Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #if GTEST_HAS_EXCEPTIONS
     50 # include <stdexcept>
     51 #endif
     52 
     53 #include <ctype.h>
     54 #include <float.h>
     55 #include <string.h>
     56 #include <iomanip>
     57 #include <limits>
     58 #include <map>
     59 #include <set>
     60 #include <string>
     61 #include <vector>
     62 
     63 #include "gtest/gtest-message.h"
     64 #include "gtest/internal/gtest-string.h"
     65 #include "gtest/internal/gtest-filepath.h"
     66 #include "gtest/internal/gtest-type-util.h"
     67 
     68 // Due to C++ preprocessor weirdness, we need double indirection to
     69 // concatenate two tokens when one of them is __LINE__.  Writing
     70 //
     71 //   foo ## __LINE__
     72 //
     73 // will result in the token foo__LINE__, instead of foo followed by
     74 // the current line number.  For more details, see
     75 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     76 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     77 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     78 
     79 class ProtocolMessage;
     80 namespace proto2 { class Message; }
     81 
     82 namespace testing {
     83 
     84 // Forward declarations.
     85 
     86 class AssertionResult;                 // Result of an assertion.
     87 class Message;                         // Represents a failure message.
     88 class Test;                            // Represents a test.
     89 class TestInfo;                        // Information about a test.
     90 class TestPartResult;                  // Result of a test part.
     91 class UnitTest;                        // A collection of test cases.
     92 
     93 template <typename T>
     94 ::std::string PrintToString(const T& value);
     95 
     96 namespace internal {
     97 
     98 struct TraceInfo;                      // Information about a trace point.
     99 class ScopedTrace;                     // Implements scoped trace.
    100 class TestInfoImpl;                    // Opaque implementation of TestInfo
    101 class UnitTestImpl;                    // Opaque implementation of UnitTest
    102 
    103 // The text used in failure messages to indicate the start of the
    104 // stack trace.
    105 GTEST_API_ extern const char kStackTraceMarker[];
    106 
    107 // Two overloaded helpers for checking at compile time whether an
    108 // expression is a null pointer literal (i.e. NULL or any 0-valued
    109 // compile-time integral constant).  Their return values have
    110 // different sizes, so we can use sizeof() to test which version is
    111 // picked by the compiler.  These helpers have no implementations, as
    112 // we only need their signatures.
    113 //
    114 // Given IsNullLiteralHelper(x), the compiler will pick the first
    115 // version if x can be implicitly converted to Secret*, and pick the
    116 // second version otherwise.  Since Secret is a secret and incomplete
    117 // type, the only expression a user can write that has type Secret* is
    118 // a null pointer literal.  Therefore, we know that x is a null
    119 // pointer literal if and only if the first version is picked by the
    120 // compiler.
    121 char IsNullLiteralHelper(Secret* p);
    122 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    123 
    124 // A compile-time bool constant that is true if and only if x is a
    125 // null pointer literal (i.e. NULL or any 0-valued compile-time
    126 // integral constant).
    127 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    128 // We lose support for NULL detection where the compiler doesn't like
    129 // passing non-POD classes through ellipsis (...).
    130 # define GTEST_IS_NULL_LITERAL_(x) false
    131 #else
    132 # define GTEST_IS_NULL_LITERAL_(x) \
    133     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    134 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    135 
    136 // Appends the user-supplied message to the Google-Test-generated message.
    137 GTEST_API_ std::string AppendUserMessage(
    138     const std::string& gtest_msg, const Message& user_msg);
    139 
    140 #if GTEST_HAS_EXCEPTIONS
    141 
    142 // This exception is thrown by (and only by) a failed Google Test
    143 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
    144 // are enabled).  We derive it from std::runtime_error, which is for
    145 // errors presumably detectable only at run time.  Since
    146 // std::runtime_error inherits from std::exception, many testing
    147 // frameworks know how to extract and print the message inside it.
    148 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
    149  public:
    150   explicit GoogleTestFailureException(const TestPartResult& failure);
    151 };
    152 
    153 #endif  // GTEST_HAS_EXCEPTIONS
    154 
    155 // A helper class for creating scoped traces in user programs.
    156 class GTEST_API_ ScopedTrace {
    157  public:
    158   // The c'tor pushes the given source file location and message onto
    159   // a trace stack maintained by Google Test.
    160   ScopedTrace(const char* file, int line, const Message& message);
    161 
    162   // The d'tor pops the info pushed by the c'tor.
    163   //
    164   // Note that the d'tor is not virtual in order to be efficient.
    165   // Don't inherit from ScopedTrace!
    166   ~ScopedTrace();
    167 
    168  private:
    169   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    170 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    171                             // c'tor and d'tor.  Therefore it doesn't
    172                             // need to be used otherwise.
    173 
    174 namespace edit_distance {
    175 // Returns the optimal edits to go from 'left' to 'right'.
    176 // All edits cost the same, with replace having lower priority than
    177 // add/remove.
    178 // Simple implementation of the Wagner-Fischer algorithm.
    179 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
    180 enum EditType { kMatch, kAdd, kRemove, kReplace };
    181 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    182     const std::vector<size_t>& left, const std::vector<size_t>& right);
    183 
    184 // Same as above, but the input is represented as strings.
    185 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    186     const std::vector<std::string>& left,
    187     const std::vector<std::string>& right);
    188 
    189 // Create a diff of the input strings in Unified diff format.
    190 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
    191                                          const std::vector<std::string>& right,
    192                                          size_t context = 2);
    193 
    194 }  // namespace edit_distance
    195 
    196 // Calculate the diff between 'left' and 'right' and return it in unified diff
    197 // format.
    198 // If not null, stores in 'total_line_count' the total number of lines found
    199 // in left + right.
    200 GTEST_API_ std::string DiffStrings(const std::string& left,
    201                                    const std::string& right,
    202                                    size_t* total_line_count);
    203 
    204 // Constructs and returns the message for an equality assertion
    205 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    206 //
    207 // The first four parameters are the expressions used in the assertion
    208 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    209 // where foo is 5 and bar is 6, we have:
    210 //
    211 //   expected_expression: "foo"
    212 //   actual_expression:   "bar"
    213 //   expected_value:      "5"
    214 //   actual_value:        "6"
    215 //
    216 // The ignoring_case parameter is true iff the assertion is a
    217 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    218 // be inserted into the message.
    219 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    220                                      const char* actual_expression,
    221                                      const std::string& expected_value,
    222                                      const std::string& actual_value,
    223                                      bool ignoring_case);
    224 
    225 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    226 GTEST_API_ std::string GetBoolAssertionFailureMessage(
    227     const AssertionResult& assertion_result,
    228     const char* expression_text,
    229     const char* actual_predicate_value,
    230     const char* expected_predicate_value);
    231 
    232 // This template class represents an IEEE floating-point number
    233 // (either single-precision or double-precision, depending on the
    234 // template parameters).
    235 //
    236 // The purpose of this class is to do more sophisticated number
    237 // comparison.  (Due to round-off error, etc, it's very unlikely that
    238 // two floating-points will be equal exactly.  Hence a naive
    239 // comparison by the == operation often doesn't work.)
    240 //
    241 // Format of IEEE floating-point:
    242 //
    243 //   The most-significant bit being the leftmost, an IEEE
    244 //   floating-point looks like
    245 //
    246 //     sign_bit exponent_bits fraction_bits
    247 //
    248 //   Here, sign_bit is a single bit that designates the sign of the
    249 //   number.
    250 //
    251 //   For float, there are 8 exponent bits and 23 fraction bits.
    252 //
    253 //   For double, there are 11 exponent bits and 52 fraction bits.
    254 //
    255 //   More details can be found at
    256 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    257 //
    258 // Template parameter:
    259 //
    260 //   RawType: the raw floating-point type (either float or double)
    261 template <typename RawType>
    262 class FloatingPoint {
    263  public:
    264   // Defines the unsigned integer type that has the same size as the
    265   // floating point number.
    266   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    267 
    268   // Constants.
    269 
    270   // # of bits in a number.
    271   static const size_t kBitCount = 8*sizeof(RawType);
    272 
    273   // # of fraction bits in a number.
    274   static const size_t kFractionBitCount =
    275     std::numeric_limits<RawType>::digits - 1;
    276 
    277   // # of exponent bits in a number.
    278   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    279 
    280   // The mask for the sign bit.
    281   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    282 
    283   // The mask for the fraction bits.
    284   static const Bits kFractionBitMask =
    285     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    286 
    287   // The mask for the exponent bits.
    288   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    289 
    290   // How many ULP's (Units in the Last Place) we want to tolerate when
    291   // comparing two numbers.  The larger the value, the more error we
    292   // allow.  A 0 value means that two numbers must be exactly the same
    293   // to be considered equal.
    294   //
    295   // The maximum error of a single floating-point operation is 0.5
    296   // units in the last place.  On Intel CPU's, all floating-point
    297   // calculations are done with 80-bit precision, while double has 64
    298   // bits.  Therefore, 4 should be enough for ordinary use.
    299   //
    300   // See the following article for more details on ULP:
    301   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    302   static const size_t kMaxUlps = 4;
    303 
    304   // Constructs a FloatingPoint from a raw floating-point number.
    305   //
    306   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    307   // around may change its bits, although the new value is guaranteed
    308   // to be also a NAN.  Therefore, don't expect this constructor to
    309   // preserve the bits in x when x is a NAN.
    310   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    311 
    312   // Static methods
    313 
    314   // Reinterprets a bit pattern as a floating-point number.
    315   //
    316   // This function is needed to test the AlmostEquals() method.
    317   static RawType ReinterpretBits(const Bits bits) {
    318     FloatingPoint fp(0);
    319     fp.u_.bits_ = bits;
    320     return fp.u_.value_;
    321   }
    322 
    323   // Returns the floating-point number that represent positive infinity.
    324   static RawType Infinity() {
    325     return ReinterpretBits(kExponentBitMask);
    326   }
    327 
    328   // Returns the maximum representable finite floating-point number.
    329   static RawType Max();
    330 
    331   // Non-static methods
    332 
    333   // Returns the bits that represents this number.
    334   const Bits &bits() const { return u_.bits_; }
    335 
    336   // Returns the exponent bits of this number.
    337   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    338 
    339   // Returns the fraction bits of this number.
    340   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    341 
    342   // Returns the sign bit of this number.
    343   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    344 
    345   // Returns true iff this is NAN (not a number).
    346   bool is_nan() const {
    347     // It's a NAN if the exponent bits are all ones and the fraction
    348     // bits are not entirely zeros.
    349     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    350   }
    351 
    352   // Returns true iff this number is at most kMaxUlps ULP's away from
    353   // rhs.  In particular, this function:
    354   //
    355   //   - returns false if either number is (or both are) NAN.
    356   //   - treats really large numbers as almost equal to infinity.
    357   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    358   bool AlmostEquals(const FloatingPoint& rhs) const {
    359     // The IEEE standard says that any comparison operation involving
    360     // a NAN must return false.
    361     if (is_nan() || rhs.is_nan()) return false;
    362 
    363     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    364         <= kMaxUlps;
    365   }
    366 
    367  private:
    368   // The data type used to store the actual floating-point number.
    369   union FloatingPointUnion {
    370     RawType value_;  // The raw floating-point number.
    371     Bits bits_;      // The bits that represent the number.
    372   };
    373 
    374   // Converts an integer from the sign-and-magnitude representation to
    375   // the biased representation.  More precisely, let N be 2 to the
    376   // power of (kBitCount - 1), an integer x is represented by the
    377   // unsigned number x + N.
    378   //
    379   // For instance,
    380   //
    381   //   -N + 1 (the most negative number representable using
    382   //          sign-and-magnitude) is represented by 1;
    383   //   0      is represented by N; and
    384   //   N - 1  (the biggest number representable using
    385   //          sign-and-magnitude) is represented by 2N - 1.
    386   //
    387   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    388   // for more details on signed number representations.
    389   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    390     if (kSignBitMask & sam) {
    391       // sam represents a negative number.
    392       return ~sam + 1;
    393     } else {
    394       // sam represents a positive number.
    395       return kSignBitMask | sam;
    396     }
    397   }
    398 
    399   // Given two numbers in the sign-and-magnitude representation,
    400   // returns the distance between them as an unsigned number.
    401   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    402                                                      const Bits &sam2) {
    403     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    404     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    405     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    406   }
    407 
    408   FloatingPointUnion u_;
    409 };
    410 
    411 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
    412 // macro defined by <windows.h>.
    413 template <>
    414 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
    415 template <>
    416 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
    417 
    418 // Typedefs the instances of the FloatingPoint template class that we
    419 // care to use.
    420 typedef FloatingPoint<float> Float;
    421 typedef FloatingPoint<double> Double;
    422 
    423 // In order to catch the mistake of putting tests that use different
    424 // test fixture classes in the same test case, we need to assign
    425 // unique IDs to fixture classes and compare them.  The TypeId type is
    426 // used to hold such IDs.  The user should treat TypeId as an opaque
    427 // type: the only operation allowed on TypeId values is to compare
    428 // them for equality using the == operator.
    429 typedef const void* TypeId;
    430 
    431 template <typename T>
    432 class TypeIdHelper {
    433  public:
    434   // dummy_ must not have a const type.  Otherwise an overly eager
    435   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    436   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    437   static bool dummy_;
    438 };
    439 
    440 template <typename T>
    441 bool TypeIdHelper<T>::dummy_ = false;
    442 
    443 // GetTypeId<T>() returns the ID of type T.  Different values will be
    444 // returned for different types.  Calling the function twice with the
    445 // same type argument is guaranteed to return the same ID.
    446 template <typename T>
    447 TypeId GetTypeId() {
    448   // The compiler is required to allocate a different
    449   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    450   // the template.  Therefore, the address of dummy_ is guaranteed to
    451   // be unique.
    452   return &(TypeIdHelper<T>::dummy_);
    453 }
    454 
    455 // Returns the type ID of ::testing::Test.  Always call this instead
    456 // of GetTypeId< ::testing::Test>() to get the type ID of
    457 // ::testing::Test, as the latter may give the wrong result due to a
    458 // suspected linker bug when compiling Google Test as a Mac OS X
    459 // framework.
    460 GTEST_API_ TypeId GetTestTypeId();
    461 
    462 // Defines the abstract factory interface that creates instances
    463 // of a Test object.
    464 class TestFactoryBase {
    465  public:
    466   virtual ~TestFactoryBase() {}
    467 
    468   // Creates a test instance to run. The instance is both created and destroyed
    469   // within TestInfoImpl::Run()
    470   virtual Test* CreateTest() = 0;
    471 
    472  protected:
    473   TestFactoryBase() {}
    474 
    475  private:
    476   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    477 };
    478 
    479 // This class provides implementation of TeastFactoryBase interface.
    480 // It is used in TEST and TEST_F macros.
    481 template <class TestClass>
    482 class TestFactoryImpl : public TestFactoryBase {
    483  public:
    484   virtual Test* CreateTest() { return new TestClass; }
    485 };
    486 
    487 #if GTEST_OS_WINDOWS
    488 
    489 // Predicate-formatters for implementing the HRESULT checking macros
    490 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    491 // We pass a long instead of HRESULT to avoid causing an
    492 // include dependency for the HRESULT type.
    493 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    494                                             long hr);  // NOLINT
    495 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    496                                             long hr);  // NOLINT
    497 
    498 #endif  // GTEST_OS_WINDOWS
    499 
    500 // Types of SetUpTestCase() and TearDownTestCase() functions.
    501 typedef void (*SetUpTestCaseFunc)();
    502 typedef void (*TearDownTestCaseFunc)();
    503 
    504 struct CodeLocation {
    505   CodeLocation(const std::string& a_file, int a_line)
    506       : file(a_file), line(a_line) {}
    507 
    508   std::string file;
    509   int line;
    510 };
    511 
    512 // Creates a new TestInfo object and registers it with Google Test;
    513 // returns the created object.
    514 //
    515 // Arguments:
    516 //
    517 //   test_case_name:   name of the test case
    518 //   name:             name of the test
    519 //   type_param        the name of the test's type parameter, or NULL if
    520 //                     this is not a typed or a type-parameterized test.
    521 //   value_param       text representation of the test's value parameter,
    522 //                     or NULL if this is not a type-parameterized test.
    523 //   code_location:    code location where the test is defined
    524 //   fixture_class_id: ID of the test fixture class
    525 //   set_up_tc:        pointer to the function that sets up the test case
    526 //   tear_down_tc:     pointer to the function that tears down the test case
    527 //   factory:          pointer to the factory that creates a test object.
    528 //                     The newly created TestInfo instance will assume
    529 //                     ownership of the factory object.
    530 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    531     const char* test_case_name,
    532     const char* name,
    533     const char* type_param,
    534     const char* value_param,
    535     CodeLocation code_location,
    536     TypeId fixture_class_id,
    537     SetUpTestCaseFunc set_up_tc,
    538     TearDownTestCaseFunc tear_down_tc,
    539     TestFactoryBase* factory);
    540 
    541 // If *pstr starts with the given prefix, modifies *pstr to be right
    542 // past the prefix and returns true; otherwise leaves *pstr unchanged
    543 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    544 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    545 
    546 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    547 
    548 // State of the definition of a type-parameterized test case.
    549 class GTEST_API_ TypedTestCasePState {
    550  public:
    551   TypedTestCasePState() : registered_(false) {}
    552 
    553   // Adds the given test name to defined_test_names_ and return true
    554   // if the test case hasn't been registered; otherwise aborts the
    555   // program.
    556   bool AddTestName(const char* file, int line, const char* case_name,
    557                    const char* test_name) {
    558     if (registered_) {
    559       fprintf(stderr, "%s Test %s must be defined before "
    560               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    561               FormatFileLocation(file, line).c_str(), test_name, case_name);
    562       fflush(stderr);
    563       posix::Abort();
    564     }
    565     registered_tests_.insert(
    566         ::std::make_pair(test_name, CodeLocation(file, line)));
    567     return true;
    568   }
    569 
    570   bool TestExists(const std::string& test_name) const {
    571     return registered_tests_.count(test_name) > 0;
    572   }
    573 
    574   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
    575     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
    576     GTEST_CHECK_(it != registered_tests_.end());
    577     return it->second;
    578   }
    579 
    580   // Verifies that registered_tests match the test names in
    581   // defined_test_names_; returns registered_tests if successful, or
    582   // aborts the program otherwise.
    583   const char* VerifyRegisteredTestNames(
    584       const char* file, int line, const char* registered_tests);
    585 
    586  private:
    587   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
    588 
    589   bool registered_;
    590   RegisteredTestsMap registered_tests_;
    591 };
    592 
    593 // Skips to the first non-space char after the first comma in 'str';
    594 // returns NULL if no comma is found in 'str'.
    595 inline const char* SkipComma(const char* str) {
    596   const char* comma = strchr(str, ',');
    597   if (comma == NULL) {
    598     return NULL;
    599   }
    600   while (IsSpace(*(++comma))) {}
    601   return comma;
    602 }
    603 
    604 // Returns the prefix of 'str' before the first comma in it; returns
    605 // the entire string if it contains no comma.
    606 inline std::string GetPrefixUntilComma(const char* str) {
    607   const char* comma = strchr(str, ',');
    608   return comma == NULL ? str : std::string(str, comma);
    609 }
    610 
    611 // Splits a given string on a given delimiter, populating a given
    612 // vector with the fields.
    613 void SplitString(const ::std::string& str, char delimiter,
    614                  ::std::vector< ::std::string>* dest);
    615 
    616 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    617 // registers a list of type-parameterized tests with Google Test.  The
    618 // return value is insignificant - we just need to return something
    619 // such that we can call this function in a namespace scope.
    620 //
    621 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    622 // template parameter.  It's defined in gtest-type-util.h.
    623 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    624 class TypeParameterizedTest {
    625  public:
    626   // 'index' is the index of the test in the type list 'Types'
    627   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    628   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    629   // length of Types.
    630   static bool Register(const char* prefix,
    631                        CodeLocation code_location,
    632                        const char* case_name, const char* test_names,
    633                        int index) {
    634     typedef typename Types::Head Type;
    635     typedef Fixture<Type> FixtureClass;
    636     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    637 
    638     // First, registers the first type-parameterized test in the type
    639     // list.
    640     MakeAndRegisterTestInfo(
    641         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
    642          + StreamableToString(index)).c_str(),
    643         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
    644         GetTypeName<Type>().c_str(),
    645         NULL,  // No value parameter.
    646         code_location,
    647         GetTypeId<FixtureClass>(),
    648         TestClass::SetUpTestCase,
    649         TestClass::TearDownTestCase,
    650         new TestFactoryImpl<TestClass>);
    651 
    652     // Next, recurses (at compile time) with the tail of the type list.
    653     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    654         ::Register(prefix, code_location, case_name, test_names, index + 1);
    655   }
    656 };
    657 
    658 // The base case for the compile time recursion.
    659 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    660 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    661  public:
    662   static bool Register(const char* /*prefix*/, CodeLocation,
    663                        const char* /*case_name*/, const char* /*test_names*/,
    664                        int /*index*/) {
    665     return true;
    666   }
    667 };
    668 
    669 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    670 // registers *all combinations* of 'Tests' and 'Types' with Google
    671 // Test.  The return value is insignificant - we just need to return
    672 // something such that we can call this function in a namespace scope.
    673 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    674 class TypeParameterizedTestCase {
    675  public:
    676   static bool Register(const char* prefix, CodeLocation code_location,
    677                        const TypedTestCasePState* state,
    678                        const char* case_name, const char* test_names) {
    679     std::string test_name = StripTrailingSpaces(
    680         GetPrefixUntilComma(test_names));
    681     if (!state->TestExists(test_name)) {
    682       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
    683               case_name, test_name.c_str(),
    684               FormatFileLocation(code_location.file.c_str(),
    685                                  code_location.line).c_str());
    686       fflush(stderr);
    687       posix::Abort();
    688     }
    689     const CodeLocation& test_location = state->GetCodeLocation(test_name);
    690 
    691     typedef typename Tests::Head Head;
    692 
    693     // First, register the first test in 'Test' for each type in 'Types'.
    694     TypeParameterizedTest<Fixture, Head, Types>::Register(
    695         prefix, test_location, case_name, test_names, 0);
    696 
    697     // Next, recurses (at compile time) with the tail of the test list.
    698     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    699         ::Register(prefix, code_location, state,
    700                    case_name, SkipComma(test_names));
    701   }
    702 };
    703 
    704 // The base case for the compile time recursion.
    705 template <GTEST_TEMPLATE_ Fixture, typename Types>
    706 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    707  public:
    708   static bool Register(const char* /*prefix*/, CodeLocation,
    709                        const TypedTestCasePState* /*state*/,
    710                        const char* /*case_name*/, const char* /*test_names*/) {
    711     return true;
    712   }
    713 };
    714 
    715 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    716 
    717 // Returns the current OS stack trace as an std::string.
    718 //
    719 // The maximum number of stack frames to be included is specified by
    720 // the gtest_stack_trace_depth flag.  The skip_count parameter
    721 // specifies the number of top frames to be skipped, which doesn't
    722 // count against the number of frames to be included.
    723 //
    724 // For example, if Foo() calls Bar(), which in turn calls
    725 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    726 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    727 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
    728     UnitTest* unit_test, int skip_count);
    729 
    730 // Helpers for suppressing warnings on unreachable code or constant
    731 // condition.
    732 
    733 // Always returns true.
    734 GTEST_API_ bool AlwaysTrue();
    735 
    736 // Always returns false.
    737 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    738 
    739 // Helper for suppressing false warning from Clang on a const char*
    740 // variable declared in a conditional expression always being NULL in
    741 // the else branch.
    742 struct GTEST_API_ ConstCharPtr {
    743   ConstCharPtr(const char* str) : value(str) {}
    744   operator bool() const { return true; }
    745   const char* value;
    746 };
    747 
    748 // A simple Linear Congruential Generator for generating random
    749 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    750 // doesn't use global state (and therefore can't interfere with user
    751 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    752 // but it's good enough for our purposes.
    753 class GTEST_API_ Random {
    754  public:
    755   static const UInt32 kMaxRange = 1u << 31;
    756 
    757   explicit Random(UInt32 seed) : state_(seed) {}
    758 
    759   void Reseed(UInt32 seed) { state_ = seed; }
    760 
    761   // Generates a random number from [0, range).  Crashes if 'range' is
    762   // 0 or greater than kMaxRange.
    763   UInt32 Generate(UInt32 range);
    764 
    765  private:
    766   UInt32 state_;
    767   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    768 };
    769 
    770 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    771 // compiler error iff T1 and T2 are different types.
    772 template <typename T1, typename T2>
    773 struct CompileAssertTypesEqual;
    774 
    775 template <typename T>
    776 struct CompileAssertTypesEqual<T, T> {
    777 };
    778 
    779 // Removes the reference from a type if it is a reference type,
    780 // otherwise leaves it unchanged.  This is the same as
    781 // tr1::remove_reference, which is not widely available yet.
    782 template <typename T>
    783 struct RemoveReference { typedef T type; };  // NOLINT
    784 template <typename T>
    785 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    786 
    787 // A handy wrapper around RemoveReference that works when the argument
    788 // T depends on template parameters.
    789 #define GTEST_REMOVE_REFERENCE_(T) \
    790     typename ::testing::internal::RemoveReference<T>::type
    791 
    792 // Removes const from a type if it is a const type, otherwise leaves
    793 // it unchanged.  This is the same as tr1::remove_const, which is not
    794 // widely available yet.
    795 template <typename T>
    796 struct RemoveConst { typedef T type; };  // NOLINT
    797 template <typename T>
    798 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    799 
    800 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
    801 // definition to fail to remove the const in 'const int[3]' and 'const
    802 // char[3][4]'.  The following specialization works around the bug.
    803 template <typename T, size_t N>
    804 struct RemoveConst<const T[N]> {
    805   typedef typename RemoveConst<T>::type type[N];
    806 };
    807 
    808 #if defined(_MSC_VER) && _MSC_VER < 1400
    809 // This is the only specialization that allows VC++ 7.1 to remove const in
    810 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
    811 // and thus needs to be conditionally compiled.
    812 template <typename T, size_t N>
    813 struct RemoveConst<T[N]> {
    814   typedef typename RemoveConst<T>::type type[N];
    815 };
    816 #endif
    817 
    818 // A handy wrapper around RemoveConst that works when the argument
    819 // T depends on template parameters.
    820 #define GTEST_REMOVE_CONST_(T) \
    821     typename ::testing::internal::RemoveConst<T>::type
    822 
    823 // Turns const U&, U&, const U, and U all into U.
    824 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    825     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    826 
    827 // Adds reference to a type if it is not a reference type,
    828 // otherwise leaves it unchanged.  This is the same as
    829 // tr1::add_reference, which is not widely available yet.
    830 template <typename T>
    831 struct AddReference { typedef T& type; };  // NOLINT
    832 template <typename T>
    833 struct AddReference<T&> { typedef T& type; };  // NOLINT
    834 
    835 // A handy wrapper around AddReference that works when the argument T
    836 // depends on template parameters.
    837 #define GTEST_ADD_REFERENCE_(T) \
    838     typename ::testing::internal::AddReference<T>::type
    839 
    840 // Adds a reference to const on top of T as necessary.  For example,
    841 // it transforms
    842 //
    843 //   char         ==> const char&
    844 //   const char   ==> const char&
    845 //   char&        ==> const char&
    846 //   const char&  ==> const char&
    847 //
    848 // The argument T must depend on some template parameters.
    849 #define GTEST_REFERENCE_TO_CONST_(T) \
    850     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    851 
    852 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    853 // constant that's true iff type From can be implicitly converted to
    854 // type To.
    855 template <typename From, typename To>
    856 class ImplicitlyConvertible {
    857  private:
    858   // We need the following helper functions only for their types.
    859   // They have no implementations.
    860 
    861   // MakeFrom() is an expression whose type is From.  We cannot simply
    862   // use From(), as the type From may not have a public default
    863   // constructor.
    864   static typename AddReference<From>::type MakeFrom();
    865 
    866   // These two functions are overloaded.  Given an expression
    867   // Helper(x), the compiler will pick the first version if x can be
    868   // implicitly converted to type To; otherwise it will pick the
    869   // second version.
    870   //
    871   // The first version returns a value of size 1, and the second
    872   // version returns a value of size 2.  Therefore, by checking the
    873   // size of Helper(x), which can be done at compile time, we can tell
    874   // which version of Helper() is used, and hence whether x can be
    875   // implicitly converted to type To.
    876   static char Helper(To);
    877   static char (&Helper(...))[2];  // NOLINT
    878 
    879   // We have to put the 'public' section after the 'private' section,
    880   // or MSVC refuses to compile the code.
    881  public:
    882 #if defined(__BORLANDC__)
    883   // C++Builder cannot use member overload resolution during template
    884   // instantiation.  The simplest workaround is to use its C++0x type traits
    885   // functions (C++Builder 2009 and above only).
    886   static const bool value = __is_convertible(From, To);
    887 #else
    888   // MSVC warns about implicitly converting from double to int for
    889   // possible loss of data, so we need to temporarily disable the
    890   // warning.
    891   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
    892   static const bool value =
    893       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    894   GTEST_DISABLE_MSC_WARNINGS_POP_()
    895 #endif  // __BORLANDC__
    896 };
    897 template <typename From, typename To>
    898 const bool ImplicitlyConvertible<From, To>::value;
    899 
    900 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    901 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    902 // of those.
    903 template <typename T>
    904 struct IsAProtocolMessage
    905     : public bool_constant<
    906   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    907   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    908 };
    909 
    910 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    911 // STL-style container class, the first overload of IsContainerTest
    912 // will be viable (since both C::iterator* and C::const_iterator* are
    913 // valid types and NULL can be implicitly converted to them).  It will
    914 // be picked over the second overload as 'int' is a perfect match for
    915 // the type of argument 0.  If C::iterator or C::const_iterator is not
    916 // a valid type, the first overload is not viable, and the second
    917 // overload will be picked.  Therefore, we can determine whether C is
    918 // a container class by checking the type of IsContainerTest<C>(0).
    919 // The value of the expression is insignificant.
    920 //
    921 // Note that we look for both C::iterator and C::const_iterator.  The
    922 // reason is that C++ injects the name of a class as a member of the
    923 // class itself (e.g. you can refer to class iterator as either
    924 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    925 // only, for example, we would mistakenly think that a class named
    926 // iterator is an STL container.
    927 //
    928 // Also note that the simpler approach of overloading
    929 // IsContainerTest(typename C::const_iterator*) and
    930 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    931 typedef int IsContainer;
    932 template <class C>
    933 IsContainer IsContainerTest(int /* dummy */,
    934                             typename C::iterator* /* it */ = NULL,
    935                             typename C::const_iterator* /* const_it */ = NULL) {
    936   return 0;
    937 }
    938 
    939 typedef char IsNotContainer;
    940 template <class C>
    941 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    942 
    943 template <typename C, bool =
    944   sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)
    945 >
    946 struct IsRecursiveContainerImpl;
    947 
    948 template <typename C>
    949 struct IsRecursiveContainerImpl<C, false> : public false_type {};
    950 
    951 template <typename C>
    952 struct IsRecursiveContainerImpl<C, true> {
    953   typedef
    954     typename IteratorTraits<typename C::iterator>::value_type
    955   value_type;
    956   typedef is_same<value_type, C> type;
    957 };
    958 
    959 // IsRecursiveContainer<Type> is a unary compile-time predicate that
    960 // evaluates whether C is a recursive container type. A recursive container
    961 // type is a container type whose value_type is equal to the container type
    962 // itself. An example for a recursive container type is
    963 // boost::filesystem::path, whose iterator has a value_type that is equal to
    964 // boost::filesystem::path.
    965 template<typename C>
    966 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
    967 
    968 // EnableIf<condition>::type is void when 'Cond' is true, and
    969 // undefined when 'Cond' is false.  To use SFINAE to make a function
    970 // overload only apply when a particular expression is true, add
    971 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    972 template<bool> struct EnableIf;
    973 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    974 
    975 // Utilities for native arrays.
    976 
    977 // ArrayEq() compares two k-dimensional native arrays using the
    978 // elements' operator==, where k can be any integer >= 0.  When k is
    979 // 0, ArrayEq() degenerates into comparing a single pair of values.
    980 
    981 template <typename T, typename U>
    982 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    983 
    984 // This generic version is used when k is 0.
    985 template <typename T, typename U>
    986 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    987 
    988 // This overload is used when k >= 1.
    989 template <typename T, typename U, size_t N>
    990 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    991   return internal::ArrayEq(lhs, N, rhs);
    992 }
    993 
    994 // This helper reduces code bloat.  If we instead put its logic inside
    995 // the previous ArrayEq() function, arrays with different sizes would
    996 // lead to different copies of the template code.
    997 template <typename T, typename U>
    998 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    999   for (size_t i = 0; i != size; i++) {
   1000     if (!internal::ArrayEq(lhs[i], rhs[i]))
   1001       return false;
   1002   }
   1003   return true;
   1004 }
   1005 
   1006 // Finds the first element in the iterator range [begin, end) that
   1007 // equals elem.  Element may be a native array type itself.
   1008 template <typename Iter, typename Element>
   1009 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
   1010   for (Iter it = begin; it != end; ++it) {
   1011     if (internal::ArrayEq(*it, elem))
   1012       return it;
   1013   }
   1014   return end;
   1015 }
   1016 
   1017 // CopyArray() copies a k-dimensional native array using the elements'
   1018 // operator=, where k can be any integer >= 0.  When k is 0,
   1019 // CopyArray() degenerates into copying a single value.
   1020 
   1021 template <typename T, typename U>
   1022 void CopyArray(const T* from, size_t size, U* to);
   1023 
   1024 // This generic version is used when k is 0.
   1025 template <typename T, typename U>
   1026 inline void CopyArray(const T& from, U* to) { *to = from; }
   1027 
   1028 // This overload is used when k >= 1.
   1029 template <typename T, typename U, size_t N>
   1030 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
   1031   internal::CopyArray(from, N, *to);
   1032 }
   1033 
   1034 // This helper reduces code bloat.  If we instead put its logic inside
   1035 // the previous CopyArray() function, arrays with different sizes
   1036 // would lead to different copies of the template code.
   1037 template <typename T, typename U>
   1038 void CopyArray(const T* from, size_t size, U* to) {
   1039   for (size_t i = 0; i != size; i++) {
   1040     internal::CopyArray(from[i], to + i);
   1041   }
   1042 }
   1043 
   1044 // The relation between an NativeArray object (see below) and the
   1045 // native array it represents.
   1046 // We use 2 different structs to allow non-copyable types to be used, as long
   1047 // as RelationToSourceReference() is passed.
   1048 struct RelationToSourceReference {};
   1049 struct RelationToSourceCopy {};
   1050 
   1051 // Adapts a native array to a read-only STL-style container.  Instead
   1052 // of the complete STL container concept, this adaptor only implements
   1053 // members useful for Google Mock's container matchers.  New members
   1054 // should be added as needed.  To simplify the implementation, we only
   1055 // support Element being a raw type (i.e. having no top-level const or
   1056 // reference modifier).  It's the client's responsibility to satisfy
   1057 // this requirement.  Element can be an array type itself (hence
   1058 // multi-dimensional arrays are supported).
   1059 template <typename Element>
   1060 class NativeArray {
   1061  public:
   1062   // STL-style container typedefs.
   1063   typedef Element value_type;
   1064   typedef Element* iterator;
   1065   typedef const Element* const_iterator;
   1066 
   1067   // Constructs from a native array. References the source.
   1068   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
   1069     InitRef(array, count);
   1070   }
   1071 
   1072   // Constructs from a native array. Copies the source.
   1073   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
   1074     InitCopy(array, count);
   1075   }
   1076 
   1077   // Copy constructor.
   1078   NativeArray(const NativeArray& rhs) {
   1079     (this->*rhs.clone_)(rhs.array_, rhs.size_);
   1080   }
   1081 
   1082   ~NativeArray() {
   1083     if (clone_ != &NativeArray::InitRef)
   1084       delete[] array_;
   1085   }
   1086 
   1087   // STL-style container methods.
   1088   size_t size() const { return size_; }
   1089   const_iterator begin() const { return array_; }
   1090   const_iterator end() const { return array_ + size_; }
   1091   bool operator==(const NativeArray& rhs) const {
   1092     return size() == rhs.size() &&
   1093         ArrayEq(begin(), size(), rhs.begin());
   1094   }
   1095 
   1096  private:
   1097   enum {
   1098     kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
   1099         Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
   1100   };
   1101 
   1102   // Initializes this object with a copy of the input.
   1103   void InitCopy(const Element* array, size_t a_size) {
   1104     Element* const copy = new Element[a_size];
   1105     CopyArray(array, a_size, copy);
   1106     array_ = copy;
   1107     size_ = a_size;
   1108     clone_ = &NativeArray::InitCopy;
   1109   }
   1110 
   1111   // Initializes this object with a reference of the input.
   1112   void InitRef(const Element* array, size_t a_size) {
   1113     array_ = array;
   1114     size_ = a_size;
   1115     clone_ = &NativeArray::InitRef;
   1116   }
   1117 
   1118   const Element* array_;
   1119   size_t size_;
   1120   void (NativeArray::*clone_)(const Element*, size_t);
   1121 
   1122   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1123 };
   1124 
   1125 }  // namespace internal
   1126 }  // namespace testing
   1127 
   1128 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1129   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1130     = ::testing::Message()
   1131 
   1132 #define GTEST_MESSAGE_(message, result_type) \
   1133   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1134 
   1135 #define GTEST_FATAL_FAILURE_(message) \
   1136   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1137 
   1138 #define GTEST_NONFATAL_FAILURE_(message) \
   1139   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1140 
   1141 #define GTEST_SUCCESS_(message) \
   1142   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1143 
   1144 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1145 // statement if it returns or throws (or doesn't return or throw in some
   1146 // situations).
   1147 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1148   if (::testing::internal::AlwaysTrue()) { statement; }
   1149 
   1150 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1151   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1152   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1153     bool gtest_caught_expected = false; \
   1154     try { \
   1155       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1156     } \
   1157     catch (expected_exception const&) { \
   1158       gtest_caught_expected = true; \
   1159     } \
   1160     catch (...) { \
   1161       gtest_msg.value = \
   1162           "Expected: " #statement " throws an exception of type " \
   1163           #expected_exception ".\n  Actual: it throws a different type."; \
   1164       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1165     } \
   1166     if (!gtest_caught_expected) { \
   1167       gtest_msg.value = \
   1168           "Expected: " #statement " throws an exception of type " \
   1169           #expected_exception ".\n  Actual: it throws nothing."; \
   1170       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1171     } \
   1172   } else \
   1173     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1174       fail(gtest_msg.value)
   1175 
   1176 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1177   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1178   if (::testing::internal::AlwaysTrue()) { \
   1179     try { \
   1180       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1181     } \
   1182     catch (...) { \
   1183       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1184     } \
   1185   } else \
   1186     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1187       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1188            "  Actual: it throws.")
   1189 
   1190 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1191   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1192   if (::testing::internal::AlwaysTrue()) { \
   1193     bool gtest_caught_any = false; \
   1194     try { \
   1195       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1196     } \
   1197     catch (...) { \
   1198       gtest_caught_any = true; \
   1199     } \
   1200     if (!gtest_caught_any) { \
   1201       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1202     } \
   1203   } else \
   1204     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1205       fail("Expected: " #statement " throws an exception.\n" \
   1206            "  Actual: it doesn't.")
   1207 
   1208 
   1209 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1210 // either a boolean expression or an AssertionResult. text is a textual
   1211 // represenation of expression as it was passed into the EXPECT_TRUE.
   1212 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1213   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1214   if (const ::testing::AssertionResult gtest_ar_ = \
   1215       ::testing::AssertionResult(expression)) \
   1216     ; \
   1217   else \
   1218     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1219         gtest_ar_, text, #actual, #expected).c_str())
   1220 
   1221 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1222   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1223   if (::testing::internal::AlwaysTrue()) { \
   1224     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1225     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1226     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1227       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1228     } \
   1229   } else \
   1230     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1231       fail("Expected: " #statement " doesn't generate new fatal " \
   1232            "failures in the current thread.\n" \
   1233            "  Actual: it does.")
   1234 
   1235 // Expands to the name of the class that implements the given test.
   1236 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1237   test_case_name##_##test_name##_Test
   1238 
   1239 // Helper macro for defining tests.
   1240 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1241 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1242  public:\
   1243   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1244  private:\
   1245   virtual void TestBody();\
   1246   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1247   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1248       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1249 };\
   1250 \
   1251 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1252   ::test_info_ =\
   1253     ::testing::internal::MakeAndRegisterTestInfo(\
   1254         #test_case_name, #test_name, NULL, NULL, \
   1255         ::testing::internal::CodeLocation(__FILE__, __LINE__), \
   1256         (parent_id), \
   1257         parent_class::SetUpTestCase, \
   1258         parent_class::TearDownTestCase, \
   1259         new ::testing::internal::TestFactoryImpl<\
   1260             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1261 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1262 
   1263 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1264 
   1265