Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #if GTEST_HAS_EXCEPTIONS
     50 # include <stdexcept>
     51 #endif
     52 
     53 #include <ctype.h>
     54 #include <float.h>
     55 #include <string.h>
     56 #include <iomanip>
     57 #include <limits>
     58 #include <map>
     59 #include <set>
     60 #include <string>
     61 #include <vector>
     62 
     63 #include "gtest/gtest-message.h"
     64 #include "gtest/internal/gtest-string.h"
     65 #include "gtest/internal/gtest-filepath.h"
     66 #include "gtest/internal/gtest-type-util.h"
     67 
     68 // Due to C++ preprocessor weirdness, we need double indirection to
     69 // concatenate two tokens when one of them is __LINE__.  Writing
     70 //
     71 //   foo ## __LINE__
     72 //
     73 // will result in the token foo__LINE__, instead of foo followed by
     74 // the current line number.  For more details, see
     75 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     76 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     77 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     78 
     79 class ProtocolMessage;
     80 namespace proto2 { class Message; }
     81 
     82 namespace testing {
     83 
     84 // Forward declarations.
     85 
     86 class AssertionResult;                 // Result of an assertion.
     87 class Message;                         // Represents a failure message.
     88 class Test;                            // Represents a test.
     89 class TestInfo;                        // Information about a test.
     90 class TestPartResult;                  // Result of a test part.
     91 class UnitTest;                        // A collection of test cases.
     92 
     93 template <typename T>
     94 ::std::string PrintToString(const T& value);
     95 
     96 namespace internal {
     97 
     98 struct TraceInfo;                      // Information about a trace point.
     99 class ScopedTrace;                     // Implements scoped trace.
    100 class TestInfoImpl;                    // Opaque implementation of TestInfo
    101 class UnitTestImpl;                    // Opaque implementation of UnitTest
    102 
    103 // The text used in failure messages to indicate the start of the
    104 // stack trace.
    105 GTEST_API_ extern const char kStackTraceMarker[];
    106 
    107 // Two overloaded helpers for checking at compile time whether an
    108 // expression is a null pointer literal (i.e. NULL or any 0-valued
    109 // compile-time integral constant).  Their return values have
    110 // different sizes, so we can use sizeof() to test which version is
    111 // picked by the compiler.  These helpers have no implementations, as
    112 // we only need their signatures.
    113 //
    114 // Given IsNullLiteralHelper(x), the compiler will pick the first
    115 // version if x can be implicitly converted to Secret*, and pick the
    116 // second version otherwise.  Since Secret is a secret and incomplete
    117 // type, the only expression a user can write that has type Secret* is
    118 // a null pointer literal.  Therefore, we know that x is a null
    119 // pointer literal if and only if the first version is picked by the
    120 // compiler.
    121 char IsNullLiteralHelper(Secret* p);
    122 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    123 
    124 // A compile-time bool constant that is true if and only if x is a
    125 // null pointer literal (i.e. NULL or any 0-valued compile-time
    126 // integral constant).
    127 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    128 // We lose support for NULL detection where the compiler doesn't like
    129 // passing non-POD classes through ellipsis (...).
    130 # define GTEST_IS_NULL_LITERAL_(x) false
    131 #else
    132 # define GTEST_IS_NULL_LITERAL_(x) \
    133     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    134 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    135 
    136 // Appends the user-supplied message to the Google-Test-generated message.
    137 GTEST_API_ std::string AppendUserMessage(
    138     const std::string& gtest_msg, const Message& user_msg);
    139 
    140 #if GTEST_HAS_EXCEPTIONS
    141 
    142 // This exception is thrown by (and only by) a failed Google Test
    143 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
    144 // are enabled).  We derive it from std::runtime_error, which is for
    145 // errors presumably detectable only at run time.  Since
    146 // std::runtime_error inherits from std::exception, many testing
    147 // frameworks know how to extract and print the message inside it.
    148 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
    149  public:
    150   explicit GoogleTestFailureException(const TestPartResult& failure);
    151 };
    152 
    153 #endif  // GTEST_HAS_EXCEPTIONS
    154 
    155 // A helper class for creating scoped traces in user programs.
    156 class GTEST_API_ ScopedTrace {
    157  public:
    158   // The c'tor pushes the given source file location and message onto
    159   // a trace stack maintained by Google Test.
    160   ScopedTrace(const char* file, int line, const Message& message);
    161 
    162   // The d'tor pops the info pushed by the c'tor.
    163   //
    164   // Note that the d'tor is not virtual in order to be efficient.
    165   // Don't inherit from ScopedTrace!
    166   ~ScopedTrace();
    167 
    168  private:
    169   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    170 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    171                             // c'tor and d'tor.  Therefore it doesn't
    172                             // need to be used otherwise.
    173 
    174 namespace edit_distance {
    175 // Returns the optimal edits to go from 'left' to 'right'.
    176 // All edits cost the same, with replace having lower priority than
    177 // add/remove.
    178 // Simple implementation of the WagnerFischer algorithm.
    179 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
    180 enum EditType { kMatch, kAdd, kRemove, kReplace };
    181 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    182     const std::vector<size_t>& left, const std::vector<size_t>& right);
    183 
    184 // Same as above, but the input is represented as strings.
    185 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    186     const std::vector<std::string>& left,
    187     const std::vector<std::string>& right);
    188 
    189 // Create a diff of the input strings in Unified diff format.
    190 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
    191                                          const std::vector<std::string>& right,
    192                                          size_t context = 2);
    193 
    194 }  // namespace edit_distance
    195 
    196 // Calculate the diff between 'left' and 'right' and return it in unified diff
    197 // format.
    198 // If not null, stores in 'total_line_count' the total number of lines found
    199 // in left + right.
    200 GTEST_API_ std::string DiffStrings(const std::string& left,
    201                                    const std::string& right,
    202                                    size_t* total_line_count);
    203 
    204 // Constructs and returns the message for an equality assertion
    205 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    206 //
    207 // The first four parameters are the expressions used in the assertion
    208 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    209 // where foo is 5 and bar is 6, we have:
    210 //
    211 //   expected_expression: "foo"
    212 //   actual_expression:   "bar"
    213 //   expected_value:      "5"
    214 //   actual_value:        "6"
    215 //
    216 // The ignoring_case parameter is true iff the assertion is a
    217 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    218 // be inserted into the message.
    219 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    220                                      const char* actual_expression,
    221                                      const std::string& expected_value,
    222                                      const std::string& actual_value,
    223                                      bool ignoring_case);
    224 
    225 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    226 GTEST_API_ std::string GetBoolAssertionFailureMessage(
    227     const AssertionResult& assertion_result,
    228     const char* expression_text,
    229     const char* actual_predicate_value,
    230     const char* expected_predicate_value);
    231 
    232 // This template class represents an IEEE floating-point number
    233 // (either single-precision or double-precision, depending on the
    234 // template parameters).
    235 //
    236 // The purpose of this class is to do more sophisticated number
    237 // comparison.  (Due to round-off error, etc, it's very unlikely that
    238 // two floating-points will be equal exactly.  Hence a naive
    239 // comparison by the == operation often doesn't work.)
    240 //
    241 // Format of IEEE floating-point:
    242 //
    243 //   The most-significant bit being the leftmost, an IEEE
    244 //   floating-point looks like
    245 //
    246 //     sign_bit exponent_bits fraction_bits
    247 //
    248 //   Here, sign_bit is a single bit that designates the sign of the
    249 //   number.
    250 //
    251 //   For float, there are 8 exponent bits and 23 fraction bits.
    252 //
    253 //   For double, there are 11 exponent bits and 52 fraction bits.
    254 //
    255 //   More details can be found at
    256 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    257 //
    258 // Template parameter:
    259 //
    260 //   RawType: the raw floating-point type (either float or double)
    261 template <typename RawType>
    262 class FloatingPoint {
    263  public:
    264   // Defines the unsigned integer type that has the same size as the
    265   // floating point number.
    266   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    267 
    268   // Constants.
    269 
    270   // # of bits in a number.
    271   static const size_t kBitCount = 8*sizeof(RawType);
    272 
    273   // # of fraction bits in a number.
    274   static const size_t kFractionBitCount =
    275     std::numeric_limits<RawType>::digits - 1;
    276 
    277   // # of exponent bits in a number.
    278   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    279 
    280   // The mask for the sign bit.
    281   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    282 
    283   // The mask for the fraction bits.
    284   static const Bits kFractionBitMask =
    285     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    286 
    287   // The mask for the exponent bits.
    288   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    289 
    290   // How many ULP's (Units in the Last Place) we want to tolerate when
    291   // comparing two numbers.  The larger the value, the more error we
    292   // allow.  A 0 value means that two numbers must be exactly the same
    293   // to be considered equal.
    294   //
    295   // The maximum error of a single floating-point operation is 0.5
    296   // units in the last place.  On Intel CPU's, all floating-point
    297   // calculations are done with 80-bit precision, while double has 64
    298   // bits.  Therefore, 4 should be enough for ordinary use.
    299   //
    300   // See the following article for more details on ULP:
    301   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    302   static const size_t kMaxUlps = 4;
    303 
    304   // Constructs a FloatingPoint from a raw floating-point number.
    305   //
    306   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    307   // around may change its bits, although the new value is guaranteed
    308   // to be also a NAN.  Therefore, don't expect this constructor to
    309   // preserve the bits in x when x is a NAN.
    310   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    311 
    312   // Static methods
    313 
    314   // Reinterprets a bit pattern as a floating-point number.
    315   //
    316   // This function is needed to test the AlmostEquals() method.
    317   static RawType ReinterpretBits(const Bits bits) {
    318     FloatingPoint fp(0);
    319     fp.u_.bits_ = bits;
    320     return fp.u_.value_;
    321   }
    322 
    323   // Returns the floating-point number that represent positive infinity.
    324   static RawType Infinity() {
    325     return ReinterpretBits(kExponentBitMask);
    326   }
    327 
    328   // Returns the maximum representable finite floating-point number.
    329   static RawType Max();
    330 
    331   // Non-static methods
    332 
    333   // Returns the bits that represents this number.
    334   const Bits &bits() const { return u_.bits_; }
    335 
    336   // Returns the exponent bits of this number.
    337   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    338 
    339   // Returns the fraction bits of this number.
    340   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    341 
    342   // Returns the sign bit of this number.
    343   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    344 
    345   // Returns true iff this is NAN (not a number).
    346   bool is_nan() const {
    347     // It's a NAN if the exponent bits are all ones and the fraction
    348     // bits are not entirely zeros.
    349     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    350   }
    351 
    352   // Returns true iff this number is at most kMaxUlps ULP's away from
    353   // rhs.  In particular, this function:
    354   //
    355   //   - returns false if either number is (or both are) NAN.
    356   //   - treats really large numbers as almost equal to infinity.
    357   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    358   bool AlmostEquals(const FloatingPoint& rhs) const {
    359     // The IEEE standard says that any comparison operation involving
    360     // a NAN must return false.
    361     if (is_nan() || rhs.is_nan()) return false;
    362 
    363     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    364         <= kMaxUlps;
    365   }
    366 
    367  private:
    368   // The data type used to store the actual floating-point number.
    369   union FloatingPointUnion {
    370     RawType value_;  // The raw floating-point number.
    371     Bits bits_;      // The bits that represent the number.
    372   };
    373 
    374   // Converts an integer from the sign-and-magnitude representation to
    375   // the biased representation.  More precisely, let N be 2 to the
    376   // power of (kBitCount - 1), an integer x is represented by the
    377   // unsigned number x + N.
    378   //
    379   // For instance,
    380   //
    381   //   -N + 1 (the most negative number representable using
    382   //          sign-and-magnitude) is represented by 1;
    383   //   0      is represented by N; and
    384   //   N - 1  (the biggest number representable using
    385   //          sign-and-magnitude) is represented by 2N - 1.
    386   //
    387   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    388   // for more details on signed number representations.
    389   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    390     if (kSignBitMask & sam) {
    391       // sam represents a negative number.
    392       return ~sam + 1;
    393     } else {
    394       // sam represents a positive number.
    395       return kSignBitMask | sam;
    396     }
    397   }
    398 
    399   // Given two numbers in the sign-and-magnitude representation,
    400   // returns the distance between them as an unsigned number.
    401   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    402                                                      const Bits &sam2) {
    403     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    404     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    405     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    406   }
    407 
    408   FloatingPointUnion u_;
    409 };
    410 
    411 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
    412 // macro defined by <windows.h>.
    413 template <>
    414 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
    415 template <>
    416 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
    417 
    418 // Typedefs the instances of the FloatingPoint template class that we
    419 // care to use.
    420 typedef FloatingPoint<float> Float;
    421 typedef FloatingPoint<double> Double;
    422 
    423 // In order to catch the mistake of putting tests that use different
    424 // test fixture classes in the same test case, we need to assign
    425 // unique IDs to fixture classes and compare them.  The TypeId type is
    426 // used to hold such IDs.  The user should treat TypeId as an opaque
    427 // type: the only operation allowed on TypeId values is to compare
    428 // them for equality using the == operator.
    429 typedef const void* TypeId;
    430 
    431 template <typename T>
    432 class TypeIdHelper {
    433  public:
    434   // dummy_ must not have a const type.  Otherwise an overly eager
    435   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    436   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    437   static bool dummy_;
    438 };
    439 
    440 template <typename T>
    441 bool TypeIdHelper<T>::dummy_ = false;
    442 
    443 // GetTypeId<T>() returns the ID of type T.  Different values will be
    444 // returned for different types.  Calling the function twice with the
    445 // same type argument is guaranteed to return the same ID.
    446 template <typename T>
    447 TypeId GetTypeId() {
    448   // The compiler is required to allocate a different
    449   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    450   // the template.  Therefore, the address of dummy_ is guaranteed to
    451   // be unique.
    452   return &(TypeIdHelper<T>::dummy_);
    453 }
    454 
    455 // Returns the type ID of ::testing::Test.  Always call this instead
    456 // of GetTypeId< ::testing::Test>() to get the type ID of
    457 // ::testing::Test, as the latter may give the wrong result due to a
    458 // suspected linker bug when compiling Google Test as a Mac OS X
    459 // framework.
    460 GTEST_API_ TypeId GetTestTypeId();
    461 
    462 // Defines the abstract factory interface that creates instances
    463 // of a Test object.
    464 class TestFactoryBase {
    465  public:
    466   virtual ~TestFactoryBase() {}
    467 
    468   // Creates a test instance to run. The instance is both created and destroyed
    469   // within TestInfoImpl::Run()
    470   virtual Test* CreateTest() = 0;
    471 
    472  protected:
    473   TestFactoryBase() {}
    474 
    475  private:
    476   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    477 };
    478 
    479 // This class provides implementation of TeastFactoryBase interface.
    480 // It is used in TEST and TEST_F macros.
    481 template <class TestClass>
    482 class TestFactoryImpl : public TestFactoryBase {
    483  public:
    484   virtual Test* CreateTest() { return new TestClass; }
    485 };
    486 
    487 #if GTEST_OS_WINDOWS
    488 
    489 // Predicate-formatters for implementing the HRESULT checking macros
    490 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    491 // We pass a long instead of HRESULT to avoid causing an
    492 // include dependency for the HRESULT type.
    493 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    494                                             long hr);  // NOLINT
    495 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    496                                             long hr);  // NOLINT
    497 
    498 #endif  // GTEST_OS_WINDOWS
    499 
    500 // Types of SetUpTestCase() and TearDownTestCase() functions.
    501 typedef void (*SetUpTestCaseFunc)();
    502 typedef void (*TearDownTestCaseFunc)();
    503 
    504 struct CodeLocation {
    505   CodeLocation(const string& a_file, int a_line) : file(a_file), line(a_line) {}
    506 
    507   string file;
    508   int line;
    509 };
    510 
    511 // Creates a new TestInfo object and registers it with Google Test;
    512 // returns the created object.
    513 //
    514 // Arguments:
    515 //
    516 //   test_case_name:   name of the test case
    517 //   name:             name of the test
    518 //   type_param        the name of the test's type parameter, or NULL if
    519 //                     this is not a typed or a type-parameterized test.
    520 //   value_param       text representation of the test's value parameter,
    521 //                     or NULL if this is not a type-parameterized test.
    522 //   code_location:    code location where the test is defined
    523 //   fixture_class_id: ID of the test fixture class
    524 //   set_up_tc:        pointer to the function that sets up the test case
    525 //   tear_down_tc:     pointer to the function that tears down the test case
    526 //   factory:          pointer to the factory that creates a test object.
    527 //                     The newly created TestInfo instance will assume
    528 //                     ownership of the factory object.
    529 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    530     const char* test_case_name,
    531     const char* name,
    532     const char* type_param,
    533     const char* value_param,
    534     CodeLocation code_location,
    535     TypeId fixture_class_id,
    536     SetUpTestCaseFunc set_up_tc,
    537     TearDownTestCaseFunc tear_down_tc,
    538     TestFactoryBase* factory);
    539 
    540 // If *pstr starts with the given prefix, modifies *pstr to be right
    541 // past the prefix and returns true; otherwise leaves *pstr unchanged
    542 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    543 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    544 
    545 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    546 
    547 // State of the definition of a type-parameterized test case.
    548 class GTEST_API_ TypedTestCasePState {
    549  public:
    550   TypedTestCasePState() : registered_(false) {}
    551 
    552   // Adds the given test name to defined_test_names_ and return true
    553   // if the test case hasn't been registered; otherwise aborts the
    554   // program.
    555   bool AddTestName(const char* file, int line, const char* case_name,
    556                    const char* test_name) {
    557     if (registered_) {
    558       fprintf(stderr, "%s Test %s must be defined before "
    559               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    560               FormatFileLocation(file, line).c_str(), test_name, case_name);
    561       fflush(stderr);
    562       posix::Abort();
    563     }
    564     registered_tests_.insert(
    565         ::std::make_pair(test_name, CodeLocation(file, line)));
    566     return true;
    567   }
    568 
    569   bool TestExists(const std::string& test_name) const {
    570     return registered_tests_.count(test_name) > 0;
    571   }
    572 
    573   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
    574     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
    575     GTEST_CHECK_(it != registered_tests_.end());
    576     return it->second;
    577   }
    578 
    579   // Verifies that registered_tests match the test names in
    580   // defined_test_names_; returns registered_tests if successful, or
    581   // aborts the program otherwise.
    582   const char* VerifyRegisteredTestNames(
    583       const char* file, int line, const char* registered_tests);
    584 
    585  private:
    586   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
    587 
    588   bool registered_;
    589   RegisteredTestsMap registered_tests_;
    590 };
    591 
    592 // Skips to the first non-space char after the first comma in 'str';
    593 // returns NULL if no comma is found in 'str'.
    594 inline const char* SkipComma(const char* str) {
    595   const char* comma = strchr(str, ',');
    596   if (comma == NULL) {
    597     return NULL;
    598   }
    599   while (IsSpace(*(++comma))) {}
    600   return comma;
    601 }
    602 
    603 // Returns the prefix of 'str' before the first comma in it; returns
    604 // the entire string if it contains no comma.
    605 inline std::string GetPrefixUntilComma(const char* str) {
    606   const char* comma = strchr(str, ',');
    607   return comma == NULL ? str : std::string(str, comma);
    608 }
    609 
    610 // Splits a given string on a given delimiter, populating a given
    611 // vector with the fields.
    612 void SplitString(const ::std::string& str, char delimiter,
    613                  ::std::vector< ::std::string>* dest);
    614 
    615 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    616 // registers a list of type-parameterized tests with Google Test.  The
    617 // return value is insignificant - we just need to return something
    618 // such that we can call this function in a namespace scope.
    619 //
    620 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    621 // template parameter.  It's defined in gtest-type-util.h.
    622 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    623 class TypeParameterizedTest {
    624  public:
    625   // 'index' is the index of the test in the type list 'Types'
    626   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    627   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    628   // length of Types.
    629   static bool Register(const char* prefix,
    630                        CodeLocation code_location,
    631                        const char* case_name, const char* test_names,
    632                        int index) {
    633     typedef typename Types::Head Type;
    634     typedef Fixture<Type> FixtureClass;
    635     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    636 
    637     // First, registers the first type-parameterized test in the type
    638     // list.
    639     MakeAndRegisterTestInfo(
    640         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
    641          + StreamableToString(index)).c_str(),
    642         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
    643         GetTypeName<Type>().c_str(),
    644         NULL,  // No value parameter.
    645         code_location,
    646         GetTypeId<FixtureClass>(),
    647         TestClass::SetUpTestCase,
    648         TestClass::TearDownTestCase,
    649         new TestFactoryImpl<TestClass>);
    650 
    651     // Next, recurses (at compile time) with the tail of the type list.
    652     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    653         ::Register(prefix, code_location, case_name, test_names, index + 1);
    654   }
    655 };
    656 
    657 // The base case for the compile time recursion.
    658 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    659 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    660  public:
    661   static bool Register(const char* /*prefix*/, CodeLocation,
    662                        const char* /*case_name*/, const char* /*test_names*/,
    663                        int /*index*/) {
    664     return true;
    665   }
    666 };
    667 
    668 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    669 // registers *all combinations* of 'Tests' and 'Types' with Google
    670 // Test.  The return value is insignificant - we just need to return
    671 // something such that we can call this function in a namespace scope.
    672 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    673 class TypeParameterizedTestCase {
    674  public:
    675   static bool Register(const char* prefix, CodeLocation code_location,
    676                        const TypedTestCasePState* state,
    677                        const char* case_name, const char* test_names) {
    678     std::string test_name = StripTrailingSpaces(
    679         GetPrefixUntilComma(test_names));
    680     if (!state->TestExists(test_name)) {
    681       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
    682               case_name, test_name.c_str(),
    683               FormatFileLocation(code_location.file.c_str(),
    684                                  code_location.line).c_str());
    685       fflush(stderr);
    686       posix::Abort();
    687     }
    688     const CodeLocation& test_location = state->GetCodeLocation(test_name);
    689 
    690     typedef typename Tests::Head Head;
    691 
    692     // First, register the first test in 'Test' for each type in 'Types'.
    693     TypeParameterizedTest<Fixture, Head, Types>::Register(
    694         prefix, test_location, case_name, test_names, 0);
    695 
    696     // Next, recurses (at compile time) with the tail of the test list.
    697     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    698         ::Register(prefix, code_location, state,
    699                    case_name, SkipComma(test_names));
    700   }
    701 };
    702 
    703 // The base case for the compile time recursion.
    704 template <GTEST_TEMPLATE_ Fixture, typename Types>
    705 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    706  public:
    707   static bool Register(const char* /*prefix*/, CodeLocation,
    708                        const TypedTestCasePState* /*state*/,
    709                        const char* /*case_name*/, const char* /*test_names*/) {
    710     return true;
    711   }
    712 };
    713 
    714 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    715 
    716 // Returns the current OS stack trace as an std::string.
    717 //
    718 // The maximum number of stack frames to be included is specified by
    719 // the gtest_stack_trace_depth flag.  The skip_count parameter
    720 // specifies the number of top frames to be skipped, which doesn't
    721 // count against the number of frames to be included.
    722 //
    723 // For example, if Foo() calls Bar(), which in turn calls
    724 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    725 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    726 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
    727     UnitTest* unit_test, int skip_count);
    728 
    729 // Helpers for suppressing warnings on unreachable code or constant
    730 // condition.
    731 
    732 // Always returns true.
    733 GTEST_API_ bool AlwaysTrue();
    734 
    735 // Always returns false.
    736 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    737 
    738 // Helper for suppressing false warning from Clang on a const char*
    739 // variable declared in a conditional expression always being NULL in
    740 // the else branch.
    741 struct GTEST_API_ ConstCharPtr {
    742   ConstCharPtr(const char* str) : value(str) {}
    743   operator bool() const { return true; }
    744   const char* value;
    745 };
    746 
    747 // A simple Linear Congruential Generator for generating random
    748 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    749 // doesn't use global state (and therefore can't interfere with user
    750 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    751 // but it's good enough for our purposes.
    752 class GTEST_API_ Random {
    753  public:
    754   static const UInt32 kMaxRange = 1u << 31;
    755 
    756   explicit Random(UInt32 seed) : state_(seed) {}
    757 
    758   void Reseed(UInt32 seed) { state_ = seed; }
    759 
    760   // Generates a random number from [0, range).  Crashes if 'range' is
    761   // 0 or greater than kMaxRange.
    762   UInt32 Generate(UInt32 range);
    763 
    764  private:
    765   UInt32 state_;
    766   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    767 };
    768 
    769 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    770 // compiler error iff T1 and T2 are different types.
    771 template <typename T1, typename T2>
    772 struct CompileAssertTypesEqual;
    773 
    774 template <typename T>
    775 struct CompileAssertTypesEqual<T, T> {
    776 };
    777 
    778 // Removes the reference from a type if it is a reference type,
    779 // otherwise leaves it unchanged.  This is the same as
    780 // tr1::remove_reference, which is not widely available yet.
    781 template <typename T>
    782 struct RemoveReference { typedef T type; };  // NOLINT
    783 template <typename T>
    784 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    785 
    786 // A handy wrapper around RemoveReference that works when the argument
    787 // T depends on template parameters.
    788 #define GTEST_REMOVE_REFERENCE_(T) \
    789     typename ::testing::internal::RemoveReference<T>::type
    790 
    791 // Removes const from a type if it is a const type, otherwise leaves
    792 // it unchanged.  This is the same as tr1::remove_const, which is not
    793 // widely available yet.
    794 template <typename T>
    795 struct RemoveConst { typedef T type; };  // NOLINT
    796 template <typename T>
    797 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    798 
    799 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
    800 // definition to fail to remove the const in 'const int[3]' and 'const
    801 // char[3][4]'.  The following specialization works around the bug.
    802 template <typename T, size_t N>
    803 struct RemoveConst<const T[N]> {
    804   typedef typename RemoveConst<T>::type type[N];
    805 };
    806 
    807 #if defined(_MSC_VER) && _MSC_VER < 1400
    808 // This is the only specialization that allows VC++ 7.1 to remove const in
    809 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
    810 // and thus needs to be conditionally compiled.
    811 template <typename T, size_t N>
    812 struct RemoveConst<T[N]> {
    813   typedef typename RemoveConst<T>::type type[N];
    814 };
    815 #endif
    816 
    817 // A handy wrapper around RemoveConst that works when the argument
    818 // T depends on template parameters.
    819 #define GTEST_REMOVE_CONST_(T) \
    820     typename ::testing::internal::RemoveConst<T>::type
    821 
    822 // Turns const U&, U&, const U, and U all into U.
    823 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    824     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    825 
    826 // Adds reference to a type if it is not a reference type,
    827 // otherwise leaves it unchanged.  This is the same as
    828 // tr1::add_reference, which is not widely available yet.
    829 template <typename T>
    830 struct AddReference { typedef T& type; };  // NOLINT
    831 template <typename T>
    832 struct AddReference<T&> { typedef T& type; };  // NOLINT
    833 
    834 // A handy wrapper around AddReference that works when the argument T
    835 // depends on template parameters.
    836 #define GTEST_ADD_REFERENCE_(T) \
    837     typename ::testing::internal::AddReference<T>::type
    838 
    839 // Adds a reference to const on top of T as necessary.  For example,
    840 // it transforms
    841 //
    842 //   char         ==> const char&
    843 //   const char   ==> const char&
    844 //   char&        ==> const char&
    845 //   const char&  ==> const char&
    846 //
    847 // The argument T must depend on some template parameters.
    848 #define GTEST_REFERENCE_TO_CONST_(T) \
    849     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    850 
    851 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    852 // constant that's true iff type From can be implicitly converted to
    853 // type To.
    854 template <typename From, typename To>
    855 class ImplicitlyConvertible {
    856  private:
    857   // We need the following helper functions only for their types.
    858   // They have no implementations.
    859 
    860   // MakeFrom() is an expression whose type is From.  We cannot simply
    861   // use From(), as the type From may not have a public default
    862   // constructor.
    863   static typename AddReference<From>::type MakeFrom();
    864 
    865   // These two functions are overloaded.  Given an expression
    866   // Helper(x), the compiler will pick the first version if x can be
    867   // implicitly converted to type To; otherwise it will pick the
    868   // second version.
    869   //
    870   // The first version returns a value of size 1, and the second
    871   // version returns a value of size 2.  Therefore, by checking the
    872   // size of Helper(x), which can be done at compile time, we can tell
    873   // which version of Helper() is used, and hence whether x can be
    874   // implicitly converted to type To.
    875   static char Helper(To);
    876   static char (&Helper(...))[2];  // NOLINT
    877 
    878   // We have to put the 'public' section after the 'private' section,
    879   // or MSVC refuses to compile the code.
    880  public:
    881 #if defined(__BORLANDC__)
    882   // C++Builder cannot use member overload resolution during template
    883   // instantiation.  The simplest workaround is to use its C++0x type traits
    884   // functions (C++Builder 2009 and above only).
    885   static const bool value = __is_convertible(From, To);
    886 #else
    887   // MSVC warns about implicitly converting from double to int for
    888   // possible loss of data, so we need to temporarily disable the
    889   // warning.
    890   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
    891   static const bool value =
    892       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    893   GTEST_DISABLE_MSC_WARNINGS_POP_()
    894 #endif  // __BORLANDC__
    895 };
    896 template <typename From, typename To>
    897 const bool ImplicitlyConvertible<From, To>::value;
    898 
    899 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    900 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    901 // of those.
    902 template <typename T>
    903 struct IsAProtocolMessage
    904     : public bool_constant<
    905   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    906   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    907 };
    908 
    909 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    910 // STL-style container class, the first overload of IsContainerTest
    911 // will be viable (since both C::iterator* and C::const_iterator* are
    912 // valid types and NULL can be implicitly converted to them).  It will
    913 // be picked over the second overload as 'int' is a perfect match for
    914 // the type of argument 0.  If C::iterator or C::const_iterator is not
    915 // a valid type, the first overload is not viable, and the second
    916 // overload will be picked.  Therefore, we can determine whether C is
    917 // a container class by checking the type of IsContainerTest<C>(0).
    918 // The value of the expression is insignificant.
    919 //
    920 // Note that we look for both C::iterator and C::const_iterator.  The
    921 // reason is that C++ injects the name of a class as a member of the
    922 // class itself (e.g. you can refer to class iterator as either
    923 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    924 // only, for example, we would mistakenly think that a class named
    925 // iterator is an STL container.
    926 //
    927 // Also note that the simpler approach of overloading
    928 // IsContainerTest(typename C::const_iterator*) and
    929 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    930 typedef int IsContainer;
    931 template <class C>
    932 IsContainer IsContainerTest(int /* dummy */,
    933                             typename C::iterator* /* it */ = NULL,
    934                             typename C::const_iterator* /* const_it */ = NULL) {
    935   return 0;
    936 }
    937 
    938 typedef char IsNotContainer;
    939 template <class C>
    940 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    941 
    942 // EnableIf<condition>::type is void when 'Cond' is true, and
    943 // undefined when 'Cond' is false.  To use SFINAE to make a function
    944 // overload only apply when a particular expression is true, add
    945 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    946 template<bool> struct EnableIf;
    947 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    948 
    949 // Utilities for native arrays.
    950 
    951 // ArrayEq() compares two k-dimensional native arrays using the
    952 // elements' operator==, where k can be any integer >= 0.  When k is
    953 // 0, ArrayEq() degenerates into comparing a single pair of values.
    954 
    955 template <typename T, typename U>
    956 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    957 
    958 // This generic version is used when k is 0.
    959 template <typename T, typename U>
    960 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    961 
    962 // This overload is used when k >= 1.
    963 template <typename T, typename U, size_t N>
    964 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    965   return internal::ArrayEq(lhs, N, rhs);
    966 }
    967 
    968 // This helper reduces code bloat.  If we instead put its logic inside
    969 // the previous ArrayEq() function, arrays with different sizes would
    970 // lead to different copies of the template code.
    971 template <typename T, typename U>
    972 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    973   for (size_t i = 0; i != size; i++) {
    974     if (!internal::ArrayEq(lhs[i], rhs[i]))
    975       return false;
    976   }
    977   return true;
    978 }
    979 
    980 // Finds the first element in the iterator range [begin, end) that
    981 // equals elem.  Element may be a native array type itself.
    982 template <typename Iter, typename Element>
    983 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
    984   for (Iter it = begin; it != end; ++it) {
    985     if (internal::ArrayEq(*it, elem))
    986       return it;
    987   }
    988   return end;
    989 }
    990 
    991 // CopyArray() copies a k-dimensional native array using the elements'
    992 // operator=, where k can be any integer >= 0.  When k is 0,
    993 // CopyArray() degenerates into copying a single value.
    994 
    995 template <typename T, typename U>
    996 void CopyArray(const T* from, size_t size, U* to);
    997 
    998 // This generic version is used when k is 0.
    999 template <typename T, typename U>
   1000 inline void CopyArray(const T& from, U* to) { *to = from; }
   1001 
   1002 // This overload is used when k >= 1.
   1003 template <typename T, typename U, size_t N>
   1004 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
   1005   internal::CopyArray(from, N, *to);
   1006 }
   1007 
   1008 // This helper reduces code bloat.  If we instead put its logic inside
   1009 // the previous CopyArray() function, arrays with different sizes
   1010 // would lead to different copies of the template code.
   1011 template <typename T, typename U>
   1012 void CopyArray(const T* from, size_t size, U* to) {
   1013   for (size_t i = 0; i != size; i++) {
   1014     internal::CopyArray(from[i], to + i);
   1015   }
   1016 }
   1017 
   1018 // The relation between an NativeArray object (see below) and the
   1019 // native array it represents.
   1020 // We use 2 different structs to allow non-copyable types to be used, as long
   1021 // as RelationToSourceReference() is passed.
   1022 struct RelationToSourceReference {};
   1023 struct RelationToSourceCopy {};
   1024 
   1025 // Adapts a native array to a read-only STL-style container.  Instead
   1026 // of the complete STL container concept, this adaptor only implements
   1027 // members useful for Google Mock's container matchers.  New members
   1028 // should be added as needed.  To simplify the implementation, we only
   1029 // support Element being a raw type (i.e. having no top-level const or
   1030 // reference modifier).  It's the client's responsibility to satisfy
   1031 // this requirement.  Element can be an array type itself (hence
   1032 // multi-dimensional arrays are supported).
   1033 template <typename Element>
   1034 class NativeArray {
   1035  public:
   1036   // STL-style container typedefs.
   1037   typedef Element value_type;
   1038   typedef Element* iterator;
   1039   typedef const Element* const_iterator;
   1040 
   1041   // Constructs from a native array. References the source.
   1042   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
   1043     InitRef(array, count);
   1044   }
   1045 
   1046   // Constructs from a native array. Copies the source.
   1047   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
   1048     InitCopy(array, count);
   1049   }
   1050 
   1051   // Copy constructor.
   1052   NativeArray(const NativeArray& rhs) {
   1053     (this->*rhs.clone_)(rhs.array_, rhs.size_);
   1054   }
   1055 
   1056   ~NativeArray() {
   1057     if (clone_ != &NativeArray::InitRef)
   1058       delete[] array_;
   1059   }
   1060 
   1061   // STL-style container methods.
   1062   size_t size() const { return size_; }
   1063   const_iterator begin() const { return array_; }
   1064   const_iterator end() const { return array_ + size_; }
   1065   bool operator==(const NativeArray& rhs) const {
   1066     return size() == rhs.size() &&
   1067         ArrayEq(begin(), size(), rhs.begin());
   1068   }
   1069 
   1070  private:
   1071   enum {
   1072     kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
   1073         Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
   1074   };
   1075 
   1076   // Initializes this object with a copy of the input.
   1077   void InitCopy(const Element* array, size_t a_size) {
   1078     Element* const copy = new Element[a_size];
   1079     CopyArray(array, a_size, copy);
   1080     array_ = copy;
   1081     size_ = a_size;
   1082     clone_ = &NativeArray::InitCopy;
   1083   }
   1084 
   1085   // Initializes this object with a reference of the input.
   1086   void InitRef(const Element* array, size_t a_size) {
   1087     array_ = array;
   1088     size_ = a_size;
   1089     clone_ = &NativeArray::InitRef;
   1090   }
   1091 
   1092   const Element* array_;
   1093   size_t size_;
   1094   void (NativeArray::*clone_)(const Element*, size_t);
   1095 
   1096   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1097 };
   1098 
   1099 }  // namespace internal
   1100 }  // namespace testing
   1101 
   1102 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1103   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1104     = ::testing::Message()
   1105 
   1106 #define GTEST_MESSAGE_(message, result_type) \
   1107   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1108 
   1109 #define GTEST_FATAL_FAILURE_(message) \
   1110   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1111 
   1112 #define GTEST_NONFATAL_FAILURE_(message) \
   1113   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1114 
   1115 #define GTEST_SUCCESS_(message) \
   1116   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1117 
   1118 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1119 // statement if it returns or throws (or doesn't return or throw in some
   1120 // situations).
   1121 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1122   if (::testing::internal::AlwaysTrue()) { statement; }
   1123 
   1124 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1125   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1126   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1127     bool gtest_caught_expected = false; \
   1128     try { \
   1129       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1130     } \
   1131     catch (expected_exception const&) { \
   1132       gtest_caught_expected = true; \
   1133     } \
   1134     catch (...) { \
   1135       gtest_msg.value = \
   1136           "Expected: " #statement " throws an exception of type " \
   1137           #expected_exception ".\n  Actual: it throws a different type."; \
   1138       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1139     } \
   1140     if (!gtest_caught_expected) { \
   1141       gtest_msg.value = \
   1142           "Expected: " #statement " throws an exception of type " \
   1143           #expected_exception ".\n  Actual: it throws nothing."; \
   1144       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1145     } \
   1146   } else \
   1147     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1148       fail(gtest_msg.value)
   1149 
   1150 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1151   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1152   if (::testing::internal::AlwaysTrue()) { \
   1153     try { \
   1154       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1155     } \
   1156     catch (...) { \
   1157       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1158     } \
   1159   } else \
   1160     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1161       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1162            "  Actual: it throws.")
   1163 
   1164 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1165   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1166   if (::testing::internal::AlwaysTrue()) { \
   1167     bool gtest_caught_any = false; \
   1168     try { \
   1169       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1170     } \
   1171     catch (...) { \
   1172       gtest_caught_any = true; \
   1173     } \
   1174     if (!gtest_caught_any) { \
   1175       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1176     } \
   1177   } else \
   1178     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1179       fail("Expected: " #statement " throws an exception.\n" \
   1180            "  Actual: it doesn't.")
   1181 
   1182 
   1183 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1184 // either a boolean expression or an AssertionResult. text is a textual
   1185 // represenation of expression as it was passed into the EXPECT_TRUE.
   1186 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1187   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1188   if (const ::testing::AssertionResult gtest_ar_ = \
   1189       ::testing::AssertionResult(expression)) \
   1190     ; \
   1191   else \
   1192     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1193         gtest_ar_, text, #actual, #expected).c_str())
   1194 
   1195 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1196   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1197   if (::testing::internal::AlwaysTrue()) { \
   1198     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1199     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1200     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1201       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1202     } \
   1203   } else \
   1204     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1205       fail("Expected: " #statement " doesn't generate new fatal " \
   1206            "failures in the current thread.\n" \
   1207            "  Actual: it does.")
   1208 
   1209 // Expands to the name of the class that implements the given test.
   1210 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1211   test_case_name##_##test_name##_Test
   1212 
   1213 // Helper macro for defining tests.
   1214 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1215 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1216  public:\
   1217   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1218  private:\
   1219   virtual void TestBody();\
   1220   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1221   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1222       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1223 };\
   1224 \
   1225 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1226   ::test_info_ =\
   1227     ::testing::internal::MakeAndRegisterTestInfo(\
   1228         #test_case_name, #test_name, NULL, NULL, \
   1229         ::testing::internal::CodeLocation(__FILE__, __LINE__), \
   1230         (parent_id), \
   1231         parent_class::SetUpTestCase, \
   1232         parent_class::TearDownTestCase, \
   1233         new ::testing::internal::TestFactoryImpl<\
   1234             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1235 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1236 
   1237 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1238 
   1239