Home | History | Annotate | Download | only in ADT
      1 //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ImutAVLTree and ImmutableSet classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_IMMUTABLESET_H
     15 #define LLVM_ADT_IMMUTABLESET_H
     16 
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/FoldingSet.h"
     19 #include "llvm/Support/Allocator.h"
     20 #include "llvm/Support/DataTypes.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include <cassert>
     23 #include <functional>
     24 #include <vector>
     25 
     26 namespace llvm {
     27 
     28 //===----------------------------------------------------------------------===//
     29 // Immutable AVL-Tree Definition.
     30 //===----------------------------------------------------------------------===//
     31 
     32 template <typename ImutInfo> class ImutAVLFactory;
     33 template <typename ImutInfo> class ImutIntervalAVLFactory;
     34 template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
     35 template <typename ImutInfo> class ImutAVLTreeGenericIterator;
     36 
     37 template <typename ImutInfo >
     38 class ImutAVLTree {
     39 public:
     40   typedef typename ImutInfo::key_type_ref   key_type_ref;
     41   typedef typename ImutInfo::value_type     value_type;
     42   typedef typename ImutInfo::value_type_ref value_type_ref;
     43 
     44   typedef ImutAVLFactory<ImutInfo>          Factory;
     45   friend class ImutAVLFactory<ImutInfo>;
     46   friend class ImutIntervalAVLFactory<ImutInfo>;
     47 
     48   friend class ImutAVLTreeGenericIterator<ImutInfo>;
     49 
     50   typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
     51 
     52   //===----------------------------------------------------===//
     53   // Public Interface.
     54   //===----------------------------------------------------===//
     55 
     56   /// Return a pointer to the left subtree.  This value
     57   ///  is NULL if there is no left subtree.
     58   ImutAVLTree *getLeft() const { return left; }
     59 
     60   /// Return a pointer to the right subtree.  This value is
     61   ///  NULL if there is no right subtree.
     62   ImutAVLTree *getRight() const { return right; }
     63 
     64   /// getHeight - Returns the height of the tree.  A tree with no subtrees
     65   ///  has a height of 1.
     66   unsigned getHeight() const { return height; }
     67 
     68   /// getValue - Returns the data value associated with the tree node.
     69   const value_type& getValue() const { return value; }
     70 
     71   /// find - Finds the subtree associated with the specified key value.
     72   ///  This method returns NULL if no matching subtree is found.
     73   ImutAVLTree* find(key_type_ref K) {
     74     ImutAVLTree *T = this;
     75     while (T) {
     76       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
     77       if (ImutInfo::isEqual(K,CurrentKey))
     78         return T;
     79       else if (ImutInfo::isLess(K,CurrentKey))
     80         T = T->getLeft();
     81       else
     82         T = T->getRight();
     83     }
     84     return nullptr;
     85   }
     86 
     87   /// getMaxElement - Find the subtree associated with the highest ranged
     88   ///  key value.
     89   ImutAVLTree* getMaxElement() {
     90     ImutAVLTree *T = this;
     91     ImutAVLTree *Right = T->getRight();
     92     while (Right) { T = Right; Right = T->getRight(); }
     93     return T;
     94   }
     95 
     96   /// size - Returns the number of nodes in the tree, which includes
     97   ///  both leaves and non-leaf nodes.
     98   unsigned size() const {
     99     unsigned n = 1;
    100     if (const ImutAVLTree* L = getLeft())
    101       n += L->size();
    102     if (const ImutAVLTree* R = getRight())
    103       n += R->size();
    104     return n;
    105   }
    106 
    107   /// begin - Returns an iterator that iterates over the nodes of the tree
    108   ///  in an inorder traversal.  The returned iterator thus refers to the
    109   ///  the tree node with the minimum data element.
    110   iterator begin() const { return iterator(this); }
    111 
    112   /// end - Returns an iterator for the tree that denotes the end of an
    113   ///  inorder traversal.
    114   iterator end() const { return iterator(); }
    115 
    116   bool isElementEqual(value_type_ref V) const {
    117     // Compare the keys.
    118     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
    119                            ImutInfo::KeyOfValue(V)))
    120       return false;
    121 
    122     // Also compare the data values.
    123     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
    124                                ImutInfo::DataOfValue(V)))
    125       return false;
    126 
    127     return true;
    128   }
    129 
    130   bool isElementEqual(const ImutAVLTree* RHS) const {
    131     return isElementEqual(RHS->getValue());
    132   }
    133 
    134   /// isEqual - Compares two trees for structural equality and returns true
    135   ///   if they are equal.  This worst case performance of this operation is
    136   //    linear in the sizes of the trees.
    137   bool isEqual(const ImutAVLTree& RHS) const {
    138     if (&RHS == this)
    139       return true;
    140 
    141     iterator LItr = begin(), LEnd = end();
    142     iterator RItr = RHS.begin(), REnd = RHS.end();
    143 
    144     while (LItr != LEnd && RItr != REnd) {
    145       if (&*LItr == &*RItr) {
    146         LItr.skipSubTree();
    147         RItr.skipSubTree();
    148         continue;
    149       }
    150 
    151       if (!LItr->isElementEqual(&*RItr))
    152         return false;
    153 
    154       ++LItr;
    155       ++RItr;
    156     }
    157 
    158     return LItr == LEnd && RItr == REnd;
    159   }
    160 
    161   /// isNotEqual - Compares two trees for structural inequality.  Performance
    162   ///  is the same is isEqual.
    163   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
    164 
    165   /// contains - Returns true if this tree contains a subtree (node) that
    166   ///  has an data element that matches the specified key.  Complexity
    167   ///  is logarithmic in the size of the tree.
    168   bool contains(key_type_ref K) { return (bool) find(K); }
    169 
    170   /// foreach - A member template the accepts invokes operator() on a functor
    171   ///  object (specifed by Callback) for every node/subtree in the tree.
    172   ///  Nodes are visited using an inorder traversal.
    173   template <typename Callback>
    174   void foreach(Callback& C) {
    175     if (ImutAVLTree* L = getLeft())
    176       L->foreach(C);
    177 
    178     C(value);
    179 
    180     if (ImutAVLTree* R = getRight())
    181       R->foreach(C);
    182   }
    183 
    184   /// validateTree - A utility method that checks that the balancing and
    185   ///  ordering invariants of the tree are satisifed.  It is a recursive
    186   ///  method that returns the height of the tree, which is then consumed
    187   ///  by the enclosing validateTree call.  External callers should ignore the
    188   ///  return value.  An invalid tree will cause an assertion to fire in
    189   ///  a debug build.
    190   unsigned validateTree() const {
    191     unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
    192     unsigned HR = getRight() ? getRight()->validateTree() : 0;
    193     (void) HL;
    194     (void) HR;
    195 
    196     assert(getHeight() == ( HL > HR ? HL : HR ) + 1
    197             && "Height calculation wrong");
    198 
    199     assert((HL > HR ? HL-HR : HR-HL) <= 2
    200            && "Balancing invariant violated");
    201 
    202     assert((!getLeft() ||
    203             ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
    204                              ImutInfo::KeyOfValue(getValue()))) &&
    205            "Value in left child is not less that current value");
    206 
    207 
    208     assert(!(getRight() ||
    209              ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
    210                               ImutInfo::KeyOfValue(getRight()->getValue()))) &&
    211            "Current value is not less that value of right child");
    212 
    213     return getHeight();
    214   }
    215 
    216   //===----------------------------------------------------===//
    217   // Internal values.
    218   //===----------------------------------------------------===//
    219 
    220 private:
    221   Factory *factory;
    222   ImutAVLTree *left;
    223   ImutAVLTree *right;
    224   ImutAVLTree *prev;
    225   ImutAVLTree *next;
    226 
    227   unsigned height         : 28;
    228   unsigned IsMutable      : 1;
    229   unsigned IsDigestCached : 1;
    230   unsigned IsCanonicalized : 1;
    231 
    232   value_type value;
    233   uint32_t digest;
    234   uint32_t refCount;
    235 
    236   //===----------------------------------------------------===//
    237   // Internal methods (node manipulation; used by Factory).
    238   //===----------------------------------------------------===//
    239 
    240 private:
    241   /// ImutAVLTree - Internal constructor that is only called by
    242   ///   ImutAVLFactory.
    243   ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
    244               unsigned height)
    245     : factory(f), left(l), right(r), prev(nullptr), next(nullptr),
    246       height(height), IsMutable(true), IsDigestCached(false),
    247       IsCanonicalized(0), value(v), digest(0), refCount(0)
    248   {
    249     if (left) left->retain();
    250     if (right) right->retain();
    251   }
    252 
    253   /// isMutable - Returns true if the left and right subtree references
    254   ///  (as well as height) can be changed.  If this method returns false,
    255   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
    256   ///  object should always have this method return true.  Further, if this
    257   ///  method returns false for an instance of ImutAVLTree, all subtrees
    258   ///  will also have this method return false.  The converse is not true.
    259   bool isMutable() const { return IsMutable; }
    260 
    261   /// hasCachedDigest - Returns true if the digest for this tree is cached.
    262   ///  This can only be true if the tree is immutable.
    263   bool hasCachedDigest() const { return IsDigestCached; }
    264 
    265   //===----------------------------------------------------===//
    266   // Mutating operations.  A tree root can be manipulated as
    267   // long as its reference has not "escaped" from internal
    268   // methods of a factory object (see below).  When a tree
    269   // pointer is externally viewable by client code, the
    270   // internal "mutable bit" is cleared to mark the tree
    271   // immutable.  Note that a tree that still has its mutable
    272   // bit set may have children (subtrees) that are themselves
    273   // immutable.
    274   //===----------------------------------------------------===//
    275 
    276   /// markImmutable - Clears the mutable flag for a tree.  After this happens,
    277   ///   it is an error to call setLeft(), setRight(), and setHeight().
    278   void markImmutable() {
    279     assert(isMutable() && "Mutable flag already removed.");
    280     IsMutable = false;
    281   }
    282 
    283   /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
    284   void markedCachedDigest() {
    285     assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
    286     IsDigestCached = true;
    287   }
    288 
    289   /// setHeight - Changes the height of the tree.  Used internally by
    290   ///  ImutAVLFactory.
    291   void setHeight(unsigned h) {
    292     assert(isMutable() && "Only a mutable tree can have its height changed.");
    293     height = h;
    294   }
    295 
    296   static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
    297                                 value_type_ref V) {
    298     uint32_t digest = 0;
    299 
    300     if (L)
    301       digest += L->computeDigest();
    302 
    303     // Compute digest of stored data.
    304     FoldingSetNodeID ID;
    305     ImutInfo::Profile(ID,V);
    306     digest += ID.ComputeHash();
    307 
    308     if (R)
    309       digest += R->computeDigest();
    310 
    311     return digest;
    312   }
    313 
    314   uint32_t computeDigest() {
    315     // Check the lowest bit to determine if digest has actually been
    316     // pre-computed.
    317     if (hasCachedDigest())
    318       return digest;
    319 
    320     uint32_t X = computeDigest(getLeft(), getRight(), getValue());
    321     digest = X;
    322     markedCachedDigest();
    323     return X;
    324   }
    325 
    326   //===----------------------------------------------------===//
    327   // Reference count operations.
    328   //===----------------------------------------------------===//
    329 
    330 public:
    331   void retain() { ++refCount; }
    332   void release() {
    333     assert(refCount > 0);
    334     if (--refCount == 0)
    335       destroy();
    336   }
    337   void destroy() {
    338     if (left)
    339       left->release();
    340     if (right)
    341       right->release();
    342     if (IsCanonicalized) {
    343       if (next)
    344         next->prev = prev;
    345 
    346       if (prev)
    347         prev->next = next;
    348       else
    349         factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
    350     }
    351 
    352     // We need to clear the mutability bit in case we are
    353     // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
    354     IsMutable = false;
    355     factory->freeNodes.push_back(this);
    356   }
    357 };
    358 
    359 //===----------------------------------------------------------------------===//
    360 // Immutable AVL-Tree Factory class.
    361 //===----------------------------------------------------------------------===//
    362 
    363 template <typename ImutInfo >
    364 class ImutAVLFactory {
    365   friend class ImutAVLTree<ImutInfo>;
    366   typedef ImutAVLTree<ImutInfo> TreeTy;
    367   typedef typename TreeTy::value_type_ref value_type_ref;
    368   typedef typename TreeTy::key_type_ref   key_type_ref;
    369 
    370   typedef DenseMap<unsigned, TreeTy*> CacheTy;
    371 
    372   CacheTy Cache;
    373   uintptr_t Allocator;
    374   std::vector<TreeTy*> createdNodes;
    375   std::vector<TreeTy*> freeNodes;
    376 
    377   bool ownsAllocator() const {
    378     return Allocator & 0x1 ? false : true;
    379   }
    380 
    381   BumpPtrAllocator& getAllocator() const {
    382     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
    383   }
    384 
    385   //===--------------------------------------------------===//
    386   // Public interface.
    387   //===--------------------------------------------------===//
    388 
    389 public:
    390   ImutAVLFactory()
    391     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
    392 
    393   ImutAVLFactory(BumpPtrAllocator& Alloc)
    394     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
    395 
    396   ~ImutAVLFactory() {
    397     if (ownsAllocator()) delete &getAllocator();
    398   }
    399 
    400   TreeTy* add(TreeTy* T, value_type_ref V) {
    401     T = add_internal(V,T);
    402     markImmutable(T);
    403     recoverNodes();
    404     return T;
    405   }
    406 
    407   TreeTy* remove(TreeTy* T, key_type_ref V) {
    408     T = remove_internal(V,T);
    409     markImmutable(T);
    410     recoverNodes();
    411     return T;
    412   }
    413 
    414   TreeTy* getEmptyTree() const { return nullptr; }
    415 
    416 protected:
    417 
    418   //===--------------------------------------------------===//
    419   // A bunch of quick helper functions used for reasoning
    420   // about the properties of trees and their children.
    421   // These have succinct names so that the balancing code
    422   // is as terse (and readable) as possible.
    423   //===--------------------------------------------------===//
    424 
    425   bool            isEmpty(TreeTy* T) const { return !T; }
    426   unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
    427   TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
    428   TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
    429   value_type_ref  getValue(TreeTy* T) const { return T->value; }
    430 
    431   // Make sure the index is not the Tombstone or Entry key of the DenseMap.
    432   static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
    433 
    434   unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
    435     unsigned hl = getHeight(L);
    436     unsigned hr = getHeight(R);
    437     return (hl > hr ? hl : hr) + 1;
    438   }
    439 
    440   static bool compareTreeWithSection(TreeTy* T,
    441                                      typename TreeTy::iterator& TI,
    442                                      typename TreeTy::iterator& TE) {
    443     typename TreeTy::iterator I = T->begin(), E = T->end();
    444     for ( ; I!=E ; ++I, ++TI) {
    445       if (TI == TE || !I->isElementEqual(&*TI))
    446         return false;
    447     }
    448     return true;
    449   }
    450 
    451   //===--------------------------------------------------===//
    452   // "createNode" is used to generate new tree roots that link
    453   // to other trees.  The functon may also simply move links
    454   // in an existing root if that root is still marked mutable.
    455   // This is necessary because otherwise our balancing code
    456   // would leak memory as it would create nodes that are
    457   // then discarded later before the finished tree is
    458   // returned to the caller.
    459   //===--------------------------------------------------===//
    460 
    461   TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
    462     BumpPtrAllocator& A = getAllocator();
    463     TreeTy* T;
    464     if (!freeNodes.empty()) {
    465       T = freeNodes.back();
    466       freeNodes.pop_back();
    467       assert(T != L);
    468       assert(T != R);
    469     } else {
    470       T = (TreeTy*) A.Allocate<TreeTy>();
    471     }
    472     new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
    473     createdNodes.push_back(T);
    474     return T;
    475   }
    476 
    477   TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
    478     return createNode(newLeft, getValue(oldTree), newRight);
    479   }
    480 
    481   void recoverNodes() {
    482     for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
    483       TreeTy *N = createdNodes[i];
    484       if (N->isMutable() && N->refCount == 0)
    485         N->destroy();
    486     }
    487     createdNodes.clear();
    488   }
    489 
    490   /// balanceTree - Used by add_internal and remove_internal to
    491   ///  balance a newly created tree.
    492   TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
    493     unsigned hl = getHeight(L);
    494     unsigned hr = getHeight(R);
    495 
    496     if (hl > hr + 2) {
    497       assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
    498 
    499       TreeTy *LL = getLeft(L);
    500       TreeTy *LR = getRight(L);
    501 
    502       if (getHeight(LL) >= getHeight(LR))
    503         return createNode(LL, L, createNode(LR,V,R));
    504 
    505       assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
    506 
    507       TreeTy *LRL = getLeft(LR);
    508       TreeTy *LRR = getRight(LR);
    509 
    510       return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
    511     }
    512 
    513     if (hr > hl + 2) {
    514       assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
    515 
    516       TreeTy *RL = getLeft(R);
    517       TreeTy *RR = getRight(R);
    518 
    519       if (getHeight(RR) >= getHeight(RL))
    520         return createNode(createNode(L,V,RL), R, RR);
    521 
    522       assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
    523 
    524       TreeTy *RLL = getLeft(RL);
    525       TreeTy *RLR = getRight(RL);
    526 
    527       return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
    528     }
    529 
    530     return createNode(L,V,R);
    531   }
    532 
    533   /// add_internal - Creates a new tree that includes the specified
    534   ///  data and the data from the original tree.  If the original tree
    535   ///  already contained the data item, the original tree is returned.
    536   TreeTy* add_internal(value_type_ref V, TreeTy* T) {
    537     if (isEmpty(T))
    538       return createNode(T, V, T);
    539     assert(!T->isMutable());
    540 
    541     key_type_ref K = ImutInfo::KeyOfValue(V);
    542     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    543 
    544     if (ImutInfo::isEqual(K,KCurrent))
    545       return createNode(getLeft(T), V, getRight(T));
    546     else if (ImutInfo::isLess(K,KCurrent))
    547       return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
    548     else
    549       return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
    550   }
    551 
    552   /// remove_internal - Creates a new tree that includes all the data
    553   ///  from the original tree except the specified data.  If the
    554   ///  specified data did not exist in the original tree, the original
    555   ///  tree is returned.
    556   TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
    557     if (isEmpty(T))
    558       return T;
    559 
    560     assert(!T->isMutable());
    561 
    562     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    563 
    564     if (ImutInfo::isEqual(K,KCurrent)) {
    565       return combineTrees(getLeft(T), getRight(T));
    566     } else if (ImutInfo::isLess(K,KCurrent)) {
    567       return balanceTree(remove_internal(K, getLeft(T)),
    568                                             getValue(T), getRight(T));
    569     } else {
    570       return balanceTree(getLeft(T), getValue(T),
    571                          remove_internal(K, getRight(T)));
    572     }
    573   }
    574 
    575   TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
    576     if (isEmpty(L))
    577       return R;
    578     if (isEmpty(R))
    579       return L;
    580     TreeTy* OldNode;
    581     TreeTy* newRight = removeMinBinding(R,OldNode);
    582     return balanceTree(L, getValue(OldNode), newRight);
    583   }
    584 
    585   TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
    586     assert(!isEmpty(T));
    587     if (isEmpty(getLeft(T))) {
    588       Noderemoved = T;
    589       return getRight(T);
    590     }
    591     return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
    592                        getValue(T), getRight(T));
    593   }
    594 
    595   /// markImmutable - Clears the mutable bits of a root and all of its
    596   ///  descendants.
    597   void markImmutable(TreeTy* T) {
    598     if (!T || !T->isMutable())
    599       return;
    600     T->markImmutable();
    601     markImmutable(getLeft(T));
    602     markImmutable(getRight(T));
    603   }
    604 
    605 public:
    606   TreeTy *getCanonicalTree(TreeTy *TNew) {
    607     if (!TNew)
    608       return nullptr;
    609 
    610     if (TNew->IsCanonicalized)
    611       return TNew;
    612 
    613     // Search the hashtable for another tree with the same digest, and
    614     // if find a collision compare those trees by their contents.
    615     unsigned digest = TNew->computeDigest();
    616     TreeTy *&entry = Cache[maskCacheIndex(digest)];
    617     do {
    618       if (!entry)
    619         break;
    620       for (TreeTy *T = entry ; T != nullptr; T = T->next) {
    621         // Compare the Contents('T') with Contents('TNew')
    622         typename TreeTy::iterator TI = T->begin(), TE = T->end();
    623         if (!compareTreeWithSection(TNew, TI, TE))
    624           continue;
    625         if (TI != TE)
    626           continue; // T has more contents than TNew.
    627         // Trees did match!  Return 'T'.
    628         if (TNew->refCount == 0)
    629           TNew->destroy();
    630         return T;
    631       }
    632       entry->prev = TNew;
    633       TNew->next = entry;
    634     }
    635     while (false);
    636 
    637     entry = TNew;
    638     TNew->IsCanonicalized = true;
    639     return TNew;
    640   }
    641 };
    642 
    643 //===----------------------------------------------------------------------===//
    644 // Immutable AVL-Tree Iterators.
    645 //===----------------------------------------------------------------------===//
    646 
    647 template <typename ImutInfo>
    648 class ImutAVLTreeGenericIterator
    649     : public std::iterator<std::bidirectional_iterator_tag,
    650                            ImutAVLTree<ImutInfo>> {
    651   SmallVector<uintptr_t,20> stack;
    652 public:
    653   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
    654                    Flags=0x3 };
    655 
    656   typedef ImutAVLTree<ImutInfo> TreeTy;
    657 
    658   ImutAVLTreeGenericIterator() {}
    659   ImutAVLTreeGenericIterator(const TreeTy *Root) {
    660     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
    661   }
    662 
    663   TreeTy &operator*() const {
    664     assert(!stack.empty());
    665     return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
    666   }
    667   TreeTy *operator->() const { return &*this; }
    668 
    669   uintptr_t getVisitState() const {
    670     assert(!stack.empty());
    671     return stack.back() & Flags;
    672   }
    673 
    674 
    675   bool atEnd() const { return stack.empty(); }
    676 
    677   bool atBeginning() const {
    678     return stack.size() == 1 && getVisitState() == VisitedNone;
    679   }
    680 
    681   void skipToParent() {
    682     assert(!stack.empty());
    683     stack.pop_back();
    684     if (stack.empty())
    685       return;
    686     switch (getVisitState()) {
    687       case VisitedNone:
    688         stack.back() |= VisitedLeft;
    689         break;
    690       case VisitedLeft:
    691         stack.back() |= VisitedRight;
    692         break;
    693       default:
    694         llvm_unreachable("Unreachable.");
    695     }
    696   }
    697 
    698   bool operator==(const ImutAVLTreeGenericIterator &x) const {
    699     return stack == x.stack;
    700   }
    701 
    702   bool operator!=(const ImutAVLTreeGenericIterator &x) const {
    703     return !(*this == x);
    704   }
    705 
    706   ImutAVLTreeGenericIterator &operator++() {
    707     assert(!stack.empty());
    708     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    709     assert(Current);
    710     switch (getVisitState()) {
    711       case VisitedNone:
    712         if (TreeTy* L = Current->getLeft())
    713           stack.push_back(reinterpret_cast<uintptr_t>(L));
    714         else
    715           stack.back() |= VisitedLeft;
    716         break;
    717       case VisitedLeft:
    718         if (TreeTy* R = Current->getRight())
    719           stack.push_back(reinterpret_cast<uintptr_t>(R));
    720         else
    721           stack.back() |= VisitedRight;
    722         break;
    723       case VisitedRight:
    724         skipToParent();
    725         break;
    726       default:
    727         llvm_unreachable("Unreachable.");
    728     }
    729     return *this;
    730   }
    731 
    732   ImutAVLTreeGenericIterator &operator--() {
    733     assert(!stack.empty());
    734     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    735     assert(Current);
    736     switch (getVisitState()) {
    737       case VisitedNone:
    738         stack.pop_back();
    739         break;
    740       case VisitedLeft:
    741         stack.back() &= ~Flags; // Set state to "VisitedNone."
    742         if (TreeTy* L = Current->getLeft())
    743           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
    744         break;
    745       case VisitedRight:
    746         stack.back() &= ~Flags;
    747         stack.back() |= VisitedLeft;
    748         if (TreeTy* R = Current->getRight())
    749           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
    750         break;
    751       default:
    752         llvm_unreachable("Unreachable.");
    753     }
    754     return *this;
    755   }
    756 };
    757 
    758 template <typename ImutInfo>
    759 class ImutAVLTreeInOrderIterator
    760     : public std::iterator<std::bidirectional_iterator_tag,
    761                            ImutAVLTree<ImutInfo>> {
    762   typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
    763   InternalIteratorTy InternalItr;
    764 
    765 public:
    766   typedef ImutAVLTree<ImutInfo> TreeTy;
    767 
    768   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
    769     if (Root)
    770       ++*this; // Advance to first element.
    771   }
    772 
    773   ImutAVLTreeInOrderIterator() : InternalItr() {}
    774 
    775   bool operator==(const ImutAVLTreeInOrderIterator &x) const {
    776     return InternalItr == x.InternalItr;
    777   }
    778 
    779   bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
    780     return !(*this == x);
    781   }
    782 
    783   TreeTy &operator*() const { return *InternalItr; }
    784   TreeTy *operator->() const { return &*InternalItr; }
    785 
    786   ImutAVLTreeInOrderIterator &operator++() {
    787     do ++InternalItr;
    788     while (!InternalItr.atEnd() &&
    789            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    790 
    791     return *this;
    792   }
    793 
    794   ImutAVLTreeInOrderIterator &operator--() {
    795     do --InternalItr;
    796     while (!InternalItr.atBeginning() &&
    797            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    798 
    799     return *this;
    800   }
    801 
    802   void skipSubTree() {
    803     InternalItr.skipToParent();
    804 
    805     while (!InternalItr.atEnd() &&
    806            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
    807       ++InternalItr;
    808   }
    809 };
    810 
    811 /// Generic iterator that wraps a T::TreeTy::iterator and exposes
    812 /// iterator::getValue() on dereference.
    813 template <typename T>
    814 struct ImutAVLValueIterator
    815     : iterator_adaptor_base<
    816           ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
    817           typename std::iterator_traits<
    818               typename T::TreeTy::iterator>::iterator_category,
    819           const typename T::value_type> {
    820   ImutAVLValueIterator() = default;
    821   explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
    822       : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
    823 
    824   typename ImutAVLValueIterator::reference operator*() const {
    825     return this->I->getValue();
    826   }
    827 };
    828 
    829 //===----------------------------------------------------------------------===//
    830 // Trait classes for Profile information.
    831 //===----------------------------------------------------------------------===//
    832 
    833 /// Generic profile template.  The default behavior is to invoke the
    834 /// profile method of an object.  Specializations for primitive integers
    835 /// and generic handling of pointers is done below.
    836 template <typename T>
    837 struct ImutProfileInfo {
    838   typedef const T  value_type;
    839   typedef const T& value_type_ref;
    840 
    841   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    842     FoldingSetTrait<T>::Profile(X,ID);
    843   }
    844 };
    845 
    846 /// Profile traits for integers.
    847 template <typename T>
    848 struct ImutProfileInteger {
    849   typedef const T  value_type;
    850   typedef const T& value_type_ref;
    851 
    852   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    853     ID.AddInteger(X);
    854   }
    855 };
    856 
    857 #define PROFILE_INTEGER_INFO(X)\
    858 template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
    859 
    860 PROFILE_INTEGER_INFO(char)
    861 PROFILE_INTEGER_INFO(unsigned char)
    862 PROFILE_INTEGER_INFO(short)
    863 PROFILE_INTEGER_INFO(unsigned short)
    864 PROFILE_INTEGER_INFO(unsigned)
    865 PROFILE_INTEGER_INFO(signed)
    866 PROFILE_INTEGER_INFO(long)
    867 PROFILE_INTEGER_INFO(unsigned long)
    868 PROFILE_INTEGER_INFO(long long)
    869 PROFILE_INTEGER_INFO(unsigned long long)
    870 
    871 #undef PROFILE_INTEGER_INFO
    872 
    873 /// Profile traits for booleans.
    874 template <>
    875 struct ImutProfileInfo<bool> {
    876   typedef const bool  value_type;
    877   typedef const bool& value_type_ref;
    878 
    879   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    880     ID.AddBoolean(X);
    881   }
    882 };
    883 
    884 
    885 /// Generic profile trait for pointer types.  We treat pointers as
    886 /// references to unique objects.
    887 template <typename T>
    888 struct ImutProfileInfo<T*> {
    889   typedef const T*   value_type;
    890   typedef value_type value_type_ref;
    891 
    892   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    893     ID.AddPointer(X);
    894   }
    895 };
    896 
    897 //===----------------------------------------------------------------------===//
    898 // Trait classes that contain element comparison operators and type
    899 //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
    900 //  inherit from the profile traits (ImutProfileInfo) to include operations
    901 //  for element profiling.
    902 //===----------------------------------------------------------------------===//
    903 
    904 
    905 /// ImutContainerInfo - Generic definition of comparison operations for
    906 ///   elements of immutable containers that defaults to using
    907 ///   std::equal_to<> and std::less<> to perform comparison of elements.
    908 template <typename T>
    909 struct ImutContainerInfo : public ImutProfileInfo<T> {
    910   typedef typename ImutProfileInfo<T>::value_type      value_type;
    911   typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
    912   typedef value_type      key_type;
    913   typedef value_type_ref  key_type_ref;
    914   typedef bool            data_type;
    915   typedef bool            data_type_ref;
    916 
    917   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
    918   static data_type_ref DataOfValue(value_type_ref) { return true; }
    919 
    920   static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
    921     return std::equal_to<key_type>()(LHS,RHS);
    922   }
    923 
    924   static bool isLess(key_type_ref LHS, key_type_ref RHS) {
    925     return std::less<key_type>()(LHS,RHS);
    926   }
    927 
    928   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
    929 };
    930 
    931 /// ImutContainerInfo - Specialization for pointer values to treat pointers
    932 ///  as references to unique objects.  Pointers are thus compared by
    933 ///  their addresses.
    934 template <typename T>
    935 struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
    936   typedef typename ImutProfileInfo<T*>::value_type      value_type;
    937   typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
    938   typedef value_type      key_type;
    939   typedef value_type_ref  key_type_ref;
    940   typedef bool            data_type;
    941   typedef bool            data_type_ref;
    942 
    943   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
    944   static data_type_ref DataOfValue(value_type_ref) { return true; }
    945 
    946   static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
    947 
    948   static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
    949 
    950   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
    951 };
    952 
    953 //===----------------------------------------------------------------------===//
    954 // Immutable Set
    955 //===----------------------------------------------------------------------===//
    956 
    957 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
    958 class ImmutableSet {
    959 public:
    960   typedef typename ValInfo::value_type      value_type;
    961   typedef typename ValInfo::value_type_ref  value_type_ref;
    962   typedef ImutAVLTree<ValInfo> TreeTy;
    963 
    964 private:
    965   TreeTy *Root;
    966 
    967 public:
    968   /// Constructs a set from a pointer to a tree root.  In general one
    969   /// should use a Factory object to create sets instead of directly
    970   /// invoking the constructor, but there are cases where make this
    971   /// constructor public is useful.
    972   explicit ImmutableSet(TreeTy* R) : Root(R) {
    973     if (Root) { Root->retain(); }
    974   }
    975   ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
    976     if (Root) { Root->retain(); }
    977   }
    978   ImmutableSet &operator=(const ImmutableSet &X) {
    979     if (Root != X.Root) {
    980       if (X.Root) { X.Root->retain(); }
    981       if (Root) { Root->release(); }
    982       Root = X.Root;
    983     }
    984     return *this;
    985   }
    986   ~ImmutableSet() {
    987     if (Root) { Root->release(); }
    988   }
    989 
    990   class Factory {
    991     typename TreeTy::Factory F;
    992     const bool Canonicalize;
    993 
    994   public:
    995     Factory(bool canonicalize = true)
    996       : Canonicalize(canonicalize) {}
    997 
    998     Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
    999       : F(Alloc), Canonicalize(canonicalize) {}
   1000 
   1001     /// getEmptySet - Returns an immutable set that contains no elements.
   1002     ImmutableSet getEmptySet() {
   1003       return ImmutableSet(F.getEmptyTree());
   1004     }
   1005 
   1006     /// add - Creates a new immutable set that contains all of the values
   1007     ///  of the original set with the addition of the specified value.  If
   1008     ///  the original set already included the value, then the original set is
   1009     ///  returned and no memory is allocated.  The time and space complexity
   1010     ///  of this operation is logarithmic in the size of the original set.
   1011     ///  The memory allocated to represent the set is released when the
   1012     ///  factory object that created the set is destroyed.
   1013     ImmutableSet add(ImmutableSet Old, value_type_ref V) {
   1014       TreeTy *NewT = F.add(Old.Root, V);
   1015       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
   1016     }
   1017 
   1018     /// remove - Creates a new immutable set that contains all of the values
   1019     ///  of the original set with the exception of the specified value.  If
   1020     ///  the original set did not contain the value, the original set is
   1021     ///  returned and no memory is allocated.  The time and space complexity
   1022     ///  of this operation is logarithmic in the size of the original set.
   1023     ///  The memory allocated to represent the set is released when the
   1024     ///  factory object that created the set is destroyed.
   1025     ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
   1026       TreeTy *NewT = F.remove(Old.Root, V);
   1027       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
   1028     }
   1029 
   1030     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
   1031 
   1032     typename TreeTy::Factory *getTreeFactory() const {
   1033       return const_cast<typename TreeTy::Factory *>(&F);
   1034     }
   1035 
   1036   private:
   1037     Factory(const Factory& RHS) = delete;
   1038     void operator=(const Factory& RHS) = delete;
   1039   };
   1040 
   1041   friend class Factory;
   1042 
   1043   /// Returns true if the set contains the specified value.
   1044   bool contains(value_type_ref V) const {
   1045     return Root ? Root->contains(V) : false;
   1046   }
   1047 
   1048   bool operator==(const ImmutableSet &RHS) const {
   1049     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1050   }
   1051 
   1052   bool operator!=(const ImmutableSet &RHS) const {
   1053     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1054   }
   1055 
   1056   TreeTy *getRoot() {
   1057     if (Root) { Root->retain(); }
   1058     return Root;
   1059   }
   1060 
   1061   TreeTy *getRootWithoutRetain() const {
   1062     return Root;
   1063   }
   1064 
   1065   /// isEmpty - Return true if the set contains no elements.
   1066   bool isEmpty() const { return !Root; }
   1067 
   1068   /// isSingleton - Return true if the set contains exactly one element.
   1069   ///   This method runs in constant time.
   1070   bool isSingleton() const { return getHeight() == 1; }
   1071 
   1072   template <typename Callback>
   1073   void foreach(Callback& C) { if (Root) Root->foreach(C); }
   1074 
   1075   template <typename Callback>
   1076   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
   1077 
   1078   //===--------------------------------------------------===//
   1079   // Iterators.
   1080   //===--------------------------------------------------===//
   1081 
   1082   typedef ImutAVLValueIterator<ImmutableSet> iterator;
   1083 
   1084   iterator begin() const { return iterator(Root); }
   1085   iterator end() const { return iterator(); }
   1086 
   1087   //===--------------------------------------------------===//
   1088   // Utility methods.
   1089   //===--------------------------------------------------===//
   1090 
   1091   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1092 
   1093   static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
   1094     ID.AddPointer(S.Root);
   1095   }
   1096 
   1097   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
   1098 
   1099   //===--------------------------------------------------===//
   1100   // For testing.
   1101   //===--------------------------------------------------===//
   1102 
   1103   void validateTree() const { if (Root) Root->validateTree(); }
   1104 };
   1105 
   1106 // NOTE: This may some day replace the current ImmutableSet.
   1107 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
   1108 class ImmutableSetRef {
   1109 public:
   1110   typedef typename ValInfo::value_type      value_type;
   1111   typedef typename ValInfo::value_type_ref  value_type_ref;
   1112   typedef ImutAVLTree<ValInfo> TreeTy;
   1113   typedef typename TreeTy::Factory          FactoryTy;
   1114 
   1115 private:
   1116   TreeTy *Root;
   1117   FactoryTy *Factory;
   1118 
   1119 public:
   1120   /// Constructs a set from a pointer to a tree root.  In general one
   1121   /// should use a Factory object to create sets instead of directly
   1122   /// invoking the constructor, but there are cases where make this
   1123   /// constructor public is useful.
   1124   explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
   1125     : Root(R),
   1126       Factory(F) {
   1127     if (Root) { Root->retain(); }
   1128   }
   1129   ImmutableSetRef(const ImmutableSetRef &X)
   1130     : Root(X.Root),
   1131       Factory(X.Factory) {
   1132     if (Root) { Root->retain(); }
   1133   }
   1134   ImmutableSetRef &operator=(const ImmutableSetRef &X) {
   1135     if (Root != X.Root) {
   1136       if (X.Root) { X.Root->retain(); }
   1137       if (Root) { Root->release(); }
   1138       Root = X.Root;
   1139       Factory = X.Factory;
   1140     }
   1141     return *this;
   1142   }
   1143   ~ImmutableSetRef() {
   1144     if (Root) { Root->release(); }
   1145   }
   1146 
   1147   static ImmutableSetRef getEmptySet(FactoryTy *F) {
   1148     return ImmutableSetRef(0, F);
   1149   }
   1150 
   1151   ImmutableSetRef add(value_type_ref V) {
   1152     return ImmutableSetRef(Factory->add(Root, V), Factory);
   1153   }
   1154 
   1155   ImmutableSetRef remove(value_type_ref V) {
   1156     return ImmutableSetRef(Factory->remove(Root, V), Factory);
   1157   }
   1158 
   1159   /// Returns true if the set contains the specified value.
   1160   bool contains(value_type_ref V) const {
   1161     return Root ? Root->contains(V) : false;
   1162   }
   1163 
   1164   ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
   1165     return ImmutableSet<ValT>(canonicalize ?
   1166                               Factory->getCanonicalTree(Root) : Root);
   1167   }
   1168 
   1169   TreeTy *getRootWithoutRetain() const {
   1170     return Root;
   1171   }
   1172 
   1173   bool operator==(const ImmutableSetRef &RHS) const {
   1174     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1175   }
   1176 
   1177   bool operator!=(const ImmutableSetRef &RHS) const {
   1178     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1179   }
   1180 
   1181   /// isEmpty - Return true if the set contains no elements.
   1182   bool isEmpty() const { return !Root; }
   1183 
   1184   /// isSingleton - Return true if the set contains exactly one element.
   1185   ///   This method runs in constant time.
   1186   bool isSingleton() const { return getHeight() == 1; }
   1187 
   1188   //===--------------------------------------------------===//
   1189   // Iterators.
   1190   //===--------------------------------------------------===//
   1191 
   1192   typedef ImutAVLValueIterator<ImmutableSetRef> iterator;
   1193 
   1194   iterator begin() const { return iterator(Root); }
   1195   iterator end() const { return iterator(); }
   1196 
   1197   //===--------------------------------------------------===//
   1198   // Utility methods.
   1199   //===--------------------------------------------------===//
   1200 
   1201   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1202 
   1203   static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
   1204     ID.AddPointer(S.Root);
   1205   }
   1206 
   1207   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
   1208 
   1209   //===--------------------------------------------------===//
   1210   // For testing.
   1211   //===--------------------------------------------------===//
   1212 
   1213   void validateTree() const { if (Root) Root->validateTree(); }
   1214 };
   1215 
   1216 } // end namespace llvm
   1217 
   1218 #endif
   1219