Home | History | Annotate | Download | only in base
      1 /***************************************************************************/
      2 /*                                                                         */
      3 /*  fttrigon.c                                                             */
      4 /*                                                                         */
      5 /*    FreeType trigonometric functions (body).                             */
      6 /*                                                                         */
      7 /*  Copyright 2001-2018 by                                                 */
      8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
      9 /*                                                                         */
     10 /*  This file is part of the FreeType project, and may only be used,       */
     11 /*  modified, and distributed under the terms of the FreeType project      */
     12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
     13 /*  this file you indicate that you have read the license and              */
     14 /*  understand and accept it fully.                                        */
     15 /*                                                                         */
     16 /***************************************************************************/
     17 
     18   /*************************************************************************/
     19   /*                                                                       */
     20   /* This is a fixed-point CORDIC implementation of trigonometric          */
     21   /* functions as well as transformations between Cartesian and polar      */
     22   /* coordinates.  The angles are represented as 16.16 fixed-point values  */
     23   /* in degrees, i.e., the angular resolution is 2^-16 degrees.  Note that */
     24   /* only vectors longer than 2^16*180/pi (or at least 22 bits) on a       */
     25   /* discrete Cartesian grid can have the same or better angular           */
     26   /* resolution.  Therefore, to maintain this precision, some functions    */
     27   /* require an interim upscaling of the vectors, whereas others operate   */
     28   /* with 24-bit long vectors directly.                                    */
     29   /*                                                                       */
     30   /*************************************************************************/
     31 
     32 #include <ft2build.h>
     33 #include FT_INTERNAL_OBJECTS_H
     34 #include FT_INTERNAL_CALC_H
     35 #include FT_TRIGONOMETRY_H
     36 
     37 
     38   /* the Cordic shrink factor 0.858785336480436 * 2^32 */
     39 #define FT_TRIG_SCALE      0xDBD95B16UL
     40 
     41   /* the highest bit in overflow-safe vector components, */
     42   /* MSB of 0.858785336480436 * sqrt(0.5) * 2^30         */
     43 #define FT_TRIG_SAFE_MSB   29
     44 
     45   /* this table was generated for FT_PI = 180L << 16, i.e. degrees */
     46 #define FT_TRIG_MAX_ITERS  23
     47 
     48   static const FT_Angle
     49   ft_trig_arctan_table[] =
     50   {
     51     1740967L, 919879L, 466945L, 234379L, 117304L, 58666L, 29335L,
     52     14668L, 7334L, 3667L, 1833L, 917L, 458L, 229L, 115L,
     53     57L, 29L, 14L, 7L, 4L, 2L, 1L
     54   };
     55 
     56 
     57 #ifdef FT_LONG64
     58 
     59   /* multiply a given value by the CORDIC shrink factor */
     60   static FT_Fixed
     61   ft_trig_downscale( FT_Fixed  val )
     62   {
     63     FT_Int  s = 1;
     64 
     65 
     66     if ( val < 0 )
     67     {
     68        val = -val;
     69        s = -1;
     70     }
     71 
     72     /* 0x40000000 comes from regression analysis between true */
     73     /* and CORDIC hypotenuse, so it minimizes the error       */
     74     val = (FT_Fixed)(
     75             ( (FT_UInt64)val * FT_TRIG_SCALE + 0x40000000UL ) >> 32 );
     76 
     77     return s < 0 ? -val : val;
     78   }
     79 
     80 #else /* !FT_LONG64 */
     81 
     82   /* multiply a given value by the CORDIC shrink factor */
     83   static FT_Fixed
     84   ft_trig_downscale( FT_Fixed  val )
     85   {
     86     FT_Int     s = 1;
     87     FT_UInt32  lo1, hi1, lo2, hi2, lo, hi, i1, i2;
     88 
     89 
     90     if ( val < 0 )
     91     {
     92        val = -val;
     93        s = -1;
     94     }
     95 
     96     lo1 = (FT_UInt32)val & 0x0000FFFFU;
     97     hi1 = (FT_UInt32)val >> 16;
     98     lo2 = FT_TRIG_SCALE & 0x0000FFFFU;
     99     hi2 = FT_TRIG_SCALE >> 16;
    100 
    101     lo = lo1 * lo2;
    102     i1 = lo1 * hi2;
    103     i2 = lo2 * hi1;
    104     hi = hi1 * hi2;
    105 
    106     /* Check carry overflow of i1 + i2 */
    107     i1 += i2;
    108     hi += (FT_UInt32)( i1 < i2 ) << 16;
    109 
    110     hi += i1 >> 16;
    111     i1  = i1 << 16;
    112 
    113     /* Check carry overflow of i1 + lo */
    114     lo += i1;
    115     hi += ( lo < i1 );
    116 
    117     /* 0x40000000 comes from regression analysis between true */
    118     /* and CORDIC hypotenuse, so it minimizes the error       */
    119 
    120     /* Check carry overflow of lo + 0x40000000 */
    121     lo += 0x40000000UL;
    122     hi += ( lo < 0x40000000UL );
    123 
    124     val = (FT_Fixed)hi;
    125 
    126     return s < 0 ? -val : val;
    127   }
    128 
    129 #endif /* !FT_LONG64 */
    130 
    131 
    132   /* undefined and never called for zero vector */
    133   static FT_Int
    134   ft_trig_prenorm( FT_Vector*  vec )
    135   {
    136     FT_Pos  x, y;
    137     FT_Int  shift;
    138 
    139 
    140     x = vec->x;
    141     y = vec->y;
    142 
    143     shift = FT_MSB( (FT_UInt32)( FT_ABS( x ) | FT_ABS( y ) ) );
    144 
    145     if ( shift <= FT_TRIG_SAFE_MSB )
    146     {
    147       shift  = FT_TRIG_SAFE_MSB - shift;
    148       vec->x = (FT_Pos)( (FT_ULong)x << shift );
    149       vec->y = (FT_Pos)( (FT_ULong)y << shift );
    150     }
    151     else
    152     {
    153       shift -= FT_TRIG_SAFE_MSB;
    154       vec->x = x >> shift;
    155       vec->y = y >> shift;
    156       shift  = -shift;
    157     }
    158 
    159     return shift;
    160   }
    161 
    162 
    163   static void
    164   ft_trig_pseudo_rotate( FT_Vector*  vec,
    165                          FT_Angle    theta )
    166   {
    167     FT_Int           i;
    168     FT_Fixed         x, y, xtemp, b;
    169     const FT_Angle  *arctanptr;
    170 
    171 
    172     x = vec->x;
    173     y = vec->y;
    174 
    175     /* Rotate inside [-PI/4,PI/4] sector */
    176     while ( theta < -FT_ANGLE_PI4 )
    177     {
    178       xtemp  =  y;
    179       y      = -x;
    180       x      =  xtemp;
    181       theta +=  FT_ANGLE_PI2;
    182     }
    183 
    184     while ( theta > FT_ANGLE_PI4 )
    185     {
    186       xtemp  = -y;
    187       y      =  x;
    188       x      =  xtemp;
    189       theta -=  FT_ANGLE_PI2;
    190     }
    191 
    192     arctanptr = ft_trig_arctan_table;
    193 
    194     /* Pseudorotations, with right shifts */
    195     for ( i = 1, b = 1; i < FT_TRIG_MAX_ITERS; b <<= 1, i++ )
    196     {
    197       if ( theta < 0 )
    198       {
    199         xtemp  = x + ( ( y + b ) >> i );
    200         y      = y - ( ( x + b ) >> i );
    201         x      = xtemp;
    202         theta += *arctanptr++;
    203       }
    204       else
    205       {
    206         xtemp  = x - ( ( y + b ) >> i );
    207         y      = y + ( ( x + b ) >> i );
    208         x      = xtemp;
    209         theta -= *arctanptr++;
    210       }
    211     }
    212 
    213     vec->x = x;
    214     vec->y = y;
    215   }
    216 
    217 
    218   static void
    219   ft_trig_pseudo_polarize( FT_Vector*  vec )
    220   {
    221     FT_Angle         theta;
    222     FT_Int           i;
    223     FT_Fixed         x, y, xtemp, b;
    224     const FT_Angle  *arctanptr;
    225 
    226 
    227     x = vec->x;
    228     y = vec->y;
    229 
    230     /* Get the vector into [-PI/4,PI/4] sector */
    231     if ( y > x )
    232     {
    233       if ( y > -x )
    234       {
    235         theta =  FT_ANGLE_PI2;
    236         xtemp =  y;
    237         y     = -x;
    238         x     =  xtemp;
    239       }
    240       else
    241       {
    242         theta =  y > 0 ? FT_ANGLE_PI : -FT_ANGLE_PI;
    243         x     = -x;
    244         y     = -y;
    245       }
    246     }
    247     else
    248     {
    249       if ( y < -x )
    250       {
    251         theta = -FT_ANGLE_PI2;
    252         xtemp = -y;
    253         y     =  x;
    254         x     =  xtemp;
    255       }
    256       else
    257       {
    258         theta = 0;
    259       }
    260     }
    261 
    262     arctanptr = ft_trig_arctan_table;
    263 
    264     /* Pseudorotations, with right shifts */
    265     for ( i = 1, b = 1; i < FT_TRIG_MAX_ITERS; b <<= 1, i++ )
    266     {
    267       if ( y > 0 )
    268       {
    269         xtemp  = x + ( ( y + b ) >> i );
    270         y      = y - ( ( x + b ) >> i );
    271         x      = xtemp;
    272         theta += *arctanptr++;
    273       }
    274       else
    275       {
    276         xtemp  = x - ( ( y + b ) >> i );
    277         y      = y + ( ( x + b ) >> i );
    278         x      = xtemp;
    279         theta -= *arctanptr++;
    280       }
    281     }
    282 
    283     /* round theta to acknowledge its error that mostly comes */
    284     /* from accumulated rounding errors in the arctan table   */
    285     if ( theta >= 0 )
    286       theta = FT_PAD_ROUND( theta, 16 );
    287     else
    288       theta = -FT_PAD_ROUND( -theta, 16 );
    289 
    290     vec->x = x;
    291     vec->y = theta;
    292   }
    293 
    294 
    295   /* documentation is in fttrigon.h */
    296 
    297   FT_EXPORT_DEF( FT_Fixed )
    298   FT_Cos( FT_Angle  angle )
    299   {
    300     FT_Vector  v;
    301 
    302 
    303     FT_Vector_Unit( &v, angle );
    304 
    305     return v.x;
    306   }
    307 
    308 
    309   /* documentation is in fttrigon.h */
    310 
    311   FT_EXPORT_DEF( FT_Fixed )
    312   FT_Sin( FT_Angle  angle )
    313   {
    314     FT_Vector  v;
    315 
    316 
    317     FT_Vector_Unit( &v, angle );
    318 
    319     return v.y;
    320   }
    321 
    322 
    323   /* documentation is in fttrigon.h */
    324 
    325   FT_EXPORT_DEF( FT_Fixed )
    326   FT_Tan( FT_Angle  angle )
    327   {
    328     FT_Vector  v;
    329 
    330 
    331     FT_Vector_Unit( &v, angle );
    332 
    333     return FT_DivFix( v.y, v.x );
    334   }
    335 
    336 
    337   /* documentation is in fttrigon.h */
    338 
    339   FT_EXPORT_DEF( FT_Angle )
    340   FT_Atan2( FT_Fixed  dx,
    341             FT_Fixed  dy )
    342   {
    343     FT_Vector  v;
    344 
    345 
    346     if ( dx == 0 && dy == 0 )
    347       return 0;
    348 
    349     v.x = dx;
    350     v.y = dy;
    351     ft_trig_prenorm( &v );
    352     ft_trig_pseudo_polarize( &v );
    353 
    354     return v.y;
    355   }
    356 
    357 
    358   /* documentation is in fttrigon.h */
    359 
    360   FT_EXPORT_DEF( void )
    361   FT_Vector_Unit( FT_Vector*  vec,
    362                   FT_Angle    angle )
    363   {
    364     if ( !vec )
    365       return;
    366 
    367     vec->x = FT_TRIG_SCALE >> 8;
    368     vec->y = 0;
    369     ft_trig_pseudo_rotate( vec, angle );
    370     vec->x = ( vec->x + 0x80L ) >> 8;
    371     vec->y = ( vec->y + 0x80L ) >> 8;
    372   }
    373 
    374 
    375   /* these macros return 0 for positive numbers,
    376      and -1 for negative ones */
    377 #define FT_SIGN_LONG( x )   ( (x) >> ( FT_SIZEOF_LONG * 8 - 1 ) )
    378 #define FT_SIGN_INT( x )    ( (x) >> ( FT_SIZEOF_INT * 8 - 1 ) )
    379 #define FT_SIGN_INT32( x )  ( (x) >> 31 )
    380 #define FT_SIGN_INT16( x )  ( (x) >> 15 )
    381 
    382 
    383   /* documentation is in fttrigon.h */
    384 
    385   FT_EXPORT_DEF( void )
    386   FT_Vector_Rotate( FT_Vector*  vec,
    387                     FT_Angle    angle )
    388   {
    389     FT_Int     shift;
    390     FT_Vector  v;
    391 
    392 
    393     if ( !vec || !angle )
    394       return;
    395 
    396     v = *vec;
    397 
    398     if ( v.x == 0 && v.y == 0 )
    399       return;
    400 
    401     shift = ft_trig_prenorm( &v );
    402     ft_trig_pseudo_rotate( &v, angle );
    403     v.x = ft_trig_downscale( v.x );
    404     v.y = ft_trig_downscale( v.y );
    405 
    406     if ( shift > 0 )
    407     {
    408       FT_Int32  half = (FT_Int32)1L << ( shift - 1 );
    409 
    410 
    411       vec->x = ( v.x + half + FT_SIGN_LONG( v.x ) ) >> shift;
    412       vec->y = ( v.y + half + FT_SIGN_LONG( v.y ) ) >> shift;
    413     }
    414     else
    415     {
    416       shift  = -shift;
    417       vec->x = (FT_Pos)( (FT_ULong)v.x << shift );
    418       vec->y = (FT_Pos)( (FT_ULong)v.y << shift );
    419     }
    420   }
    421 
    422 
    423   /* documentation is in fttrigon.h */
    424 
    425   FT_EXPORT_DEF( FT_Fixed )
    426   FT_Vector_Length( FT_Vector*  vec )
    427   {
    428     FT_Int     shift;
    429     FT_Vector  v;
    430 
    431 
    432     if ( !vec )
    433       return 0;
    434 
    435     v = *vec;
    436 
    437     /* handle trivial cases */
    438     if ( v.x == 0 )
    439     {
    440       return FT_ABS( v.y );
    441     }
    442     else if ( v.y == 0 )
    443     {
    444       return FT_ABS( v.x );
    445     }
    446 
    447     /* general case */
    448     shift = ft_trig_prenorm( &v );
    449     ft_trig_pseudo_polarize( &v );
    450 
    451     v.x = ft_trig_downscale( v.x );
    452 
    453     if ( shift > 0 )
    454       return ( v.x + ( 1L << ( shift - 1 ) ) ) >> shift;
    455 
    456     return (FT_Fixed)( (FT_UInt32)v.x << -shift );
    457   }
    458 
    459 
    460   /* documentation is in fttrigon.h */
    461 
    462   FT_EXPORT_DEF( void )
    463   FT_Vector_Polarize( FT_Vector*  vec,
    464                       FT_Fixed   *length,
    465                       FT_Angle   *angle )
    466   {
    467     FT_Int     shift;
    468     FT_Vector  v;
    469 
    470 
    471     if ( !vec || !length || !angle )
    472       return;
    473 
    474     v = *vec;
    475 
    476     if ( v.x == 0 && v.y == 0 )
    477       return;
    478 
    479     shift = ft_trig_prenorm( &v );
    480     ft_trig_pseudo_polarize( &v );
    481 
    482     v.x = ft_trig_downscale( v.x );
    483 
    484     *length = shift >= 0 ?                      ( v.x >>  shift )
    485                          : (FT_Fixed)( (FT_UInt32)v.x << -shift );
    486     *angle  = v.y;
    487   }
    488 
    489 
    490   /* documentation is in fttrigon.h */
    491 
    492   FT_EXPORT_DEF( void )
    493   FT_Vector_From_Polar( FT_Vector*  vec,
    494                         FT_Fixed    length,
    495                         FT_Angle    angle )
    496   {
    497     if ( !vec )
    498       return;
    499 
    500     vec->x = length;
    501     vec->y = 0;
    502 
    503     FT_Vector_Rotate( vec, angle );
    504   }
    505 
    506 
    507   /* documentation is in fttrigon.h */
    508 
    509   FT_EXPORT_DEF( FT_Angle )
    510   FT_Angle_Diff( FT_Angle  angle1,
    511                  FT_Angle  angle2 )
    512   {
    513     FT_Angle  delta = angle2 - angle1;
    514 
    515 
    516     while ( delta <= -FT_ANGLE_PI )
    517       delta += FT_ANGLE_2PI;
    518 
    519     while ( delta > FT_ANGLE_PI )
    520       delta -= FT_ANGLE_2PI;
    521 
    522     return delta;
    523   }
    524 
    525 
    526 /* END */
    527