isBitSet (int ndx) const
    247 	{
    248 		DE_ASSERT(de::inBounds(ndx, 0, 128));
    249 		return getBit(ndx) != 0;
    250 	}
    251 
    252 private:
    253 	Word m_words[NUM_WORDS];
    254 };
    255 
    256 // A helper for sequential access into a Block128.
    257 class BitAccessStream
    258 {
    259 public:
    260 	BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
    261 		: m_src				(src)
    262 		, m_startNdxInSrc	(startNdxInSrc)
    263 		, m_length			(length)
    264 		, m_forward			(forward)
    265 		, m_ndx				(0)
    266 	{
    267 	}
    268 
    269 	// Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
    270 	deUint32 getNext (int num)
    271 	{
    272 		if (num == 0 || m_ndx >= m_length)
    273 			return 0;
    274 
    275 		const int end				= m_ndx + num;
    276 		const int numBitsFromSrc	= de::max(0, de::min(m_length, end) - m_ndx);
    277 		const int low				= m_ndx;
    278 		const int high				= m_ndx + numBitsFromSrc - 1;
    279 
    280 		m_ndx += num;
    281 
    282 		return m_forward ?			   m_src.getBits(m_startNdxInSrc + low,  m_startNdxInSrc + high)
    283 						 : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
    284 	}
    285 
    286 private:
    287 	const Block128&		m_src;
    288 	const int			m_startNdxInSrc;
    289 	const int			m_length;
    290 	const bool			m_forward;
    291 
    292 	int					m_ndx;
    293 };
    294 
    295 struct ISEDecodedResult
    296 {
    297 	deUint32 m;
    298 	deUint32 tq; //!< Trit or quint value, depending on ISE mode.
    299 	deUint32 v;
    300 };
    301 
    302 // Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
    303 struct ASTCBlockMode
    304 {
    305 	bool		isError;
    306 	// \note Following fields only relevant if !isError.
    307 	bool		isVoidExtent;
    308 	// \note Following fields only relevant if !isVoidExtent.
    309 	bool		isDualPlane;
    310 	int			weightGridWidth;
    311 	int			weightGridHeight;
    312 	ISEParams	weightISEParams;
    313 
    314 	ASTCBlockMode (void)
    315 		: isError			(true)
    316 		, isVoidExtent		(true)
    317 		, isDualPlane		(true)
    318 		, weightGridWidth	(-1)
    319 		, weightGridHeight	(-1)
    320 		, weightISEParams	(ISEMODE_LAST, -1)
    321 	{
    322 	}
    323 };
    324 
    325 inline int computeNumWeights (const ASTCBlockMode& mode)
    326 {
    327 	return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
    328 }
    329 
    330 struct ColorEndpointPair
    331 {
    332 	UVec4 e0;
    333 	UVec4 e1;
    334 };
    335 
    336 struct TexelWeightPair
    337 {
    338 	deUint32 w[2];
    339 };
    340 
    341 ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
    342 {
    343 	ASTCBlockMode blockMode;
    344 	blockMode.isError = true; // \note Set to false later, if not error.
    345 
    346 	blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
    347 
    348 	if (!blockMode.isVoidExtent)
    349 	{
    350 		if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
    351 			return blockMode; // Invalid ("reserved").
    352 
    353 		deUint32 r = (deUint32)-1; // \note Set in the following branches.
    354 
    355 		if (getBits(blockModeData, 0, 1) == 0)
    356 		{
    357 			const deUint32 r0	= getBit(blockModeData, 4);
    358 			const deUint32 r1	= getBit(blockModeData, 2);
    359 			const deUint32 r2	= getBit(blockModeData, 3);
    360 			const deUint32 i78	= getBits(blockModeData, 7, 8);
    361 
    362 			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
    363 
    364 			if (i78 == 3)
    365 			{
    366 				const bool i5 = isBitSet(blockModeData, 5);
    367 				blockMode.weightGridWidth	= i5 ? 10 : 6;
    368 				blockMode.weightGridHeight	= i5 ? 6  : 10;
    369 			}
    370 			else
    371 			{
    372 				const deUint32 a = getBits(blockModeData, 5, 6);
    373 				switch (i78)
    374 				{
    375 					case 0:		blockMode.weightGridWidth = 12;		blockMode.weightGridHeight = a + 2;									break;
    376 					case 1:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = 12;									break;
    377 					case 2:		blockMode.weightGridWidth = a + 6;	blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6;		break;
    378 					default: DE_ASSERT(false);
    379 				}
    380 			}
    381 		}
    382 		else
    383 		{
    384 			const deUint32 r0	= getBit(blockModeData, 4);
    385 			const deUint32 r1	= getBit(blockModeData, 0);
    386 			const deUint32 r2	= getBit(blockModeData, 1);
    387 			const deUint32 i23	= getBits(blockModeData, 2, 3);
    388 			const deUint32 a	= getBits(blockModeData, 5, 6);
    389 
    390 			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
    391 
    392 			if (i23 == 3)
    393 			{
    394 				const deUint32	b	= getBit(blockModeData, 7);
    395 				const bool		i8	= isBitSet(blockModeData, 8);
    396 				blockMode.weightGridWidth	= i8 ? b+2 : a+2;
    397 				blockMode.weightGridHeight	= i8 ? a+2 : b+6;
    398 			}
    399 			else
    400 			{
    401 				const deUint32 b = getBits(blockModeData, 7, 8);
    402 
    403 				switch (i23)
    404 				{
    405 					case 0:		blockMode.weightGridWidth = b + 4;	blockMode.weightGridHeight = a + 2;	break;
    406 					case 1:		blockMode.weightGridWidth = b + 8;	blockMode.weightGridHeight = a + 2;	break;
    407 					case 2:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = b + 8;	break;
    408 					default: DE_ASSERT(false);
    409 				}
    410 			}
    411 		}
    412 
    413 		const bool	zeroDH		= getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
    414 		const bool	h			= zeroDH ? 0 : isBitSet(blockModeData, 9);
    415 		blockMode.isDualPlane	= zeroDH ? 0 : isBitSet(blockModeData, 10);
    416 
    417 		{
    418 			ISEMode&	m	= blockMode.weightISEParams.mode;
    419 			int&		b	= blockMode.weightISEParams.numBits;
    420 			m = ISEMODE_PLAIN_BIT;
    421 			b = 0;
    422 
    423 			if (h)
    424 			{
    425 				switch (r)
    426 				{
    427 					case 2:							m = ISEMODE_QUINT;	b = 1;	break;
    428 					case 3:		m = ISEMODE_TRIT;						b = 2;	break;
    429 					case 4:												b = 4;	break;
    430 					case 5:							m = ISEMODE_QUINT;	b = 2;	break;
    431 					case 6:		m = ISEMODE_TRIT;						b = 3;	break;
    432 					case 7:												b = 5;	break;
    433 					default:	DE_ASSERT(false);
    434 				}
    435 			}
    436 			else
    437 			{
    438 				switch (r)
    439 				{
    440 					case 2:												b = 1;	break;
    441 					case 3:		m = ISEMODE_TRIT;								break;
    442 					case 4:												b = 2;	break;
    443 					case 5:							m = ISEMODE_QUINT;			break;
    444 					case 6:		m = ISEMODE_TRIT;						b = 1;	break;
    445 					case 7:												b = 3;	break;
    446 					default:	DE_ASSERT(false);
    447 				}
    448 			}
    449 		}
    450 	}
    451 
    452 	blockMode.isError = false;
    453 	return blockMode;
    454 }
    455 
    456 inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
    457 {
    458 	if (isSRGB)
    459 	{
    460 		deUint8* const dstU = (deUint8*)dst;
    461 
    462 		for (int i = 0; i < blockWidth*blockHeight; i++)
    463 		{
    464 			dstU[4*i + 0] = 0xff;
    465 			dstU[4*i + 1] = 0;
    466 			dstU[4*i + 2] = 0xff;
    467 			dstU[4*i + 3] = 0xff;
    468 		}
    469 	}
    470 	else
    471 	{
    472 		float* const dstF = (float*)dst;
    473 
    474 		for (int i = 0; i < blockWidth*blockHeight; i++)
    475 		{
    476 			dstF[4*i + 0] = 1.0f;
    477 			dstF[4*i + 1] = 0.0f;
    478 			dstF[4*i + 2] = 1.0f;
    479 			dstF[4*i + 3] = 1.0f;
    480 		}
    481 	}
    482 }
    483 
    484 DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
    485 {
    486 	const deUint32	minSExtent			= blockData.getBits(12, 24);
    487 	const deUint32	maxSExtent			= blockData.getBits(25, 37);
    488 	const deUint32	minTExtent			= blockData.getBits(38, 50);
    489 	const deUint32	maxTExtent			= blockData.getBits(51, 63);
    490 	const bool		allExtentsAllOnes	= minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff;
    491 	const bool		isHDRBlock			= blockData.isBitSet(9);
    492 
    493 	if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
    494 	{
    495 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
    496 		return DECOMPRESS_RESULT_ERROR;
    497 	}
    498 
    499 	const deUint32 rgba[4] =
    500 	{
    501 		blockData.getBits(64,  79),
    502 		blockData.getBits(80,  95),
    503 		blockData.getBits(96,  111),
    504 		blockData.getBits(112, 127)
    505 	};
    506 
    507 	if (isSRGB)
    508 	{
    509 		deUint8* const dstU = (deUint8*)dst;
    510 		for (int i = 0; i < blockWidth*blockHeight; i++)
    511 		for (int c = 0; c < 4; c++)
    512 			dstU[i*4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8);
    513 	}
    514 	else
    515 	{
    516 		float* const dstF = (float*)dst;
    517 
    518 		if (isHDRBlock)
    519 		{
    520 			for (int c = 0; c < 4; c++)
    521 			{
    522 				if (isFloat16InfOrNan((deFloat16)rgba[c]))
    523 					throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
    524 			}
    525 
    526 			for (int i = 0; i < blockWidth*blockHeight; i++)
    527 			for (int c = 0; c < 4; c++)
    528 				dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]);
    529 		}
    530 		else
    531 		{
    532 			for (int i = 0; i < blockWidth*blockHeight; i++)
    533 			for (int c = 0; c < 4; c++)
    534 				dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f;
    535 		}
    536 	}
    537 
    538 	return DECOMPRESS_RESULT_VALID_BLOCK;
    539 }
    540 
    541 void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
    542 {
    543 	if (numPartitions == 1)
    544 		endpointModesDst[0] = blockData.getBits(13, 16);
    545 	else
    546 	{
    547 		const deUint32 highLevelSelector = blockData.getBits(23, 24);
    548 
    549 		if (highLevelSelector == 0)
    550 		{
    551 			const deUint32 mode = blockData.getBits(25, 28);
    552 			for (int i = 0; i < numPartitions; i++)
    553 				endpointModesDst[i] = mode;
    554 		}
    555 		else
    556 		{
    557 			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
    558 			{
    559 				const deUint32 cemClass		= highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
    560 				const deUint32 lowBit0Ndx	= numPartitions + 2*partNdx;
    561 				const deUint32 lowBit1Ndx	= numPartitions + 2*partNdx + 1;
    562 				const deUint32 lowBit0		= blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
    563 				const deUint32 lowBit1		= blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
    564 
    565 				endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
    566 			}
    567 		}
    568 	}
    569 }
    570 
    571 int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
    572 {
    573 	int result = 0;
    574 	for (int i = 0; i < numPartitions; i++)
    575 		result += computeNumColorEndpointValues(endpointModes[i]);
    576 	return result;
    577 }
    578 
    579 void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
    580 {
    581 	DE_ASSERT(de::inRange(numValues, 1, 5));
    582 
    583 	deUint32 m[5];
    584 
    585 	m[0]			= data.getNext(numBits);
    586 	deUint32 T01	= data.getNext(2);
    587 	m[1]			= data.getNext(numBits);
    588 	deUint32 T23	= data.getNext(2);
    589 	m[2]			= data.getNext(numBits);
    590 	deUint32 T4		= data.getNext(1);
    591 	m[3]			= data.getNext(numBits);
    592 	deUint32 T56	= data.getNext(2);
    593 	m[4]			= data.getNext(numBits);
    594 	deUint32 T7		= data.getNext(1);
    595 
    596 	switch (numValues)
    597 	{
    598 		// \note Fall-throughs.
    599 		case 1: T23		= 0;
    600 		case 2: T4		= 0;
    601 		case 3: T56		= 0;
    602 		case 4: T7		= 0;
    603 		case 5: break;
    604 		default:
    605 			DE_ASSERT(false);
    606 	}
    607 
    608 	const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
    609 
    610 	static const deUint32 tritsFromT[256][5] =
    611 	{
    612 		{ 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
    613 		{ 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
    614 		{ 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
    615 		{ 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
    616 		{ 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
    617 		{ 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
    618 		{ 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
    619 		{ 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
    620 		{ 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
    621 		{ 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
    622 		{ 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
    623 		{ 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
    624 		{ 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
    625 		{ 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
    626 		{ 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
    627 		{ 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
    628 	};
    629 
    630 	const deUint32 (& trits)[5] = tritsFromT[T];
    631 
    632 	for (int i = 0; i < numValues; i++)
    633 	{
    634 		dst[i].m	= m[i];
    635 		dst[i].tq	= trits[i];
    636 		dst[i].v	= (trits[i] << numBits) + m[i];
    637 	}
    638 }
    639 
    640 void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
    641 {
    642 	DE_ASSERT(de::inRange(numValues, 1, 3));
    643 
    644 	deUint32 m[3];
    645 
    646 	m[0]			= data.getNext(numBits);
    647 	deUint32 Q012	= data.getNext(3);
    648 	m[1]			= data.getNext(numBits);
    649 	deUint32 Q34	= data.getNext(2);
    650 	m[2]			= data.getNext(numBits);
    651 	deUint32 Q56	= data.getNext(2);
    652 
    653 	switch (numValues)
    654 	{
    655 		// \note Fall-throughs.
    656 		case 1: Q34		= 0;
    657 		case 2: Q56		= 0;
    658 		case 3: break;
    659 		default:
    660 			DE_ASSERT(false);
    661 	}
    662 
    663 	const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
    664 
    665 	static const deUint32 quintsFromQ[256][3] =
    666 	{
    667 		{ 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
    668 		{ 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
    669 		{ 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
    670 		{ 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
    671 		{ 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
    672 		{ 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
    673 		{ 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
    674 		{ 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
    675 	};
    676 
    677 	const deUint32 (& quints)[3] = quintsFromQ[Q];
    678 
    679 	for (int i = 0; i < numValues; i++)
    680 	{
    681 		dst[i].m	= m[i];
    682 		dst[i].tq	= quints[i];
    683 		dst[i].v	= (quints[i] << numBits) + m[i];
    684 	}
    685 }
    686 
    687 inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
    688 {
    689 	dst[0].m = data.getNext(numBits);
    690 	dst[0].v = dst[0].m;
    691 }
    692 
    693 void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
    694 {
    695 	if (params.mode == ISEMODE_TRIT)
    696 	{
    697 		const int numBlocks = deDivRoundUp32(numValues, 5);
    698 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
    699 		{
    700 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
    701 			decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
    702 		}
    703 	}
    704 	else if (params.mode == ISEMODE_QUINT)
    705 	{
    706 		const int numBlocks = deDivRoundUp32(numValues, 3);
    707 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
    708 		{
    709 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
    710 			decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
    711 		}
    712 	}
    713 	else
    714 	{
    715 		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
    716 		for (int i = 0; i < numValues; i++)
    717 			decodeISEBitBlock(&dst[i], data, params.numBits);
    718 	}
    719 }
    720 
    721 void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
    722 {
    723 	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
    724 	{
    725 		const int rangeCase				= iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
    726 		DE_ASSERT(de::inRange(rangeCase, 0, 10));
    727 		static const deUint32	Ca[11]	= { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
    728 		const deUint32			C		= Ca[rangeCase];
    729 
    730 		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
    731 		{
    732 			const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
    733 			const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
    734 			const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
    735 			const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
    736 			const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
    737 			const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
    738 
    739 			const deUint32 A = a == 0 ? 0 : (1<<9)-1;
    740 			const deUint32 B = rangeCase == 0	? 0
    741 							 : rangeCase == 1	? 0
    742 							 : rangeCase == 2	? (b << 8) |									(b << 4) |				(b << 2) |	(b << 1)
    743 							 : rangeCase == 3	? (b << 8) |												(b << 3) |	(b << 2)
    744 							 : rangeCase == 4	? (c << 8) | (b << 7) |										(c << 3) |	(b << 2) |	(c << 1) |	(b << 0)
    745 							 : rangeCase == 5	? (c << 8) | (b << 7) |													(c << 2) |	(b << 1) |	(c << 0)
    746 							 : rangeCase == 6	? (d << 8) | (c << 7) | (b << 6) |										(d << 2) |	(c << 1) |	(b << 0)
    747 							 : rangeCase == 7	? (d << 8) | (c << 7) | (b << 6) |													(d << 1) |	(c << 0)
    748 							 : rangeCase == 8	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |										(e << 1) |	(d << 0)
    749 							 : rangeCase == 9	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |													(e << 0)
    750 							 : rangeCase == 10	? (f << 8) | (e << 7) | (d << 6) | (c << 5) |	(b << 4) |										(f << 0)
    751 							 : (deUint32)-1;
    752 			DE_ASSERT(B != (deUint32)-1);
    753 
    754 			dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
    755 		}
    756 	}
    757 	else
    758 	{
    759 		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
    760 
    761 		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
    762 			dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
    763 	}
    764 }
    765 
    766 inline void bitTransferSigned (deInt32& a, deInt32& b)
    767 {
    768 	b >>= 1;
    769 	b |= a & 0x80;
    770 	a >>= 1;
    771 	a &= 0x3f;
    772 	if (isBitSet(a, 5))
    773 		a -= 0x40;
    774 }
    775 
    776 inline UVec4 clampedRGBA (const IVec4& rgba)
    777 {
    778 	return UVec4(de::clamp(rgba.x(), 0, 0xff),
    779 				 de::clamp(rgba.y(), 0, 0xff),
    780 				 de::clamp(rgba.z(), 0, 0xff),
    781 				 de::clamp(rgba.w(), 0, 0xff));
    782 }
    783 
    784 inline IVec4 blueContract (int r, int g, int b, int a)
    785 {
    786 	return IVec4((r+b)>>1, (g+b)>>1, b, a);
    787 }
    788 
    789 inline bool isColorEndpointModeHDR (deUint32 mode)
    790 {
    791 	return mode == 2	||
    792 		   mode == 3	||
    793 		   mode == 7	||
    794 		   mode == 11	||
    795 		   mode == 14	||
    796 		   mode == 15;
    797 }
    798 
    799 void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
    800 {
    801 	const deUint32 m10		= getBit(v1, 7) | (getBit(v2, 7) << 1);
    802 	const deUint32 m23		= getBits(v0, 6, 7);
    803 	const deUint32 majComp	= m10 != 3	? m10
    804 							: m23 != 3	? m23
    805 							:			  0;
    806 	const deUint32 mode		= m10 != 3	? m23
    807 							: m23 != 3	? 4
    808 							:			  5;
    809 
    810 	deInt32			red		= (deInt32)getBits(v0, 0, 5);
    811 	deInt32			green	= (deInt32)getBits(v1, 0, 4);
    812 	deInt32			blue	= (deInt32)getBits(v2, 0, 4);
    813 	deInt32			scale	= (deInt32)getBits(v3, 0, 4);
    814 
    815 	{
    816 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
    817 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
    818 
    819 		const deUint32	x0	= getBit(v1, 6);
    820 		const deUint32	x1	= getBit(v1, 5);
    821 		const deUint32	x2	= getBit(v2, 6);
    822 		const deUint32	x3	= getBit(v2, 5);
    823 		const deUint32	x4	= getBit(v3, 7);
    824 		const deUint32	x5	= getBit(v3, 6);
    825 		const deUint32	x6	= getBit(v3, 5);
    826 
    827 		deInt32&		R	= red;
    828 		deInt32&		G	= green;
    829 		deInt32&		B	= blue;
    830 		deInt32&		S	= scale;
    831 
    832 		switch (mode)
    833 		{
    834 			case 0: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,10,  R,6,  S,6,   S,5); break;
    835 			case 1: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  R,10,  R,9); break;
    836 			case 2: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,6,   S,7,  S,6,   S,5); break;
    837 			case 3: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  S,6,   S,5); break;
    838 			case 4: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  R,7,   S,5); break;
    839 			case 5: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  S,6,   S,5); break;
    840 			default:
    841 				DE_ASSERT(false);
    842 		}
    843 
    844 #undef ASSIGN_X_BITS
    845 #undef SHOR
    846 	}
    847 
    848 	static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
    849 	DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
    850 
    851 	red		<<= shiftAmounts[mode];
    852 	green	<<= shiftAmounts[mode];
    853 	blue	<<= shiftAmounts[mode];
    854 	scale	<<= shiftAmounts[mode];
    855 
    856 	if (mode != 5)
    857 	{
    858 		green	= red - green;
    859 		blue	= red - blue;
    860 	}
    861 
    862 	if (majComp == 1)
    863 		std::swap(red, green);
    864 	else if (majComp == 2)
    865 		std::swap(red, blue);
    866 
    867 	e0 = UVec4(de::clamp(red	- scale,	0, 0xfff),
    868 			   de::clamp(green	- scale,	0, 0xfff),
    869 			   de::clamp(blue	- scale,	0, 0xfff),
    870 			   0x780);
    871 
    872 	e1 = UVec4(de::clamp(red,				0, 0xfff),
    873 			   de::clamp(green,				0, 0xfff),
    874 			   de::clamp(blue,				0, 0xfff),
    875 			   0x780);
    876 }
    877 
    878 void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
    879 {
    880 	const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
    881 
    882 	if (major == 3)
    883 	{
    884 		e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
    885 		e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
    886 	}
    887 	else
    888 	{
    889 		const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
    890 
    891 		deInt32 a	= (deInt32)((getBit(v1, 6) << 8) | v0);
    892 		deInt32 c	= (deInt32)(getBits(v1, 0, 5));
    893 		deInt32 b0	= (deInt32)(getBits(v2, 0, 5));
    894 		deInt32 b1	= (deInt32)(getBits(v3, 0, 5));
    895 		deInt32 d0	= (deInt32)(getBits(v4, 0, 4));
    896 		deInt32 d1	= (deInt32)(getBits(v5, 0, 4));
    897 
    898 		{
    899 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
    900 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
    901 
    902 			const deUint32 x0 = getBit(v2, 6);
    903 			const deUint32 x1 = getBit(v3, 6);
    904 			const deUint32 x2 = getBit(v4, 6);
    905 			const deUint32 x3 = getBit(v5, 6);
    906 			const deUint32 x4 = getBit(v4, 5);
    907 			const deUint32 x5 = getBit(v5, 5);
    908 
    909 			switch (mode)
    910 			{
    911 				case 0: ASSIGN_X_BITS(b0,6,  b1,6,   d0,6,  d1,6,  d0,5,  d1,5); break;
    912 				case 1: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  d0,5,  d1,5); break;
    913 				case 2: ASSIGN_X_BITS(a,9,   c,6,    d0,6,  d1,6,  d0,5,  d1,5); break;
    914 				case 3: ASSIGN_X_BITS(b0,6,  b1,6,   a,9,   c,6,   d0,5,  d1,5); break;
    915 				case 4: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  a,9,   a,10); break;
    916 				case 5: ASSIGN_X_BITS(a,9,   a,10,   c,7,   c,6,   d0,5,  d1,5); break;
    917 				case 6: ASSIGN_X_BITS(b0,6,  b1,6,   a,11,  c,6,   a,9,   a,10); break;
    918 				case 7: ASSIGN_X_BITS(a,9,   a,10,   a,11,  c,6,   d0,5,  d1,5); break;
    919 				default:
    920 					DE_ASSERT(false);
    921 			}
    922 
    923 #undef ASSIGN_X_BITS
    924 #undef SHOR
    925 		}
    926 
    927 		static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
    928 		DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
    929 
    930 		d0 = signExtend(d0, numDBits[mode]);
    931 		d1 = signExtend(d1, numDBits[mode]);
    932 
    933 		const int shiftAmount = (mode >> 1) ^ 3;
    934 		a	<<= shiftAmount;
    935 		c	<<= shiftAmount;
    936 		b0	<<= shiftAmount;
    937 		b1	<<= shiftAmount;
    938 		d0	<<= shiftAmount;
    939 		d1	<<= shiftAmount;
    940 
    941 		e0 = UVec4(de::clamp(a-c,			0, 0xfff),
    942 				   de::clamp(a-b0-c-d0,		0, 0xfff),
    943 				   de::clamp(a-b1-c-d1,		0, 0xfff),
    944 				   0x780);
    945 
    946 		e1 = UVec4(de::clamp(a,				0, 0xfff),
    947 				   de::clamp(a-b0,			0, 0xfff),
    948 				   de::clamp(a-b1,			0, 0xfff),
    949 				   0x780);
    950 
    951 		if (major == 1)
    952 		{
    953 			std::swap(e0.x(), e0.y());
    954 			std::swap(e1.x(), e1.y());
    955 		}
    956 		else if (major == 2)
    957 		{
    958 			std::swap(e0.x(), e0.z());
    959 			std::swap(e1.x(), e1.z());
    960 		}
    961 	}
    962 }
    963 
    964 void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
    965 {
    966 	decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
    967 
    968 	const deUint32	mode	= (getBit(v7In, 7) << 1) | getBit(v6In, 7);
    969 	deInt32			v6		= (deInt32)getBits(v6In, 0, 6);
    970 	deInt32			v7		= (deInt32)getBits(v7In, 0, 6);
    971 
    972 	if (mode == 3)
    973 	{
    974 		e0.w() = v6 << 5;
    975 		e1.w() = v7 << 5;
    976 	}
    977 	else
    978 	{
    979 		v6 |= (v7 << (mode+1)) & 0x780;
    980 		v7 &= (0x3f >> mode);
    981 		v7 ^= 0x20 >> mode;
    982 		v7 -= 0x20 >> mode;
    983 		v6 <<= 4-mode;
    984 		v7 <<= 4-mode;
    985 
    986 		v7 += v6;
    987 		v7 = de::clamp(v7, 0, 0xfff);
    988 		e0.w() = v6;
    989 		e1.w() = v7;
    990 	}
    991 }
    992 
    993 void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
    994 {
    995 	int unquantizedNdx = 0;
    996 
    997 	for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
    998 	{
    999 		const deUint32		endpointMode	= endpointModes[partitionNdx];
   1000 		const deUint32*		v				= &unquantizedEndpoints[unquantizedNdx];
   1001 		UVec4&				e0				= dst[partitionNdx].e0;
   1002 		UVec4&				e1				= dst[partitionNdx].e1;
   1003 
   1004 		unquantizedNdx += computeNumColorEndpointValues(endpointMode);
   1005 
   1006 		switch (endpointMode)
   1007 		{
   1008 			case 0:
   1009 				e0 = UVec4(v[0], v[0], v[0], 0xff);
   1010 				e1 = UVec4(v[1], v[1], v[1], 0xff);
   1011 				break;
   1012 
   1013 			case 1:
   1014 			{
   1015 				const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
   1016 				const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5));
   1017 				e0 = UVec4(L0, L0, L0, 0xff);
   1018 				e1 = UVec4(L1, L1, L1, 0xff);
   1019 				break;
   1020 			}
   1021 
   1022 			case 2:
   1023 			{
   1024 				const deUint32 v1Gr		= v[1] >= v[0];
   1025 				const deUint32 y0		= v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
   1026 				const deUint32 y1		= v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
   1027 
   1028 				e0 = UVec4(y0, y0, y0, 0x780);
   1029 				e1 = UVec4(y1, y1, y1, 0x780);
   1030 				break;
   1031 			}
   1032 
   1033 			case 3:
   1034 			{
   1035 				const bool		m	= isBitSet(v[0], 7);
   1036 				const deUint32	y0	= m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
   1037 										: (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
   1038 				const deUint32	d	= m ? getBits(v[1], 0, 4) << 2
   1039 										: getBits(v[1], 0, 3) << 1;
   1040 				const deUint32	y1	= de::min(0xfffu, y0+d);
   1041 
   1042 				e0 = UVec4(y0, y0, y0, 0x780);
   1043 				e1 = UVec4(y1, y1, y1, 0x780);
   1044 				break;
   1045 			}
   1046 
   1047 			case 4:
   1048 				e0 = UVec4(v[0], v[0], v[0], v[2]);
   1049 				e1 = UVec4(v[1], v[1], v[1], v[3]);
   1050 				break;
   1051 
   1052 			case 5:
   1053 			{
   1054 				deInt32 v0 = (deInt32)v[0];
   1055 				deInt32 v1 = (deInt32)v[1];
   1056 				deInt32 v2 = (deInt32)v[2];
   1057 				deInt32 v3 = (deInt32)v[3];
   1058 				bitTransferSigned(v1, v0);
   1059 				bitTransferSigned(v3, v2);
   1060 
   1061 				e0 = clampedRGBA(IVec4(v0,		v0,		v0,		v2));
   1062 				e1 = clampedRGBA(IVec4(v0+v1,	v0+v1,	v0+v1,	v2+v3));
   1063 				break;
   1064 			}
   1065 
   1066 			case 6:
   1067 				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	0xff);
   1068 				e1 = UVec4(v[0],				v[1],				v[2],				0xff);
   1069 				break;
   1070 
   1071 			case 7:
   1072 				decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
   1073 				break;
   1074 
   1075 			case 8:
   1076 				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
   1077 				{
   1078 					e0 = UVec4(v[0], v[2], v[4], 0xff);
   1079 					e1 = UVec4(v[1], v[3], v[5], 0xff);
   1080 				}
   1081 				else
   1082 				{
   1083 					e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
   1084 					e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
   1085 				}
   1086 				break;
   1087 
   1088 			case 9:
   1089 			{
   1090 				deInt32 v0 = (deInt32)v[0];
   1091 				deInt32 v1 = (deInt32)v[1];
   1092 				deInt32 v2 = (deInt32)v[2];
   1093 				deInt32 v3 = (deInt32)v[3];
   1094 				deInt32 v4 = (deInt32)v[4];
   1095 				deInt32 v5 = (deInt32)v[5];
   1096 				bitTransferSigned(v1, v0);
   1097 				bitTransferSigned(v3, v2);
   1098 				bitTransferSigned(v5, v4);
   1099 
   1100 				if (v1+v3+v5 >= 0)
   1101 				{
   1102 					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		0xff));
   1103 					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	0xff));
   1104 				}
   1105 				else
   1106 				{
   1107 					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	0xff));
   1108 					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		0xff));
   1109 				}
   1110 				break;
   1111 			}
   1112 
   1113 			case 10:
   1114 				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	v[4]);
   1115 				e1 = UVec4(v[0],				v[1],				v[2],				v[5]);
   1116 				break;
   1117 
   1118 			case 11:
   1119 				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
   1120 				break;
   1121 
   1122 			case 12:
   1123 				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
   1124 				{
   1125 					e0 = UVec4(v[0], v[2], v[4], v[6]);
   1126 					e1 = UVec4(v[1], v[3], v[5], v[7]);
   1127 				}
   1128 				else
   1129 				{
   1130 					e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
   1131 					e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
   1132 				}
   1133 				break;
   1134 
   1135 			case 13:
   1136 			{
   1137 				deInt32 v0 = (deInt32)v[0];
   1138 				deInt32 v1 = (deInt32)v[1];
   1139 				deInt32 v2 = (deInt32)v[2];
   1140 				deInt32 v3 = (deInt32)v[3];
   1141 				deInt32 v4 = (deInt32)v[4];
   1142 				deInt32 v5 = (deInt32)v[5];
   1143 				deInt32 v6 = (deInt32)v[6];
   1144 				deInt32 v7 = (deInt32)v[7];
   1145 				bitTransferSigned(v1, v0);
   1146 				bitTransferSigned(v3, v2);
   1147 				bitTransferSigned(v5, v4);
   1148 				bitTransferSigned(v7, v6);
   1149 
   1150 				if (v1+v3+v5 >= 0)
   1151 				{
   1152 					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		v6));
   1153 					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	v6+v7));
   1154 				}
   1155 				else
   1156 				{
   1157 					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	v6+v7));
   1158 					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		v6));
   1159 				}
   1160 
   1161 				break;
   1162 			}
   1163 
   1164 			case 14:
   1165 				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
   1166 				e0.w() = v[6];
   1167 				e1.w() = v[7];
   1168 				break;
   1169 
   1170 			case 15:
   1171 				decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
   1172 				break;
   1173 
   1174 			default:
   1175 				DE_ASSERT(false);
   1176 		}
   1177 	}
   1178 }
   1179 
   1180 void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
   1181 {
   1182 	const int			colorEndpointDataStart = numPartitions == 1 ? 17 : 29;
   1183 	ISEDecodedResult	colorEndpointData[18];
   1184 
   1185 	{
   1186 		BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
   1187 		decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
   1188 	}
   1189 
   1190 	{
   1191 		deUint32 unquantizedEndpoints[18];
   1192 		unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
   1193 		decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
   1194 	}
   1195 }
   1196 
   1197 void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
   1198 {
   1199 	const int			numWeights	= computeNumWeights(blockMode);
   1200 	const ISEParams&	iseParams	= blockMode.weightISEParams;
   1201 
   1202 	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
   1203 	{
   1204 		const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
   1205 
   1206 		if (rangeCase == 0 || rangeCase == 1)
   1207 		{
   1208 			static const deUint32 map0[3]	= { 0, 32, 63 };
   1209 			static const deUint32 map1[5]	= { 0, 16, 32, 47, 63 };
   1210 			const deUint32* const map		= rangeCase == 0 ? &map0[0] : &map1[0];
   1211 			for (int i = 0; i < numWeights; i++)
   1212 			{
   1213 				DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
   1214 				dst[i] = map[weightGrid[i].v];
   1215 			}
   1216 		}
   1217 		else
   1218 		{
   1219 			DE_ASSERT(rangeCase <= 6);
   1220 			static const deUint32	Ca[5]	= { 50, 28, 23, 13, 11 };
   1221 			const deUint32			C		= Ca[rangeCase-2];
   1222 
   1223 			for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
   1224 			{
   1225 				const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
   1226 				const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
   1227 				const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
   1228 
   1229 				const deUint32 A = a == 0 ? 0 : (1<<7)-1;
   1230 				const deUint32 B = rangeCase == 2 ? 0
   1231 								 : rangeCase == 3 ? 0
   1232 								 : rangeCase == 4 ? (b << 6) |					(b << 2) |				(b << 0)
   1233 								 : rangeCase == 5 ? (b << 6) |								(b << 1)
   1234 								 : rangeCase == 6 ? (c << 6) | (b << 5) |					(c << 1) |	(b << 0)
   1235 								 : (deUint32)-1;
   1236 
   1237 				dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
   1238 			}
   1239 		}
   1240 	}
   1241 	else
   1242 	{
   1243 		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
   1244 
   1245 		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
   1246 			dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
   1247 	}
   1248 
   1249 	for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
   1250 		dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
   1251 
   1252 	// Initialize nonexistent weights to poison values
   1253 	for (int weightNdx = numWeights; weightNdx < 64; weightNdx++)
   1254 		dst[weightNdx] = ~0u;
   1255 
   1256 }
   1257 
   1258 void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
   1259 {
   1260 	const int		numWeightsPerTexel	= blockMode.isDualPlane ? 2 : 1;
   1261 	const deUint32	scaleX				= (1024 + blockWidth/2) / (blockWidth-1);
   1262 	const deUint32	scaleY				= (1024 + blockHeight/2) / (blockHeight-1);
   1263 
   1264 	DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= DE_LENGTH_OF_ARRAY(unquantizedWeights));
   1265 
   1266 	for (int texelY = 0; texelY < blockHeight; texelY++)
   1267 	{
   1268 		for (int texelX = 0; texelX < blockWidth; texelX++)
   1269 		{
   1270 			const deUint32 gX	= (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
   1271 			const deUint32 gY	= (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
   1272 			const deUint32 jX	= gX >> 4;
   1273 			const deUint32 jY	= gY >> 4;
   1274 			const deUint32 fX	= gX & 0xf;
   1275 			const deUint32 fY	= gY & 0xf;
   1276 
   1277 			const deUint32 w11	= (fX*fY + 8) >> 4;
   1278 			const deUint32 w10	= fY - w11;
   1279 			const deUint32 w01	= fX - w11;
   1280 			const deUint32 w00	= 16 - fX - fY + w11;
   1281 
   1282 			const deUint32 i00	= jY*blockMode.weightGridWidth + jX;
   1283 			const deUint32 i01	= i00 + 1;
   1284 			const deUint32 i10	= i00 + blockMode.weightGridWidth;
   1285 			const deUint32 i11	= i00 + blockMode.weightGridWidth + 1;
   1286 
   1287 			// These addresses can be out of bounds, but respective weights will be 0 then.
   1288 			DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0);
   1289 			DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0);
   1290 			DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0);
   1291 			DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0);
   1292 
   1293 			for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
   1294 			{
   1295 				// & 0x3f clamps address to bounds of unquantizedWeights
   1296 				const deUint32 p00	= unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
   1297 				const deUint32 p01	= unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
   1298 				const deUint32 p10	= unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
   1299 				const deUint32 p11	= unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
   1300 
   1301 				dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
   1302 			}
   1303 		}
   1304 	}
   1305 }
   1306 
   1307 void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
   1308 {
   1309 	ISEDecodedResult weightGrid[64];
   1310 
   1311 	{
   1312 		BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
   1313 		decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
   1314 	}
   1315 
   1316 	{
   1317 		deUint32 unquantizedWeights[64];
   1318 		unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
   1319 		interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode);
   1320 	}
   1321 }
   1322 
   1323 inline deUint32 hash52 (deUint32 v)
   1324 {
   1325 	deUint32 p = v;
   1326 	p ^= p >> 15;	p -= p << 17;	p += p << 7;	p += p << 4;
   1327 	p ^= p >>  5;	p += p << 16;	p ^= p >> 7;	p ^= p >> 3;
   1328 	p ^= p <<  6;	p ^= p >> 17;
   1329 	return p;
   1330 }
   1331 
   1332 int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
   1333 {
   1334 	DE_ASSERT(zIn == 0);
   1335 	const deUint32	x		= smallBlock ? xIn << 1 : xIn;
   1336 	const deUint32	y		= smallBlock ? yIn << 1 : yIn;
   1337 	const deUint32	z		= smallBlock ? zIn << 1 : zIn;
   1338 	const deUint32	seed	= seedIn + 1024*(numPartitions-1);
   1339 	const deUint32	rnum	= hash52(seed);
   1340 	deUint8			seed1	= (deUint8)( rnum							& 0xf);
   1341 	deUint8			seed2	= (deUint8)((rnum >>  4)					& 0xf);
   1342 	deUint8			seed3	= (deUint8)((rnum >>  8)					& 0xf);
   1343 	deUint8			seed4	= (deUint8)((rnum >> 12)					& 0xf);
   1344 	deUint8			seed5	= (deUint8)((rnum >> 16)					& 0xf);
   1345 	deUint8			seed6	= (deUint8)((rnum >> 20)					& 0xf);
   1346 	deUint8			seed7	= (deUint8)((rnum >> 24)					& 0xf);
   1347 	deUint8			seed8	= (deUint8)((rnum >> 28)					& 0xf);
   1348 	deUint8			seed9	= (deUint8)((rnum >> 18)					& 0xf);
   1349 	deUint8			seed10	= (deUint8)((rnum >> 22)					& 0xf);
   1350 	deUint8			seed11	= (deUint8)((rnum >> 26)					& 0xf);
   1351 	deUint8			seed12	= (deUint8)(((rnum >> 30) | (rnum << 2))	& 0xf);
   1352 
   1353 	seed1  = (deUint8)(seed1  * seed1 );
   1354 	seed2  = (deUint8)(seed2  * seed2 );
   1355 	seed3  = (deUint8)(seed3  * seed3 );
   1356 	seed4  = (deUint8)(seed4  * seed4 );
   1357 	seed5  = (deUint8)(seed5  * seed5 );
   1358 	seed6  = (deUint8)(seed6  * seed6 );
   1359 	seed7  = (deUint8)(seed7  * seed7 );
   1360 	seed8  = (deUint8)(seed8  * seed8 );
   1361 	seed9  = (deUint8)(seed9  * seed9 );
   1362 	seed10 = (deUint8)(seed10 * seed10);
   1363 	seed11 = (deUint8)(seed11 * seed11);
   1364 	seed12 = (deUint8)(seed12 * seed12);
   1365 
   1366 	const int shA = (seed & 2) != 0		? 4		: 5;
   1367 	const int shB = numPartitions == 3	? 6		: 5;
   1368 	const int sh1 = (seed & 1) != 0		? shA	: shB;
   1369 	const int sh2 = (seed & 1) != 0		? shB	: shA;
   1370 	const int sh3 = (seed & 0x10) != 0	? sh1	: sh2;
   1371 
   1372 	seed1  = (deUint8)(seed1  >> sh1);
   1373 	seed2  = (deUint8)(seed2  >> sh2);
   1374 	seed3  = (deUint8)(seed3  >> sh1);
   1375 	seed4  = (deUint8)(seed4  >> sh2);
   1376 	seed5  = (deUint8)(seed5  >> sh1);
   1377 	seed6  = (deUint8)(seed6  >> sh2);
   1378 	seed7  = (deUint8)(seed7  >> sh1);
   1379 	seed8  = (deUint8)(seed8  >> sh2);
   1380 	seed9  = (deUint8)(seed9  >> sh3);
   1381 	seed10 = (deUint8)(seed10 >> sh3);
   1382 	seed11 = (deUint8)(seed11 >> sh3);
   1383 	seed12 = (deUint8)(seed12 >> sh3);
   1384 
   1385 	const int a =						0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
   1386 	const int b =						0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
   1387 	const int c = numPartitions >= 3 ?	0x3f & (seed5*x + seed6*y + seed9*z  + (rnum >>  6))	: 0;
   1388 	const int d = numPartitions >= 4 ?	0x3f & (seed7*x + seed8*y + seed10*z + (rnum >>  2))	: 0;
   1389 
   1390 	return a >= b && a >= c && a >= d	? 0
   1391 		 : b >= c && b >= d				? 1
   1392 		 : c >= d						? 2
   1393 		 :								  3;
   1394 }
   1395 
   1396 DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
   1397 								 int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
   1398 {
   1399 	const bool			smallBlock	= blockWidth*blockHeight < 31;
   1400 	DecompressResult	result		= DECOMPRESS_RESULT_VALID_BLOCK;
   1401 	bool				isHDREndpoint[4];
   1402 
   1403 	for (int i = 0; i < numPartitions; i++)
   1404 		isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
   1405 
   1406 	for (int texelY = 0; texelY < blockHeight; texelY++)
   1407 	for (int texelX = 0; texelX < blockWidth; texelX++)
   1408 	{
   1409 		const int				texelNdx			= texelY*blockWidth + texelX;
   1410 		const int				colorEndpointNdx	= numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
   1411 		DE_ASSERT(colorEndpointNdx < numPartitions);
   1412 		const UVec4&			e0					= colorEndpoints[colorEndpointNdx].e0;
   1413 		const UVec4&			e1					= colorEndpoints[colorEndpointNdx].e1;
   1414 		const TexelWeightPair&	weight				= texelWeights[texelNdx];
   1415 
   1416 		if (isLDRMode && isHDREndpoint[colorEndpointNdx])
   1417 		{
   1418 			if (isSRGB)
   1419 			{
   1420 				((deUint8*)dst)[texelNdx*4 + 0] = 0xff;
   1421 				((deUint8*)dst)[texelNdx*4 + 1] = 0;
   1422 				((deUint8*)dst)[texelNdx*4 + 2] = 0xff;
   1423 				((deUint8*)dst)[texelNdx*4 + 3] = 0xff;
   1424 			}
   1425 			else
   1426 			{
   1427 				((float*)dst)[texelNdx*4 + 0] = 1.0f;
   1428 				((float*)dst)[texelNdx*4 + 1] = 0;
   1429 				((float*)dst)[texelNdx*4 + 2] = 1.0f;
   1430 				((float*)dst)[texelNdx*4 + 3] = 1.0f;
   1431 			}
   1432 
   1433 			result = DECOMPRESS_RESULT_ERROR;
   1434 		}
   1435 		else
   1436 		{
   1437 			for (int channelNdx = 0; channelNdx < 4; channelNdx++)
   1438 			{
   1439 				if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
   1440 				{
   1441 					const deUint32 c0	= (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
   1442 					const deUint32 c1	= (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
   1443 					const deUint32 w	= weight.w[ccs == channelNdx ? 1 : 0];
   1444 					const deUint32 c	= (c0*(64-w) + c1*w + 32) / 64;
   1445 
   1446 					if (isSRGB)
   1447 						((deUint8*)dst)[texelNdx*4 + channelNdx] = (deUint8)((c & 0xff00) >> 8);
   1448 					else
   1449 						((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f;
   1450 				}
   1451 				else
   1452 				{
   1453 					DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
   1454 					const deUint32		c0	= e0[channelNdx] << 4;
   1455 					const deUint32		c1	= e1[channelNdx] << 4;
   1456 					const deUint32		w	= weight.w[ccs == channelNdx ? 1 : 0];
   1457 					const deUint32		c	= (c0*(64-w) + c1*w + 32) / 64;
   1458 					const deUint32		e	= getBits(c, 11, 15);
   1459 					const deUint32		m	= getBits(c, 0, 10);
   1460 					const deUint32		mt	= m < 512		? 3*m
   1461 											: m >= 1536		? 5*m - 2048
   1462 											:				  4*m - 512;
   1463 					const deFloat16		cf	= (deFloat16)((e << 10) + (mt >> 3));
   1464 
   1465 					((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
   1466 				}
   1467 			}
   1468 		}
   1469 	}
   1470 
   1471 	return result;
   1472 }
   1473 
   1474 DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
   1475 {
   1476 	DE_ASSERT(isLDR || !isSRGB);
   1477 
   1478 	// Decode block mode.
   1479 
   1480 	const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
   1481 
   1482 	// Check for block mode errors.
   1483 
   1484 	if (blockMode.isError)
   1485 	{
   1486 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
   1487 		return DECOMPRESS_RESULT_ERROR;
   1488 	}
   1489 
   1490 	// Separate path for void-extent.
   1491 
   1492 	if (blockMode.isVoidExtent)
   1493 		return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
   1494 
   1495 	// Compute weight grid values.
   1496 
   1497 	const int numWeights			= computeNumWeights(blockMode);
   1498 	const int numWeightDataBits		= computeNumRequiredBits(blockMode.weightISEParams, numWeights);
   1499 	const int numPartitions			= (int)blockData.getBits(11, 12) + 1;
   1500 
   1501 	// Check for errors in weight grid, partition and dual-plane parameters.
   1502 
   1503 	if (numWeights > 64								||
   1504 		numWeightDataBits > 96						||
   1505 		numWeightDataBits < 24						||
   1506 		blockMode.weightGridWidth > blockWidth		||
   1507 		blockMode.weightGridHeight > blockHeight	||
   1508 		(numPartitions == 4 && blockMode.isDualPlane))
   1509 	{
   1510 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
   1511 		return DECOMPRESS_RESULT_ERROR;
   1512 	}
   1513 
   1514 	// Compute number of bits available for color endpoint data.
   1515 
   1516 	const bool	isSingleUniqueCem			= numPartitions == 1 || blockData.getBits(23, 24) == 0;
   1517 	const int	numConfigDataBits			= (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
   1518 											  (blockMode.isDualPlane ? 2 : 0);
   1519 	const int	numBitsForColorEndpoints	= 128 - numWeightDataBits - numConfigDataBits;
   1520 	const int	extraCemBitsStart			= 127 - numWeightDataBits - (isSingleUniqueCem		? -1
   1521 																		: numPartitions == 4	? 7
   1522 																		: numPartitions == 3	? 4
   1523 																		: numPartitions == 2	? 1
   1524 																		: 0);
   1525 	// Decode color endpoint modes.
   1526 
   1527 	deUint32 colorEndpointModes[4];
   1528 	decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
   1529 
   1530 	const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
   1531 
   1532 	// Check for errors in color endpoint value count.
   1533 
   1534 	if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13*numColorEndpointValues, 5))
   1535 	{
   1536 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
   1537 		return DECOMPRESS_RESULT_ERROR;
   1538 	}
   1539 
   1540 	// Compute color endpoints.
   1541 
   1542 	ColorEndpointPair colorEndpoints[4];
   1543 	computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
   1544 						  computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
   1545 
   1546 	// Compute texel weights.
   1547 
   1548 	TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT];
   1549 	computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
   1550 
   1551 	// Set texel colors.
   1552 
   1553 	const int		ccs						= blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
   1554 	const deUint32	partitionIndexSeed		= numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1;
   1555 
   1556 	return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
   1557 }
   1558 
   1559 void decompress (const PixelBufferAccess& dst, const deUint8* data, bool isSRGB, bool isLDR)
   1560 {
   1561 	DE_ASSERT(isLDR || !isSRGB);
   1562 
   1563 	const int blockWidth = dst.getWidth();
   1564 	const int blockHeight = dst.getHeight();
   1565 
   1566 	union
   1567 	{
   1568 		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
   1569 		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
   1570 	} decompressedBuffer;
   1571 
   1572 	const Block128 blockData(data);
   1573 	decompressBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0],
   1574 					blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR);
   1575 
   1576 	if (isSRGB)
   1577 	{
   1578 		for (int i = 0; i < blockHeight; i++)
   1579 		for (int j = 0; j < blockWidth; j++)
   1580 		{
   1581 			dst.setPixel(IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0],
   1582 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1],
   1583 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2],
   1584 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), j, i);
   1585 		}
   1586 	}
   1587 	else
   1588 	{
   1589 		for (int i = 0; i < blockHeight; i++)
   1590 		for (int j = 0; j < blockWidth; j++)
   1591 		{
   1592 			dst.setPixel(Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0],
   1593 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1],
   1594 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2],
   1595 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), j, i);
   1596 		}
   1597 	}
   1598 }
   1599 
   1600 // Helper class for setting bits in a 128-bit block.
   1601 class AssignBlock128
   1602 {
   1603 private:
   1604 	typedef deUint64 Word;
   1605 
   1606 	enum
   1607 	{
   1608 		WORD_BYTES	= sizeof(Word),
   1609 		WORD_BITS	= 8*WORD_BYTES,
   1610 		NUM_WORDS	= 128 / WORD_BITS
   1611 	};
   1612 
   1613 	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
   1614 
   1615 public:
   1616 	AssignBlock128 (void)
   1617 	{
   1618 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
   1619 			m_words[wordNdx] = 0;
   1620 	}
   1621 
   1622 	void setBit (int ndx, deUint32 val)
   1623 	{
   1624 		DE_ASSERT(de::inBounds(ndx, 0, 128));
   1625 		DE_ASSERT((val & 1) == val);
   1626 		const int wordNdx	= ndx / WORD_BITS;
   1627 		const int bitNdx	= ndx % WORD_BITS;
   1628 		m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx);
   1629 	}
   1630 
   1631 	void setBits (int low, int high, deUint32 bits)
   1632 	{
   1633 		DE_ASSERT(de::inBounds(low, 0, 128));
   1634 		DE_ASSERT(de::inBounds(high, 0, 128));
   1635 		DE_ASSERT(de::inRange(high-low+1, 0, 32));
   1636 		DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits);
   1637 
   1638 		if (high-low+1 == 0)
   1639 			return;
   1640 
   1641 		const int word0Ndx		= low / WORD_BITS;
   1642 		const int word1Ndx		= high / WORD_BITS;
   1643 		const int lowNdxInW0	= low % WORD_BITS;
   1644 
   1645 		if (word0Ndx == word1Ndx)
   1646 			m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0);
   1647 		else
   1648 		{
   1649 			DE_ASSERT(word1Ndx == word0Ndx + 1);
   1650 
   1651 			const int	highNdxInW1			= high % WORD_BITS;
   1652 			const int	numBitsToSetInW0	= WORD_BITS - lowNdxInW0;
   1653 			const Word	bitsLowMask			= ((Word)1 << numBitsToSetInW0) - 1;
   1654 
   1655 			m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1))			| (((Word)bits & bitsLowMask) << lowNdxInW0);
   1656 			m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1))	| (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0);
   1657 		}
   1658 	}
   1659 
   1660 	void assignToMemory (deUint8* dst) const
   1661 	{
   1662 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
   1663 		{
   1664 			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
   1665 				dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff);
   1666 		}
   1667 	}
   1668 
   1669 	void pushBytesToVector (vector<deUint8>& dst) const
   1670 	{
   1671 		const int assignStartIndex = (int)dst.size();
   1672 		dst.resize(dst.size() + BLOCK_SIZE_BYTES);
   1673 		assignToMemory(&dst[assignStartIndex]);
   1674 	}
   1675 
   1676 private:
   1677 	Word m_words[NUM_WORDS];
   1678 };
   1679 
   1680 // A helper for sequential access into a AssignBlock128.
   1681 class BitAssignAccessStream
   1682 {
   1683 public:
   1684 	BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward)
   1685 		: m_dst				(dst)
   1686 		, m_startNdxInSrc	(startNdxInSrc)
   1687 		, m_length			(length)
   1688 		, m_forward			(forward)
   1689 		, m_ndx				(0)
   1690 	{
   1691 	}
   1692 
   1693 	// Set the next num bits. Bits at positions greater than or equal to m_length are not touched.
   1694 	void setNext (int num, deUint32 bits)
   1695 	{
   1696 		DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits);
   1697 
   1698 		if (num == 0 || m_ndx >= m_length)
   1699 			return;
   1700 
   1701 		const int		end				= m_ndx + num;
   1702 		const int		numBitsToDst	= de::max(0, de::min(m_length, end) - m_ndx);
   1703 		const int		low				= m_ndx;
   1704 		const int		high			= m_ndx + numBitsToDst - 1;
   1705 		const deUint32	actualBits		= getBits(bits, 0, numBitsToDst-1);
   1706 
   1707 		m_ndx += num;
   1708 
   1709 		return m_forward ? m_dst.setBits(m_startNdxInSrc + low,  m_startNdxInSrc + high, actualBits)
   1710 						 : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst));
   1711 	}
   1712 
   1713 private:
   1714 	AssignBlock128&		m_dst;
   1715 	const int			m_startNdxInSrc;
   1716 	const int			m_length;
   1717 	const bool			m_forward;
   1718 
   1719 	int					m_ndx;
   1720 };
   1721 
   1722 struct VoidExtentParams
   1723 {
   1724 	DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
   1725 	bool		isHDR;
   1726 	deUint16	r;
   1727 	deUint16	g;
   1728 	deUint16	b;
   1729 	deUint16	a;
   1730 	// \note Currently extent coordinates are all set to all-ones.
   1731 
   1732 	VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {}
   1733 };
   1734 
   1735 static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params)
   1736 {
   1737 	AssignBlock128 block;
   1738 
   1739 	block.setBits(0, 8, 0x1fc); // \note Marks void-extent block.
   1740 	block.setBit(9, params.isHDR);
   1741 	block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose.
   1742 
   1743 	// Extent coordinates - currently all-ones.
   1744 	block.setBits(12, 24, 0x1fff);
   1745 	block.setBits(25, 37, 0x1fff);
   1746 	block.setBits(38, 50, 0x1fff);
   1747 	block.setBits(51, 63, 0x1fff);
   1748 
   1749 	DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) &&
   1750 								!isFloat16InfOrNan(params.g) &&
   1751 								!isFloat16InfOrNan(params.b) &&
   1752 								!isFloat16InfOrNan(params.a)));
   1753 
   1754 	block.setBits(64,  79,  params.r);
   1755 	block.setBits(80,  95,  params.g);
   1756 	block.setBits(96,  111, params.b);
   1757 	block.setBits(112, 127, params.a);
   1758 
   1759 	return block;
   1760 }
   1761 
   1762 // An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the
   1763 // range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed
   1764 // so we can test all possible values of T and Q in a block, since multiple T or Q values may map
   1765 // to the same set of decoded values.
   1766 struct ISEInput
   1767 {
   1768 	struct Block
   1769 	{
   1770 		deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block.
   1771 		deUint32 bitValues[5];
   1772 	};
   1773 
   1774 	bool isGivenInBlockForm;
   1775 	union
   1776 	{
   1777 		//!< \note 64 comes from the maximum number of weight values in an ASTC block.
   1778 		deUint32	plain[64];
   1779 		Block		block[64];
   1780 	} value;
   1781 
   1782 	ISEInput (void)
   1783 		: isGivenInBlockForm (false)
   1784 	{
   1785 	}
   1786 };
   1787 
   1788 static inline deUint32 computeISERangeMax (const ISEParams& iseParams)
   1789 {
   1790 	switch (iseParams.mode)
   1791 	{
   1792 		case ISEMODE_TRIT:			return (1u << iseParams.numBits) * 3 - 1;
   1793 		case ISEMODE_QUINT:			return (1u << iseParams.numBits) * 5 - 1;
   1794 		case ISEMODE_PLAIN_BIT:		return (1u << iseParams.numBits)     - 1;
   1795 		default:
   1796 			DE_ASSERT(false);
   1797 			return -1;
   1798 	}
   1799 }
   1800 
   1801 struct NormalBlockParams
   1802 {
   1803 	int					weightGridWidth;
   1804 	int					weightGridHeight;
   1805 	ISEParams			weightISEParams;
   1806 	bool				isDualPlane;
   1807 	deUint32			ccs; //! \note Irrelevant if !isDualPlane.
   1808 	int					numPartitions;
   1809 	deUint32			colorEndpointModes[4];
   1810 	// \note Below members are irrelevant if numPartitions == 1.
   1811 	bool				isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0].
   1812 	deUint32			partitionSeed;
   1813 
   1814 	NormalBlockParams (void)
   1815 		: weightGridWidth			(-1)
   1816 		, weightGridHeight			(-1)
   1817 		, weightISEParams			(ISEMODE_LAST, -1)
   1818 		, isDualPlane				(true)
   1819 		, ccs						((deUint32)-1)
   1820 		, numPartitions				(-1)
   1821 		, isMultiPartSingleCemMode	(false)
   1822 		, partitionSeed				((deUint32)-1)
   1823 	{
   1824 		colorEndpointModes[0] = 0;
   1825 		colorEndpointModes[1] = 0;
   1826 		colorEndpointModes[2] = 0;
   1827 		colorEndpointModes[3] = 0;
   1828 	}
   1829 };
   1830 
   1831 struct NormalBlockISEInputs
   1832 {
   1833 	ISEInput weight;
   1834 	ISEInput endpoint;
   1835 
   1836 	NormalBlockISEInputs (void)
   1837 		: weight	()
   1838 		, endpoint	()
   1839 	{
   1840 	}
   1841 };
   1842 
   1843 static inline int computeNumWeights (const NormalBlockParams& params)
   1844 {
   1845 	return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1);
   1846 }
   1847 
   1848 static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params)
   1849 {
   1850 	const int numWeightBits			= computeNumRequiredBits(params.weightISEParams, computeNumWeights(params));
   1851 	const int numConfigDataBits		= (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) +
   1852 									  (params.isDualPlane ? 2 : 0);
   1853 
   1854 	return 128 - numWeightBits - numConfigDataBits;
   1855 }
   1856 
   1857 static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode)
   1858 {
   1859 	if (isMultiPartSingleCemMode)
   1860 		return numPartitions * computeNumColorEndpointValues(endpointModes[0]);
   1861 	else
   1862 	{
   1863 		int result = 0;
   1864 		for (int i = 0; i < numPartitions; i++)
   1865 			result += computeNumColorEndpointValues(endpointModes[i]);
   1866 		return result;
   1867 	}
   1868 }
   1869 
   1870 static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight)
   1871 {
   1872 	const int numWeights				= computeNumWeights(params);
   1873 	const int numWeightBits				= computeNumRequiredBits(params.weightISEParams, numWeights);
   1874 	const int numColorEndpointValues	= computeNumColorEndpointValues(&params.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode);
   1875 	const int numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(params);
   1876 
   1877 	return numWeights <= 64										&&
   1878 		   de::inRange(numWeightBits, 24, 96)					&&
   1879 		   params.weightGridWidth <= blockWidth					&&
   1880 		   params.weightGridHeight <= blockHeight				&&
   1881 		   !(params.numPartitions == 4 && params.isDualPlane)	&&
   1882 		   numColorEndpointValues <= 18							&&
   1883 		   numBitsForColorEndpoints >= deDivRoundUp32(13*numColorEndpointValues, 5);
   1884 }
   1885 
   1886 // Write bits 0 to 10 of an ASTC block.
   1887 static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams)
   1888 {
   1889 	const deUint32	d = blockParams.isDualPlane != 0;
   1890 	// r and h initialized in switch below.
   1891 	deUint32		r;
   1892 	deUint32		h;
   1893 	// a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below.
   1894 	deUint32		a = (deUint32)-1;
   1895 	deUint32		b = (deUint32)-1;
   1896 	int				blockModeLayoutNdx;
   1897 
   1898 	// Find the values of r and h (ISE range).
   1899 	switch (computeISERangeMax(blockParams.weightISEParams))
   1900 	{
   1901 		case 1:		r = 2; h = 0;	break;
   1902 		case 2:		r = 3; h = 0;	break;
   1903 		case 3:		r = 4; h = 0;	break;
   1904 		case 4:		r = 5; h = 0;	break;
   1905 		case 5:		r = 6; h = 0;	break;
   1906 		case 7:		r = 7; h = 0;	break;
   1907 
   1908 		case 9:		r = 2; h = 1;	break;
   1909 		case 11:	r = 3; h = 1;	break;
   1910 		case 15:	r = 4; h = 1;	break;
   1911 		case 19:	r = 5; h = 1;	break;
   1912 		case 23:	r = 6; h = 1;	break;
   1913 		case 31:	r = 7; h = 1;	break;
   1914 
   1915 		default:
   1916 			DE_ASSERT(false);
   1917 			r = (deUint32)-1;
   1918 			h = (deUint32)-1;
   1919 	}
   1920 
   1921 	// Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec.
   1922 
   1923 	{
   1924 		enum BlockModeLayoutABVariable { Z=0, A=1, B=2 };
   1925 
   1926 		static const struct BlockModeLayout
   1927 		{
   1928 			int							aNumBits;
   1929 			int							bNumBits;
   1930 			BlockModeLayoutABVariable	gridWidthVariableTerm;
   1931 			int							gridWidthConstantTerm;
   1932 			BlockModeLayoutABVariable	gridHeightVariableTerm;
   1933 			int							gridHeightConstantTerm;
   1934 		} blockModeLayouts[] =
   1935 		{
   1936 			{ 2, 2,   B,  4,   A,  2},
   1937 			{ 2, 2,   B,  8,   A,  2},
   1938 			{ 2, 2,   A,  2,   B,  8},
   1939 			{ 2, 1,   A,  2,   B,  6},
   1940 			{ 2, 1,   B,  2,   A,  2},
   1941 			{ 2, 0,   Z, 12,   A,  2},
   1942 			{ 2, 0,   A,  2,   Z, 12},
   1943 			{ 0, 0,   Z,  6,   Z, 10},
   1944 			{ 0, 0,   Z, 10,   Z,  6},
   1945 			{ 2, 2,   A,  6,   B,  6}
   1946 		};
   1947 
   1948 		for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++)
   1949 		{
   1950 			const BlockModeLayout&	layout					= blockModeLayouts[blockModeLayoutNdx];
   1951 			const int				aMax					= (1 << layout.aNumBits) - 1;
   1952 			const int				bMax					= (1 << layout.bNumBits) - 1;
   1953 			const int				variableOffsetsMax[3]	= { 0, aMax, bMax };
   1954 			const int				widthMin				= layout.gridWidthConstantTerm;
   1955 			const int				heightMin				= layout.gridHeightConstantTerm;
   1956 			const int				widthMax				= widthMin  + variableOffsetsMax[layout.gridWidthVariableTerm];
   1957 			const int				heightMax				= heightMin + variableOffsetsMax[layout.gridHeightVariableTerm];
   1958 
   1959 			DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z);
   1960 
   1961 			if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) &&
   1962 				de::inRange(blockParams.weightGridHeight, heightMin, heightMax))
   1963 			{
   1964 				deUint32	dummy			= 0;
   1965 				deUint32&	widthVariable	= layout.gridWidthVariableTerm == A  ? a : layout.gridWidthVariableTerm == B  ? b : dummy;
   1966 				deUint32&	heightVariable	= layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : dummy;
   1967 
   1968 				widthVariable	= blockParams.weightGridWidth  - layout.gridWidthConstantTerm;
   1969 				heightVariable	= blockParams.weightGridHeight - layout.gridHeightConstantTerm;
   1970 
   1971 				break;
   1972 			}
   1973 		}
   1974 	}
   1975 
   1976 	// Set block mode bits.
   1977 
   1978 	const deUint32 a0 = getBit(a, 0);
   1979 	const deUint32 a1 = getBit(a, 1);
   1980 	const deUint32 b0 = getBit(b, 0);
   1981 	const deUint32 b1 = getBit(b, 1);
   1982 	const deUint32 r0 = getBit(r, 0);
   1983 	const deUint32 r1 = getBit(r, 1);
   1984 	const deUint32 r2 = getBit(r, 2);
   1985 
   1986 #define SB(NDX, VAL) dst.setBit((NDX), (VAL))
   1987 #define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false)
   1988 
   1989 	switch (blockModeLayoutNdx)
   1990 	{
   1991 		case 0: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  0,  r2, r1);									break;
   1992 		case 1: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  1,  r2, r1);									break;
   1993 		case 2: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 1,  0,  r2, r1);									break;
   1994 		case 3: ASSIGN_BITS(d,  h,   0,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
   1995 		case 4: ASSIGN_BITS(d,  h,   1,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
   1996 		case 5: ASSIGN_BITS(d,  h,   0,  0, a1, a0, r0, r2, r1,  0,  0);									break;
   1997 		case 6: ASSIGN_BITS(d,  h,   0,  1, a1, a0, r0, r2, r1,  0,  0);									break;
   1998 		case 7: ASSIGN_BITS(d,  h,   1,  1,  0,  0, r0, r2, r1,  0,  0);									break;
   1999 		case 8: ASSIGN_BITS(d,  h,   1,  1,  0,  1, r0, r2, r1,  0,  0);									break;
   2000 		case 9: ASSIGN_BITS(b1, b0,  1,  0, a1, a0, r0, r2, r1,  0,  0); DE_ASSERT(d == 0 && h == 0);		break;
   2001 		default:
   2002 			DE_ASSERT(false);
   2003 	}
   2004 
   2005 #undef ASSIGN_BITS
   2006 #undef SB
   2007 }
   2008 
   2009 // Write color endpoint mode data of an ASTC block.
   2010 static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart)
   2011 {
   2012 	if (numPartitions == 1)
   2013 		dst.setBits(13, 16, colorEndpointModes[0]);
   2014 	else
   2015 	{
   2016 		if (isMultiPartSingleCemMode)
   2017 		{
   2018 			dst.setBits(23, 24, 0);
   2019 			dst.setBits(25, 28, colorEndpointModes[0]);
   2020 		}
   2021 		else
   2022 		{
   2023 			DE_ASSERT(numPartitions > 0);
   2024 			const deUint32 minCem				= *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
   2025 			const deUint32 maxCem				= *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
   2026 			const deUint32 minCemClass			= minCem/4;
   2027 			const deUint32 maxCemClass			= maxCem/4;
   2028 			DE_ASSERT(maxCemClass - minCemClass <= 1);
   2029 			DE_UNREF(minCemClass); // \note For non-debug builds.
   2030 			const deUint32 highLevelSelector	= de::max(1u, maxCemClass);
   2031 
   2032 			dst.setBits(23, 24, highLevelSelector);
   2033 
   2034 			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
   2035 			{
   2036 				const deUint32 c			= colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0;
   2037 				const deUint32 m			= colorEndpointModes[partNdx] % 4;
   2038 				const deUint32 lowMBit0Ndx	= numPartitions + 2*partNdx;
   2039 				const deUint32 lowMBit1Ndx	= numPartitions + 2*partNdx + 1;
   2040 				dst.setBit(25 + partNdx, c);
   2041 				dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0));
   2042 				dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1));
   2043 			}
   2044 		}
   2045 	}
   2046 }
   2047 
   2048 static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
   2049 {
   2050 	// tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded.
   2051 	static const deUint32 tritBlockTValue[3][3][3][3][3] =
   2052 	{
   2053 		{
   2054 			{{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}},
   2055 			{{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}},
   2056 			{{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}}
   2057 		},
   2058 		{
   2059 			{{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}},
   2060 			{{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}},
   2061 			{{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}}
   2062 		},
   2063 		{
   2064 			{{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}},
   2065 			{{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}},
   2066 			{{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}}
   2067 		}
   2068 	};
   2069 
   2070 	DE_ASSERT(de::inRange(numValues, 1, 5));
   2071 
   2072 	deUint32 tritParts[5];
   2073 	deUint32 bitParts[5];
   2074 
   2075 	for (int i = 0; i < 5; i++)
   2076 	{
   2077 		if (i < numValues)
   2078 		{
   2079 			if (fromExplicitInputBlock)
   2080 			{
   2081 				bitParts[i]		= blockInput.bitValues[i];
   2082 				tritParts[i]	= -1; // \note Won't be used, but silences warning.
   2083 			}
   2084 			else
   2085 			{
   2086 				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
   2087 				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
   2088 				tritParts[i]	= nonBlockInput[i] >> numBits;
   2089 			}
   2090 		}
   2091 		else
   2092 		{
   2093 			bitParts[i]		= 0;
   2094 			tritParts[i]	= 0;
   2095 		}
   2096 	}
   2097 
   2098 	const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]]
   2099 																					  [tritParts[1]]
   2100 																					  [tritParts[2]]
   2101 																					  [tritParts[3]]
   2102 																					  [tritParts[4]];
   2103 
   2104 	dst.setNext(numBits,	bitParts[0]);
   2105 	dst.setNext(2,			getBits(T, 0, 1));
   2106 	dst.setNext(numBits,	bitParts[1]);
   2107 	dst.setNext(2,			getBits(T, 2, 3));
   2108 	dst.setNext(numBits,	bitParts[2]);
   2109 	dst.setNext(1,			getBit(T, 4));
   2110 	dst.setNext(numBits,	bitParts[3]);
   2111 	dst.setNext(2,			getBits(T, 5, 6));
   2112 	dst.setNext(numBits,	bitParts[4]);
   2113 	dst.setNext(1,			getBit(T, 7));
   2114 }
   2115 
   2116 static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
   2117 {
   2118 	// quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded.
   2119 	static const deUint32 quintBlockQValue[5][5][5] =
   2120 	{
   2121 		{{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}},
   2122 		{{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}},
   2123 		{{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}},
   2124 		{{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}},
   2125 		{{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}}
   2126 	};
   2127 
   2128 	DE_ASSERT(de::inRange(numValues, 1, 3));
   2129 
   2130 	deUint32 quintParts[3];
   2131 	deUint32 bitParts[3];
   2132 
   2133 	for (int i = 0; i < 3; i++)
   2134 	{
   2135 		if (i < numValues)
   2136 		{
   2137 			if (fromExplicitInputBlock)
   2138 			{
   2139 				bitParts[i]		= blockInput.bitValues[i];
   2140 				quintParts[i]	= -1; // \note Won't be used, but silences warning.
   2141 			}
   2142 			else
   2143 			{
   2144 				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
   2145 				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
   2146 				quintParts[i]	= nonBlockInput[i] >> numBits;
   2147 			}
   2148 		}
   2149 		else
   2150 		{
   2151 			bitParts[i]		= 0;
   2152 			quintParts[i]	= 0;
   2153 		}
   2154 	}
   2155 
   2156 	const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]]
   2157 																					   [quintParts[1]]
   2158 																					   [quintParts[2]];
   2159 
   2160 	dst.setNext(numBits,	bitParts[0]);
   2161 	dst.setNext(3,			getBits(Q, 0, 2));
   2162 	dst.setNext(numBits,	bitParts[1]);
   2163 	dst.setNext(2,			getBits(Q, 3, 4));
   2164 	dst.setNext(numBits,	bitParts[2]);
   2165 	dst.setNext(2,			getBits(Q, 5, 6));
   2166 }
   2167 
   2168 static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value)
   2169 {
   2170 	DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1));
   2171 	dst.setNext(numBits, value);
   2172 }
   2173 
   2174 static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues)
   2175 {
   2176 	if (params.mode == ISEMODE_TRIT)
   2177 	{
   2178 		const int numBlocks = deDivRoundUp32(numValues, 5);
   2179 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
   2180 		{
   2181 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
   2182 			encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm,
   2183 							   input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
   2184 							   input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[5*blockNdx],
   2185 							   numValuesInBlock);
   2186 		}
   2187 	}
   2188 	else if (params.mode == ISEMODE_QUINT)
   2189 	{
   2190 		const int numBlocks = deDivRoundUp32(numValues, 3);
   2191 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
   2192 		{
   2193 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
   2194 			encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm,
   2195 								input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
   2196 								input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[3*blockNdx],
   2197 								numValuesInBlock);
   2198 		}
   2199 	}
   2200 	else
   2201 	{
   2202 		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
   2203 		for (int i = 0; i < numValues; i++)
   2204 			encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]);
   2205 	}
   2206 }
   2207 
   2208 static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights)
   2209 {
   2210 	const int				numWeightBits	= computeNumRequiredBits(iseParams, numWeights);
   2211 	BitAssignAccessStream	access			(dst, 127, numWeightBits, false);
   2212 	encodeISE(access, iseParams, input, numWeights);
   2213 }
   2214 
   2215 static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx)
   2216 {
   2217 	BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true);
   2218 	encodeISE(access, iseParams, input, numEndpoints);
   2219 }
   2220 
   2221 static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs)
   2222 {
   2223 	DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight));
   2224 	DE_UNREF(blockWidth);	// \note For non-debug builds.
   2225 	DE_UNREF(blockHeight);	// \note For non-debug builds.
   2226 
   2227 	AssignBlock128	block;
   2228 	const int		numWeights		= computeNumWeights(blockParams);
   2229 	const int		numWeightBits	= computeNumRequiredBits(blockParams.weightISEParams, numWeights);
   2230 
   2231 	writeBlockMode(block, blockParams);
   2232 
   2233 	block.setBits(11, 12, blockParams.numPartitions - 1);
   2234 	if (blockParams.numPartitions > 1)
   2235 		block.setBits(13, 22, blockParams.partitionSeed);
   2236 
   2237 	{
   2238 		const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode		? -1
   2239 															: blockParams.numPartitions == 4											? 7
   2240 															: blockParams.numPartitions == 3											? 4
   2241 															: blockParams.numPartitions == 2											? 1
   2242 															: 0);
   2243 
   2244 		writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart);
   2245 
   2246 		if (blockParams.isDualPlane)
   2247 			block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs);
   2248 	}
   2249 
   2250 	writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights);
   2251 
   2252 	{
   2253 		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
   2254 		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
   2255 		const int			colorEndpointDataStartNdx	= blockParams.numPartitions == 1 ? 17 : 29;
   2256 		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
   2257 
   2258 		writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx);
   2259 	}
   2260 
   2261 	return block;
   2262 }
   2263 
   2264 // Generate default ISE inputs for weight and endpoint data - gradient-ish values.
   2265 static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams)
   2266 {
   2267 	NormalBlockISEInputs result;
   2268 
   2269 	{
   2270 		result.weight.isGivenInBlockForm = false;
   2271 
   2272 		const int numWeights		= computeNumWeights(blockParams);
   2273 		const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
   2274 
   2275 		if (blockParams.isDualPlane)
   2276 		{
   2277 			for (int i = 0; i < numWeights; i += 2)
   2278 				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
   2279 
   2280 			for (int i = 1; i < numWeights; i += 2)
   2281 				result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
   2282 		}
   2283 		else
   2284 		{
   2285 			for (int i = 0; i < numWeights; i++)
   2286 				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
   2287 		}
   2288 	}
   2289 
   2290 	{
   2291 		result.endpoint.isGivenInBlockForm = false;
   2292 
   2293 		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
   2294 		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
   2295 		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
   2296 		const int			colorEndpointRangeMax		= computeISERangeMax(colorEndpointISEParams);
   2297 
   2298 		for (int i = 0; i < numColorEndpointValues; i++)
   2299 			result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1);
   2300 	}
   2301 
   2302 	return result;
   2303 }
   2304 
   2305 static const ISEParams s_weightISEParamsCandidates[] =
   2306 {
   2307 	ISEParams(ISEMODE_PLAIN_BIT,	1),
   2308 	ISEParams(ISEMODE_TRIT,			0),
   2309 	ISEParams(ISEMODE_PLAIN_BIT,	2),
   2310 	ISEParams(ISEMODE_QUINT,		0),
   2311 	ISEParams(ISEMODE_TRIT,			1),
   2312 	ISEParams(ISEMODE_PLAIN_BIT,	3),
   2313 	ISEParams(ISEMODE_QUINT,		1),
   2314 	ISEParams(ISEMODE_TRIT,			2),
   2315 	ISEParams(ISEMODE_PLAIN_BIT,	4),
   2316 	ISEParams(ISEMODE_QUINT,		2),
   2317 	ISEParams(ISEMODE_TRIT,			3),
   2318 	ISEParams(ISEMODE_PLAIN_BIT,	5)
   2319 };
   2320 
   2321 void generateRandomBlock (deUint8* dst, const IVec3& blockSize, de::Random& rnd)
   2322 {
   2323 	DE_ASSERT(blockSize.z() == 1);
   2324 
   2325 	if (rnd.getFloat() < 0.1f)
   2326 	{
   2327 		// Void extent block.
   2328 		const bool		isVoidExtentHDR		= rnd.getBool();
   2329 		const deUint16	r					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
   2330 		const deUint16	g					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
   2331 		const deUint16	b					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
   2332 		const deUint16	a					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
   2333 		generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).assignToMemory(dst);
   2334 	}
   2335 	else
   2336 	{
   2337 		// Not void extent block.
   2338 
   2339 		// Generate block params.
   2340 
   2341 		NormalBlockParams blockParams;
   2342 
   2343 		do
   2344 		{
   2345 			blockParams.weightGridWidth				= rnd.getInt(2, blockSize.x());
   2346 			blockParams.weightGridHeight			= rnd.getInt(2, blockSize.y());
   2347 			blockParams.weightISEParams				= s_weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates)-1)];
   2348 			blockParams.numPartitions				= rnd.getInt(1, 4);
   2349 			blockParams.isMultiPartSingleCemMode	= rnd.getFloat() < 0.25f;
   2350 			blockParams.isDualPlane					= blockParams.numPartitions != 4 && rnd.getBool();
   2351 			blockParams.ccs							= rnd.getInt(0, 3);
   2352 			blockParams.partitionSeed				= rnd.getInt(0, 1023);
   2353 
   2354 			blockParams.colorEndpointModes[0] = rnd.getInt(0, 15);
   2355 
   2356 			{
   2357 				const int cemDiff = blockParams.isMultiPartSingleCemMode		? 0
   2358 									: blockParams.colorEndpointModes[0] == 0	? 1
   2359 									: blockParams.colorEndpointModes[0] == 15	? -1
   2360 									: rnd.getBool()								? 1 : -1;
   2361 
   2362 				for (int i = 1; i < blockParams.numPartitions; i++)
   2363 					blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0);
   2364 			}
   2365 		} while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()));
   2366 
   2367 		// Generate ISE inputs for both weight and endpoint data.
   2368 
   2369 		NormalBlockISEInputs iseInputs;
   2370 
   2371 		for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++)
   2372 		{
   2373 			const bool			setWeights	= weightOrEndpoints == 0;
   2374 			const int			numValues	= setWeights ? computeNumWeights(blockParams) :
   2375 												computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
   2376 			const ISEParams		iseParams	= setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues);
   2377 			ISEInput&			iseInput	= setWeights ? iseInputs.weight : iseInputs.endpoint;
   2378 
   2379 			iseInput.isGivenInBlockForm = rnd.getBool();
   2380 
   2381 			if (iseInput.isGivenInBlockForm)
   2382 			{
   2383 				const int numValuesPerISEBlock	= iseParams.mode == ISEMODE_TRIT	? 5
   2384 												: iseParams.mode == ISEMODE_QUINT	? 3
   2385 												:									  1;
   2386 				const int iseBitMax				= (1 << iseParams.numBits) - 1;
   2387 				const int numISEBlocks			= deDivRoundUp32(numValues, numValuesPerISEBlock);
   2388 
   2389 				for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++)
   2390 				{
   2391 					iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255);
   2392 					for (int i = 0; i < numValuesPerISEBlock; i++)
   2393 						iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax);
   2394 				}
   2395 			}
   2396 			else
   2397 			{
   2398 				const int rangeMax = computeISERangeMax(iseParams);
   2399 
   2400 				for (int valueNdx = 0; valueNdx < numValues; valueNdx++)
   2401 					iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax);
   2402 			}
   2403 		}
   2404 
   2405 		generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).assignToMemory(dst);
   2406 	}
   2407 }
   2408 
   2409 } // anonymous
   2410 
   2411 // Generate block data for a given BlockTestType and format.
   2412 void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexFormat format, BlockTestType testType)
   2413 {
   2414 	DE_ASSERT(isAstcFormat(format));
   2415 	DE_ASSERT(!(isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType)));
   2416 
   2417 	const IVec3 blockSize = getBlockPixelSize(format);
   2418 	DE_ASSERT(blockSize.z() == 1);
   2419 
   2420 	switch (testType)
   2421 	{
   2422 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:
   2423 		// Generate a gradient-like set of LDR void-extent blocks.
   2424 		{
   2425 			const int			numBlocks	= 1<<13;
   2426 			const deUint32		numValues	= 1<<16;
   2427 			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
   2428 
   2429 			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
   2430 			{
   2431 				const deUint32 baseValue	= blockNdx*(numValues-1) / (numBlocks-1);
   2432 				const deUint16 r			= (deUint16)((baseValue + numValues*0/4) % numValues);
   2433 				const deUint16 g			= (deUint16)((baseValue + numValues*1/4) % numValues);
   2434 				const deUint16 b			= (deUint16)((baseValue + numValues*2/4) % numValues);
   2435 				const deUint16 a			= (deUint16)((baseValue + numValues*3/4) % numValues);
   2436 				AssignBlock128 block;
   2437 
   2438 				generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst);
   2439 			}
   2440 
   2441 			break;
   2442 		}
   2443 
   2444 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:
   2445 		// Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16.
   2446 		{
   2447 			const float		minValue	= -65504.0f;
   2448 			const float		maxValue	= +65504.0f;
   2449 			const int		numBlocks	= 1<<13;
   2450 			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
   2451 
   2452 			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
   2453 			{
   2454 				const int			rNdx	= (blockNdx + numBlocks*0/4) % numBlocks;
   2455 				const int			gNdx	= (blockNdx + numBlocks*1/4) % numBlocks;
   2456 				const int			bNdx	= (blockNdx + numBlocks*2/4) % numBlocks;
   2457 				const int			aNdx	= (blockNdx + numBlocks*3/4) % numBlocks;
   2458 				const deFloat16		r		= deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1));
   2459 				const deFloat16		g		= deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1));
   2460 				const deFloat16		b		= deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1));
   2461 				const deFloat16		a		= deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1));
   2462 
   2463 				generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst);
   2464 			}
   2465 
   2466 			break;
   2467 		}
   2468 
   2469 		case BLOCK_TEST_TYPE_WEIGHT_GRID:
   2470 		// Generate different combinations of plane count, weight ISE params, and grid size.
   2471 		{
   2472 			for (int isDualPlane = 0;		isDualPlane <= 1;												isDualPlane++)
   2473 			for (int iseParamsNdx = 0;		iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
   2474 			for (int weightGridWidth = 2;	weightGridWidth <= 12;											weightGridWidth++)
   2475 			for (int weightGridHeight = 2;	weightGridHeight <= 12;											weightGridHeight++)
   2476 			{
   2477 				NormalBlockParams		blockParams;
   2478 				NormalBlockISEInputs	iseInputs;
   2479 
   2480 				blockParams.weightGridWidth			= weightGridWidth;
   2481 				blockParams.weightGridHeight		= weightGridHeight;
   2482 				blockParams.isDualPlane				= isDualPlane != 0;
   2483 				blockParams.weightISEParams			= s_weightISEParamsCandidates[iseParamsNdx];
   2484 				blockParams.ccs						= 0;
   2485 				blockParams.numPartitions			= 1;
   2486 				blockParams.colorEndpointModes[0]	= 0;
   2487 
   2488 				if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
   2489 					generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
   2490 			}
   2491 
   2492 			break;
   2493 		}
   2494 
   2495 		case BLOCK_TEST_TYPE_WEIGHT_ISE:
   2496 		// For each weight ISE param set, generate blocks that cover:
   2497 		// - each single value of the ISE's range, at each position inside an ISE block
   2498 		// - for trit and quint ISEs, each single T or Q value of an ISE block
   2499 		{
   2500 			for (int iseParamsNdx = 0;	iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
   2501 			{
   2502 				const ISEParams&	iseParams = s_weightISEParamsCandidates[iseParamsNdx];
   2503 				NormalBlockParams	blockParams;
   2504 
   2505 				blockParams.weightGridWidth			= 4;
   2506 				blockParams.weightGridHeight		= 4;
   2507 				blockParams.weightISEParams			= iseParams;
   2508 				blockParams.numPartitions			= 1;
   2509 				blockParams.isDualPlane				= blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false;
   2510 				blockParams.ccs						= 0;
   2511 				blockParams.colorEndpointModes[0]	= 0;
   2512 
   2513 				while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
   2514 				{
   2515 					blockParams.weightGridWidth--;
   2516 					blockParams.weightGridHeight--;
   2517 				}
   2518 
   2519 				const int numValuesInISEBlock	= iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1;
   2520 				const int numWeights			= computeNumWeights(blockParams);
   2521 
   2522 				{
   2523 					const int				numWeightValues		= (int)computeISERangeMax(iseParams) + 1;
   2524 					const int				numBlocks			= deDivRoundUp32(numWeightValues, numWeights);
   2525 					NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
   2526 					iseInputs.weight.isGivenInBlockForm = false;
   2527 
   2528 					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
   2529 					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
   2530 					{
   2531 						for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
   2532 							iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues;
   2533 
   2534 						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
   2535 					}
   2536 				}
   2537 
   2538 				if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
   2539 				{
   2540 					NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
   2541 					iseInputs.weight.isGivenInBlockForm = true;
   2542 
   2543 					const int numTQValues			= 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7);
   2544 					const int numISEBlocksPerBlock	= deDivRoundUp32(numWeights, numValuesInISEBlock);
   2545 					const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
   2546 
   2547 					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
   2548 					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
   2549 					{
   2550 						for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
   2551 						{
   2552 							for (int i = 0; i < numValuesInISEBlock; i++)
   2553 								iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0;
   2554 							iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
   2555 						}
   2556 
   2557 						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
   2558 					}
   2559 				}
   2560 			}
   2561 
   2562 			break;
   2563 		}
   2564 
   2565 		case BLOCK_TEST_TYPE_CEMS:
   2566 		// For each plane count & partition count combination, generate all color endpoint mode combinations.
   2567 		{
   2568 			for (int isDualPlane = 0;		isDualPlane <= 1;								isDualPlane++)
   2569 			for (int numPartitions = 1;		numPartitions <= (isDualPlane != 0 ? 3 : 4);	numPartitions++)
   2570 			{
   2571 				// Multi-partition, single-CEM mode.
   2572 				if (numPartitions > 1)
   2573 				{
   2574 					for (deUint32 singleCem = 0; singleCem < 16; singleCem++)
   2575 					{
   2576 						NormalBlockParams blockParams;
   2577 						blockParams.weightGridWidth				= 4;
   2578 						blockParams.weightGridHeight			= 4;
   2579 						blockParams.isDualPlane					= isDualPlane != 0;
   2580 						blockParams.ccs							= 0;
   2581 						blockParams.numPartitions				= numPartitions;
   2582 						blockParams.isMultiPartSingleCemMode	= true;
   2583 						blockParams.colorEndpointModes[0]		= singleCem;
   2584 						blockParams.partitionSeed				= 634;
   2585 
   2586 						for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
   2587 						{
   2588 							blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
   2589 							if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
   2590 							{
   2591 								generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
   2592 								break;
   2593 							}
   2594 						}
   2595 					}
   2596 				}
   2597 
   2598 				// Separate-CEM mode.
   2599 				for (deUint32 cem0 = 0; cem0 < 16; cem0++)
   2600 				for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++)
   2601 				for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++)
   2602 				for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++)
   2603 				{
   2604 					NormalBlockParams blockParams;
   2605 					blockParams.weightGridWidth				= 4;
   2606 					blockParams.weightGridHeight			= 4;
   2607 					blockParams.isDualPlane					= isDualPlane != 0;
   2608 					blockParams.ccs							= 0;
   2609 					blockParams.numPartitions				= numPartitions;
   2610 					blockParams.isMultiPartSingleCemMode	= false;
   2611 					blockParams.colorEndpointModes[0]		= cem0;
   2612 					blockParams.colorEndpointModes[1]		= cem1;
   2613 					blockParams.colorEndpointModes[2]		= cem2;
   2614 					blockParams.colorEndpointModes[3]		= cem3;
   2615 					blockParams.partitionSeed				= 634;
   2616 
   2617 					{
   2618 						const deUint32 minCem		= *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
   2619 						const deUint32 maxCem		= *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
   2620 						const deUint32 minCemClass	= minCem/4;
   2621 						const deUint32 maxCemClass	= maxCem/4;
   2622 
   2623 						if (maxCemClass - minCemClass > 1)
   2624 							continue;
   2625 					}
   2626 
   2627 					for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
   2628 					{
   2629 						blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
   2630 						if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
   2631 						{
   2632 							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
   2633 							break;
   2634 						}
   2635 					}
   2636 				}
   2637 			}
   2638 
   2639 			break;
   2640 		}
   2641 
   2642 		case BLOCK_TEST_TYPE_PARTITION_SEED:
   2643 		// Test all partition seeds ("partition pattern indices").
   2644 		{
   2645 			for (int		numPartitions = 2;	numPartitions <= 4;		numPartitions++)
   2646 			for (deUint32	partitionSeed = 0;	partitionSeed < 1<<10;	partitionSeed++)
   2647 			{
   2648 				NormalBlockParams blockParams;
   2649 				blockParams.weightGridWidth				= 4;
   2650 				blockParams.weightGridHeight			= 4;
   2651 				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
   2652 				blockParams.isDualPlane					= false;
   2653 				blockParams.numPartitions				= numPartitions;
   2654 				blockParams.isMultiPartSingleCemMode	= true;
   2655 				blockParams.colorEndpointModes[0]		= 0;
   2656 				blockParams.partitionSeed				= partitionSeed;
   2657 
   2658 				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
   2659 			}
   2660 
   2661 			break;
   2662 		}
   2663 
   2664 		// \note Fall-through.
   2665 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:
   2666 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:
   2667 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:
   2668 		// For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair.
   2669 		// \note Separate modes for HDR and mode 15 due to different color scales and biases.
   2670 		{
   2671 			for (deUint32 cem = 0; cem < 16; cem++)
   2672 			{
   2673 				const bool isHDRCem = cem == 2		||
   2674 									  cem == 3		||
   2675 									  cem == 7		||
   2676 									  cem == 11		||
   2677 									  cem == 14		||
   2678 									  cem == 15;
   2679 
   2680 				if ((testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR			&& isHDRCem)					||
   2681 					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15		&& (!isHDRCem || cem == 15))	||
   2682 					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15		&& cem != 15))
   2683 					continue;
   2684 
   2685 				NormalBlockParams blockParams;
   2686 				blockParams.weightGridWidth			= 3;
   2687 				blockParams.weightGridHeight		= 4;
   2688 				blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 2);
   2689 				blockParams.isDualPlane				= false;
   2690 				blockParams.numPartitions			= 1;
   2691 				blockParams.colorEndpointModes[0]	= cem;
   2692 
   2693 				{
   2694 					const int			numBitsForEndpoints		= computeNumBitsForColorEndpoints(blockParams);
   2695 					const int			numEndpointParts		= computeNumColorEndpointValues(cem);
   2696 					const ISEParams		endpointISE				= computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts);
   2697 					const int			endpointISERangeMax		= computeISERangeMax(endpointISE);
   2698 
   2699 					for (int endpointPartNdx0 = 0;						endpointPartNdx0 < numEndpointParts; endpointPartNdx0++)
   2700 					for (int endpointPartNdx1 = endpointPartNdx0+1;		endpointPartNdx1 < numEndpointParts; endpointPartNdx1++)
   2701 					{
   2702 						NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
   2703 						const int				numEndpointValues	= de::min(10, endpointISERangeMax+1);
   2704 
   2705 						for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++)
   2706 						for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++)
   2707 						{
   2708 							const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1);
   2709 							const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1);
   2710 
   2711 							iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0;
   2712 							iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1;
   2713 
   2714 							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
   2715 						}
   2716 					}
   2717 				}
   2718 			}
   2719 
   2720 			break;
   2721 		}
   2722 
   2723 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:
   2724 		// Similar to BLOCK_TEST_TYPE_WEIGHT_ISE, see above.
   2725 		{
   2726 			static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 };
   2727 
   2728 			for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++)
   2729 			{
   2730 				bool validCaseGenerated = false;
   2731 
   2732 				for (int numPartitions = 1;			!validCaseGenerated && numPartitions <= 4;														numPartitions++)
   2733 				for (int isDual = 0;				!validCaseGenerated && isDual <= 1;																isDual++)
   2734 				for (int weightISEParamsNdx = 0;	!validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	weightISEParamsNdx++)
   2735 				for (int weightGridWidth = 2;		!validCaseGenerated && weightGridWidth <= 12;													weightGridWidth++)
   2736 				for (int weightGridHeight = 2;		!validCaseGenerated && weightGridHeight <= 12;													weightGridHeight++)
   2737 				{
   2738 					NormalBlockParams blockParams;
   2739 					blockParams.weightGridWidth				= weightGridWidth;
   2740 					blockParams.weightGridHeight			= weightGridHeight;
   2741 					blockParams.weightISEParams				= s_weightISEParamsCandidates[weightISEParamsNdx];
   2742 					blockParams.isDualPlane					= isDual != 0;
   2743 					blockParams.ccs							= 0;
   2744 					blockParams.numPartitions				= numPartitions;
   2745 					blockParams.isMultiPartSingleCemMode	= true;
   2746 					blockParams.colorEndpointModes[0]		= 12;
   2747 					blockParams.partitionSeed				= 634;
   2748 
   2749 					if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
   2750 					{
   2751 						const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams),
   2752 																						 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true));
   2753 
   2754 						if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx])
   2755 						{
   2756 							validCaseGenerated = true;
   2757 
   2758 							const int numColorEndpoints		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode);
   2759 							const int numValuesInISEBlock	= endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1;
   2760 
   2761 							{
   2762 								const int				numColorEndpointValues	= (int)computeISERangeMax(endpointISEParams) + 1;
   2763 								const int				numBlocks				= deDivRoundUp32(numColorEndpointValues, numColorEndpoints);
   2764 								NormalBlockISEInputs	iseInputs				= generateDefaultISEInputs(blockParams);
   2765 								iseInputs.endpoint.isGivenInBlockForm = false;
   2766 
   2767 								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
   2768 								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
   2769 								{
   2770 									for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++)
   2771 										iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues;
   2772 
   2773 									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
   2774 								}
   2775 							}
   2776 
   2777 							if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT)
   2778 							{
   2779 								NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
   2780 								iseInputs.endpoint.isGivenInBlockForm = true;
   2781 
   2782 								const int numTQValues			= 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7);
   2783 								const int numISEBlocksPerBlock	= deDivRoundUp32(numColorEndpoints, numValuesInISEBlock);
   2784 								const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
   2785 
   2786 								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
   2787 								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
   2788 								{
   2789 									for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
   2790 									{
   2791 										for (int i = 0; i < numValuesInISEBlock; i++)
   2792 											iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0;
   2793 										iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
   2794 									}
   2795 
   2796 									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
   2797 								}
   2798 							}
   2799 						}
   2800 					}
   2801 				}
   2802 
   2803 				DE_ASSERT(validCaseGenerated);
   2804 			}
   2805 
   2806 			break;
   2807 		}
   2808 
   2809 		case BLOCK_TEST_TYPE_CCS:
   2810 		// For all partition counts, test all values of the CCS (color component selector).
   2811 		{
   2812 			for (int		numPartitions = 1;		numPartitions <= 3;		numPartitions++)
   2813 			for (deUint32	ccs = 0;				ccs < 4;				ccs++)
   2814 			{
   2815 				NormalBlockParams blockParams;
   2816 				blockParams.weightGridWidth				= 3;
   2817 				blockParams.weightGridHeight			= 3;
   2818 				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
   2819 				blockParams.isDualPlane					= true;
   2820 				blockParams.ccs							= ccs;
   2821 				blockParams.numPartitions				= numPartitions;
   2822 				blockParams.isMultiPartSingleCemMode	= true;
   2823 				blockParams.colorEndpointModes[0]		= 8;
   2824 				blockParams.partitionSeed				= 634;
   2825 
   2826 				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
   2827 			}
   2828 
   2829 			break;
   2830 		}
   2831 
   2832 		case BLOCK_TEST_TYPE_RANDOM:
   2833 		// Generate a number of random (including invalid) blocks.
   2834 		{
   2835 			const int		numBlocks	= 16384;
   2836 			const deUint32	seed		= 1;
   2837 
   2838 			dst.resize(numBlocks*BLOCK_SIZE_BYTES);
   2839 
   2840 			generateRandomBlocks(&dst[0], numBlocks, format, seed);
   2841 
   2842 			break;
   2843 		}
   2844 
   2845 		default:
   2846 			DE_ASSERT(false);
   2847 	}
   2848 }
   2849 
   2850 void generateRandomBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, deUint32 seed)
   2851 {
   2852 	const IVec3		blockSize			= getBlockPixelSize(format);
   2853 	de::Random		rnd					(seed);
   2854 	size_t			numBlocksGenerated	= 0;
   2855 
   2856 	DE_ASSERT(isAstcFormat(format));
   2857 	DE_ASSERT(blockSize.z() == 1);
   2858 
   2859 	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
   2860 	{
   2861 		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
   2862 
   2863 		generateRandomBlock(curBlockPtr, blockSize, rnd);
   2864 	}
   2865 }
   2866 
   2867 void generateRandomValidBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, TexDecompressionParams::AstcMode mode, deUint32 seed)
   2868 {
   2869 	const IVec3		blockSize			= getBlockPixelSize(format);
   2870 	de::Random		rnd					(seed);
   2871 	size_t			numBlocksGenerated	= 0;
   2872 
   2873 	DE_ASSERT(isAstcFormat(format));
   2874 	DE_ASSERT(blockSize.z() == 1);
   2875 
   2876 	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
   2877 	{
   2878 		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
   2879 
   2880 		do
   2881 		{
   2882 			generateRandomBlock(curBlockPtr, blockSize, rnd);
   2883 		} while (!isValidBlock(curBlockPtr, format, mode));
   2884 	}
   2885 }
   2886 
   2887 // Generate a number of trivial dummy blocks to fill unneeded space in a texture.
   2888 void generateDummyVoidExtentBlocks (deUint8* dst, size_t numBlocks)
   2889 {
   2890 	AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0));
   2891 	for (size_t ndx = 0; ndx < numBlocks; ndx++)
   2892 		block.assignToMemory(&dst[ndx * BLOCK_SIZE_BYTES]);
   2893 }
   2894 
   2895 void generateDummyNormalBlocks (deUint8* dst, size_t numBlocks, int blockWidth, int blockHeight)
   2896 {
   2897 	NormalBlockParams blockParams;
   2898 
   2899 	blockParams.weightGridWidth			= 3;
   2900 	blockParams.weightGridHeight		= 3;
   2901 	blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 5);
   2902 	blockParams.isDualPlane				= false;
   2903 	blockParams.numPartitions			= 1;
   2904 	blockParams.colorEndpointModes[0]	= 8;
   2905 
   2906 	NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
   2907 	iseInputs.weight.isGivenInBlockForm = false;
   2908 
   2909 	const int numWeights		= computeNumWeights(blockParams);
   2910 	const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
   2911 
   2912 	for (size_t blockNdx = 0; blockNdx < numBlocks; blockNdx++)
   2913 	{
   2914 		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
   2915 			iseInputs.weight.value.plain[weightNdx] = (deUint32)((blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1));
   2916 
   2917 		generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*BLOCK_SIZE_BYTES);
   2918 	}
   2919 }
   2920 
   2921 bool isValidBlock (const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
   2922 {
   2923 	const tcu::IVec3		blockPixelSize	= getBlockPixelSize(format);
   2924 	const bool				isSRGB			= isAstcSRGBFormat(format);
   2925 	const bool				isLDR			= isSRGB || mode == TexDecompressionParams::ASTCMODE_LDR;
   2926 
   2927 	// sRGB is not supported in HDR mode
   2928 	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGB));
   2929 
   2930 	union
   2931 	{
   2932 		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
   2933 		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
   2934 	} tmpBuffer;
   2935 	const Block128			blockData		(data);
   2936 	const DecompressResult	result			= decompressBlock((isSRGB ? (void*)&tmpBuffer.sRGB[0] : (void*)&tmpBuffer.linear[0]),
   2937 															  blockData, blockPixelSize.x(), blockPixelSize.y(), isSRGB, isLDR);
   2938 
   2939 	return result == DECOMPRESS_RESULT_VALID_BLOCK;
   2940 }
   2941 
   2942 void decompress (const PixelBufferAccess& dst, const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
   2943 {
   2944 	const bool			isSRGBFormat	= isAstcSRGBFormat(format);
   2945 
   2946 #if defined(DE_DEBUG)
   2947 	const tcu::IVec3	blockPixelSize	= getBlockPixelSize(format);
   2948 
   2949 	DE_ASSERT(dst.getWidth()	== blockPixelSize.x() &&
   2950 			  dst.getHeight()	== blockPixelSize.y() &&
   2951 			  dst.getDepth()	== blockPixelSize.z());
   2952 	DE_ASSERT(mode == TexDecompressionParams::ASTCMODE_LDR || mode == TexDecompressionParams::ASTCMODE_HDR);
   2953 #endif
   2954 
   2955 	// sRGB is not supported in HDR mode
   2956 	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGBFormat));
   2957 
   2958 	decompress(dst, data, isSRGBFormat, isSRGBFormat || mode == TexDecompressionParams::ASTCMODE_LDR);
   2959 }
   2960 
   2961 const char* getBlockTestTypeName (BlockTestType testType)
   2962 {
   2963 	switch (testType)
   2964 	{
   2965 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "void_extent_ldr";
   2966 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "void_extent_hdr";
   2967 		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "weight_grid";
   2968 		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "weight_ise";
   2969 		case BLOCK_TEST_TYPE_CEMS:						return "color_endpoint_modes";
   2970 		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "partition_pattern_index";
   2971 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "endpoint_value_ldr";
   2972 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "endpoint_value_hdr_cem_not_15";
   2973 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "endpoint_value_hdr_cem_15";
   2974 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "endpoint_ise";
   2975 		case BLOCK_TEST_TYPE_CCS:						return "color_component_selector";
   2976 		case BLOCK_TEST_TYPE_RANDOM:					return "random";
   2977 		default:
   2978 			DE_ASSERT(false);
   2979 			return DE_NULL;
   2980 	}
   2981 }
   2982 
   2983 const char* getBlockTestTypeDescription (BlockTestType testType)
   2984 {
   2985 	switch (testType)
   2986 	{
   2987 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "Test void extent block, LDR mode";
   2988 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "Test void extent block, HDR mode";
   2989 		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size";
   2990 		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "Test different integer sequence encoding block values for weight grid";
   2991 		case BLOCK_TEST_TYPE_CEMS:						return "Test different color endpoint mode combinations, combined with different plane and partition counts";
   2992 		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "Test different partition pattern indices";
   2993 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode";
   2994 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15";
   2995 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15";
   2996 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "Test different integer sequence encoding block values for color endpoints";
   2997 		case BLOCK_TEST_TYPE_CCS:						return "Test color component selector, for different partition counts";
   2998 		case BLOCK_TEST_TYPE_RANDOM:					return "Random block test";
   2999 		default:
   3000 			DE_ASSERT(false);
   3001 			return DE_NULL;
   3002 	}
   3003 }
   3004 
   3005 bool isBlockTestTypeHDROnly (BlockTestType testType)
   3006 {
   3007 	return testType == BLOCK_TEST_TYPE_VOID_EXTENT_HDR			||
   3008 		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15	||
   3009 		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15;
   3010 }
   3011 
   3012 Vec4 getBlockTestTypeColorScale (BlockTestType testType)
   3013 {
   3014 	switch (testType)
   3015 	{
   3016 		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return Vec4(0.5f/65504.0f);
   3017 		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f);
   3018 		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return Vec4(1.0f/65504.0f);
   3019 		default:													return Vec4(1.0f);
   3020 	}
   3021 }
   3022 
   3023 Vec4 getBlockTestTypeColorBias (BlockTestType testType)
   3024 {
   3025 	switch (testType)
   3026 	{
   3027 		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:	return Vec4(0.5f);
   3028 		default:											return Vec4(0.0f);
   3029 	}
   3030 }
   3031 
   3032 } // astc
   3033 } // tcu
   3034