Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #include <ctype.h>
     50 #include <string.h>
     51 #include <iomanip>
     52 #include <limits>
     53 #include <set>
     54 
     55 #include "gtest/internal/gtest-string.h"
     56 #include "gtest/internal/gtest-filepath.h"
     57 #include "gtest/internal/gtest-type-util.h"
     58 
     59 // Due to C++ preprocessor weirdness, we need double indirection to
     60 // concatenate two tokens when one of them is __LINE__.  Writing
     61 //
     62 //   foo ## __LINE__
     63 //
     64 // will result in the token foo__LINE__, instead of foo followed by
     65 // the current line number.  For more details, see
     66 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     67 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     68 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     69 
     70 // Google Test defines the testing::Message class to allow construction of
     71 // test messages via the << operator.  The idea is that anything
     72 // streamable to std::ostream can be streamed to a testing::Message.
     73 // This allows a user to use his own types in Google Test assertions by
     74 // overloading the << operator.
     75 //
     76 // util/gtl/stl_logging-inl.h overloads << for STL containers.  These
     77 // overloads cannot be defined in the std namespace, as that will be
     78 // undefined behavior.  Therefore, they are defined in the global
     79 // namespace instead.
     80 //
     81 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
     82 // overloads are visible in either the std namespace or the global
     83 // namespace, but not other namespaces, including the testing
     84 // namespace which Google Test's Message class is in.
     85 //
     86 // To allow STL containers (and other types that has a << operator
     87 // defined in the global namespace) to be used in Google Test assertions,
     88 // testing::Message must access the custom << operator from the global
     89 // namespace.  Hence this helper function.
     90 //
     91 // Note: Jeffrey Yasskin suggested an alternative fix by "using
     92 // ::operator<<;" in the definition of Message's operator<<.  That fix
     93 // doesn't require a helper function, but unfortunately doesn't
     94 // compile with MSVC.
     95 template <typename T>
     96 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
     97   *os << val;
     98 }
     99 
    100 class ProtocolMessage;
    101 namespace proto2 { class Message; }
    102 
    103 namespace testing {
    104 
    105 // Forward declarations.
    106 
    107 class AssertionResult;                 // Result of an assertion.
    108 class Message;                         // Represents a failure message.
    109 class Test;                            // Represents a test.
    110 class TestInfo;                        // Information about a test.
    111 class TestPartResult;                  // Result of a test part.
    112 class UnitTest;                        // A collection of test cases.
    113 
    114 template <typename T>
    115 ::std::string PrintToString(const T& value);
    116 
    117 namespace internal {
    118 
    119 struct TraceInfo;                      // Information about a trace point.
    120 class ScopedTrace;                     // Implements scoped trace.
    121 class TestInfoImpl;                    // Opaque implementation of TestInfo
    122 class UnitTestImpl;                    // Opaque implementation of UnitTest
    123 
    124 // How many times InitGoogleTest() has been called.
    125 GTEST_API_ extern int g_init_gtest_count;
    126 
    127 // The text used in failure messages to indicate the start of the
    128 // stack trace.
    129 GTEST_API_ extern const char kStackTraceMarker[];
    130 
    131 // A secret type that Google Test users don't know about.  It has no
    132 // definition on purpose.  Therefore it's impossible to create a
    133 // Secret object, which is what we want.
    134 class Secret;
    135 
    136 // Two overloaded helpers for checking at compile time whether an
    137 // expression is a null pointer literal (i.e. NULL or any 0-valued
    138 // compile-time integral constant).  Their return values have
    139 // different sizes, so we can use sizeof() to test which version is
    140 // picked by the compiler.  These helpers have no implementations, as
    141 // we only need their signatures.
    142 //
    143 // Given IsNullLiteralHelper(x), the compiler will pick the first
    144 // version if x can be implicitly converted to Secret*, and pick the
    145 // second version otherwise.  Since Secret is a secret and incomplete
    146 // type, the only expression a user can write that has type Secret* is
    147 // a null pointer literal.  Therefore, we know that x is a null
    148 // pointer literal if and only if the first version is picked by the
    149 // compiler.
    150 char IsNullLiteralHelper(Secret* p);
    151 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    152 
    153 // A compile-time bool constant that is true if and only if x is a
    154 // null pointer literal (i.e. NULL or any 0-valued compile-time
    155 // integral constant).
    156 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    157 // We lose support for NULL detection where the compiler doesn't like
    158 // passing non-POD classes through ellipsis (...).
    159 # define GTEST_IS_NULL_LITERAL_(x) false
    160 #else
    161 # define GTEST_IS_NULL_LITERAL_(x) \
    162     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    163 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    164 
    165 // Appends the user-supplied message to the Google-Test-generated message.
    166 GTEST_API_ String AppendUserMessage(const String& gtest_msg,
    167                                     const Message& user_msg);
    168 
    169 // A helper class for creating scoped traces in user programs.
    170 class GTEST_API_ ScopedTrace {
    171  public:
    172   // The c'tor pushes the given source file location and message onto
    173   // a trace stack maintained by Google Test.
    174   ScopedTrace(const char* file, int line, const Message& message);
    175 
    176   // The d'tor pops the info pushed by the c'tor.
    177   //
    178   // Note that the d'tor is not virtual in order to be efficient.
    179   // Don't inherit from ScopedTrace!
    180   ~ScopedTrace();
    181 
    182  private:
    183   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    184 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    185                             // c'tor and d'tor.  Therefore it doesn't
    186                             // need to be used otherwise.
    187 
    188 // Converts a streamable value to a String.  A NULL pointer is
    189 // converted to "(null)".  When the input value is a ::string,
    190 // ::std::string, ::wstring, or ::std::wstring object, each NUL
    191 // character in it is replaced with "\\0".
    192 // Declared here but defined in gtest.h, so that it has access
    193 // to the definition of the Message class, required by the ARM
    194 // compiler.
    195 template <typename T>
    196 String StreamableToString(const T& streamable);
    197 
    198 // The Symbian compiler has a bug that prevents it from selecting the
    199 // correct overload of FormatForComparisonFailureMessage (see below)
    200 // unless we pass the first argument by reference.  If we do that,
    201 // however, Visual Age C++ 10.1 generates a compiler error.  Therefore
    202 // we only apply the work-around for Symbian.
    203 #if defined(__SYMBIAN32__)
    204 # define GTEST_CREF_WORKAROUND_ const&
    205 #else
    206 # define GTEST_CREF_WORKAROUND_
    207 #endif
    208 
    209 // When this operand is a const char* or char*, if the other operand
    210 // is a ::std::string or ::string, we print this operand as a C string
    211 // rather than a pointer (we do the same for wide strings); otherwise
    212 // we print it as a pointer to be safe.
    213 
    214 // This internal macro is used to avoid duplicated code.
    215 #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
    216 inline String FormatForComparisonFailureMessage(\
    217     operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
    218     const operand2_type& /*operand2*/) {\
    219   return operand1_printer(str);\
    220 }\
    221 inline String FormatForComparisonFailureMessage(\
    222     const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
    223     const operand2_type& /*operand2*/) {\
    224   return operand1_printer(str);\
    225 }
    226 
    227 GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
    228 #if GTEST_HAS_STD_WSTRING
    229 GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
    230 #endif  // GTEST_HAS_STD_WSTRING
    231 
    232 #if GTEST_HAS_GLOBAL_STRING
    233 GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
    234 #endif  // GTEST_HAS_GLOBAL_STRING
    235 #if GTEST_HAS_GLOBAL_WSTRING
    236 GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
    237 #endif  // GTEST_HAS_GLOBAL_WSTRING
    238 
    239 #undef GTEST_FORMAT_IMPL_
    240 
    241 // The next four overloads handle the case where the operand being
    242 // printed is a char/wchar_t pointer and the other operand is not a
    243 // string/wstring object.  In such cases, we just print the operand as
    244 // a pointer to be safe.
    245 #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
    246   template <typename T>                                             \
    247   String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
    248                                            const T&) { \
    249     return PrintToString(static_cast<const void*>(p));              \
    250   }
    251 
    252 GTEST_FORMAT_CHAR_PTR_IMPL_(char)
    253 GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
    254 GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
    255 GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
    256 
    257 #undef GTEST_FORMAT_CHAR_PTR_IMPL_
    258 
    259 // Constructs and returns the message for an equality assertion
    260 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    261 //
    262 // The first four parameters are the expressions used in the assertion
    263 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    264 // where foo is 5 and bar is 6, we have:
    265 //
    266 //   expected_expression: "foo"
    267 //   actual_expression:   "bar"
    268 //   expected_value:      "5"
    269 //   actual_value:        "6"
    270 //
    271 // The ignoring_case parameter is true iff the assertion is a
    272 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    273 // be inserted into the message.
    274 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    275                                      const char* actual_expression,
    276                                      const String& expected_value,
    277                                      const String& actual_value,
    278                                      bool ignoring_case);
    279 
    280 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    281 GTEST_API_ String GetBoolAssertionFailureMessage(
    282     const AssertionResult& assertion_result,
    283     const char* expression_text,
    284     const char* actual_predicate_value,
    285     const char* expected_predicate_value);
    286 
    287 // This template class represents an IEEE floating-point number
    288 // (either single-precision or double-precision, depending on the
    289 // template parameters).
    290 //
    291 // The purpose of this class is to do more sophisticated number
    292 // comparison.  (Due to round-off error, etc, it's very unlikely that
    293 // two floating-points will be equal exactly.  Hence a naive
    294 // comparison by the == operation often doesn't work.)
    295 //
    296 // Format of IEEE floating-point:
    297 //
    298 //   The most-significant bit being the leftmost, an IEEE
    299 //   floating-point looks like
    300 //
    301 //     sign_bit exponent_bits fraction_bits
    302 //
    303 //   Here, sign_bit is a single bit that designates the sign of the
    304 //   number.
    305 //
    306 //   For float, there are 8 exponent bits and 23 fraction bits.
    307 //
    308 //   For double, there are 11 exponent bits and 52 fraction bits.
    309 //
    310 //   More details can be found at
    311 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    312 //
    313 // Template parameter:
    314 //
    315 //   RawType: the raw floating-point type (either float or double)
    316 template <typename RawType>
    317 class FloatingPoint {
    318  public:
    319   // Defines the unsigned integer type that has the same size as the
    320   // floating point number.
    321   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    322 
    323   // Constants.
    324 
    325   // # of bits in a number.
    326   static const size_t kBitCount = 8*sizeof(RawType);
    327 
    328   // # of fraction bits in a number.
    329   static const size_t kFractionBitCount =
    330     std::numeric_limits<RawType>::digits - 1;
    331 
    332   // # of exponent bits in a number.
    333   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    334 
    335   // The mask for the sign bit.
    336   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    337 
    338   // The mask for the fraction bits.
    339   static const Bits kFractionBitMask =
    340     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    341 
    342   // The mask for the exponent bits.
    343   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    344 
    345   // How many ULP's (Units in the Last Place) we want to tolerate when
    346   // comparing two numbers.  The larger the value, the more error we
    347   // allow.  A 0 value means that two numbers must be exactly the same
    348   // to be considered equal.
    349   //
    350   // The maximum error of a single floating-point operation is 0.5
    351   // units in the last place.  On Intel CPU's, all floating-point
    352   // calculations are done with 80-bit precision, while double has 64
    353   // bits.  Therefore, 4 should be enough for ordinary use.
    354   //
    355   // See the following article for more details on ULP:
    356   // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
    357   static const size_t kMaxUlps = 4;
    358 
    359   // Constructs a FloatingPoint from a raw floating-point number.
    360   //
    361   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    362   // around may change its bits, although the new value is guaranteed
    363   // to be also a NAN.  Therefore, don't expect this constructor to
    364   // preserve the bits in x when x is a NAN.
    365   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    366 
    367   // Static methods
    368 
    369   // Reinterprets a bit pattern as a floating-point number.
    370   //
    371   // This function is needed to test the AlmostEquals() method.
    372   static RawType ReinterpretBits(const Bits bits) {
    373     FloatingPoint fp(0);
    374     fp.u_.bits_ = bits;
    375     return fp.u_.value_;
    376   }
    377 
    378   // Returns the floating-point number that represent positive infinity.
    379   static RawType Infinity() {
    380     return ReinterpretBits(kExponentBitMask);
    381   }
    382 
    383   // Non-static methods
    384 
    385   // Returns the bits that represents this number.
    386   const Bits &bits() const { return u_.bits_; }
    387 
    388   // Returns the exponent bits of this number.
    389   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    390 
    391   // Returns the fraction bits of this number.
    392   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    393 
    394   // Returns the sign bit of this number.
    395   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    396 
    397   // Returns true iff this is NAN (not a number).
    398   bool is_nan() const {
    399     // It's a NAN if the exponent bits are all ones and the fraction
    400     // bits are not entirely zeros.
    401     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    402   }
    403 
    404   // Returns true iff this number is at most kMaxUlps ULP's away from
    405   // rhs.  In particular, this function:
    406   //
    407   //   - returns false if either number is (or both are) NAN.
    408   //   - treats really large numbers as almost equal to infinity.
    409   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    410   bool AlmostEquals(const FloatingPoint& rhs) const {
    411     // The IEEE standard says that any comparison operation involving
    412     // a NAN must return false.
    413     if (is_nan() || rhs.is_nan()) return false;
    414 
    415     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    416         <= kMaxUlps;
    417   }
    418 
    419  private:
    420   // The data type used to store the actual floating-point number.
    421   union FloatingPointUnion {
    422     RawType value_;  // The raw floating-point number.
    423     Bits bits_;      // The bits that represent the number.
    424   };
    425 
    426   // Converts an integer from the sign-and-magnitude representation to
    427   // the biased representation.  More precisely, let N be 2 to the
    428   // power of (kBitCount - 1), an integer x is represented by the
    429   // unsigned number x + N.
    430   //
    431   // For instance,
    432   //
    433   //   -N + 1 (the most negative number representable using
    434   //          sign-and-magnitude) is represented by 1;
    435   //   0      is represented by N; and
    436   //   N - 1  (the biggest number representable using
    437   //          sign-and-magnitude) is represented by 2N - 1.
    438   //
    439   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    440   // for more details on signed number representations.
    441   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    442     if (kSignBitMask & sam) {
    443       // sam represents a negative number.
    444       return ~sam + 1;
    445     } else {
    446       // sam represents a positive number.
    447       return kSignBitMask | sam;
    448     }
    449   }
    450 
    451   // Given two numbers in the sign-and-magnitude representation,
    452   // returns the distance between them as an unsigned number.
    453   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    454                                                      const Bits &sam2) {
    455     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    456     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    457     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    458   }
    459 
    460   FloatingPointUnion u_;
    461 };
    462 
    463 // Typedefs the instances of the FloatingPoint template class that we
    464 // care to use.
    465 typedef FloatingPoint<float> Float;
    466 typedef FloatingPoint<double> Double;
    467 
    468 // In order to catch the mistake of putting tests that use different
    469 // test fixture classes in the same test case, we need to assign
    470 // unique IDs to fixture classes and compare them.  The TypeId type is
    471 // used to hold such IDs.  The user should treat TypeId as an opaque
    472 // type: the only operation allowed on TypeId values is to compare
    473 // them for equality using the == operator.
    474 typedef const void* TypeId;
    475 
    476 template <typename T>
    477 class TypeIdHelper {
    478  public:
    479   // dummy_ must not have a const type.  Otherwise an overly eager
    480   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    481   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    482   static bool dummy_;
    483 };
    484 
    485 template <typename T>
    486 bool TypeIdHelper<T>::dummy_ = false;
    487 
    488 // GetTypeId<T>() returns the ID of type T.  Different values will be
    489 // returned for different types.  Calling the function twice with the
    490 // same type argument is guaranteed to return the same ID.
    491 template <typename T>
    492 TypeId GetTypeId() {
    493   // The compiler is required to allocate a different
    494   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    495   // the template.  Therefore, the address of dummy_ is guaranteed to
    496   // be unique.
    497   return &(TypeIdHelper<T>::dummy_);
    498 }
    499 
    500 // Returns the type ID of ::testing::Test.  Always call this instead
    501 // of GetTypeId< ::testing::Test>() to get the type ID of
    502 // ::testing::Test, as the latter may give the wrong result due to a
    503 // suspected linker bug when compiling Google Test as a Mac OS X
    504 // framework.
    505 GTEST_API_ TypeId GetTestTypeId();
    506 
    507 // Defines the abstract factory interface that creates instances
    508 // of a Test object.
    509 class TestFactoryBase {
    510  public:
    511   virtual ~TestFactoryBase() {}
    512 
    513   // Creates a test instance to run. The instance is both created and destroyed
    514   // within TestInfoImpl::Run()
    515   virtual Test* CreateTest() = 0;
    516 
    517  protected:
    518   TestFactoryBase() {}
    519 
    520  private:
    521   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    522 };
    523 
    524 // This class provides implementation of TeastFactoryBase interface.
    525 // It is used in TEST and TEST_F macros.
    526 template <class TestClass>
    527 class TestFactoryImpl : public TestFactoryBase {
    528  public:
    529   virtual Test* CreateTest() { return new TestClass; }
    530 };
    531 
    532 #if GTEST_OS_WINDOWS
    533 
    534 // Predicate-formatters for implementing the HRESULT checking macros
    535 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    536 // We pass a long instead of HRESULT to avoid causing an
    537 // include dependency for the HRESULT type.
    538 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    539                                             long hr);  // NOLINT
    540 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    541                                             long hr);  // NOLINT
    542 
    543 #endif  // GTEST_OS_WINDOWS
    544 
    545 // Types of SetUpTestCase() and TearDownTestCase() functions.
    546 typedef void (*SetUpTestCaseFunc)();
    547 typedef void (*TearDownTestCaseFunc)();
    548 
    549 // Creates a new TestInfo object and registers it with Google Test;
    550 // returns the created object.
    551 //
    552 // Arguments:
    553 //
    554 //   test_case_name:   name of the test case
    555 //   name:             name of the test
    556 //   type_param        the name of the test's type parameter, or NULL if
    557 //                     this is not  a typed or a type-parameterized test.
    558 //   value_param       text representation of the test's value parameter,
    559 //                     or NULL if this is not a type-parameterized test.
    560 //   fixture_class_id: ID of the test fixture class
    561 //   set_up_tc:        pointer to the function that sets up the test case
    562 //   tear_down_tc:     pointer to the function that tears down the test case
    563 //   factory:          pointer to the factory that creates a test object.
    564 //                     The newly created TestInfo instance will assume
    565 //                     ownership of the factory object.
    566 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    567     const char* test_case_name, const char* name,
    568     const char* type_param,
    569     const char* value_param,
    570     TypeId fixture_class_id,
    571     SetUpTestCaseFunc set_up_tc,
    572     TearDownTestCaseFunc tear_down_tc,
    573     TestFactoryBase* factory);
    574 
    575 // If *pstr starts with the given prefix, modifies *pstr to be right
    576 // past the prefix and returns true; otherwise leaves *pstr unchanged
    577 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    578 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    579 
    580 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    581 
    582 // State of the definition of a type-parameterized test case.
    583 class GTEST_API_ TypedTestCasePState {
    584  public:
    585   TypedTestCasePState() : registered_(false) {}
    586 
    587   // Adds the given test name to defined_test_names_ and return true
    588   // if the test case hasn't been registered; otherwise aborts the
    589   // program.
    590   bool AddTestName(const char* file, int line, const char* case_name,
    591                    const char* test_name) {
    592     if (registered_) {
    593       fprintf(stderr, "%s Test %s must be defined before "
    594               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    595               FormatFileLocation(file, line).c_str(), test_name, case_name);
    596       fflush(stderr);
    597       posix::Abort();
    598     }
    599     defined_test_names_.insert(test_name);
    600     return true;
    601   }
    602 
    603   // Verifies that registered_tests match the test names in
    604   // defined_test_names_; returns registered_tests if successful, or
    605   // aborts the program otherwise.
    606   const char* VerifyRegisteredTestNames(
    607       const char* file, int line, const char* registered_tests);
    608 
    609  private:
    610   bool registered_;
    611   ::std::set<const char*> defined_test_names_;
    612 };
    613 
    614 // Skips to the first non-space char after the first comma in 'str';
    615 // returns NULL if no comma is found in 'str'.
    616 inline const char* SkipComma(const char* str) {
    617   const char* comma = strchr(str, ',');
    618   if (comma == NULL) {
    619     return NULL;
    620   }
    621   while (IsSpace(*(++comma))) {}
    622   return comma;
    623 }
    624 
    625 // Returns the prefix of 'str' before the first comma in it; returns
    626 // the entire string if it contains no comma.
    627 inline String GetPrefixUntilComma(const char* str) {
    628   const char* comma = strchr(str, ',');
    629   return comma == NULL ? String(str) : String(str, comma - str);
    630 }
    631 
    632 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    633 // registers a list of type-parameterized tests with Google Test.  The
    634 // return value is insignificant - we just need to return something
    635 // such that we can call this function in a namespace scope.
    636 //
    637 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    638 // template parameter.  It's defined in gtest-type-util.h.
    639 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    640 class TypeParameterizedTest {
    641  public:
    642   // 'index' is the index of the test in the type list 'Types'
    643   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    644   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    645   // length of Types.
    646   static bool Register(const char* prefix, const char* case_name,
    647                        const char* test_names, int index) {
    648     typedef typename Types::Head Type;
    649     typedef Fixture<Type> FixtureClass;
    650     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    651 
    652     // First, registers the first type-parameterized test in the type
    653     // list.
    654     MakeAndRegisterTestInfo(
    655         String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
    656                        case_name, index).c_str(),
    657         GetPrefixUntilComma(test_names).c_str(),
    658         GetTypeName<Type>().c_str(),
    659         NULL,  // No value parameter.
    660         GetTypeId<FixtureClass>(),
    661         TestClass::SetUpTestCase,
    662         TestClass::TearDownTestCase,
    663         new TestFactoryImpl<TestClass>);
    664 
    665     // Next, recurses (at compile time) with the tail of the type list.
    666     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    667         ::Register(prefix, case_name, test_names, index + 1);
    668   }
    669 };
    670 
    671 // The base case for the compile time recursion.
    672 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    673 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    674  public:
    675   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    676                        const char* /*test_names*/, int /*index*/) {
    677     return true;
    678   }
    679 };
    680 
    681 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    682 // registers *all combinations* of 'Tests' and 'Types' with Google
    683 // Test.  The return value is insignificant - we just need to return
    684 // something such that we can call this function in a namespace scope.
    685 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    686 class TypeParameterizedTestCase {
    687  public:
    688   static bool Register(const char* prefix, const char* case_name,
    689                        const char* test_names) {
    690     typedef typename Tests::Head Head;
    691 
    692     // First, register the first test in 'Test' for each type in 'Types'.
    693     TypeParameterizedTest<Fixture, Head, Types>::Register(
    694         prefix, case_name, test_names, 0);
    695 
    696     // Next, recurses (at compile time) with the tail of the test list.
    697     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    698         ::Register(prefix, case_name, SkipComma(test_names));
    699   }
    700 };
    701 
    702 // The base case for the compile time recursion.
    703 template <GTEST_TEMPLATE_ Fixture, typename Types>
    704 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    705  public:
    706   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    707                        const char* /*test_names*/) {
    708     return true;
    709   }
    710 };
    711 
    712 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    713 
    714 // Returns the current OS stack trace as a String.
    715 //
    716 // The maximum number of stack frames to be included is specified by
    717 // the gtest_stack_trace_depth flag.  The skip_count parameter
    718 // specifies the number of top frames to be skipped, which doesn't
    719 // count against the number of frames to be included.
    720 //
    721 // For example, if Foo() calls Bar(), which in turn calls
    722 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    723 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    724 GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
    725                                                   int skip_count);
    726 
    727 // Helpers for suppressing warnings on unreachable code or constant
    728 // condition.
    729 
    730 // Always returns true.
    731 GTEST_API_ bool AlwaysTrue();
    732 
    733 // Always returns false.
    734 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    735 
    736 // Helper for suppressing false warning from Clang on a const char*
    737 // variable declared in a conditional expression always being NULL in
    738 // the else branch.
    739 struct GTEST_API_ ConstCharPtr {
    740   ConstCharPtr(const char* str) : value(str) {}
    741   operator bool() const { return true; }
    742   const char* value;
    743 };
    744 
    745 // A simple Linear Congruential Generator for generating random
    746 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    747 // doesn't use global state (and therefore can't interfere with user
    748 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    749 // but it's good enough for our purposes.
    750 class GTEST_API_ Random {
    751  public:
    752   static const UInt32 kMaxRange = 1u << 31;
    753 
    754   explicit Random(UInt32 seed) : state_(seed) {}
    755 
    756   void Reseed(UInt32 seed) { state_ = seed; }
    757 
    758   // Generates a random number from [0, range).  Crashes if 'range' is
    759   // 0 or greater than kMaxRange.
    760   UInt32 Generate(UInt32 range);
    761 
    762  private:
    763   UInt32 state_;
    764   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    765 };
    766 
    767 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    768 // compiler error iff T1 and T2 are different types.
    769 template <typename T1, typename T2>
    770 struct CompileAssertTypesEqual;
    771 
    772 template <typename T>
    773 struct CompileAssertTypesEqual<T, T> {
    774 };
    775 
    776 // Removes the reference from a type if it is a reference type,
    777 // otherwise leaves it unchanged.  This is the same as
    778 // tr1::remove_reference, which is not widely available yet.
    779 template <typename T>
    780 struct RemoveReference { typedef T type; };  // NOLINT
    781 template <typename T>
    782 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    783 
    784 // A handy wrapper around RemoveReference that works when the argument
    785 // T depends on template parameters.
    786 #define GTEST_REMOVE_REFERENCE_(T) \
    787     typename ::testing::internal::RemoveReference<T>::type
    788 
    789 // Removes const from a type if it is a const type, otherwise leaves
    790 // it unchanged.  This is the same as tr1::remove_const, which is not
    791 // widely available yet.
    792 template <typename T>
    793 struct RemoveConst { typedef T type; };  // NOLINT
    794 template <typename T>
    795 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    796 
    797 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
    798 // definition to fail to remove the const in 'const int[3]' and 'const
    799 // char[3][4]'.  The following specialization works around the bug.
    800 template <typename T, size_t N>
    801 struct RemoveConst<const T[N]> {
    802   typedef typename RemoveConst<T>::type type[N];
    803 };
    804 
    805 #if defined(_MSC_VER) && _MSC_VER < 1400
    806 // This is the only specialization that allows VC++ 7.1 to remove const in
    807 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
    808 // and thus needs to be conditionally compiled.
    809 template <typename T, size_t N>
    810 struct RemoveConst<T[N]> {
    811   typedef typename RemoveConst<T>::type type[N];
    812 };
    813 #endif
    814 
    815 // A handy wrapper around RemoveConst that works when the argument
    816 // T depends on template parameters.
    817 #define GTEST_REMOVE_CONST_(T) \
    818     typename ::testing::internal::RemoveConst<T>::type
    819 
    820 // Turns const U&, U&, const U, and U all into U.
    821 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    822     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    823 
    824 // Adds reference to a type if it is not a reference type,
    825 // otherwise leaves it unchanged.  This is the same as
    826 // tr1::add_reference, which is not widely available yet.
    827 template <typename T>
    828 struct AddReference { typedef T& type; };  // NOLINT
    829 template <typename T>
    830 struct AddReference<T&> { typedef T& type; };  // NOLINT
    831 
    832 // A handy wrapper around AddReference that works when the argument T
    833 // depends on template parameters.
    834 #define GTEST_ADD_REFERENCE_(T) \
    835     typename ::testing::internal::AddReference<T>::type
    836 
    837 // Adds a reference to const on top of T as necessary.  For example,
    838 // it transforms
    839 //
    840 //   char         ==> const char&
    841 //   const char   ==> const char&
    842 //   char&        ==> const char&
    843 //   const char&  ==> const char&
    844 //
    845 // The argument T must depend on some template parameters.
    846 #define GTEST_REFERENCE_TO_CONST_(T) \
    847     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    848 
    849 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    850 // constant that's true iff type From can be implicitly converted to
    851 // type To.
    852 template <typename From, typename To>
    853 class ImplicitlyConvertible {
    854  private:
    855   // We need the following helper functions only for their types.
    856   // They have no implementations.
    857 
    858   // MakeFrom() is an expression whose type is From.  We cannot simply
    859   // use From(), as the type From may not have a public default
    860   // constructor.
    861   static From MakeFrom();
    862 
    863   // These two functions are overloaded.  Given an expression
    864   // Helper(x), the compiler will pick the first version if x can be
    865   // implicitly converted to type To; otherwise it will pick the
    866   // second version.
    867   //
    868   // The first version returns a value of size 1, and the second
    869   // version returns a value of size 2.  Therefore, by checking the
    870   // size of Helper(x), which can be done at compile time, we can tell
    871   // which version of Helper() is used, and hence whether x can be
    872   // implicitly converted to type To.
    873   static char Helper(To);
    874   static char (&Helper(...))[2];  // NOLINT
    875 
    876   // We have to put the 'public' section after the 'private' section,
    877   // or MSVC refuses to compile the code.
    878  public:
    879   // MSVC warns about implicitly converting from double to int for
    880   // possible loss of data, so we need to temporarily disable the
    881   // warning.
    882 #ifdef _MSC_VER
    883 # pragma warning(push)          // Saves the current warning state.
    884 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
    885 
    886   static const bool value =
    887       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    888 # pragma warning(pop)           // Restores the warning state.
    889 #elif defined(__BORLANDC__)
    890   // C++Builder cannot use member overload resolution during template
    891   // instantiation.  The simplest workaround is to use its C++0x type traits
    892   // functions (C++Builder 2009 and above only).
    893   static const bool value = __is_convertible(From, To);
    894 #else
    895   static const bool value =
    896       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    897 #endif  // _MSV_VER
    898 };
    899 template <typename From, typename To>
    900 const bool ImplicitlyConvertible<From, To>::value;
    901 
    902 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    903 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    904 // of those.
    905 template <typename T>
    906 struct IsAProtocolMessage
    907     : public bool_constant<
    908   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    909   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    910 };
    911 
    912 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    913 // STL-style container class, the first overload of IsContainerTest
    914 // will be viable (since both C::iterator* and C::const_iterator* are
    915 // valid types and NULL can be implicitly converted to them).  It will
    916 // be picked over the second overload as 'int' is a perfect match for
    917 // the type of argument 0.  If C::iterator or C::const_iterator is not
    918 // a valid type, the first overload is not viable, and the second
    919 // overload will be picked.  Therefore, we can determine whether C is
    920 // a container class by checking the type of IsContainerTest<C>(0).
    921 // The value of the expression is insignificant.
    922 //
    923 // Note that we look for both C::iterator and C::const_iterator.  The
    924 // reason is that C++ injects the name of a class as a member of the
    925 // class itself (e.g. you can refer to class iterator as either
    926 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    927 // only, for example, we would mistakenly think that a class named
    928 // iterator is an STL container.
    929 //
    930 // Also note that the simpler approach of overloading
    931 // IsContainerTest(typename C::const_iterator*) and
    932 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    933 typedef int IsContainer;
    934 template <class C>
    935 IsContainer IsContainerTest(int /* dummy */,
    936                             typename C::iterator* /* it */ = NULL,
    937                             typename C::const_iterator* /* const_it */ = NULL) {
    938   return 0;
    939 }
    940 
    941 typedef char IsNotContainer;
    942 template <class C>
    943 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    944 
    945 // EnableIf<condition>::type is void when 'Cond' is true, and
    946 // undefined when 'Cond' is false.  To use SFINAE to make a function
    947 // overload only apply when a particular expression is true, add
    948 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    949 template<bool> struct EnableIf;
    950 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    951 
    952 // Utilities for native arrays.
    953 
    954 // ArrayEq() compares two k-dimensional native arrays using the
    955 // elements' operator==, where k can be any integer >= 0.  When k is
    956 // 0, ArrayEq() degenerates into comparing a single pair of values.
    957 
    958 template <typename T, typename U>
    959 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    960 
    961 // This generic version is used when k is 0.
    962 template <typename T, typename U>
    963 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    964 
    965 // This overload is used when k >= 1.
    966 template <typename T, typename U, size_t N>
    967 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    968   return internal::ArrayEq(lhs, N, rhs);
    969 }
    970 
    971 // This helper reduces code bloat.  If we instead put its logic inside
    972 // the previous ArrayEq() function, arrays with different sizes would
    973 // lead to different copies of the template code.
    974 template <typename T, typename U>
    975 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    976   for (size_t i = 0; i != size; i++) {
    977     if (!internal::ArrayEq(lhs[i], rhs[i]))
    978       return false;
    979   }
    980   return true;
    981 }
    982 
    983 // Finds the first element in the iterator range [begin, end) that
    984 // equals elem.  Element may be a native array type itself.
    985 template <typename Iter, typename Element>
    986 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
    987   for (Iter it = begin; it != end; ++it) {
    988     if (internal::ArrayEq(*it, elem))
    989       return it;
    990   }
    991   return end;
    992 }
    993 
    994 // CopyArray() copies a k-dimensional native array using the elements'
    995 // operator=, where k can be any integer >= 0.  When k is 0,
    996 // CopyArray() degenerates into copying a single value.
    997 
    998 template <typename T, typename U>
    999 void CopyArray(const T* from, size_t size, U* to);
   1000 
   1001 // This generic version is used when k is 0.
   1002 template <typename T, typename U>
   1003 inline void CopyArray(const T& from, U* to) { *to = from; }
   1004 
   1005 // This overload is used when k >= 1.
   1006 template <typename T, typename U, size_t N>
   1007 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
   1008   internal::CopyArray(from, N, *to);
   1009 }
   1010 
   1011 // This helper reduces code bloat.  If we instead put its logic inside
   1012 // the previous CopyArray() function, arrays with different sizes
   1013 // would lead to different copies of the template code.
   1014 template <typename T, typename U>
   1015 void CopyArray(const T* from, size_t size, U* to) {
   1016   for (size_t i = 0; i != size; i++) {
   1017     internal::CopyArray(from[i], to + i);
   1018   }
   1019 }
   1020 
   1021 // The relation between an NativeArray object (see below) and the
   1022 // native array it represents.
   1023 enum RelationToSource {
   1024   kReference,  // The NativeArray references the native array.
   1025   kCopy        // The NativeArray makes a copy of the native array and
   1026                // owns the copy.
   1027 };
   1028 
   1029 // Adapts a native array to a read-only STL-style container.  Instead
   1030 // of the complete STL container concept, this adaptor only implements
   1031 // members useful for Google Mock's container matchers.  New members
   1032 // should be added as needed.  To simplify the implementation, we only
   1033 // support Element being a raw type (i.e. having no top-level const or
   1034 // reference modifier).  It's the client's responsibility to satisfy
   1035 // this requirement.  Element can be an array type itself (hence
   1036 // multi-dimensional arrays are supported).
   1037 template <typename Element>
   1038 class NativeArray {
   1039  public:
   1040   // STL-style container typedefs.
   1041   typedef Element value_type;
   1042   typedef Element* iterator;
   1043   typedef const Element* const_iterator;
   1044 
   1045   // Constructs from a native array.
   1046   NativeArray(const Element* array, size_t count, RelationToSource relation) {
   1047     Init(array, count, relation);
   1048   }
   1049 
   1050   // Copy constructor.
   1051   NativeArray(const NativeArray& rhs) {
   1052     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
   1053   }
   1054 
   1055   ~NativeArray() {
   1056     // Ensures that the user doesn't instantiate NativeArray with a
   1057     // const or reference type.
   1058     static_cast<void>(StaticAssertTypeEqHelper<Element,
   1059         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
   1060     if (relation_to_source_ == kCopy)
   1061       delete[] array_;
   1062   }
   1063 
   1064   // STL-style container methods.
   1065   size_t size() const { return size_; }
   1066   const_iterator begin() const { return array_; }
   1067   const_iterator end() const { return array_ + size_; }
   1068   bool operator==(const NativeArray& rhs) const {
   1069     return size() == rhs.size() &&
   1070         ArrayEq(begin(), size(), rhs.begin());
   1071   }
   1072 
   1073  private:
   1074   // Initializes this object; makes a copy of the input array if
   1075   // 'relation' is kCopy.
   1076   void Init(const Element* array, size_t a_size, RelationToSource relation) {
   1077     if (relation == kReference) {
   1078       array_ = array;
   1079     } else {
   1080       Element* const copy = new Element[a_size];
   1081       CopyArray(array, a_size, copy);
   1082       array_ = copy;
   1083     }
   1084     size_ = a_size;
   1085     relation_to_source_ = relation;
   1086   }
   1087 
   1088   const Element* array_;
   1089   size_t size_;
   1090   RelationToSource relation_to_source_;
   1091 
   1092   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1093 };
   1094 
   1095 }  // namespace internal
   1096 }  // namespace testing
   1097 
   1098 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1099   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1100     = ::testing::Message()
   1101 
   1102 #define GTEST_MESSAGE_(message, result_type) \
   1103   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1104 
   1105 #define GTEST_FATAL_FAILURE_(message) \
   1106   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1107 
   1108 #define GTEST_NONFATAL_FAILURE_(message) \
   1109   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1110 
   1111 #define GTEST_SUCCESS_(message) \
   1112   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1113 
   1114 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1115 // statement if it returns or throws (or doesn't return or throw in some
   1116 // situations).
   1117 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1118   if (::testing::internal::AlwaysTrue()) { statement; }
   1119 
   1120 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1121   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1122   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1123     bool gtest_caught_expected = false; \
   1124     try { \
   1125       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1126     } \
   1127     catch (expected_exception const&) { \
   1128       gtest_caught_expected = true; \
   1129     } \
   1130     catch (...) { \
   1131       gtest_msg.value = \
   1132           "Expected: " #statement " throws an exception of type " \
   1133           #expected_exception ".\n  Actual: it throws a different type."; \
   1134       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1135     } \
   1136     if (!gtest_caught_expected) { \
   1137       gtest_msg.value = \
   1138           "Expected: " #statement " throws an exception of type " \
   1139           #expected_exception ".\n  Actual: it throws nothing."; \
   1140       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1141     } \
   1142   } else \
   1143     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1144       fail(gtest_msg.value)
   1145 
   1146 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1147   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1148   if (::testing::internal::AlwaysTrue()) { \
   1149     try { \
   1150       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1151     } \
   1152     catch (...) { \
   1153       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1154     } \
   1155   } else \
   1156     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1157       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1158            "  Actual: it throws.")
   1159 
   1160 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1161   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1162   if (::testing::internal::AlwaysTrue()) { \
   1163     bool gtest_caught_any = false; \
   1164     try { \
   1165       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1166     } \
   1167     catch (...) { \
   1168       gtest_caught_any = true; \
   1169     } \
   1170     if (!gtest_caught_any) { \
   1171       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1172     } \
   1173   } else \
   1174     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1175       fail("Expected: " #statement " throws an exception.\n" \
   1176            "  Actual: it doesn't.")
   1177 
   1178 
   1179 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1180 // either a boolean expression or an AssertionResult. text is a textual
   1181 // represenation of expression as it was passed into the EXPECT_TRUE.
   1182 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1183   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1184   if (const ::testing::AssertionResult gtest_ar_ = \
   1185       ::testing::AssertionResult(expression)) \
   1186     ; \
   1187   else \
   1188     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1189         gtest_ar_, text, #actual, #expected).c_str())
   1190 
   1191 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1192   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1193   if (::testing::internal::AlwaysTrue()) { \
   1194     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1195     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1196     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1197       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1198     } \
   1199   } else \
   1200     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1201       fail("Expected: " #statement " doesn't generate new fatal " \
   1202            "failures in the current thread.\n" \
   1203            "  Actual: it does.")
   1204 
   1205 // Expands to the name of the class that implements the given test.
   1206 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1207   test_case_name##_##test_name##_Test
   1208 
   1209 // Helper macro for defining tests.
   1210 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1211 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1212  public:\
   1213   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1214  private:\
   1215   virtual void TestBody();\
   1216   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1217   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1218       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1219 };\
   1220 \
   1221 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1222   ::test_info_ =\
   1223     ::testing::internal::MakeAndRegisterTestInfo(\
   1224         #test_case_name, #test_name, NULL, NULL, \
   1225         (parent_id), \
   1226         parent_class::SetUpTestCase, \
   1227         parent_class::TearDownTestCase, \
   1228         new ::testing::internal::TestFactoryImpl<\
   1229             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1230 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1231 
   1232 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1233