Home | History | Annotate | Download | only in RuntimeDyld
      1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "RuntimeDyldELF.h"
     15 #include "RuntimeDyldCheckerImpl.h"
     16 #include "llvm/ADT/IntervalMap.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/StringRef.h"
     19 #include "llvm/ADT/Triple.h"
     20 #include "llvm/MC/MCStreamer.h"
     21 #include "llvm/Object/ELFObjectFile.h"
     22 #include "llvm/Object/ObjectFile.h"
     23 #include "llvm/Support/ELF.h"
     24 #include "llvm/Support/Endian.h"
     25 #include "llvm/Support/MemoryBuffer.h"
     26 #include "llvm/Support/TargetRegistry.h"
     27 
     28 using namespace llvm;
     29 using namespace llvm::object;
     30 
     31 #define DEBUG_TYPE "dyld"
     32 
     33 namespace {
     34 
     35 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
     36   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
     37 
     38   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
     39   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
     40   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
     41   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
     42 
     43   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
     44 
     45   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
     46 
     47 public:
     48   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
     49 
     50   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
     51 
     52   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
     53 
     54   // Methods for type inquiry through isa, cast and dyn_cast
     55   static inline bool classof(const Binary *v) {
     56     return (isa<ELFObjectFile<ELFT>>(v) &&
     57             classof(cast<ELFObjectFile<ELFT>>(v)));
     58   }
     59   static inline bool classof(const ELFObjectFile<ELFT> *v) {
     60     return v->isDyldType();
     61   }
     62 };
     63 
     64 
     65 
     66 // The MemoryBuffer passed into this constructor is just a wrapper around the
     67 // actual memory.  Ultimately, the Binary parent class will take ownership of
     68 // this MemoryBuffer object but not the underlying memory.
     69 template <class ELFT>
     70 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
     71     : ELFObjectFile<ELFT>(Wrapper, EC) {
     72   this->isDyldELFObject = true;
     73 }
     74 
     75 template <class ELFT>
     76 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
     77                                                uint64_t Addr) {
     78   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
     79   Elf_Shdr *shdr =
     80       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
     81 
     82   // This assumes the address passed in matches the target address bitness
     83   // The template-based type cast handles everything else.
     84   shdr->sh_addr = static_cast<addr_type>(Addr);
     85 }
     86 
     87 template <class ELFT>
     88 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
     89                                               uint64_t Addr) {
     90 
     91   Elf_Sym *sym = const_cast<Elf_Sym *>(
     92       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
     93 
     94   // This assumes the address passed in matches the target address bitness
     95   // The template-based type cast handles everything else.
     96   sym->st_value = static_cast<addr_type>(Addr);
     97 }
     98 
     99 class LoadedELFObjectInfo final
    100     : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
    101 public:
    102   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
    103       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
    104 
    105   OwningBinary<ObjectFile>
    106   getObjectForDebug(const ObjectFile &Obj) const override;
    107 };
    108 
    109 template <typename ELFT>
    110 std::unique_ptr<DyldELFObject<ELFT>>
    111 createRTDyldELFObject(MemoryBufferRef Buffer,
    112                       const ObjectFile &SourceObject,
    113                       const LoadedELFObjectInfo &L,
    114                       std::error_code &ec) {
    115   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
    116   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
    117 
    118   std::unique_ptr<DyldELFObject<ELFT>> Obj =
    119     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
    120 
    121   // Iterate over all sections in the object.
    122   auto SI = SourceObject.section_begin();
    123   for (const auto &Sec : Obj->sections()) {
    124     StringRef SectionName;
    125     Sec.getName(SectionName);
    126     if (SectionName != "") {
    127       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
    128       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
    129           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
    130 
    131       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
    132         // This assumes that the address passed in matches the target address
    133         // bitness. The template-based type cast handles everything else.
    134         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
    135       }
    136     }
    137     ++SI;
    138   }
    139 
    140   return Obj;
    141 }
    142 
    143 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
    144                                               const LoadedELFObjectInfo &L) {
    145   assert(Obj.isELF() && "Not an ELF object file.");
    146 
    147   std::unique_ptr<MemoryBuffer> Buffer =
    148     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
    149 
    150   std::error_code ec;
    151 
    152   std::unique_ptr<ObjectFile> DebugObj;
    153   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
    154     typedef ELFType<support::little, false> ELF32LE;
    155     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
    156                                               ec);
    157   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
    158     typedef ELFType<support::big, false> ELF32BE;
    159     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
    160                                               ec);
    161   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
    162     typedef ELFType<support::big, true> ELF64BE;
    163     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
    164                                               ec);
    165   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
    166     typedef ELFType<support::little, true> ELF64LE;
    167     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
    168                                               ec);
    169   } else
    170     llvm_unreachable("Unexpected ELF format");
    171 
    172   assert(!ec && "Could not construct copy ELF object file");
    173 
    174   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
    175 }
    176 
    177 OwningBinary<ObjectFile>
    178 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
    179   return createELFDebugObject(Obj, *this);
    180 }
    181 
    182 } // anonymous namespace
    183 
    184 namespace llvm {
    185 
    186 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
    187                                RuntimeDyld::SymbolResolver &Resolver)
    188     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
    189 RuntimeDyldELF::~RuntimeDyldELF() {}
    190 
    191 void RuntimeDyldELF::registerEHFrames() {
    192   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
    193     SID EHFrameSID = UnregisteredEHFrameSections[i];
    194     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
    195     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
    196     size_t EHFrameSize = Sections[EHFrameSID].getSize();
    197     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
    198     RegisteredEHFrameSections.push_back(EHFrameSID);
    199   }
    200   UnregisteredEHFrameSections.clear();
    201 }
    202 
    203 void RuntimeDyldELF::deregisterEHFrames() {
    204   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
    205     SID EHFrameSID = RegisteredEHFrameSections[i];
    206     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
    207     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
    208     size_t EHFrameSize = Sections[EHFrameSID].getSize();
    209     MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
    210   }
    211   RegisteredEHFrameSections.clear();
    212 }
    213 
    214 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
    215 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
    216   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
    217     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
    218   else {
    219     HasError = true;
    220     raw_string_ostream ErrStream(ErrorStr);
    221     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
    222     return nullptr;
    223   }
    224 }
    225 
    226 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
    227                                              uint64_t Offset, uint64_t Value,
    228                                              uint32_t Type, int64_t Addend,
    229                                              uint64_t SymOffset) {
    230   switch (Type) {
    231   default:
    232     llvm_unreachable("Relocation type not implemented yet!");
    233     break;
    234   case ELF::R_X86_64_64: {
    235     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
    236         Value + Addend;
    237     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
    238                  << format("%p\n", Section.getAddressWithOffset(Offset)));
    239     break;
    240   }
    241   case ELF::R_X86_64_32:
    242   case ELF::R_X86_64_32S: {
    243     Value += Addend;
    244     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
    245            (Type == ELF::R_X86_64_32S &&
    246             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
    247     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
    248     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
    249         TruncatedAddr;
    250     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
    251                  << format("%p\n", Section.getAddressWithOffset(Offset)));
    252     break;
    253   }
    254   case ELF::R_X86_64_PC8: {
    255     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    256     int64_t RealOffset = Value + Addend - FinalAddress;
    257     assert(isInt<8>(RealOffset));
    258     int8_t TruncOffset = (RealOffset & 0xFF);
    259     Section.getAddress()[Offset] = TruncOffset;
    260     break;
    261   }
    262   case ELF::R_X86_64_PC32: {
    263     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    264     int64_t RealOffset = Value + Addend - FinalAddress;
    265     assert(isInt<32>(RealOffset));
    266     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    267     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
    268         TruncOffset;
    269     break;
    270   }
    271   case ELF::R_X86_64_PC64: {
    272     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    273     int64_t RealOffset = Value + Addend - FinalAddress;
    274     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
    275         RealOffset;
    276     break;
    277   }
    278   }
    279 }
    280 
    281 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
    282                                           uint64_t Offset, uint32_t Value,
    283                                           uint32_t Type, int32_t Addend) {
    284   switch (Type) {
    285   case ELF::R_386_32: {
    286     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
    287         Value + Addend;
    288     break;
    289   }
    290   case ELF::R_386_PC32: {
    291     uint32_t FinalAddress =
    292         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
    293     uint32_t RealOffset = Value + Addend - FinalAddress;
    294     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
    295         RealOffset;
    296     break;
    297   }
    298   default:
    299     // There are other relocation types, but it appears these are the
    300     // only ones currently used by the LLVM ELF object writer
    301     llvm_unreachable("Relocation type not implemented yet!");
    302     break;
    303   }
    304 }
    305 
    306 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
    307                                               uint64_t Offset, uint64_t Value,
    308                                               uint32_t Type, int64_t Addend) {
    309   uint32_t *TargetPtr =
    310       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
    311   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    312 
    313   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
    314                << format("%llx", Section.getAddressWithOffset(Offset))
    315                << " FinalAddress: 0x" << format("%llx", FinalAddress)
    316                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
    317                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
    318                << "\n");
    319 
    320   switch (Type) {
    321   default:
    322     llvm_unreachable("Relocation type not implemented yet!");
    323     break;
    324   case ELF::R_AARCH64_ABS64: {
    325     uint64_t *TargetPtr =
    326         reinterpret_cast<uint64_t *>(Section.getAddressWithOffset(Offset));
    327     *TargetPtr = Value + Addend;
    328     break;
    329   }
    330   case ELF::R_AARCH64_PREL32: {
    331     uint64_t Result = Value + Addend - FinalAddress;
    332     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
    333            static_cast<int64_t>(Result) <= UINT32_MAX);
    334     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
    335     break;
    336   }
    337   case ELF::R_AARCH64_CALL26: // fallthrough
    338   case ELF::R_AARCH64_JUMP26: {
    339     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
    340     // calculation.
    341     uint64_t BranchImm = Value + Addend - FinalAddress;
    342 
    343     // "Check that -2^27 <= result < 2^27".
    344     assert(isInt<28>(BranchImm));
    345 
    346     // AArch64 code is emitted with .rela relocations. The data already in any
    347     // bits affected by the relocation on entry is garbage.
    348     *TargetPtr &= 0xfc000000U;
    349     // Immediate goes in bits 25:0 of B and BL.
    350     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
    351     break;
    352   }
    353   case ELF::R_AARCH64_MOVW_UABS_G3: {
    354     uint64_t Result = Value + Addend;
    355 
    356     // AArch64 code is emitted with .rela relocations. The data already in any
    357     // bits affected by the relocation on entry is garbage.
    358     *TargetPtr &= 0xffe0001fU;
    359     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    360     *TargetPtr |= Result >> (48 - 5);
    361     // Shift must be "lsl #48", in bits 22:21
    362     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
    363     break;
    364   }
    365   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
    366     uint64_t Result = Value + Addend;
    367 
    368     // AArch64 code is emitted with .rela relocations. The data already in any
    369     // bits affected by the relocation on entry is garbage.
    370     *TargetPtr &= 0xffe0001fU;
    371     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    372     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
    373     // Shift must be "lsl #32", in bits 22:21
    374     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
    375     break;
    376   }
    377   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
    378     uint64_t Result = Value + Addend;
    379 
    380     // AArch64 code is emitted with .rela relocations. The data already in any
    381     // bits affected by the relocation on entry is garbage.
    382     *TargetPtr &= 0xffe0001fU;
    383     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    384     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
    385     // Shift must be "lsl #16", in bits 22:2
    386     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
    387     break;
    388   }
    389   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
    390     uint64_t Result = Value + Addend;
    391 
    392     // AArch64 code is emitted with .rela relocations. The data already in any
    393     // bits affected by the relocation on entry is garbage.
    394     *TargetPtr &= 0xffe0001fU;
    395     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    396     *TargetPtr |= ((Result & 0xffffU) << 5);
    397     // Shift must be "lsl #0", in bits 22:21.
    398     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
    399     break;
    400   }
    401   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
    402     // Operation: Page(S+A) - Page(P)
    403     uint64_t Result =
    404         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
    405 
    406     // Check that -2^32 <= X < 2^32
    407     assert(isInt<33>(Result) && "overflow check failed for relocation");
    408 
    409     // AArch64 code is emitted with .rela relocations. The data already in any
    410     // bits affected by the relocation on entry is garbage.
    411     *TargetPtr &= 0x9f00001fU;
    412     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
    413     // from bits 32:12 of X.
    414     *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
    415     *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
    416     break;
    417   }
    418   case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
    419     // Operation: S + A
    420     uint64_t Result = Value + Addend;
    421 
    422     // AArch64 code is emitted with .rela relocations. The data already in any
    423     // bits affected by the relocation on entry is garbage.
    424     *TargetPtr &= 0xffc003ffU;
    425     // Immediate goes in bits 21:10 of LD/ST instruction, taken
    426     // from bits 11:2 of X
    427     *TargetPtr |= ((Result & 0xffc) << (10 - 2));
    428     break;
    429   }
    430   case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
    431     // Operation: S + A
    432     uint64_t Result = Value + Addend;
    433 
    434     // AArch64 code is emitted with .rela relocations. The data already in any
    435     // bits affected by the relocation on entry is garbage.
    436     *TargetPtr &= 0xffc003ffU;
    437     // Immediate goes in bits 21:10 of LD/ST instruction, taken
    438     // from bits 11:3 of X
    439     *TargetPtr |= ((Result & 0xff8) << (10 - 3));
    440     break;
    441   }
    442   }
    443 }
    444 
    445 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
    446                                           uint64_t Offset, uint32_t Value,
    447                                           uint32_t Type, int32_t Addend) {
    448   // TODO: Add Thumb relocations.
    449   uint32_t *TargetPtr =
    450       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
    451   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
    452   Value += Addend;
    453 
    454   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
    455                << Section.getAddressWithOffset(Offset)
    456                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
    457                << format("%x", Value) << " Type: " << format("%x", Type)
    458                << " Addend: " << format("%x", Addend) << "\n");
    459 
    460   switch (Type) {
    461   default:
    462     llvm_unreachable("Not implemented relocation type!");
    463 
    464   case ELF::R_ARM_NONE:
    465     break;
    466   case ELF::R_ARM_PREL31:
    467   case ELF::R_ARM_TARGET1:
    468   case ELF::R_ARM_ABS32:
    469     *TargetPtr = Value;
    470     break;
    471     // Write first 16 bit of 32 bit value to the mov instruction.
    472     // Last 4 bit should be shifted.
    473   case ELF::R_ARM_MOVW_ABS_NC:
    474   case ELF::R_ARM_MOVT_ABS:
    475     if (Type == ELF::R_ARM_MOVW_ABS_NC)
    476       Value = Value & 0xFFFF;
    477     else if (Type == ELF::R_ARM_MOVT_ABS)
    478       Value = (Value >> 16) & 0xFFFF;
    479     *TargetPtr &= ~0x000F0FFF;
    480     *TargetPtr |= Value & 0xFFF;
    481     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    482     break;
    483     // Write 24 bit relative value to the branch instruction.
    484   case ELF::R_ARM_PC24: // Fall through.
    485   case ELF::R_ARM_CALL: // Fall through.
    486   case ELF::R_ARM_JUMP24:
    487     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
    488     RelValue = (RelValue & 0x03FFFFFC) >> 2;
    489     assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
    490     *TargetPtr &= 0xFF000000;
    491     *TargetPtr |= RelValue;
    492     break;
    493   }
    494 }
    495 
    496 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
    497                                            uint64_t Offset, uint32_t Value,
    498                                            uint32_t Type, int32_t Addend) {
    499   uint8_t *TargetPtr = Section.getAddressWithOffset(Offset);
    500   Value += Addend;
    501 
    502   DEBUG(dbgs() << "resolveMIPSRelocation, LocalAddress: "
    503                << Section.getAddressWithOffset(Offset) << " FinalAddress: "
    504                << format("%p", Section.getLoadAddressWithOffset(Offset))
    505                << " Value: " << format("%x", Value)
    506                << " Type: " << format("%x", Type)
    507                << " Addend: " << format("%x", Addend) << "\n");
    508 
    509   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
    510 
    511   switch (Type) {
    512   default:
    513     llvm_unreachable("Not implemented relocation type!");
    514     break;
    515   case ELF::R_MIPS_32:
    516     writeBytesUnaligned(Value, TargetPtr, 4);
    517     break;
    518   case ELF::R_MIPS_26:
    519     Insn &= 0xfc000000;
    520     Insn |= (Value & 0x0fffffff) >> 2;
    521     writeBytesUnaligned(Insn, TargetPtr, 4);
    522     break;
    523   case ELF::R_MIPS_HI16:
    524     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
    525     Insn &= 0xffff0000;
    526     Insn |= ((Value + 0x8000) >> 16) & 0xffff;
    527     writeBytesUnaligned(Insn, TargetPtr, 4);
    528     break;
    529   case ELF::R_MIPS_LO16:
    530     Insn &= 0xffff0000;
    531     Insn |= Value & 0xffff;
    532     writeBytesUnaligned(Insn, TargetPtr, 4);
    533     break;
    534   case ELF::R_MIPS_PC32: {
    535     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    536     writeBytesUnaligned(Value - FinalAddress, (uint8_t *)TargetPtr, 4);
    537     break;
    538   }
    539   case ELF::R_MIPS_PC16: {
    540     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    541     Insn &= 0xffff0000;
    542     Insn |= ((Value - FinalAddress) >> 2) & 0xffff;
    543     writeBytesUnaligned(Insn, TargetPtr, 4);
    544     break;
    545   }
    546   case ELF::R_MIPS_PC19_S2: {
    547     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    548     Insn &= 0xfff80000;
    549     Insn |= ((Value - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
    550     writeBytesUnaligned(Insn, TargetPtr, 4);
    551     break;
    552   }
    553   case ELF::R_MIPS_PC21_S2: {
    554     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    555     Insn &= 0xffe00000;
    556     Insn |= ((Value - FinalAddress) >> 2) & 0x1fffff;
    557     writeBytesUnaligned(Insn, TargetPtr, 4);
    558     break;
    559   }
    560   case ELF::R_MIPS_PC26_S2: {
    561     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    562     Insn &= 0xfc000000;
    563     Insn |= ((Value - FinalAddress) >> 2) & 0x3ffffff;
    564     writeBytesUnaligned(Insn, TargetPtr, 4);
    565     break;
    566   }
    567   case ELF::R_MIPS_PCHI16: {
    568     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    569     Insn &= 0xffff0000;
    570     Insn |= ((Value - FinalAddress + 0x8000) >> 16) & 0xffff;
    571     writeBytesUnaligned(Insn, TargetPtr, 4);
    572     break;
    573   }
    574   case ELF::R_MIPS_PCLO16: {
    575     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    576     Insn &= 0xffff0000;
    577     Insn |= (Value - FinalAddress) & 0xffff;
    578     writeBytesUnaligned(Insn, TargetPtr, 4);
    579     break;
    580   }
    581   }
    582 }
    583 
    584 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
    585   if (Arch == Triple::UnknownArch ||
    586       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
    587     IsMipsO32ABI = false;
    588     IsMipsN64ABI = false;
    589     return;
    590   }
    591   unsigned AbiVariant;
    592   Obj.getPlatformFlags(AbiVariant);
    593   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
    594   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
    595   if (AbiVariant & ELF::EF_MIPS_ABI2)
    596     llvm_unreachable("Mips N32 ABI is not supported yet");
    597 }
    598 
    599 void RuntimeDyldELF::resolveMIPS64Relocation(const SectionEntry &Section,
    600                                              uint64_t Offset, uint64_t Value,
    601                                              uint32_t Type, int64_t Addend,
    602                                              uint64_t SymOffset,
    603                                              SID SectionID) {
    604   uint32_t r_type = Type & 0xff;
    605   uint32_t r_type2 = (Type >> 8) & 0xff;
    606   uint32_t r_type3 = (Type >> 16) & 0xff;
    607 
    608   // RelType is used to keep information for which relocation type we are
    609   // applying relocation.
    610   uint32_t RelType = r_type;
    611   int64_t CalculatedValue = evaluateMIPS64Relocation(Section, Offset, Value,
    612                                                      RelType, Addend,
    613                                                      SymOffset, SectionID);
    614   if (r_type2 != ELF::R_MIPS_NONE) {
    615     RelType = r_type2;
    616     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
    617                                                CalculatedValue, SymOffset,
    618                                                SectionID);
    619   }
    620   if (r_type3 != ELF::R_MIPS_NONE) {
    621     RelType = r_type3;
    622     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
    623                                                CalculatedValue, SymOffset,
    624                                                SectionID);
    625   }
    626   applyMIPS64Relocation(Section.getAddressWithOffset(Offset), CalculatedValue,
    627                         RelType);
    628 }
    629 
    630 int64_t
    631 RuntimeDyldELF::evaluateMIPS64Relocation(const SectionEntry &Section,
    632                                          uint64_t Offset, uint64_t Value,
    633                                          uint32_t Type, int64_t Addend,
    634                                          uint64_t SymOffset, SID SectionID) {
    635 
    636   DEBUG(dbgs() << "evaluateMIPS64Relocation, LocalAddress: 0x"
    637                << format("%llx", Section.getAddressWithOffset(Offset))
    638                << " FinalAddress: 0x"
    639                << format("%llx", Section.getLoadAddressWithOffset(Offset))
    640                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
    641                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
    642                << " SymOffset: " << format("%x", SymOffset) << "\n");
    643 
    644   switch (Type) {
    645   default:
    646     llvm_unreachable("Not implemented relocation type!");
    647     break;
    648   case ELF::R_MIPS_JALR:
    649   case ELF::R_MIPS_NONE:
    650     break;
    651   case ELF::R_MIPS_32:
    652   case ELF::R_MIPS_64:
    653     return Value + Addend;
    654   case ELF::R_MIPS_26:
    655     return ((Value + Addend) >> 2) & 0x3ffffff;
    656   case ELF::R_MIPS_GPREL16: {
    657     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
    658     return Value + Addend - (GOTAddr + 0x7ff0);
    659   }
    660   case ELF::R_MIPS_SUB:
    661     return Value - Addend;
    662   case ELF::R_MIPS_HI16:
    663     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
    664     return ((Value + Addend + 0x8000) >> 16) & 0xffff;
    665   case ELF::R_MIPS_LO16:
    666     return (Value + Addend) & 0xffff;
    667   case ELF::R_MIPS_CALL16:
    668   case ELF::R_MIPS_GOT_DISP:
    669   case ELF::R_MIPS_GOT_PAGE: {
    670     uint8_t *LocalGOTAddr =
    671         getSectionAddress(SectionToGOTMap[SectionID]) + SymOffset;
    672     uint64_t GOTEntry = readBytesUnaligned(LocalGOTAddr, 8);
    673 
    674     Value += Addend;
    675     if (Type == ELF::R_MIPS_GOT_PAGE)
    676       Value = (Value + 0x8000) & ~0xffff;
    677 
    678     if (GOTEntry)
    679       assert(GOTEntry == Value &&
    680                    "GOT entry has two different addresses.");
    681     else
    682       writeBytesUnaligned(Value, LocalGOTAddr, 8);
    683 
    684     return (SymOffset - 0x7ff0) & 0xffff;
    685   }
    686   case ELF::R_MIPS_GOT_OFST: {
    687     int64_t page = (Value + Addend + 0x8000) & ~0xffff;
    688     return (Value + Addend - page) & 0xffff;
    689   }
    690   case ELF::R_MIPS_GPREL32: {
    691     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
    692     return Value + Addend - (GOTAddr + 0x7ff0);
    693   }
    694   case ELF::R_MIPS_PC16: {
    695     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    696     return ((Value + Addend - FinalAddress) >> 2) & 0xffff;
    697   }
    698   case ELF::R_MIPS_PC32: {
    699     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    700     return Value + Addend - FinalAddress;
    701   }
    702   case ELF::R_MIPS_PC18_S3: {
    703     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    704     return ((Value + Addend - (FinalAddress & ~0x7)) >> 3) & 0x3ffff;
    705   }
    706   case ELF::R_MIPS_PC19_S2: {
    707     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    708     return ((Value + Addend - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
    709   }
    710   case ELF::R_MIPS_PC21_S2: {
    711     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    712     return ((Value + Addend - FinalAddress) >> 2) & 0x1fffff;
    713   }
    714   case ELF::R_MIPS_PC26_S2: {
    715     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    716     return ((Value + Addend - FinalAddress) >> 2) & 0x3ffffff;
    717   }
    718   case ELF::R_MIPS_PCHI16: {
    719     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    720     return ((Value + Addend - FinalAddress + 0x8000) >> 16) & 0xffff;
    721   }
    722   case ELF::R_MIPS_PCLO16: {
    723     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    724     return (Value + Addend - FinalAddress) & 0xffff;
    725   }
    726   }
    727   return 0;
    728 }
    729 
    730 void RuntimeDyldELF::applyMIPS64Relocation(uint8_t *TargetPtr,
    731                                            int64_t CalculatedValue,
    732                                            uint32_t Type) {
    733   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
    734 
    735   switch (Type) {
    736     default:
    737       break;
    738     case ELF::R_MIPS_32:
    739     case ELF::R_MIPS_GPREL32:
    740     case ELF::R_MIPS_PC32:
    741       writeBytesUnaligned(CalculatedValue & 0xffffffff, TargetPtr, 4);
    742       break;
    743     case ELF::R_MIPS_64:
    744     case ELF::R_MIPS_SUB:
    745       writeBytesUnaligned(CalculatedValue, TargetPtr, 8);
    746       break;
    747     case ELF::R_MIPS_26:
    748     case ELF::R_MIPS_PC26_S2:
    749       Insn = (Insn & 0xfc000000) | CalculatedValue;
    750       writeBytesUnaligned(Insn, TargetPtr, 4);
    751       break;
    752     case ELF::R_MIPS_GPREL16:
    753       Insn = (Insn & 0xffff0000) | (CalculatedValue & 0xffff);
    754       writeBytesUnaligned(Insn, TargetPtr, 4);
    755       break;
    756     case ELF::R_MIPS_HI16:
    757     case ELF::R_MIPS_LO16:
    758     case ELF::R_MIPS_PCHI16:
    759     case ELF::R_MIPS_PCLO16:
    760     case ELF::R_MIPS_PC16:
    761     case ELF::R_MIPS_CALL16:
    762     case ELF::R_MIPS_GOT_DISP:
    763     case ELF::R_MIPS_GOT_PAGE:
    764     case ELF::R_MIPS_GOT_OFST:
    765       Insn = (Insn & 0xffff0000) | CalculatedValue;
    766       writeBytesUnaligned(Insn, TargetPtr, 4);
    767       break;
    768     case ELF::R_MIPS_PC18_S3:
    769       Insn = (Insn & 0xfffc0000) | CalculatedValue;
    770       writeBytesUnaligned(Insn, TargetPtr, 4);
    771       break;
    772     case ELF::R_MIPS_PC19_S2:
    773       Insn = (Insn & 0xfff80000) | CalculatedValue;
    774       writeBytesUnaligned(Insn, TargetPtr, 4);
    775       break;
    776     case ELF::R_MIPS_PC21_S2:
    777       Insn = (Insn & 0xffe00000) | CalculatedValue;
    778       writeBytesUnaligned(Insn, TargetPtr, 4);
    779       break;
    780     }
    781 }
    782 
    783 // Return the .TOC. section and offset.
    784 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
    785                                           ObjSectionToIDMap &LocalSections,
    786                                           RelocationValueRef &Rel) {
    787   // Set a default SectionID in case we do not find a TOC section below.
    788   // This may happen for references to TOC base base (sym@toc, .odp
    789   // relocation) without a .toc directive.  In this case just use the
    790   // first section (which is usually the .odp) since the code won't
    791   // reference the .toc base directly.
    792   Rel.SymbolName = nullptr;
    793   Rel.SectionID = 0;
    794 
    795   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
    796   // order. The TOC starts where the first of these sections starts.
    797   for (auto &Section: Obj.sections()) {
    798     StringRef SectionName;
    799     if (auto EC = Section.getName(SectionName))
    800       return errorCodeToError(EC);
    801 
    802     if (SectionName == ".got"
    803         || SectionName == ".toc"
    804         || SectionName == ".tocbss"
    805         || SectionName == ".plt") {
    806       if (auto SectionIDOrErr =
    807             findOrEmitSection(Obj, Section, false, LocalSections))
    808         Rel.SectionID = *SectionIDOrErr;
    809       else
    810         return SectionIDOrErr.takeError();
    811       break;
    812     }
    813   }
    814 
    815   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
    816   // thus permitting a full 64 Kbytes segment.
    817   Rel.Addend = 0x8000;
    818 
    819   return Error::success();
    820 }
    821 
    822 // Returns the sections and offset associated with the ODP entry referenced
    823 // by Symbol.
    824 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
    825                                           ObjSectionToIDMap &LocalSections,
    826                                           RelocationValueRef &Rel) {
    827   // Get the ELF symbol value (st_value) to compare with Relocation offset in
    828   // .opd entries
    829   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
    830        si != se; ++si) {
    831     section_iterator RelSecI = si->getRelocatedSection();
    832     if (RelSecI == Obj.section_end())
    833       continue;
    834 
    835     StringRef RelSectionName;
    836     if (auto EC = RelSecI->getName(RelSectionName))
    837       return errorCodeToError(EC);
    838 
    839     if (RelSectionName != ".opd")
    840       continue;
    841 
    842     for (elf_relocation_iterator i = si->relocation_begin(),
    843                                  e = si->relocation_end();
    844          i != e;) {
    845       // The R_PPC64_ADDR64 relocation indicates the first field
    846       // of a .opd entry
    847       uint64_t TypeFunc = i->getType();
    848       if (TypeFunc != ELF::R_PPC64_ADDR64) {
    849         ++i;
    850         continue;
    851       }
    852 
    853       uint64_t TargetSymbolOffset = i->getOffset();
    854       symbol_iterator TargetSymbol = i->getSymbol();
    855       int64_t Addend;
    856       if (auto AddendOrErr = i->getAddend())
    857         Addend = *AddendOrErr;
    858       else
    859         return errorCodeToError(AddendOrErr.getError());
    860 
    861       ++i;
    862       if (i == e)
    863         break;
    864 
    865       // Just check if following relocation is a R_PPC64_TOC
    866       uint64_t TypeTOC = i->getType();
    867       if (TypeTOC != ELF::R_PPC64_TOC)
    868         continue;
    869 
    870       // Finally compares the Symbol value and the target symbol offset
    871       // to check if this .opd entry refers to the symbol the relocation
    872       // points to.
    873       if (Rel.Addend != (int64_t)TargetSymbolOffset)
    874         continue;
    875 
    876       section_iterator TSI = Obj.section_end();
    877       if (auto TSIOrErr = TargetSymbol->getSection())
    878         TSI = *TSIOrErr;
    879       else
    880         return TSIOrErr.takeError();
    881       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
    882 
    883       bool IsCode = TSI->isText();
    884       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
    885                                                   LocalSections))
    886         Rel.SectionID = *SectionIDOrErr;
    887       else
    888         return SectionIDOrErr.takeError();
    889       Rel.Addend = (intptr_t)Addend;
    890       return Error::success();
    891     }
    892   }
    893   llvm_unreachable("Attempting to get address of ODP entry!");
    894 }
    895 
    896 // Relocation masks following the #lo(value), #hi(value), #ha(value),
    897 // #higher(value), #highera(value), #highest(value), and #highesta(value)
    898 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
    899 // document.
    900 
    901 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
    902 
    903 static inline uint16_t applyPPChi(uint64_t value) {
    904   return (value >> 16) & 0xffff;
    905 }
    906 
    907 static inline uint16_t applyPPCha (uint64_t value) {
    908   return ((value + 0x8000) >> 16) & 0xffff;
    909 }
    910 
    911 static inline uint16_t applyPPChigher(uint64_t value) {
    912   return (value >> 32) & 0xffff;
    913 }
    914 
    915 static inline uint16_t applyPPChighera (uint64_t value) {
    916   return ((value + 0x8000) >> 32) & 0xffff;
    917 }
    918 
    919 static inline uint16_t applyPPChighest(uint64_t value) {
    920   return (value >> 48) & 0xffff;
    921 }
    922 
    923 static inline uint16_t applyPPChighesta (uint64_t value) {
    924   return ((value + 0x8000) >> 48) & 0xffff;
    925 }
    926 
    927 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
    928                                             uint64_t Offset, uint64_t Value,
    929                                             uint32_t Type, int64_t Addend) {
    930   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
    931   switch (Type) {
    932   default:
    933     llvm_unreachable("Relocation type not implemented yet!");
    934     break;
    935   case ELF::R_PPC_ADDR16_LO:
    936     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    937     break;
    938   case ELF::R_PPC_ADDR16_HI:
    939     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
    940     break;
    941   case ELF::R_PPC_ADDR16_HA:
    942     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
    943     break;
    944   }
    945 }
    946 
    947 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
    948                                             uint64_t Offset, uint64_t Value,
    949                                             uint32_t Type, int64_t Addend) {
    950   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
    951   switch (Type) {
    952   default:
    953     llvm_unreachable("Relocation type not implemented yet!");
    954     break;
    955   case ELF::R_PPC64_ADDR16:
    956     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    957     break;
    958   case ELF::R_PPC64_ADDR16_DS:
    959     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    960     break;
    961   case ELF::R_PPC64_ADDR16_LO:
    962     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    963     break;
    964   case ELF::R_PPC64_ADDR16_LO_DS:
    965     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    966     break;
    967   case ELF::R_PPC64_ADDR16_HI:
    968     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
    969     break;
    970   case ELF::R_PPC64_ADDR16_HA:
    971     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
    972     break;
    973   case ELF::R_PPC64_ADDR16_HIGHER:
    974     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
    975     break;
    976   case ELF::R_PPC64_ADDR16_HIGHERA:
    977     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
    978     break;
    979   case ELF::R_PPC64_ADDR16_HIGHEST:
    980     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
    981     break;
    982   case ELF::R_PPC64_ADDR16_HIGHESTA:
    983     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
    984     break;
    985   case ELF::R_PPC64_ADDR14: {
    986     assert(((Value + Addend) & 3) == 0);
    987     // Preserve the AA/LK bits in the branch instruction
    988     uint8_t aalk = *(LocalAddress + 3);
    989     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
    990   } break;
    991   case ELF::R_PPC64_REL16_LO: {
    992     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    993     uint64_t Delta = Value - FinalAddress + Addend;
    994     writeInt16BE(LocalAddress, applyPPClo(Delta));
    995   } break;
    996   case ELF::R_PPC64_REL16_HI: {
    997     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
    998     uint64_t Delta = Value - FinalAddress + Addend;
    999     writeInt16BE(LocalAddress, applyPPChi(Delta));
   1000   } break;
   1001   case ELF::R_PPC64_REL16_HA: {
   1002     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
   1003     uint64_t Delta = Value - FinalAddress + Addend;
   1004     writeInt16BE(LocalAddress, applyPPCha(Delta));
   1005   } break;
   1006   case ELF::R_PPC64_ADDR32: {
   1007     int32_t Result = static_cast<int32_t>(Value + Addend);
   1008     if (SignExtend32<32>(Result) != Result)
   1009       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
   1010     writeInt32BE(LocalAddress, Result);
   1011   } break;
   1012   case ELF::R_PPC64_REL24: {
   1013     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
   1014     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
   1015     if (SignExtend32<26>(delta) != delta)
   1016       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
   1017     // Generates a 'bl <address>' instruction
   1018     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
   1019   } break;
   1020   case ELF::R_PPC64_REL32: {
   1021     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
   1022     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
   1023     if (SignExtend32<32>(delta) != delta)
   1024       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
   1025     writeInt32BE(LocalAddress, delta);
   1026   } break;
   1027   case ELF::R_PPC64_REL64: {
   1028     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
   1029     uint64_t Delta = Value - FinalAddress + Addend;
   1030     writeInt64BE(LocalAddress, Delta);
   1031   } break;
   1032   case ELF::R_PPC64_ADDR64:
   1033     writeInt64BE(LocalAddress, Value + Addend);
   1034     break;
   1035   }
   1036 }
   1037 
   1038 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
   1039                                               uint64_t Offset, uint64_t Value,
   1040                                               uint32_t Type, int64_t Addend) {
   1041   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
   1042   switch (Type) {
   1043   default:
   1044     llvm_unreachable("Relocation type not implemented yet!");
   1045     break;
   1046   case ELF::R_390_PC16DBL:
   1047   case ELF::R_390_PLT16DBL: {
   1048     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
   1049     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
   1050     writeInt16BE(LocalAddress, Delta / 2);
   1051     break;
   1052   }
   1053   case ELF::R_390_PC32DBL:
   1054   case ELF::R_390_PLT32DBL: {
   1055     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
   1056     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
   1057     writeInt32BE(LocalAddress, Delta / 2);
   1058     break;
   1059   }
   1060   case ELF::R_390_PC32: {
   1061     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
   1062     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
   1063     writeInt32BE(LocalAddress, Delta);
   1064     break;
   1065   }
   1066   case ELF::R_390_64:
   1067     writeInt64BE(LocalAddress, Value + Addend);
   1068     break;
   1069   case ELF::R_390_PC64: {
   1070     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
   1071     writeInt64BE(LocalAddress, Delta);
   1072     break;
   1073   }
   1074   }
   1075 }
   1076 
   1077 // The target location for the relocation is described by RE.SectionID and
   1078 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
   1079 // SectionEntry has three members describing its location.
   1080 // SectionEntry::Address is the address at which the section has been loaded
   1081 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
   1082 // address that the section will have in the target process.
   1083 // SectionEntry::ObjAddress is the address of the bits for this section in the
   1084 // original emitted object image (also in the current address space).
   1085 //
   1086 // Relocations will be applied as if the section were loaded at
   1087 // SectionEntry::LoadAddress, but they will be applied at an address based
   1088 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
   1089 // Target memory contents if they are required for value calculations.
   1090 //
   1091 // The Value parameter here is the load address of the symbol for the
   1092 // relocation to be applied.  For relocations which refer to symbols in the
   1093 // current object Value will be the LoadAddress of the section in which
   1094 // the symbol resides (RE.Addend provides additional information about the
   1095 // symbol location).  For external symbols, Value will be the address of the
   1096 // symbol in the target address space.
   1097 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
   1098                                        uint64_t Value) {
   1099   const SectionEntry &Section = Sections[RE.SectionID];
   1100   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
   1101                            RE.SymOffset, RE.SectionID);
   1102 }
   1103 
   1104 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
   1105                                        uint64_t Offset, uint64_t Value,
   1106                                        uint32_t Type, int64_t Addend,
   1107                                        uint64_t SymOffset, SID SectionID) {
   1108   switch (Arch) {
   1109   case Triple::x86_64:
   1110     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
   1111     break;
   1112   case Triple::x86:
   1113     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
   1114                          (uint32_t)(Addend & 0xffffffffL));
   1115     break;
   1116   case Triple::aarch64:
   1117   case Triple::aarch64_be:
   1118     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
   1119     break;
   1120   case Triple::arm: // Fall through.
   1121   case Triple::armeb:
   1122   case Triple::thumb:
   1123   case Triple::thumbeb:
   1124     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
   1125                          (uint32_t)(Addend & 0xffffffffL));
   1126     break;
   1127   case Triple::mips: // Fall through.
   1128   case Triple::mipsel:
   1129   case Triple::mips64:
   1130   case Triple::mips64el:
   1131     if (IsMipsO32ABI)
   1132       resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
   1133                             Type, (uint32_t)(Addend & 0xffffffffL));
   1134     else if (IsMipsN64ABI)
   1135       resolveMIPS64Relocation(Section, Offset, Value, Type, Addend, SymOffset,
   1136                               SectionID);
   1137     else
   1138       llvm_unreachable("Mips ABI not handled");
   1139     break;
   1140   case Triple::ppc:
   1141     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
   1142     break;
   1143   case Triple::ppc64: // Fall through.
   1144   case Triple::ppc64le:
   1145     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
   1146     break;
   1147   case Triple::systemz:
   1148     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
   1149     break;
   1150   default:
   1151     llvm_unreachable("Unsupported CPU type!");
   1152   }
   1153 }
   1154 
   1155 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
   1156   return (void *)(Sections[SectionID].getObjAddress() + Offset);
   1157 }
   1158 
   1159 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
   1160   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
   1161   if (Value.SymbolName)
   1162     addRelocationForSymbol(RE, Value.SymbolName);
   1163   else
   1164     addRelocationForSection(RE, Value.SectionID);
   1165 }
   1166 
   1167 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
   1168                                                  bool IsLocal) const {
   1169   switch (RelType) {
   1170   case ELF::R_MICROMIPS_GOT16:
   1171     if (IsLocal)
   1172       return ELF::R_MICROMIPS_LO16;
   1173     break;
   1174   case ELF::R_MICROMIPS_HI16:
   1175     return ELF::R_MICROMIPS_LO16;
   1176   case ELF::R_MIPS_GOT16:
   1177     if (IsLocal)
   1178       return ELF::R_MIPS_LO16;
   1179     break;
   1180   case ELF::R_MIPS_HI16:
   1181     return ELF::R_MIPS_LO16;
   1182   case ELF::R_MIPS_PCHI16:
   1183     return ELF::R_MIPS_PCLO16;
   1184   default:
   1185     break;
   1186   }
   1187   return ELF::R_MIPS_NONE;
   1188 }
   1189 
   1190 Expected<relocation_iterator>
   1191 RuntimeDyldELF::processRelocationRef(
   1192     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
   1193     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
   1194   const auto &Obj = cast<ELFObjectFileBase>(O);
   1195   uint64_t RelType = RelI->getType();
   1196   ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
   1197   int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
   1198   elf_symbol_iterator Symbol = RelI->getSymbol();
   1199 
   1200   // Obtain the symbol name which is referenced in the relocation
   1201   StringRef TargetName;
   1202   if (Symbol != Obj.symbol_end()) {
   1203     if (auto TargetNameOrErr = Symbol->getName())
   1204       TargetName = *TargetNameOrErr;
   1205     else
   1206       return TargetNameOrErr.takeError();
   1207   }
   1208   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
   1209                << " TargetName: " << TargetName << "\n");
   1210   RelocationValueRef Value;
   1211   // First search for the symbol in the local symbol table
   1212   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
   1213 
   1214   // Search for the symbol in the global symbol table
   1215   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
   1216   if (Symbol != Obj.symbol_end()) {
   1217     gsi = GlobalSymbolTable.find(TargetName.data());
   1218     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
   1219     if (!SymTypeOrErr) {
   1220       std::string Buf;
   1221       raw_string_ostream OS(Buf);
   1222       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
   1223       OS.flush();
   1224       report_fatal_error(Buf);
   1225     }
   1226     SymType = *SymTypeOrErr;
   1227   }
   1228   if (gsi != GlobalSymbolTable.end()) {
   1229     const auto &SymInfo = gsi->second;
   1230     Value.SectionID = SymInfo.getSectionID();
   1231     Value.Offset = SymInfo.getOffset();
   1232     Value.Addend = SymInfo.getOffset() + Addend;
   1233   } else {
   1234     switch (SymType) {
   1235     case SymbolRef::ST_Debug: {
   1236       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
   1237       // and can be changed by another developers. Maybe best way is add
   1238       // a new symbol type ST_Section to SymbolRef and use it.
   1239       auto SectionOrErr = Symbol->getSection();
   1240       if (!SectionOrErr) {
   1241         std::string Buf;
   1242         raw_string_ostream OS(Buf);
   1243         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
   1244         OS.flush();
   1245         report_fatal_error(Buf);
   1246       }
   1247       section_iterator si = *SectionOrErr;
   1248       if (si == Obj.section_end())
   1249         llvm_unreachable("Symbol section not found, bad object file format!");
   1250       DEBUG(dbgs() << "\t\tThis is section symbol\n");
   1251       bool isCode = si->isText();
   1252       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
   1253                                                   ObjSectionToID))
   1254         Value.SectionID = *SectionIDOrErr;
   1255       else
   1256         return SectionIDOrErr.takeError();
   1257       Value.Addend = Addend;
   1258       break;
   1259     }
   1260     case SymbolRef::ST_Data:
   1261     case SymbolRef::ST_Unknown: {
   1262       Value.SymbolName = TargetName.data();
   1263       Value.Addend = Addend;
   1264 
   1265       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
   1266       // will manifest here as a NULL symbol name.
   1267       // We can set this as a valid (but empty) symbol name, and rely
   1268       // on addRelocationForSymbol to handle this.
   1269       if (!Value.SymbolName)
   1270         Value.SymbolName = "";
   1271       break;
   1272     }
   1273     default:
   1274       llvm_unreachable("Unresolved symbol type!");
   1275       break;
   1276     }
   1277   }
   1278 
   1279   uint64_t Offset = RelI->getOffset();
   1280 
   1281   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
   1282                << "\n");
   1283   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
   1284       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
   1285     // This is an AArch64 branch relocation, need to use a stub function.
   1286     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
   1287     SectionEntry &Section = Sections[SectionID];
   1288 
   1289     // Look for an existing stub.
   1290     StubMap::const_iterator i = Stubs.find(Value);
   1291     if (i != Stubs.end()) {
   1292       resolveRelocation(Section, Offset,
   1293                         (uint64_t)Section.getAddressWithOffset(i->second),
   1294                         RelType, 0);
   1295       DEBUG(dbgs() << " Stub function found\n");
   1296     } else {
   1297       // Create a new stub function.
   1298       DEBUG(dbgs() << " Create a new stub function\n");
   1299       Stubs[Value] = Section.getStubOffset();
   1300       uint8_t *StubTargetAddr = createStubFunction(
   1301           Section.getAddressWithOffset(Section.getStubOffset()));
   1302 
   1303       RelocationEntry REmovz_g3(SectionID,
   1304                                 StubTargetAddr - Section.getAddress(),
   1305                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
   1306       RelocationEntry REmovk_g2(SectionID, StubTargetAddr -
   1307                                                Section.getAddress() + 4,
   1308                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
   1309       RelocationEntry REmovk_g1(SectionID, StubTargetAddr -
   1310                                                Section.getAddress() + 8,
   1311                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
   1312       RelocationEntry REmovk_g0(SectionID, StubTargetAddr -
   1313                                                Section.getAddress() + 12,
   1314                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
   1315 
   1316       if (Value.SymbolName) {
   1317         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
   1318         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
   1319         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
   1320         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
   1321       } else {
   1322         addRelocationForSection(REmovz_g3, Value.SectionID);
   1323         addRelocationForSection(REmovk_g2, Value.SectionID);
   1324         addRelocationForSection(REmovk_g1, Value.SectionID);
   1325         addRelocationForSection(REmovk_g0, Value.SectionID);
   1326       }
   1327       resolveRelocation(Section, Offset,
   1328                         reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
   1329                             Section.getStubOffset())),
   1330                         RelType, 0);
   1331       Section.advanceStubOffset(getMaxStubSize());
   1332     }
   1333   } else if (Arch == Triple::arm) {
   1334     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
   1335       RelType == ELF::R_ARM_JUMP24) {
   1336       // This is an ARM branch relocation, need to use a stub function.
   1337       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
   1338       SectionEntry &Section = Sections[SectionID];
   1339 
   1340       // Look for an existing stub.
   1341       StubMap::const_iterator i = Stubs.find(Value);
   1342       if (i != Stubs.end()) {
   1343         resolveRelocation(
   1344             Section, Offset,
   1345             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
   1346             RelType, 0);
   1347         DEBUG(dbgs() << " Stub function found\n");
   1348       } else {
   1349         // Create a new stub function.
   1350         DEBUG(dbgs() << " Create a new stub function\n");
   1351         Stubs[Value] = Section.getStubOffset();
   1352         uint8_t *StubTargetAddr = createStubFunction(
   1353             Section.getAddressWithOffset(Section.getStubOffset()));
   1354         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
   1355                            ELF::R_ARM_ABS32, Value.Addend);
   1356         if (Value.SymbolName)
   1357           addRelocationForSymbol(RE, Value.SymbolName);
   1358         else
   1359           addRelocationForSection(RE, Value.SectionID);
   1360 
   1361         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
   1362                                                Section.getAddressWithOffset(
   1363                                                    Section.getStubOffset())),
   1364                           RelType, 0);
   1365         Section.advanceStubOffset(getMaxStubSize());
   1366       }
   1367     } else {
   1368       uint32_t *Placeholder =
   1369         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
   1370       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
   1371           RelType == ELF::R_ARM_ABS32) {
   1372         Value.Addend += *Placeholder;
   1373       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
   1374         // See ELF for ARM documentation
   1375         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
   1376       }
   1377       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1378     }
   1379   } else if (IsMipsO32ABI) {
   1380     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
   1381         computePlaceholderAddress(SectionID, Offset));
   1382     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
   1383     if (RelType == ELF::R_MIPS_26) {
   1384       // This is an Mips branch relocation, need to use a stub function.
   1385       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
   1386       SectionEntry &Section = Sections[SectionID];
   1387 
   1388       // Extract the addend from the instruction.
   1389       // We shift up by two since the Value will be down shifted again
   1390       // when applying the relocation.
   1391       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
   1392 
   1393       Value.Addend += Addend;
   1394 
   1395       //  Look up for existing stub.
   1396       StubMap::const_iterator i = Stubs.find(Value);
   1397       if (i != Stubs.end()) {
   1398         RelocationEntry RE(SectionID, Offset, RelType, i->second);
   1399         addRelocationForSection(RE, SectionID);
   1400         DEBUG(dbgs() << " Stub function found\n");
   1401       } else {
   1402         // Create a new stub function.
   1403         DEBUG(dbgs() << " Create a new stub function\n");
   1404         Stubs[Value] = Section.getStubOffset();
   1405         uint8_t *StubTargetAddr = createStubFunction(
   1406             Section.getAddressWithOffset(Section.getStubOffset()));
   1407 
   1408         // Creating Hi and Lo relocations for the filled stub instructions.
   1409         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
   1410                              ELF::R_MIPS_HI16, Value.Addend);
   1411         RelocationEntry RELo(SectionID,
   1412                              StubTargetAddr - Section.getAddress() + 4,
   1413                              ELF::R_MIPS_LO16, Value.Addend);
   1414 
   1415         if (Value.SymbolName) {
   1416           addRelocationForSymbol(REHi, Value.SymbolName);
   1417           addRelocationForSymbol(RELo, Value.SymbolName);
   1418         }
   1419         else {
   1420           addRelocationForSection(REHi, Value.SectionID);
   1421           addRelocationForSection(RELo, Value.SectionID);
   1422         }
   1423 
   1424         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
   1425         addRelocationForSection(RE, SectionID);
   1426         Section.advanceStubOffset(getMaxStubSize());
   1427       }
   1428     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
   1429       int64_t Addend = (Opcode & 0x0000ffff) << 16;
   1430       RelocationEntry RE(SectionID, Offset, RelType, Addend);
   1431       PendingRelocs.push_back(std::make_pair(Value, RE));
   1432     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
   1433       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
   1434       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
   1435         const RelocationValueRef &MatchingValue = I->first;
   1436         RelocationEntry &Reloc = I->second;
   1437         if (MatchingValue == Value &&
   1438             RelType == getMatchingLoRelocation(Reloc.RelType) &&
   1439             SectionID == Reloc.SectionID) {
   1440           Reloc.Addend += Addend;
   1441           if (Value.SymbolName)
   1442             addRelocationForSymbol(Reloc, Value.SymbolName);
   1443           else
   1444             addRelocationForSection(Reloc, Value.SectionID);
   1445           I = PendingRelocs.erase(I);
   1446         } else
   1447           ++I;
   1448       }
   1449       RelocationEntry RE(SectionID, Offset, RelType, Addend);
   1450       if (Value.SymbolName)
   1451         addRelocationForSymbol(RE, Value.SymbolName);
   1452       else
   1453         addRelocationForSection(RE, Value.SectionID);
   1454     } else {
   1455       if (RelType == ELF::R_MIPS_32)
   1456         Value.Addend += Opcode;
   1457       else if (RelType == ELF::R_MIPS_PC16)
   1458         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
   1459       else if (RelType == ELF::R_MIPS_PC19_S2)
   1460         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
   1461       else if (RelType == ELF::R_MIPS_PC21_S2)
   1462         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
   1463       else if (RelType == ELF::R_MIPS_PC26_S2)
   1464         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
   1465       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1466     }
   1467   } else if (IsMipsN64ABI) {
   1468     uint32_t r_type = RelType & 0xff;
   1469     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
   1470     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
   1471         || r_type == ELF::R_MIPS_GOT_DISP) {
   1472       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
   1473       if (i != GOTSymbolOffsets.end())
   1474         RE.SymOffset = i->second;
   1475       else {
   1476         RE.SymOffset = allocateGOTEntries(SectionID, 1);
   1477         GOTSymbolOffsets[TargetName] = RE.SymOffset;
   1478       }
   1479     }
   1480     if (Value.SymbolName)
   1481       addRelocationForSymbol(RE, Value.SymbolName);
   1482     else
   1483       addRelocationForSection(RE, Value.SectionID);
   1484   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
   1485     if (RelType == ELF::R_PPC64_REL24) {
   1486       // Determine ABI variant in use for this object.
   1487       unsigned AbiVariant;
   1488       Obj.getPlatformFlags(AbiVariant);
   1489       AbiVariant &= ELF::EF_PPC64_ABI;
   1490       // A PPC branch relocation will need a stub function if the target is
   1491       // an external symbol (Symbol::ST_Unknown) or if the target address
   1492       // is not within the signed 24-bits branch address.
   1493       SectionEntry &Section = Sections[SectionID];
   1494       uint8_t *Target = Section.getAddressWithOffset(Offset);
   1495       bool RangeOverflow = false;
   1496       if (SymType != SymbolRef::ST_Unknown) {
   1497         if (AbiVariant != 2) {
   1498           // In the ELFv1 ABI, a function call may point to the .opd entry,
   1499           // so the final symbol value is calculated based on the relocation
   1500           // values in the .opd section.
   1501           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
   1502             return std::move(Err);
   1503         } else {
   1504           // In the ELFv2 ABI, a function symbol may provide a local entry
   1505           // point, which must be used for direct calls.
   1506           uint8_t SymOther = Symbol->getOther();
   1507           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
   1508         }
   1509         uint8_t *RelocTarget =
   1510             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
   1511         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
   1512         // If it is within 26-bits branch range, just set the branch target
   1513         if (SignExtend32<26>(delta) == delta) {
   1514           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
   1515           if (Value.SymbolName)
   1516             addRelocationForSymbol(RE, Value.SymbolName);
   1517           else
   1518             addRelocationForSection(RE, Value.SectionID);
   1519         } else {
   1520           RangeOverflow = true;
   1521         }
   1522       }
   1523       if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
   1524         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
   1525         // larger than 24-bits.
   1526         StubMap::const_iterator i = Stubs.find(Value);
   1527         if (i != Stubs.end()) {
   1528           // Symbol function stub already created, just relocate to it
   1529           resolveRelocation(Section, Offset,
   1530                             reinterpret_cast<uint64_t>(
   1531                                 Section.getAddressWithOffset(i->second)),
   1532                             RelType, 0);
   1533           DEBUG(dbgs() << " Stub function found\n");
   1534         } else {
   1535           // Create a new stub function.
   1536           DEBUG(dbgs() << " Create a new stub function\n");
   1537           Stubs[Value] = Section.getStubOffset();
   1538           uint8_t *StubTargetAddr = createStubFunction(
   1539               Section.getAddressWithOffset(Section.getStubOffset()),
   1540               AbiVariant);
   1541           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
   1542                              ELF::R_PPC64_ADDR64, Value.Addend);
   1543 
   1544           // Generates the 64-bits address loads as exemplified in section
   1545           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
   1546           // apply to the low part of the instructions, so we have to update
   1547           // the offset according to the target endianness.
   1548           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
   1549           if (!IsTargetLittleEndian)
   1550             StubRelocOffset += 2;
   1551 
   1552           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
   1553                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
   1554           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
   1555                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
   1556           RelocationEntry REh(SectionID, StubRelocOffset + 12,
   1557                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
   1558           RelocationEntry REl(SectionID, StubRelocOffset + 16,
   1559                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
   1560 
   1561           if (Value.SymbolName) {
   1562             addRelocationForSymbol(REhst, Value.SymbolName);
   1563             addRelocationForSymbol(REhr, Value.SymbolName);
   1564             addRelocationForSymbol(REh, Value.SymbolName);
   1565             addRelocationForSymbol(REl, Value.SymbolName);
   1566           } else {
   1567             addRelocationForSection(REhst, Value.SectionID);
   1568             addRelocationForSection(REhr, Value.SectionID);
   1569             addRelocationForSection(REh, Value.SectionID);
   1570             addRelocationForSection(REl, Value.SectionID);
   1571           }
   1572 
   1573           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
   1574                                                  Section.getAddressWithOffset(
   1575                                                      Section.getStubOffset())),
   1576                             RelType, 0);
   1577           Section.advanceStubOffset(getMaxStubSize());
   1578         }
   1579         if (SymType == SymbolRef::ST_Unknown) {
   1580           // Restore the TOC for external calls
   1581           if (AbiVariant == 2)
   1582             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
   1583           else
   1584             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
   1585         }
   1586       }
   1587     } else if (RelType == ELF::R_PPC64_TOC16 ||
   1588                RelType == ELF::R_PPC64_TOC16_DS ||
   1589                RelType == ELF::R_PPC64_TOC16_LO ||
   1590                RelType == ELF::R_PPC64_TOC16_LO_DS ||
   1591                RelType == ELF::R_PPC64_TOC16_HI ||
   1592                RelType == ELF::R_PPC64_TOC16_HA) {
   1593       // These relocations are supposed to subtract the TOC address from
   1594       // the final value.  This does not fit cleanly into the RuntimeDyld
   1595       // scheme, since there may be *two* sections involved in determining
   1596       // the relocation value (the section of the symbol referred to by the
   1597       // relocation, and the TOC section associated with the current module).
   1598       //
   1599       // Fortunately, these relocations are currently only ever generated
   1600       // referring to symbols that themselves reside in the TOC, which means
   1601       // that the two sections are actually the same.  Thus they cancel out
   1602       // and we can immediately resolve the relocation right now.
   1603       switch (RelType) {
   1604       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
   1605       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
   1606       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
   1607       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
   1608       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
   1609       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
   1610       default: llvm_unreachable("Wrong relocation type.");
   1611       }
   1612 
   1613       RelocationValueRef TOCValue;
   1614       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
   1615         return std::move(Err);
   1616       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
   1617         llvm_unreachable("Unsupported TOC relocation.");
   1618       Value.Addend -= TOCValue.Addend;
   1619       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
   1620     } else {
   1621       // There are two ways to refer to the TOC address directly: either
   1622       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
   1623       // ignored), or via any relocation that refers to the magic ".TOC."
   1624       // symbols (in which case the addend is respected).
   1625       if (RelType == ELF::R_PPC64_TOC) {
   1626         RelType = ELF::R_PPC64_ADDR64;
   1627         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
   1628           return std::move(Err);
   1629       } else if (TargetName == ".TOC.") {
   1630         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
   1631           return std::move(Err);
   1632         Value.Addend += Addend;
   1633       }
   1634 
   1635       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
   1636 
   1637       if (Value.SymbolName)
   1638         addRelocationForSymbol(RE, Value.SymbolName);
   1639       else
   1640         addRelocationForSection(RE, Value.SectionID);
   1641     }
   1642   } else if (Arch == Triple::systemz &&
   1643              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
   1644     // Create function stubs for both PLT and GOT references, regardless of
   1645     // whether the GOT reference is to data or code.  The stub contains the
   1646     // full address of the symbol, as needed by GOT references, and the
   1647     // executable part only adds an overhead of 8 bytes.
   1648     //
   1649     // We could try to conserve space by allocating the code and data
   1650     // parts of the stub separately.  However, as things stand, we allocate
   1651     // a stub for every relocation, so using a GOT in JIT code should be
   1652     // no less space efficient than using an explicit constant pool.
   1653     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
   1654     SectionEntry &Section = Sections[SectionID];
   1655 
   1656     // Look for an existing stub.
   1657     StubMap::const_iterator i = Stubs.find(Value);
   1658     uintptr_t StubAddress;
   1659     if (i != Stubs.end()) {
   1660       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
   1661       DEBUG(dbgs() << " Stub function found\n");
   1662     } else {
   1663       // Create a new stub function.
   1664       DEBUG(dbgs() << " Create a new stub function\n");
   1665 
   1666       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
   1667       uintptr_t StubAlignment = getStubAlignment();
   1668       StubAddress =
   1669           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
   1670           -StubAlignment;
   1671       unsigned StubOffset = StubAddress - BaseAddress;
   1672 
   1673       Stubs[Value] = StubOffset;
   1674       createStubFunction((uint8_t *)StubAddress);
   1675       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
   1676                          Value.Offset);
   1677       if (Value.SymbolName)
   1678         addRelocationForSymbol(RE, Value.SymbolName);
   1679       else
   1680         addRelocationForSection(RE, Value.SectionID);
   1681       Section.advanceStubOffset(getMaxStubSize());
   1682     }
   1683 
   1684     if (RelType == ELF::R_390_GOTENT)
   1685       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
   1686                         Addend);
   1687     else
   1688       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
   1689   } else if (Arch == Triple::x86_64) {
   1690     if (RelType == ELF::R_X86_64_PLT32) {
   1691       // The way the PLT relocations normally work is that the linker allocates
   1692       // the
   1693       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
   1694       // entry will then jump to an address provided by the GOT.  On first call,
   1695       // the
   1696       // GOT address will point back into PLT code that resolves the symbol. After
   1697       // the first call, the GOT entry points to the actual function.
   1698       //
   1699       // For local functions we're ignoring all of that here and just replacing
   1700       // the PLT32 relocation type with PC32, which will translate the relocation
   1701       // into a PC-relative call directly to the function. For external symbols we
   1702       // can't be sure the function will be within 2^32 bytes of the call site, so
   1703       // we need to create a stub, which calls into the GOT.  This case is
   1704       // equivalent to the usual PLT implementation except that we use the stub
   1705       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
   1706       // rather than allocating a PLT section.
   1707       if (Value.SymbolName) {
   1708         // This is a call to an external function.
   1709         // Look for an existing stub.
   1710         SectionEntry &Section = Sections[SectionID];
   1711         StubMap::const_iterator i = Stubs.find(Value);
   1712         uintptr_t StubAddress;
   1713         if (i != Stubs.end()) {
   1714           StubAddress = uintptr_t(Section.getAddress()) + i->second;
   1715           DEBUG(dbgs() << " Stub function found\n");
   1716         } else {
   1717           // Create a new stub function (equivalent to a PLT entry).
   1718           DEBUG(dbgs() << " Create a new stub function\n");
   1719 
   1720           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
   1721           uintptr_t StubAlignment = getStubAlignment();
   1722           StubAddress =
   1723               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
   1724               -StubAlignment;
   1725           unsigned StubOffset = StubAddress - BaseAddress;
   1726           Stubs[Value] = StubOffset;
   1727           createStubFunction((uint8_t *)StubAddress);
   1728 
   1729           // Bump our stub offset counter
   1730           Section.advanceStubOffset(getMaxStubSize());
   1731 
   1732           // Allocate a GOT Entry
   1733           uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
   1734 
   1735           // The load of the GOT address has an addend of -4
   1736           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
   1737 
   1738           // Fill in the value of the symbol we're targeting into the GOT
   1739           addRelocationForSymbol(
   1740               computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64),
   1741               Value.SymbolName);
   1742         }
   1743 
   1744         // Make the target call a call into the stub table.
   1745         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
   1746                           Addend);
   1747       } else {
   1748         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
   1749                   Value.Offset);
   1750         addRelocationForSection(RE, Value.SectionID);
   1751       }
   1752     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
   1753                RelType == ELF::R_X86_64_GOTPCRELX ||
   1754                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
   1755       uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
   1756       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
   1757 
   1758       // Fill in the value of the symbol we're targeting into the GOT
   1759       RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
   1760       if (Value.SymbolName)
   1761         addRelocationForSymbol(RE, Value.SymbolName);
   1762       else
   1763         addRelocationForSection(RE, Value.SectionID);
   1764     } else if (RelType == ELF::R_X86_64_PC32) {
   1765       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
   1766       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1767     } else if (RelType == ELF::R_X86_64_PC64) {
   1768       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
   1769       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1770     } else {
   1771       processSimpleRelocation(SectionID, Offset, RelType, Value);
   1772     }
   1773   } else {
   1774     if (Arch == Triple::x86) {
   1775       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
   1776     }
   1777     processSimpleRelocation(SectionID, Offset, RelType, Value);
   1778   }
   1779   return ++RelI;
   1780 }
   1781 
   1782 size_t RuntimeDyldELF::getGOTEntrySize() {
   1783   // We don't use the GOT in all of these cases, but it's essentially free
   1784   // to put them all here.
   1785   size_t Result = 0;
   1786   switch (Arch) {
   1787   case Triple::x86_64:
   1788   case Triple::aarch64:
   1789   case Triple::aarch64_be:
   1790   case Triple::ppc64:
   1791   case Triple::ppc64le:
   1792   case Triple::systemz:
   1793     Result = sizeof(uint64_t);
   1794     break;
   1795   case Triple::x86:
   1796   case Triple::arm:
   1797   case Triple::thumb:
   1798     Result = sizeof(uint32_t);
   1799     break;
   1800   case Triple::mips:
   1801   case Triple::mipsel:
   1802   case Triple::mips64:
   1803   case Triple::mips64el:
   1804     if (IsMipsO32ABI)
   1805       Result = sizeof(uint32_t);
   1806     else if (IsMipsN64ABI)
   1807       Result = sizeof(uint64_t);
   1808     else
   1809       llvm_unreachable("Mips ABI not handled");
   1810     break;
   1811   default:
   1812     llvm_unreachable("Unsupported CPU type!");
   1813   }
   1814   return Result;
   1815 }
   1816 
   1817 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
   1818 {
   1819   (void)SectionID; // The GOT Section is the same for all section in the object file
   1820   if (GOTSectionID == 0) {
   1821     GOTSectionID = Sections.size();
   1822     // Reserve a section id. We'll allocate the section later
   1823     // once we know the total size
   1824     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
   1825   }
   1826   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
   1827   CurrentGOTIndex += no;
   1828   return StartOffset;
   1829 }
   1830 
   1831 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
   1832 {
   1833   // Fill in the relative address of the GOT Entry into the stub
   1834   RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
   1835   addRelocationForSection(GOTRE, GOTSectionID);
   1836 }
   1837 
   1838 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
   1839                                                    uint32_t Type)
   1840 {
   1841   (void)SectionID; // The GOT Section is the same for all section in the object file
   1842   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
   1843 }
   1844 
   1845 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
   1846                                   ObjSectionToIDMap &SectionMap) {
   1847   if (IsMipsO32ABI)
   1848     if (!PendingRelocs.empty())
   1849       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
   1850 
   1851   // If necessary, allocate the global offset table
   1852   if (GOTSectionID != 0) {
   1853     // Allocate memory for the section
   1854     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
   1855     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
   1856                                                 GOTSectionID, ".got", false);
   1857     if (!Addr)
   1858       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
   1859 
   1860     Sections[GOTSectionID] =
   1861         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
   1862 
   1863     if (Checker)
   1864       Checker->registerSection(Obj.getFileName(), GOTSectionID);
   1865 
   1866     // For now, initialize all GOT entries to zero.  We'll fill them in as
   1867     // needed when GOT-based relocations are applied.
   1868     memset(Addr, 0, TotalSize);
   1869     if (IsMipsN64ABI) {
   1870       // To correctly resolve Mips GOT relocations, we need a mapping from
   1871       // object's sections to GOTs.
   1872       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
   1873            SI != SE; ++SI) {
   1874         if (SI->relocation_begin() != SI->relocation_end()) {
   1875           section_iterator RelocatedSection = SI->getRelocatedSection();
   1876           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
   1877           assert (i != SectionMap.end());
   1878           SectionToGOTMap[i->second] = GOTSectionID;
   1879         }
   1880       }
   1881       GOTSymbolOffsets.clear();
   1882     }
   1883   }
   1884 
   1885   // Look for and record the EH frame section.
   1886   ObjSectionToIDMap::iterator i, e;
   1887   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
   1888     const SectionRef &Section = i->first;
   1889     StringRef Name;
   1890     Section.getName(Name);
   1891     if (Name == ".eh_frame") {
   1892       UnregisteredEHFrameSections.push_back(i->second);
   1893       break;
   1894     }
   1895   }
   1896 
   1897   GOTSectionID = 0;
   1898   CurrentGOTIndex = 0;
   1899 
   1900   return Error::success();
   1901 }
   1902 
   1903 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
   1904   return Obj.isELF();
   1905 }
   1906 
   1907 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
   1908   if (Arch != Triple::x86_64)
   1909     return true;  // Conservative answer
   1910 
   1911   switch (R.getType()) {
   1912   default:
   1913     return true;  // Conservative answer
   1914 
   1915 
   1916   case ELF::R_X86_64_GOTPCREL:
   1917   case ELF::R_X86_64_GOTPCRELX:
   1918   case ELF::R_X86_64_REX_GOTPCRELX:
   1919   case ELF::R_X86_64_PC32:
   1920   case ELF::R_X86_64_PC64:
   1921   case ELF::R_X86_64_64:
   1922     // We know that these reloation types won't need a stub function.  This list
   1923     // can be extended as needed.
   1924     return false;
   1925   }
   1926 }
   1927 
   1928 } // namespace llvm
   1929