Home | History | Annotate | Download | only in IR
      1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements simple dominator construction algorithms for finding
     11 // forward dominators.  Postdominators are available in libanalysis, but are not
     12 // included in libvmcore, because it's not needed.  Forward dominators are
     13 // needed to support the Verifier pass.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/IR/Dominators.h"
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/IR/CFG.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/PassManager.h"
     23 #include "llvm/Support/CommandLine.h"
     24 #include "llvm/Support/Debug.h"
     25 #include "llvm/Support/GenericDomTreeConstruction.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include <algorithm>
     28 using namespace llvm;
     29 
     30 // Always verify dominfo if expensive checking is enabled.
     31 #ifdef EXPENSIVE_CHECKS
     32 static bool VerifyDomInfo = true;
     33 #else
     34 static bool VerifyDomInfo = false;
     35 #endif
     36 static cl::opt<bool,true>
     37 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
     38                cl::desc("Verify dominator info (time consuming)"));
     39 
     40 bool BasicBlockEdge::isSingleEdge() const {
     41   const TerminatorInst *TI = Start->getTerminator();
     42   unsigned NumEdgesToEnd = 0;
     43   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
     44     if (TI->getSuccessor(i) == End)
     45       ++NumEdgesToEnd;
     46     if (NumEdgesToEnd >= 2)
     47       return false;
     48   }
     49   assert(NumEdgesToEnd == 1);
     50   return true;
     51 }
     52 
     53 //===----------------------------------------------------------------------===//
     54 //  DominatorTree Implementation
     55 //===----------------------------------------------------------------------===//
     56 //
     57 // Provide public access to DominatorTree information.  Implementation details
     58 // can be found in Dominators.h, GenericDomTree.h, and
     59 // GenericDomTreeConstruction.h.
     60 //
     61 //===----------------------------------------------------------------------===//
     62 
     63 template class llvm::DomTreeNodeBase<BasicBlock>;
     64 template class llvm::DominatorTreeBase<BasicBlock>;
     65 
     66 template void llvm::Calculate<Function, BasicBlock *>(
     67     DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
     68 template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
     69     DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
     70     Function &F);
     71 
     72 // dominates - Return true if Def dominates a use in User. This performs
     73 // the special checks necessary if Def and User are in the same basic block.
     74 // Note that Def doesn't dominate a use in Def itself!
     75 bool DominatorTree::dominates(const Instruction *Def,
     76                               const Instruction *User) const {
     77   const BasicBlock *UseBB = User->getParent();
     78   const BasicBlock *DefBB = Def->getParent();
     79 
     80   // Any unreachable use is dominated, even if Def == User.
     81   if (!isReachableFromEntry(UseBB))
     82     return true;
     83 
     84   // Unreachable definitions don't dominate anything.
     85   if (!isReachableFromEntry(DefBB))
     86     return false;
     87 
     88   // An instruction doesn't dominate a use in itself.
     89   if (Def == User)
     90     return false;
     91 
     92   // The value defined by an invoke dominates an instruction only if it
     93   // dominates every instruction in UseBB.
     94   // A PHI is dominated only if the instruction dominates every possible use in
     95   // the UseBB.
     96   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
     97     return dominates(Def, UseBB);
     98 
     99   if (DefBB != UseBB)
    100     return dominates(DefBB, UseBB);
    101 
    102   // Loop through the basic block until we find Def or User.
    103   BasicBlock::const_iterator I = DefBB->begin();
    104   for (; &*I != Def && &*I != User; ++I)
    105     /*empty*/;
    106 
    107   return &*I == Def;
    108 }
    109 
    110 // true if Def would dominate a use in any instruction in UseBB.
    111 // note that dominates(Def, Def->getParent()) is false.
    112 bool DominatorTree::dominates(const Instruction *Def,
    113                               const BasicBlock *UseBB) const {
    114   const BasicBlock *DefBB = Def->getParent();
    115 
    116   // Any unreachable use is dominated, even if DefBB == UseBB.
    117   if (!isReachableFromEntry(UseBB))
    118     return true;
    119 
    120   // Unreachable definitions don't dominate anything.
    121   if (!isReachableFromEntry(DefBB))
    122     return false;
    123 
    124   if (DefBB == UseBB)
    125     return false;
    126 
    127   // Invoke results are only usable in the normal destination, not in the
    128   // exceptional destination.
    129   if (const auto *II = dyn_cast<InvokeInst>(Def)) {
    130     BasicBlock *NormalDest = II->getNormalDest();
    131     BasicBlockEdge E(DefBB, NormalDest);
    132     return dominates(E, UseBB);
    133   }
    134 
    135   return dominates(DefBB, UseBB);
    136 }
    137 
    138 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
    139                               const BasicBlock *UseBB) const {
    140   // Assert that we have a single edge. We could handle them by simply
    141   // returning false, but since isSingleEdge is linear on the number of
    142   // edges, the callers can normally handle them more efficiently.
    143   assert(BBE.isSingleEdge() &&
    144          "This function is not efficient in handling multiple edges");
    145 
    146   // If the BB the edge ends in doesn't dominate the use BB, then the
    147   // edge also doesn't.
    148   const BasicBlock *Start = BBE.getStart();
    149   const BasicBlock *End = BBE.getEnd();
    150   if (!dominates(End, UseBB))
    151     return false;
    152 
    153   // Simple case: if the end BB has a single predecessor, the fact that it
    154   // dominates the use block implies that the edge also does.
    155   if (End->getSinglePredecessor())
    156     return true;
    157 
    158   // The normal edge from the invoke is critical. Conceptually, what we would
    159   // like to do is split it and check if the new block dominates the use.
    160   // With X being the new block, the graph would look like:
    161   //
    162   //        DefBB
    163   //          /\      .  .
    164   //         /  \     .  .
    165   //        /    \    .  .
    166   //       /      \   |  |
    167   //      A        X  B  C
    168   //      |         \ | /
    169   //      .          \|/
    170   //      .      NormalDest
    171   //      .
    172   //
    173   // Given the definition of dominance, NormalDest is dominated by X iff X
    174   // dominates all of NormalDest's predecessors (X, B, C in the example). X
    175   // trivially dominates itself, so we only have to find if it dominates the
    176   // other predecessors. Since the only way out of X is via NormalDest, X can
    177   // only properly dominate a node if NormalDest dominates that node too.
    178   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
    179        PI != E; ++PI) {
    180     const BasicBlock *BB = *PI;
    181     if (BB == Start)
    182       continue;
    183 
    184     if (!dominates(End, BB))
    185       return false;
    186   }
    187   return true;
    188 }
    189 
    190 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
    191   // Assert that we have a single edge. We could handle them by simply
    192   // returning false, but since isSingleEdge is linear on the number of
    193   // edges, the callers can normally handle them more efficiently.
    194   assert(BBE.isSingleEdge() &&
    195          "This function is not efficient in handling multiple edges");
    196 
    197   Instruction *UserInst = cast<Instruction>(U.getUser());
    198   // A PHI in the end of the edge is dominated by it.
    199   PHINode *PN = dyn_cast<PHINode>(UserInst);
    200   if (PN && PN->getParent() == BBE.getEnd() &&
    201       PN->getIncomingBlock(U) == BBE.getStart())
    202     return true;
    203 
    204   // Otherwise use the edge-dominates-block query, which
    205   // handles the crazy critical edge cases properly.
    206   const BasicBlock *UseBB;
    207   if (PN)
    208     UseBB = PN->getIncomingBlock(U);
    209   else
    210     UseBB = UserInst->getParent();
    211   return dominates(BBE, UseBB);
    212 }
    213 
    214 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
    215   Instruction *UserInst = cast<Instruction>(U.getUser());
    216   const BasicBlock *DefBB = Def->getParent();
    217 
    218   // Determine the block in which the use happens. PHI nodes use
    219   // their operands on edges; simulate this by thinking of the use
    220   // happening at the end of the predecessor block.
    221   const BasicBlock *UseBB;
    222   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
    223     UseBB = PN->getIncomingBlock(U);
    224   else
    225     UseBB = UserInst->getParent();
    226 
    227   // Any unreachable use is dominated, even if Def == User.
    228   if (!isReachableFromEntry(UseBB))
    229     return true;
    230 
    231   // Unreachable definitions don't dominate anything.
    232   if (!isReachableFromEntry(DefBB))
    233     return false;
    234 
    235   // Invoke instructions define their return values on the edges to their normal
    236   // successors, so we have to handle them specially.
    237   // Among other things, this means they don't dominate anything in
    238   // their own block, except possibly a phi, so we don't need to
    239   // walk the block in any case.
    240   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
    241     BasicBlock *NormalDest = II->getNormalDest();
    242     BasicBlockEdge E(DefBB, NormalDest);
    243     return dominates(E, U);
    244   }
    245 
    246   // If the def and use are in different blocks, do a simple CFG dominator
    247   // tree query.
    248   if (DefBB != UseBB)
    249     return dominates(DefBB, UseBB);
    250 
    251   // Ok, def and use are in the same block. If the def is an invoke, it
    252   // doesn't dominate anything in the block. If it's a PHI, it dominates
    253   // everything in the block.
    254   if (isa<PHINode>(UserInst))
    255     return true;
    256 
    257   // Otherwise, just loop through the basic block until we find Def or User.
    258   BasicBlock::const_iterator I = DefBB->begin();
    259   for (; &*I != Def && &*I != UserInst; ++I)
    260     /*empty*/;
    261 
    262   return &*I != UserInst;
    263 }
    264 
    265 bool DominatorTree::isReachableFromEntry(const Use &U) const {
    266   Instruction *I = dyn_cast<Instruction>(U.getUser());
    267 
    268   // ConstantExprs aren't really reachable from the entry block, but they
    269   // don't need to be treated like unreachable code either.
    270   if (!I) return true;
    271 
    272   // PHI nodes use their operands on their incoming edges.
    273   if (PHINode *PN = dyn_cast<PHINode>(I))
    274     return isReachableFromEntry(PN->getIncomingBlock(U));
    275 
    276   // Everything else uses their operands in their own block.
    277   return isReachableFromEntry(I->getParent());
    278 }
    279 
    280 void DominatorTree::verifyDomTree() const {
    281   Function &F = *getRoot()->getParent();
    282 
    283   DominatorTree OtherDT;
    284   OtherDT.recalculate(F);
    285   if (compare(OtherDT)) {
    286     errs() << "DominatorTree is not up to date!\nComputed:\n";
    287     print(errs());
    288     errs() << "\nActual:\n";
    289     OtherDT.print(errs());
    290     abort();
    291   }
    292 }
    293 
    294 //===----------------------------------------------------------------------===//
    295 //  DominatorTreeAnalysis and related pass implementations
    296 //===----------------------------------------------------------------------===//
    297 //
    298 // This implements the DominatorTreeAnalysis which is used with the new pass
    299 // manager. It also implements some methods from utility passes.
    300 //
    301 //===----------------------------------------------------------------------===//
    302 
    303 DominatorTree DominatorTreeAnalysis::run(Function &F,
    304                                          AnalysisManager<Function> &) {
    305   DominatorTree DT;
    306   DT.recalculate(F);
    307   return DT;
    308 }
    309 
    310 char DominatorTreeAnalysis::PassID;
    311 
    312 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
    313 
    314 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
    315                                                 FunctionAnalysisManager &AM) {
    316   OS << "DominatorTree for function: " << F.getName() << "\n";
    317   AM.getResult<DominatorTreeAnalysis>(F).print(OS);
    318 
    319   return PreservedAnalyses::all();
    320 }
    321 
    322 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
    323                                                  FunctionAnalysisManager &AM) {
    324   AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
    325 
    326   return PreservedAnalyses::all();
    327 }
    328 
    329 //===----------------------------------------------------------------------===//
    330 //  DominatorTreeWrapperPass Implementation
    331 //===----------------------------------------------------------------------===//
    332 //
    333 // The implementation details of the wrapper pass that holds a DominatorTree
    334 // suitable for use with the legacy pass manager.
    335 //
    336 //===----------------------------------------------------------------------===//
    337 
    338 char DominatorTreeWrapperPass::ID = 0;
    339 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
    340                 "Dominator Tree Construction", true, true)
    341 
    342 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
    343   DT.recalculate(F);
    344   return false;
    345 }
    346 
    347 void DominatorTreeWrapperPass::verifyAnalysis() const {
    348     if (VerifyDomInfo)
    349       DT.verifyDomTree();
    350 }
    351 
    352 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
    353   DT.print(OS);
    354 }
    355 
    356