1 //===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the ARM instructions in TableGen format. 11 // 12 //===----------------------------------------------------------------------===// 13 14 //===----------------------------------------------------------------------===// 15 // ARM specific DAG Nodes. 16 // 17 18 // Type profiles. 19 def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; 20 def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; 21 def SDT_ARMStructByVal : SDTypeProfile<0, 4, 22 [SDTCisVT<0, i32>, SDTCisVT<1, i32>, 23 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; 24 25 def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>; 26 27 def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>; 28 29 def SDT_ARMCMov : SDTypeProfile<1, 3, 30 [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, 31 SDTCisVT<3, i32>]>; 32 33 def SDT_ARMBrcond : SDTypeProfile<0, 2, 34 [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; 35 36 def SDT_ARMBrJT : SDTypeProfile<0, 2, 37 [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>; 38 39 def SDT_ARMBr2JT : SDTypeProfile<0, 3, 40 [SDTCisPtrTy<0>, SDTCisVT<1, i32>, 41 SDTCisVT<2, i32>]>; 42 43 def SDT_ARMBCC_i64 : SDTypeProfile<0, 6, 44 [SDTCisVT<0, i32>, 45 SDTCisVT<1, i32>, SDTCisVT<2, i32>, 46 SDTCisVT<3, i32>, SDTCisVT<4, i32>, 47 SDTCisVT<5, OtherVT>]>; 48 49 def SDT_ARMAnd : SDTypeProfile<1, 2, 50 [SDTCisVT<0, i32>, SDTCisVT<1, i32>, 51 SDTCisVT<2, i32>]>; 52 53 def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>; 54 55 def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, 56 SDTCisPtrTy<1>, SDTCisVT<2, i32>]>; 57 58 def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; 59 def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>, 60 SDTCisInt<2>]>; 61 def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>; 62 def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>; 63 64 def SDT_ARMMEMBARRIER : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 65 66 def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, 67 SDTCisInt<1>]>; 68 69 def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; 70 71 def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, 72 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; 73 74 def SDT_WIN__DBZCHK : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 75 76 def SDT_ARMMEMCPY : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, 77 SDTCisVT<2, i32>, SDTCisVT<3, i32>, 78 SDTCisVT<4, i32>]>; 79 80 def SDTBinaryArithWithFlags : SDTypeProfile<2, 2, 81 [SDTCisSameAs<0, 2>, 82 SDTCisSameAs<0, 3>, 83 SDTCisInt<0>, SDTCisVT<1, i32>]>; 84 85 // SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR 86 def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, 87 [SDTCisSameAs<0, 2>, 88 SDTCisSameAs<0, 3>, 89 SDTCisInt<0>, 90 SDTCisVT<1, i32>, 91 SDTCisVT<4, i32>]>; 92 93 // Node definitions. 94 def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>; 95 def ARMWrapperPIC : SDNode<"ARMISD::WrapperPIC", SDTIntUnaryOp>; 96 def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntUnaryOp>; 97 98 def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart, 99 [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; 100 def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd, 101 [SDNPHasChain, SDNPSideEffect, 102 SDNPOptInGlue, SDNPOutGlue]>; 103 def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" , 104 SDT_ARMStructByVal, 105 [SDNPHasChain, SDNPInGlue, SDNPOutGlue, 106 SDNPMayStore, SDNPMayLoad]>; 107 108 def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall, 109 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 110 SDNPVariadic]>; 111 def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall, 112 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 113 SDNPVariadic]>; 114 def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall, 115 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 116 SDNPVariadic]>; 117 118 def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone, 119 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 120 def ARMintretflag : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall, 121 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 122 def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov, 123 [SDNPInGlue]>; 124 125 def ARMssatnoshift : SDNode<"ARMISD::SSAT", SDTIntSatNoShOp, []>; 126 127 def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond, 128 [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>; 129 130 def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT, 131 [SDNPHasChain]>; 132 def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT, 133 [SDNPHasChain]>; 134 135 def ARMBcci64 : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64, 136 [SDNPHasChain]>; 137 138 def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp, 139 [SDNPOutGlue]>; 140 141 def ARMcmn : SDNode<"ARMISD::CMN", SDT_ARMCmp, 142 [SDNPOutGlue]>; 143 144 def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp, 145 [SDNPOutGlue, SDNPCommutative]>; 146 147 def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>; 148 149 def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>; 150 def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>; 151 def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInGlue ]>; 152 153 def ARMaddc : SDNode<"ARMISD::ADDC", SDTBinaryArithWithFlags, 154 [SDNPCommutative]>; 155 def ARMsubc : SDNode<"ARMISD::SUBC", SDTBinaryArithWithFlags>; 156 def ARMadde : SDNode<"ARMISD::ADDE", SDTBinaryArithWithFlagsInOut>; 157 def ARMsube : SDNode<"ARMISD::SUBE", SDTBinaryArithWithFlagsInOut>; 158 159 def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>; 160 def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP", 161 SDT_ARMEH_SJLJ_Setjmp, 162 [SDNPHasChain, SDNPSideEffect]>; 163 def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP", 164 SDT_ARMEH_SJLJ_Longjmp, 165 [SDNPHasChain, SDNPSideEffect]>; 166 def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH", 167 SDT_ARMEH_SJLJ_SetupDispatch, 168 [SDNPHasChain, SDNPSideEffect]>; 169 170 def ARMMemBarrierMCR : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER, 171 [SDNPHasChain, SDNPSideEffect]>; 172 def ARMPreload : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH, 173 [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>; 174 175 def ARMtcret : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET, 176 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 177 178 def ARMbfi : SDNode<"ARMISD::BFI", SDT_ARMBFI>; 179 180 def ARMmemcopy : SDNode<"ARMISD::MEMCPY", SDT_ARMMEMCPY, 181 [SDNPHasChain, SDNPInGlue, SDNPOutGlue, 182 SDNPMayStore, SDNPMayLoad]>; 183 184 //===----------------------------------------------------------------------===// 185 // ARM Instruction Predicate Definitions. 186 // 187 def HasV4T : Predicate<"Subtarget->hasV4TOps()">, 188 AssemblerPredicate<"HasV4TOps", "armv4t">; 189 def NoV4T : Predicate<"!Subtarget->hasV4TOps()">; 190 def HasV5T : Predicate<"Subtarget->hasV5TOps()">, 191 AssemblerPredicate<"HasV5TOps", "armv5t">; 192 def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">, 193 AssemblerPredicate<"HasV5TEOps", "armv5te">; 194 def HasV6 : Predicate<"Subtarget->hasV6Ops()">, 195 AssemblerPredicate<"HasV6Ops", "armv6">; 196 def NoV6 : Predicate<"!Subtarget->hasV6Ops()">; 197 def HasV6M : Predicate<"Subtarget->hasV6MOps()">, 198 AssemblerPredicate<"HasV6MOps", 199 "armv6m or armv6t2">; 200 def HasV8MBaseline : Predicate<"Subtarget->hasV8MBaselineOps()">, 201 AssemblerPredicate<"HasV8MBaselineOps", 202 "armv8m.base">; 203 def HasV8MMainline : Predicate<"Subtarget->hasV8MMainlineOps()">, 204 AssemblerPredicate<"HasV8MMainlineOps", 205 "armv8m.main">; 206 def HasV6T2 : Predicate<"Subtarget->hasV6T2Ops()">, 207 AssemblerPredicate<"HasV6T2Ops", "armv6t2">; 208 def NoV6T2 : Predicate<"!Subtarget->hasV6T2Ops()">; 209 def HasV6K : Predicate<"Subtarget->hasV6KOps()">, 210 AssemblerPredicate<"HasV6KOps", "armv6k">; 211 def NoV6K : Predicate<"!Subtarget->hasV6KOps()">; 212 def HasV7 : Predicate<"Subtarget->hasV7Ops()">, 213 AssemblerPredicate<"HasV7Ops", "armv7">; 214 def HasV8 : Predicate<"Subtarget->hasV8Ops()">, 215 AssemblerPredicate<"HasV8Ops", "armv8">; 216 def PreV8 : Predicate<"!Subtarget->hasV8Ops()">, 217 AssemblerPredicate<"!HasV8Ops", "armv7 or earlier">; 218 def HasV8_1a : Predicate<"Subtarget->hasV8_1aOps()">, 219 AssemblerPredicate<"HasV8_1aOps", "armv8.1a">; 220 def HasV8_2a : Predicate<"Subtarget->hasV8_2aOps()">, 221 AssemblerPredicate<"HasV8_2aOps", "armv8.2a">; 222 def NoVFP : Predicate<"!Subtarget->hasVFP2()">; 223 def HasVFP2 : Predicate<"Subtarget->hasVFP2()">, 224 AssemblerPredicate<"FeatureVFP2", "VFP2">; 225 def HasVFP3 : Predicate<"Subtarget->hasVFP3()">, 226 AssemblerPredicate<"FeatureVFP3", "VFP3">; 227 def HasVFP4 : Predicate<"Subtarget->hasVFP4()">, 228 AssemblerPredicate<"FeatureVFP4", "VFP4">; 229 def HasDPVFP : Predicate<"!Subtarget->isFPOnlySP()">, 230 AssemblerPredicate<"!FeatureVFPOnlySP", 231 "double precision VFP">; 232 def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">, 233 AssemblerPredicate<"FeatureFPARMv8", "FPARMv8">; 234 def HasNEON : Predicate<"Subtarget->hasNEON()">, 235 AssemblerPredicate<"FeatureNEON", "NEON">; 236 def HasCrypto : Predicate<"Subtarget->hasCrypto()">, 237 AssemblerPredicate<"FeatureCrypto", "crypto">; 238 def HasCRC : Predicate<"Subtarget->hasCRC()">, 239 AssemblerPredicate<"FeatureCRC", "crc">; 240 def HasRAS : Predicate<"Subtarget->hasRAS()">, 241 AssemblerPredicate<"FeatureRAS", "ras">; 242 def HasFP16 : Predicate<"Subtarget->hasFP16()">, 243 AssemblerPredicate<"FeatureFP16","half-float conversions">; 244 def HasFullFP16 : Predicate<"Subtarget->hasFullFP16()">, 245 AssemblerPredicate<"FeatureFullFP16","full half-float">; 246 def HasDivide : Predicate<"Subtarget->hasDivide()">, 247 AssemblerPredicate<"FeatureHWDiv", "divide in THUMB">; 248 def HasDivideInARM : Predicate<"Subtarget->hasDivideInARMMode()">, 249 AssemblerPredicate<"FeatureHWDivARM", "divide in ARM">; 250 def HasT2ExtractPack : Predicate<"Subtarget->hasT2ExtractPack()">, 251 AssemblerPredicate<"FeatureT2XtPk", 252 "pack/extract">; 253 def HasDSP : Predicate<"Subtarget->hasDSP()">, 254 AssemblerPredicate<"FeatureDSP", "dsp">; 255 def HasDB : Predicate<"Subtarget->hasDataBarrier()">, 256 AssemblerPredicate<"FeatureDB", 257 "data-barriers">; 258 def HasV7Clrex : Predicate<"Subtarget->hasV7Clrex()">, 259 AssemblerPredicate<"FeatureV7Clrex", 260 "v7 clrex">; 261 def HasAcquireRelease : Predicate<"Subtarget->hasAcquireRelease()">, 262 AssemblerPredicate<"FeatureAcquireRelease", 263 "acquire/release">; 264 def HasMP : Predicate<"Subtarget->hasMPExtension()">, 265 AssemblerPredicate<"FeatureMP", 266 "mp-extensions">; 267 def HasVirtualization: Predicate<"false">, 268 AssemblerPredicate<"FeatureVirtualization", 269 "virtualization-extensions">; 270 def HasTrustZone : Predicate<"Subtarget->hasTrustZone()">, 271 AssemblerPredicate<"FeatureTrustZone", 272 "TrustZone">; 273 def Has8MSecExt : Predicate<"Subtarget->has8MSecExt()">, 274 AssemblerPredicate<"Feature8MSecExt", 275 "ARMv8-M Security Extensions">; 276 def HasZCZ : Predicate<"Subtarget->hasZeroCycleZeroing()">; 277 def UseNEONForFP : Predicate<"Subtarget->useNEONForSinglePrecisionFP()">; 278 def DontUseNEONForFP : Predicate<"!Subtarget->useNEONForSinglePrecisionFP()">; 279 def IsThumb : Predicate<"Subtarget->isThumb()">, 280 AssemblerPredicate<"ModeThumb", "thumb">; 281 def IsThumb1Only : Predicate<"Subtarget->isThumb1Only()">; 282 def IsThumb2 : Predicate<"Subtarget->isThumb2()">, 283 AssemblerPredicate<"ModeThumb,FeatureThumb2", 284 "thumb2">; 285 def IsMClass : Predicate<"Subtarget->isMClass()">, 286 AssemblerPredicate<"FeatureMClass", "armv*m">; 287 def IsNotMClass : Predicate<"!Subtarget->isMClass()">, 288 AssemblerPredicate<"!FeatureMClass", 289 "!armv*m">; 290 def IsARM : Predicate<"!Subtarget->isThumb()">, 291 AssemblerPredicate<"!ModeThumb", "arm-mode">; 292 def IsMachO : Predicate<"Subtarget->isTargetMachO()">; 293 def IsNotMachO : Predicate<"!Subtarget->isTargetMachO()">; 294 def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">; 295 def IsWindows : Predicate<"Subtarget->isTargetWindows()">; 296 def IsNotWindows : Predicate<"!Subtarget->isTargetWindows()">; 297 def UseNaClTrap : Predicate<"Subtarget->useNaClTrap()">, 298 AssemblerPredicate<"FeatureNaClTrap", "NaCl">; 299 def DontUseNaClTrap : Predicate<"!Subtarget->useNaClTrap()">; 300 301 // FIXME: Eventually this will be just "hasV6T2Ops". 302 def UseMovt : Predicate<"Subtarget->useMovt(*MF)">; 303 def DontUseMovt : Predicate<"!Subtarget->useMovt(*MF)">; 304 def UseFPVMLx : Predicate<"Subtarget->useFPVMLx()">; 305 def UseMulOps : Predicate<"Subtarget->useMulOps()">; 306 307 // Prefer fused MAC for fp mul + add over fp VMLA / VMLS if they are available. 308 // But only select them if more precision in FP computation is allowed. 309 // Do not use them for Darwin platforms. 310 def UseFusedMAC : Predicate<"(TM.Options.AllowFPOpFusion ==" 311 " FPOpFusion::Fast && " 312 " Subtarget->hasVFP4()) && " 313 "!Subtarget->isTargetDarwin()">; 314 def DontUseFusedMAC : Predicate<"!(TM.Options.AllowFPOpFusion ==" 315 " FPOpFusion::Fast &&" 316 " Subtarget->hasVFP4()) || " 317 "Subtarget->isTargetDarwin()">; 318 319 def HasFastVGETLNi32 : Predicate<"!Subtarget->hasSlowVGETLNi32()">; 320 def HasSlowVGETLNi32 : Predicate<"Subtarget->hasSlowVGETLNi32()">; 321 322 def HasFastVDUP32 : Predicate<"!Subtarget->hasSlowVDUP32()">; 323 def HasSlowVDUP32 : Predicate<"Subtarget->hasSlowVDUP32()">; 324 325 def UseVMOVSR : Predicate<"Subtarget->preferVMOVSR() ||" 326 "!Subtarget->useNEONForSinglePrecisionFP()">; 327 def DontUseVMOVSR : Predicate<"!Subtarget->preferVMOVSR() &&" 328 "Subtarget->useNEONForSinglePrecisionFP()">; 329 330 def IsLE : Predicate<"MF->getDataLayout().isLittleEndian()">; 331 def IsBE : Predicate<"MF->getDataLayout().isBigEndian()">; 332 333 //===----------------------------------------------------------------------===// 334 // ARM Flag Definitions. 335 336 class RegConstraint<string C> { 337 string Constraints = C; 338 } 339 340 //===----------------------------------------------------------------------===// 341 // ARM specific transformation functions and pattern fragments. 342 // 343 344 // imm_neg_XFORM - Return the negation of an i32 immediate value. 345 def imm_neg_XFORM : SDNodeXForm<imm, [{ 346 return CurDAG->getTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32); 347 }]>; 348 349 // imm_not_XFORM - Return the complement of a i32 immediate value. 350 def imm_not_XFORM : SDNodeXForm<imm, [{ 351 return CurDAG->getTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32); 352 }]>; 353 354 /// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31]. 355 def imm16_31 : ImmLeaf<i32, [{ 356 return (int32_t)Imm >= 16 && (int32_t)Imm < 32; 357 }]>; 358 359 // sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits. 360 def sext_16_node : PatLeaf<(i32 GPR:$a), [{ 361 return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17; 362 }]>; 363 364 /// Split a 32-bit immediate into two 16 bit parts. 365 def hi16 : SDNodeXForm<imm, [{ 366 return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N), 367 MVT::i32); 368 }]>; 369 370 def lo16AllZero : PatLeaf<(i32 imm), [{ 371 // Returns true if all low 16-bits are 0. 372 return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0; 373 }], hi16>; 374 375 class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>; 376 class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>; 377 378 // An 'and' node with a single use. 379 def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{ 380 return N->hasOneUse(); 381 }]>; 382 383 // An 'xor' node with a single use. 384 def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{ 385 return N->hasOneUse(); 386 }]>; 387 388 // An 'fmul' node with a single use. 389 def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{ 390 return N->hasOneUse(); 391 }]>; 392 393 // An 'fadd' node which checks for single non-hazardous use. 394 def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{ 395 return hasNoVMLxHazardUse(N); 396 }]>; 397 398 // An 'fsub' node which checks for single non-hazardous use. 399 def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{ 400 return hasNoVMLxHazardUse(N); 401 }]>; 402 403 //===----------------------------------------------------------------------===// 404 // Operand Definitions. 405 // 406 407 // Immediate operands with a shared generic asm render method. 408 class ImmAsmOperand : AsmOperandClass { let RenderMethod = "addImmOperands"; } 409 410 // Operands that are part of a memory addressing mode. 411 class MemOperand : Operand<i32> { let OperandType = "OPERAND_MEMORY"; } 412 413 // Branch target. 414 // FIXME: rename brtarget to t2_brtarget 415 def brtarget : Operand<OtherVT> { 416 let EncoderMethod = "getBranchTargetOpValue"; 417 let OperandType = "OPERAND_PCREL"; 418 let DecoderMethod = "DecodeT2BROperand"; 419 } 420 421 // Branches targeting ARM-mode must be divisible by 4 if they're a raw 422 // immediate. 423 def ARMBranchTarget : AsmOperandClass { 424 let Name = "ARMBranchTarget"; 425 } 426 427 // Branches targeting Thumb-mode must be divisible by 2 if they're a raw 428 // immediate. 429 def ThumbBranchTarget : AsmOperandClass { 430 let Name = "ThumbBranchTarget"; 431 } 432 433 def arm_br_target : Operand<OtherVT> { 434 let ParserMatchClass = ARMBranchTarget; 435 let EncoderMethod = "getARMBranchTargetOpValue"; 436 let OperandType = "OPERAND_PCREL"; 437 } 438 439 // Call target for ARM. Handles conditional/unconditional 440 // FIXME: rename bl_target to t2_bltarget? 441 def arm_bl_target : Operand<i32> { 442 let ParserMatchClass = ARMBranchTarget; 443 let EncoderMethod = "getARMBLTargetOpValue"; 444 let OperandType = "OPERAND_PCREL"; 445 } 446 447 // Target for BLX *from* ARM mode. 448 def arm_blx_target : Operand<i32> { 449 let ParserMatchClass = ThumbBranchTarget; 450 let EncoderMethod = "getARMBLXTargetOpValue"; 451 let OperandType = "OPERAND_PCREL"; 452 } 453 454 // A list of registers separated by comma. Used by load/store multiple. 455 def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; } 456 def reglist : Operand<i32> { 457 let EncoderMethod = "getRegisterListOpValue"; 458 let ParserMatchClass = RegListAsmOperand; 459 let PrintMethod = "printRegisterList"; 460 let DecoderMethod = "DecodeRegListOperand"; 461 } 462 463 def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">; 464 465 def DPRRegListAsmOperand : AsmOperandClass { let Name = "DPRRegList"; } 466 def dpr_reglist : Operand<i32> { 467 let EncoderMethod = "getRegisterListOpValue"; 468 let ParserMatchClass = DPRRegListAsmOperand; 469 let PrintMethod = "printRegisterList"; 470 let DecoderMethod = "DecodeDPRRegListOperand"; 471 } 472 473 def SPRRegListAsmOperand : AsmOperandClass { let Name = "SPRRegList"; } 474 def spr_reglist : Operand<i32> { 475 let EncoderMethod = "getRegisterListOpValue"; 476 let ParserMatchClass = SPRRegListAsmOperand; 477 let PrintMethod = "printRegisterList"; 478 let DecoderMethod = "DecodeSPRRegListOperand"; 479 } 480 481 // An operand for the CONSTPOOL_ENTRY pseudo-instruction. 482 def cpinst_operand : Operand<i32> { 483 let PrintMethod = "printCPInstOperand"; 484 } 485 486 // Local PC labels. 487 def pclabel : Operand<i32> { 488 let PrintMethod = "printPCLabel"; 489 } 490 491 // ADR instruction labels. 492 def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; } 493 def adrlabel : Operand<i32> { 494 let EncoderMethod = "getAdrLabelOpValue"; 495 let ParserMatchClass = AdrLabelAsmOperand; 496 let PrintMethod = "printAdrLabelOperand<0>"; 497 } 498 499 def neon_vcvt_imm32 : Operand<i32> { 500 let EncoderMethod = "getNEONVcvtImm32OpValue"; 501 let DecoderMethod = "DecodeVCVTImmOperand"; 502 } 503 504 // rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24. 505 def rot_imm_XFORM: SDNodeXForm<imm, [{ 506 switch (N->getZExtValue()){ 507 default: llvm_unreachable(nullptr); 508 case 0: return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); 509 case 8: return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32); 510 case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32); 511 case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32); 512 } 513 }]>; 514 def RotImmAsmOperand : AsmOperandClass { 515 let Name = "RotImm"; 516 let ParserMethod = "parseRotImm"; 517 } 518 def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{ 519 int32_t v = N->getZExtValue(); 520 return v == 8 || v == 16 || v == 24; }], 521 rot_imm_XFORM> { 522 let PrintMethod = "printRotImmOperand"; 523 let ParserMatchClass = RotImmAsmOperand; 524 } 525 526 // shift_imm: An integer that encodes a shift amount and the type of shift 527 // (asr or lsl). The 6-bit immediate encodes as: 528 // {5} 0 ==> lsl 529 // 1 asr 530 // {4-0} imm5 shift amount. 531 // asr #32 encoded as imm5 == 0. 532 def ShifterImmAsmOperand : AsmOperandClass { 533 let Name = "ShifterImm"; 534 let ParserMethod = "parseShifterImm"; 535 } 536 def shift_imm : Operand<i32> { 537 let PrintMethod = "printShiftImmOperand"; 538 let ParserMatchClass = ShifterImmAsmOperand; 539 } 540 541 // shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm. 542 def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; } 543 def so_reg_reg : Operand<i32>, // reg reg imm 544 ComplexPattern<i32, 3, "SelectRegShifterOperand", 545 [shl, srl, sra, rotr]> { 546 let EncoderMethod = "getSORegRegOpValue"; 547 let PrintMethod = "printSORegRegOperand"; 548 let DecoderMethod = "DecodeSORegRegOperand"; 549 let ParserMatchClass = ShiftedRegAsmOperand; 550 let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm); 551 } 552 553 def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; } 554 def so_reg_imm : Operand<i32>, // reg imm 555 ComplexPattern<i32, 2, "SelectImmShifterOperand", 556 [shl, srl, sra, rotr]> { 557 let EncoderMethod = "getSORegImmOpValue"; 558 let PrintMethod = "printSORegImmOperand"; 559 let DecoderMethod = "DecodeSORegImmOperand"; 560 let ParserMatchClass = ShiftedImmAsmOperand; 561 let MIOperandInfo = (ops GPR, i32imm); 562 } 563 564 // FIXME: Does this need to be distinct from so_reg? 565 def shift_so_reg_reg : Operand<i32>, // reg reg imm 566 ComplexPattern<i32, 3, "SelectShiftRegShifterOperand", 567 [shl,srl,sra,rotr]> { 568 let EncoderMethod = "getSORegRegOpValue"; 569 let PrintMethod = "printSORegRegOperand"; 570 let DecoderMethod = "DecodeSORegRegOperand"; 571 let ParserMatchClass = ShiftedRegAsmOperand; 572 let MIOperandInfo = (ops GPR, GPR, i32imm); 573 } 574 575 // FIXME: Does this need to be distinct from so_reg? 576 def shift_so_reg_imm : Operand<i32>, // reg reg imm 577 ComplexPattern<i32, 2, "SelectShiftImmShifterOperand", 578 [shl,srl,sra,rotr]> { 579 let EncoderMethod = "getSORegImmOpValue"; 580 let PrintMethod = "printSORegImmOperand"; 581 let DecoderMethod = "DecodeSORegImmOperand"; 582 let ParserMatchClass = ShiftedImmAsmOperand; 583 let MIOperandInfo = (ops GPR, i32imm); 584 } 585 586 // mod_imm: match a 32-bit immediate operand, which can be encoded into 587 // a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM 588 // - "Modified Immediate Constants"). Within the MC layer we keep this 589 // immediate in its encoded form. 590 def ModImmAsmOperand: AsmOperandClass { 591 let Name = "ModImm"; 592 let ParserMethod = "parseModImm"; 593 } 594 def mod_imm : Operand<i32>, ImmLeaf<i32, [{ 595 return ARM_AM::getSOImmVal(Imm) != -1; 596 }]> { 597 let EncoderMethod = "getModImmOpValue"; 598 let PrintMethod = "printModImmOperand"; 599 let ParserMatchClass = ModImmAsmOperand; 600 } 601 602 // Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder 603 // method and such, as they are only used on aliases (Pat<> and InstAlias<>). 604 // The actual parsing, encoding, decoding are handled by the destination 605 // instructions, which use mod_imm. 606 607 def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; } 608 def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{ 609 return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1; 610 }], imm_not_XFORM> { 611 let ParserMatchClass = ModImmNotAsmOperand; 612 } 613 614 def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; } 615 def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{ 616 unsigned Value = -(unsigned)N->getZExtValue(); 617 return Value && ARM_AM::getSOImmVal(Value) != -1; 618 }], imm_neg_XFORM> { 619 let ParserMatchClass = ModImmNegAsmOperand; 620 } 621 622 /// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal() 623 def arm_i32imm : PatLeaf<(imm), [{ 624 if (Subtarget->useMovt(*MF)) 625 return true; 626 return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue()); 627 }]>; 628 629 /// imm0_1 predicate - Immediate in the range [0,1]. 630 def Imm0_1AsmOperand: ImmAsmOperand { let Name = "Imm0_1"; } 631 def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; } 632 633 /// imm0_3 predicate - Immediate in the range [0,3]. 634 def Imm0_3AsmOperand: ImmAsmOperand { let Name = "Imm0_3"; } 635 def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; } 636 637 /// imm0_7 predicate - Immediate in the range [0,7]. 638 def Imm0_7AsmOperand: ImmAsmOperand { let Name = "Imm0_7"; } 639 def imm0_7 : Operand<i32>, ImmLeaf<i32, [{ 640 return Imm >= 0 && Imm < 8; 641 }]> { 642 let ParserMatchClass = Imm0_7AsmOperand; 643 } 644 645 /// imm8 predicate - Immediate is exactly 8. 646 def Imm8AsmOperand: ImmAsmOperand { let Name = "Imm8"; } 647 def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> { 648 let ParserMatchClass = Imm8AsmOperand; 649 } 650 651 /// imm16 predicate - Immediate is exactly 16. 652 def Imm16AsmOperand: ImmAsmOperand { let Name = "Imm16"; } 653 def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> { 654 let ParserMatchClass = Imm16AsmOperand; 655 } 656 657 /// imm32 predicate - Immediate is exactly 32. 658 def Imm32AsmOperand: ImmAsmOperand { let Name = "Imm32"; } 659 def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> { 660 let ParserMatchClass = Imm32AsmOperand; 661 } 662 663 def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>; 664 665 /// imm1_7 predicate - Immediate in the range [1,7]. 666 def Imm1_7AsmOperand: ImmAsmOperand { let Name = "Imm1_7"; } 667 def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> { 668 let ParserMatchClass = Imm1_7AsmOperand; 669 } 670 671 /// imm1_15 predicate - Immediate in the range [1,15]. 672 def Imm1_15AsmOperand: ImmAsmOperand { let Name = "Imm1_15"; } 673 def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> { 674 let ParserMatchClass = Imm1_15AsmOperand; 675 } 676 677 /// imm1_31 predicate - Immediate in the range [1,31]. 678 def Imm1_31AsmOperand: ImmAsmOperand { let Name = "Imm1_31"; } 679 def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> { 680 let ParserMatchClass = Imm1_31AsmOperand; 681 } 682 683 /// imm0_15 predicate - Immediate in the range [0,15]. 684 def Imm0_15AsmOperand: ImmAsmOperand { 685 let Name = "Imm0_15"; 686 let DiagnosticType = "ImmRange0_15"; 687 } 688 def imm0_15 : Operand<i32>, ImmLeaf<i32, [{ 689 return Imm >= 0 && Imm < 16; 690 }]> { 691 let ParserMatchClass = Imm0_15AsmOperand; 692 } 693 694 /// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31]. 695 def Imm0_31AsmOperand: ImmAsmOperand { let Name = "Imm0_31"; } 696 def imm0_31 : Operand<i32>, ImmLeaf<i32, [{ 697 return Imm >= 0 && Imm < 32; 698 }]> { 699 let ParserMatchClass = Imm0_31AsmOperand; 700 } 701 702 /// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32]. 703 def Imm0_32AsmOperand: ImmAsmOperand { let Name = "Imm0_32"; } 704 def imm0_32 : Operand<i32>, ImmLeaf<i32, [{ 705 return Imm >= 0 && Imm < 32; 706 }]> { 707 let ParserMatchClass = Imm0_32AsmOperand; 708 } 709 710 /// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63]. 711 def Imm0_63AsmOperand: ImmAsmOperand { let Name = "Imm0_63"; } 712 def imm0_63 : Operand<i32>, ImmLeaf<i32, [{ 713 return Imm >= 0 && Imm < 64; 714 }]> { 715 let ParserMatchClass = Imm0_63AsmOperand; 716 } 717 718 /// imm0_239 predicate - Immediate in the range [0,239]. 719 def Imm0_239AsmOperand : ImmAsmOperand { 720 let Name = "Imm0_239"; 721 let DiagnosticType = "ImmRange0_239"; 722 } 723 def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> { 724 let ParserMatchClass = Imm0_239AsmOperand; 725 } 726 727 /// imm0_255 predicate - Immediate in the range [0,255]. 728 def Imm0_255AsmOperand : ImmAsmOperand { let Name = "Imm0_255"; } 729 def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> { 730 let ParserMatchClass = Imm0_255AsmOperand; 731 } 732 733 /// imm0_65535 - An immediate is in the range [0.65535]. 734 def Imm0_65535AsmOperand: ImmAsmOperand { let Name = "Imm0_65535"; } 735 def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{ 736 return Imm >= 0 && Imm < 65536; 737 }]> { 738 let ParserMatchClass = Imm0_65535AsmOperand; 739 } 740 741 // imm0_65535_neg - An immediate whose negative value is in the range [0.65535]. 742 def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{ 743 return -Imm >= 0 && -Imm < 65536; 744 }]>; 745 746 // imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference 747 // a relocatable expression. 748 // 749 // FIXME: This really needs a Thumb version separate from the ARM version. 750 // While the range is the same, and can thus use the same match class, 751 // the encoding is different so it should have a different encoder method. 752 def Imm0_65535ExprAsmOperand: ImmAsmOperand { let Name = "Imm0_65535Expr"; } 753 def imm0_65535_expr : Operand<i32> { 754 let EncoderMethod = "getHiLo16ImmOpValue"; 755 let ParserMatchClass = Imm0_65535ExprAsmOperand; 756 } 757 758 def Imm256_65535ExprAsmOperand: ImmAsmOperand { let Name = "Imm256_65535Expr"; } 759 def imm256_65535_expr : Operand<i32> { 760 let ParserMatchClass = Imm256_65535ExprAsmOperand; 761 } 762 763 /// imm24b - True if the 32-bit immediate is encodable in 24 bits. 764 def Imm24bitAsmOperand: ImmAsmOperand { let Name = "Imm24bit"; } 765 def imm24b : Operand<i32>, ImmLeaf<i32, [{ 766 return Imm >= 0 && Imm <= 0xffffff; 767 }]> { 768 let ParserMatchClass = Imm24bitAsmOperand; 769 } 770 771 772 /// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield 773 /// e.g., 0xf000ffff 774 def BitfieldAsmOperand : AsmOperandClass { 775 let Name = "Bitfield"; 776 let ParserMethod = "parseBitfield"; 777 } 778 779 def bf_inv_mask_imm : Operand<i32>, 780 PatLeaf<(imm), [{ 781 return ARM::isBitFieldInvertedMask(N->getZExtValue()); 782 }] > { 783 let EncoderMethod = "getBitfieldInvertedMaskOpValue"; 784 let PrintMethod = "printBitfieldInvMaskImmOperand"; 785 let DecoderMethod = "DecodeBitfieldMaskOperand"; 786 let ParserMatchClass = BitfieldAsmOperand; 787 } 788 789 def imm1_32_XFORM: SDNodeXForm<imm, [{ 790 return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N), 791 MVT::i32); 792 }]>; 793 def Imm1_32AsmOperand: AsmOperandClass { let Name = "Imm1_32"; } 794 def imm1_32 : Operand<i32>, PatLeaf<(imm), [{ 795 uint64_t Imm = N->getZExtValue(); 796 return Imm > 0 && Imm <= 32; 797 }], 798 imm1_32_XFORM> { 799 let PrintMethod = "printImmPlusOneOperand"; 800 let ParserMatchClass = Imm1_32AsmOperand; 801 } 802 803 def imm1_16_XFORM: SDNodeXForm<imm, [{ 804 return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N), 805 MVT::i32); 806 }]>; 807 def Imm1_16AsmOperand: AsmOperandClass { let Name = "Imm1_16"; } 808 def imm1_16 : Operand<i32>, PatLeaf<(imm), [{ return Imm > 0 && Imm <= 16; }], 809 imm1_16_XFORM> { 810 let PrintMethod = "printImmPlusOneOperand"; 811 let ParserMatchClass = Imm1_16AsmOperand; 812 } 813 814 // Define ARM specific addressing modes. 815 // addrmode_imm12 := reg +/- imm12 816 // 817 def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; } 818 class AddrMode_Imm12 : MemOperand, 819 ComplexPattern<i32, 2, "SelectAddrModeImm12", []> { 820 // 12-bit immediate operand. Note that instructions using this encode 821 // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other 822 // immediate values are as normal. 823 824 let EncoderMethod = "getAddrModeImm12OpValue"; 825 let DecoderMethod = "DecodeAddrModeImm12Operand"; 826 let ParserMatchClass = MemImm12OffsetAsmOperand; 827 let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); 828 } 829 830 def addrmode_imm12 : AddrMode_Imm12 { 831 let PrintMethod = "printAddrModeImm12Operand<false>"; 832 } 833 834 def addrmode_imm12_pre : AddrMode_Imm12 { 835 let PrintMethod = "printAddrModeImm12Operand<true>"; 836 } 837 838 // ldst_so_reg := reg +/- reg shop imm 839 // 840 def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; } 841 def ldst_so_reg : MemOperand, 842 ComplexPattern<i32, 3, "SelectLdStSOReg", []> { 843 let EncoderMethod = "getLdStSORegOpValue"; 844 // FIXME: Simplify the printer 845 let PrintMethod = "printAddrMode2Operand"; 846 let DecoderMethod = "DecodeSORegMemOperand"; 847 let ParserMatchClass = MemRegOffsetAsmOperand; 848 let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift); 849 } 850 851 // postidx_imm8 := +/- [0,255] 852 // 853 // 9 bit value: 854 // {8} 1 is imm8 is non-negative. 0 otherwise. 855 // {7-0} [0,255] imm8 value. 856 def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; } 857 def postidx_imm8 : MemOperand { 858 let PrintMethod = "printPostIdxImm8Operand"; 859 let ParserMatchClass = PostIdxImm8AsmOperand; 860 let MIOperandInfo = (ops i32imm); 861 } 862 863 // postidx_imm8s4 := +/- [0,1020] 864 // 865 // 9 bit value: 866 // {8} 1 is imm8 is non-negative. 0 otherwise. 867 // {7-0} [0,255] imm8 value, scaled by 4. 868 def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; } 869 def postidx_imm8s4 : MemOperand { 870 let PrintMethod = "printPostIdxImm8s4Operand"; 871 let ParserMatchClass = PostIdxImm8s4AsmOperand; 872 let MIOperandInfo = (ops i32imm); 873 } 874 875 876 // postidx_reg := +/- reg 877 // 878 def PostIdxRegAsmOperand : AsmOperandClass { 879 let Name = "PostIdxReg"; 880 let ParserMethod = "parsePostIdxReg"; 881 } 882 def postidx_reg : MemOperand { 883 let EncoderMethod = "getPostIdxRegOpValue"; 884 let DecoderMethod = "DecodePostIdxReg"; 885 let PrintMethod = "printPostIdxRegOperand"; 886 let ParserMatchClass = PostIdxRegAsmOperand; 887 let MIOperandInfo = (ops GPRnopc, i32imm); 888 } 889 890 891 // addrmode2 := reg +/- imm12 892 // := reg +/- reg shop imm 893 // 894 // FIXME: addrmode2 should be refactored the rest of the way to always 895 // use explicit imm vs. reg versions above (addrmode_imm12 and ldst_so_reg). 896 def AddrMode2AsmOperand : AsmOperandClass { let Name = "AddrMode2"; } 897 def addrmode2 : MemOperand, 898 ComplexPattern<i32, 3, "SelectAddrMode2", []> { 899 let EncoderMethod = "getAddrMode2OpValue"; 900 let PrintMethod = "printAddrMode2Operand"; 901 let ParserMatchClass = AddrMode2AsmOperand; 902 let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); 903 } 904 905 def PostIdxRegShiftedAsmOperand : AsmOperandClass { 906 let Name = "PostIdxRegShifted"; 907 let ParserMethod = "parsePostIdxReg"; 908 } 909 def am2offset_reg : MemOperand, 910 ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg", 911 [], [SDNPWantRoot]> { 912 let EncoderMethod = "getAddrMode2OffsetOpValue"; 913 let PrintMethod = "printAddrMode2OffsetOperand"; 914 // When using this for assembly, it's always as a post-index offset. 915 let ParserMatchClass = PostIdxRegShiftedAsmOperand; 916 let MIOperandInfo = (ops GPRnopc, i32imm); 917 } 918 919 // FIXME: am2offset_imm should only need the immediate, not the GPR. Having 920 // the GPR is purely vestigal at this point. 921 def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; } 922 def am2offset_imm : MemOperand, 923 ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm", 924 [], [SDNPWantRoot]> { 925 let EncoderMethod = "getAddrMode2OffsetOpValue"; 926 let PrintMethod = "printAddrMode2OffsetOperand"; 927 let ParserMatchClass = AM2OffsetImmAsmOperand; 928 let MIOperandInfo = (ops GPRnopc, i32imm); 929 } 930 931 932 // addrmode3 := reg +/- reg 933 // addrmode3 := reg +/- imm8 934 // 935 // FIXME: split into imm vs. reg versions. 936 def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; } 937 class AddrMode3 : MemOperand, 938 ComplexPattern<i32, 3, "SelectAddrMode3", []> { 939 let EncoderMethod = "getAddrMode3OpValue"; 940 let ParserMatchClass = AddrMode3AsmOperand; 941 let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); 942 } 943 944 def addrmode3 : AddrMode3 945 { 946 let PrintMethod = "printAddrMode3Operand<false>"; 947 } 948 949 def addrmode3_pre : AddrMode3 950 { 951 let PrintMethod = "printAddrMode3Operand<true>"; 952 } 953 954 // FIXME: split into imm vs. reg versions. 955 // FIXME: parser method to handle +/- register. 956 def AM3OffsetAsmOperand : AsmOperandClass { 957 let Name = "AM3Offset"; 958 let ParserMethod = "parseAM3Offset"; 959 } 960 def am3offset : MemOperand, 961 ComplexPattern<i32, 2, "SelectAddrMode3Offset", 962 [], [SDNPWantRoot]> { 963 let EncoderMethod = "getAddrMode3OffsetOpValue"; 964 let PrintMethod = "printAddrMode3OffsetOperand"; 965 let ParserMatchClass = AM3OffsetAsmOperand; 966 let MIOperandInfo = (ops GPR, i32imm); 967 } 968 969 // ldstm_mode := {ia, ib, da, db} 970 // 971 def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> { 972 let EncoderMethod = "getLdStmModeOpValue"; 973 let PrintMethod = "printLdStmModeOperand"; 974 } 975 976 // addrmode5 := reg +/- imm8*4 977 // 978 def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; } 979 class AddrMode5 : MemOperand, 980 ComplexPattern<i32, 2, "SelectAddrMode5", []> { 981 let EncoderMethod = "getAddrMode5OpValue"; 982 let DecoderMethod = "DecodeAddrMode5Operand"; 983 let ParserMatchClass = AddrMode5AsmOperand; 984 let MIOperandInfo = (ops GPR:$base, i32imm); 985 } 986 987 def addrmode5 : AddrMode5 { 988 let PrintMethod = "printAddrMode5Operand<false>"; 989 } 990 991 def addrmode5_pre : AddrMode5 { 992 let PrintMethod = "printAddrMode5Operand<true>"; 993 } 994 995 // addrmode5fp16 := reg +/- imm8*2 996 // 997 def AddrMode5FP16AsmOperand : AsmOperandClass { let Name = "AddrMode5FP16"; } 998 class AddrMode5FP16 : Operand<i32>, 999 ComplexPattern<i32, 2, "SelectAddrMode5FP16", []> { 1000 let EncoderMethod = "getAddrMode5FP16OpValue"; 1001 let DecoderMethod = "DecodeAddrMode5FP16Operand"; 1002 let ParserMatchClass = AddrMode5FP16AsmOperand; 1003 let MIOperandInfo = (ops GPR:$base, i32imm); 1004 } 1005 1006 def addrmode5fp16 : AddrMode5FP16 { 1007 let PrintMethod = "printAddrMode5FP16Operand<false>"; 1008 } 1009 1010 // addrmode6 := reg with optional alignment 1011 // 1012 def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; } 1013 def addrmode6 : MemOperand, 1014 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 1015 let PrintMethod = "printAddrMode6Operand"; 1016 let MIOperandInfo = (ops GPR:$addr, i32imm:$align); 1017 let EncoderMethod = "getAddrMode6AddressOpValue"; 1018 let DecoderMethod = "DecodeAddrMode6Operand"; 1019 let ParserMatchClass = AddrMode6AsmOperand; 1020 } 1021 1022 def am6offset : MemOperand, 1023 ComplexPattern<i32, 1, "SelectAddrMode6Offset", 1024 [], [SDNPWantRoot]> { 1025 let PrintMethod = "printAddrMode6OffsetOperand"; 1026 let MIOperandInfo = (ops GPR); 1027 let EncoderMethod = "getAddrMode6OffsetOpValue"; 1028 let DecoderMethod = "DecodeGPRRegisterClass"; 1029 } 1030 1031 // Special version of addrmode6 to handle alignment encoding for VST1/VLD1 1032 // (single element from one lane) for size 32. 1033 def addrmode6oneL32 : MemOperand, 1034 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 1035 let PrintMethod = "printAddrMode6Operand"; 1036 let MIOperandInfo = (ops GPR:$addr, i32imm); 1037 let EncoderMethod = "getAddrMode6OneLane32AddressOpValue"; 1038 } 1039 1040 // Base class for addrmode6 with specific alignment restrictions. 1041 class AddrMode6Align : MemOperand, 1042 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 1043 let PrintMethod = "printAddrMode6Operand"; 1044 let MIOperandInfo = (ops GPR:$addr, i32imm:$align); 1045 let EncoderMethod = "getAddrMode6AddressOpValue"; 1046 let DecoderMethod = "DecodeAddrMode6Operand"; 1047 } 1048 1049 // Special version of addrmode6 to handle no allowed alignment encoding for 1050 // VLD/VST instructions and checking the alignment is not specified. 1051 def AddrMode6AlignNoneAsmOperand : AsmOperandClass { 1052 let Name = "AlignedMemoryNone"; 1053 let DiagnosticType = "AlignedMemoryRequiresNone"; 1054 } 1055 def addrmode6alignNone : AddrMode6Align { 1056 // The alignment specifier can only be omitted. 1057 let ParserMatchClass = AddrMode6AlignNoneAsmOperand; 1058 } 1059 1060 // Special version of addrmode6 to handle 16-bit alignment encoding for 1061 // VLD/VST instructions and checking the alignment value. 1062 def AddrMode6Align16AsmOperand : AsmOperandClass { 1063 let Name = "AlignedMemory16"; 1064 let DiagnosticType = "AlignedMemoryRequires16"; 1065 } 1066 def addrmode6align16 : AddrMode6Align { 1067 // The alignment specifier can only be 16 or omitted. 1068 let ParserMatchClass = AddrMode6Align16AsmOperand; 1069 } 1070 1071 // Special version of addrmode6 to handle 32-bit alignment encoding for 1072 // VLD/VST instructions and checking the alignment value. 1073 def AddrMode6Align32AsmOperand : AsmOperandClass { 1074 let Name = "AlignedMemory32"; 1075 let DiagnosticType = "AlignedMemoryRequires32"; 1076 } 1077 def addrmode6align32 : AddrMode6Align { 1078 // The alignment specifier can only be 32 or omitted. 1079 let ParserMatchClass = AddrMode6Align32AsmOperand; 1080 } 1081 1082 // Special version of addrmode6 to handle 64-bit alignment encoding for 1083 // VLD/VST instructions and checking the alignment value. 1084 def AddrMode6Align64AsmOperand : AsmOperandClass { 1085 let Name = "AlignedMemory64"; 1086 let DiagnosticType = "AlignedMemoryRequires64"; 1087 } 1088 def addrmode6align64 : AddrMode6Align { 1089 // The alignment specifier can only be 64 or omitted. 1090 let ParserMatchClass = AddrMode6Align64AsmOperand; 1091 } 1092 1093 // Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding 1094 // for VLD/VST instructions and checking the alignment value. 1095 def AddrMode6Align64or128AsmOperand : AsmOperandClass { 1096 let Name = "AlignedMemory64or128"; 1097 let DiagnosticType = "AlignedMemoryRequires64or128"; 1098 } 1099 def addrmode6align64or128 : AddrMode6Align { 1100 // The alignment specifier can only be 64, 128 or omitted. 1101 let ParserMatchClass = AddrMode6Align64or128AsmOperand; 1102 } 1103 1104 // Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment 1105 // encoding for VLD/VST instructions and checking the alignment value. 1106 def AddrMode6Align64or128or256AsmOperand : AsmOperandClass { 1107 let Name = "AlignedMemory64or128or256"; 1108 let DiagnosticType = "AlignedMemoryRequires64or128or256"; 1109 } 1110 def addrmode6align64or128or256 : AddrMode6Align { 1111 // The alignment specifier can only be 64, 128, 256 or omitted. 1112 let ParserMatchClass = AddrMode6Align64or128or256AsmOperand; 1113 } 1114 1115 // Special version of addrmode6 to handle alignment encoding for VLD-dup 1116 // instructions, specifically VLD4-dup. 1117 def addrmode6dup : MemOperand, 1118 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 1119 let PrintMethod = "printAddrMode6Operand"; 1120 let MIOperandInfo = (ops GPR:$addr, i32imm); 1121 let EncoderMethod = "getAddrMode6DupAddressOpValue"; 1122 // FIXME: This is close, but not quite right. The alignment specifier is 1123 // different. 1124 let ParserMatchClass = AddrMode6AsmOperand; 1125 } 1126 1127 // Base class for addrmode6dup with specific alignment restrictions. 1128 class AddrMode6DupAlign : MemOperand, 1129 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 1130 let PrintMethod = "printAddrMode6Operand"; 1131 let MIOperandInfo = (ops GPR:$addr, i32imm); 1132 let EncoderMethod = "getAddrMode6DupAddressOpValue"; 1133 } 1134 1135 // Special version of addrmode6 to handle no allowed alignment encoding for 1136 // VLD-dup instruction and checking the alignment is not specified. 1137 def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass { 1138 let Name = "DupAlignedMemoryNone"; 1139 let DiagnosticType = "DupAlignedMemoryRequiresNone"; 1140 } 1141 def addrmode6dupalignNone : AddrMode6DupAlign { 1142 // The alignment specifier can only be omitted. 1143 let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand; 1144 } 1145 1146 // Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup 1147 // instruction and checking the alignment value. 1148 def AddrMode6dupAlign16AsmOperand : AsmOperandClass { 1149 let Name = "DupAlignedMemory16"; 1150 let DiagnosticType = "DupAlignedMemoryRequires16"; 1151 } 1152 def addrmode6dupalign16 : AddrMode6DupAlign { 1153 // The alignment specifier can only be 16 or omitted. 1154 let ParserMatchClass = AddrMode6dupAlign16AsmOperand; 1155 } 1156 1157 // Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup 1158 // instruction and checking the alignment value. 1159 def AddrMode6dupAlign32AsmOperand : AsmOperandClass { 1160 let Name = "DupAlignedMemory32"; 1161 let DiagnosticType = "DupAlignedMemoryRequires32"; 1162 } 1163 def addrmode6dupalign32 : AddrMode6DupAlign { 1164 // The alignment specifier can only be 32 or omitted. 1165 let ParserMatchClass = AddrMode6dupAlign32AsmOperand; 1166 } 1167 1168 // Special version of addrmode6 to handle 64-bit alignment encoding for VLD 1169 // instructions and checking the alignment value. 1170 def AddrMode6dupAlign64AsmOperand : AsmOperandClass { 1171 let Name = "DupAlignedMemory64"; 1172 let DiagnosticType = "DupAlignedMemoryRequires64"; 1173 } 1174 def addrmode6dupalign64 : AddrMode6DupAlign { 1175 // The alignment specifier can only be 64 or omitted. 1176 let ParserMatchClass = AddrMode6dupAlign64AsmOperand; 1177 } 1178 1179 // Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding 1180 // for VLD instructions and checking the alignment value. 1181 def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass { 1182 let Name = "DupAlignedMemory64or128"; 1183 let DiagnosticType = "DupAlignedMemoryRequires64or128"; 1184 } 1185 def addrmode6dupalign64or128 : AddrMode6DupAlign { 1186 // The alignment specifier can only be 64, 128 or omitted. 1187 let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand; 1188 } 1189 1190 // addrmodepc := pc + reg 1191 // 1192 def addrmodepc : MemOperand, 1193 ComplexPattern<i32, 2, "SelectAddrModePC", []> { 1194 let PrintMethod = "printAddrModePCOperand"; 1195 let MIOperandInfo = (ops GPR, i32imm); 1196 } 1197 1198 // addr_offset_none := reg 1199 // 1200 def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; } 1201 def addr_offset_none : MemOperand, 1202 ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> { 1203 let PrintMethod = "printAddrMode7Operand"; 1204 let DecoderMethod = "DecodeAddrMode7Operand"; 1205 let ParserMatchClass = MemNoOffsetAsmOperand; 1206 let MIOperandInfo = (ops GPR:$base); 1207 } 1208 1209 def nohash_imm : Operand<i32> { 1210 let PrintMethod = "printNoHashImmediate"; 1211 } 1212 1213 def CoprocNumAsmOperand : AsmOperandClass { 1214 let Name = "CoprocNum"; 1215 let ParserMethod = "parseCoprocNumOperand"; 1216 } 1217 def p_imm : Operand<i32> { 1218 let PrintMethod = "printPImmediate"; 1219 let ParserMatchClass = CoprocNumAsmOperand; 1220 let DecoderMethod = "DecodeCoprocessor"; 1221 } 1222 1223 def CoprocRegAsmOperand : AsmOperandClass { 1224 let Name = "CoprocReg"; 1225 let ParserMethod = "parseCoprocRegOperand"; 1226 } 1227 def c_imm : Operand<i32> { 1228 let PrintMethod = "printCImmediate"; 1229 let ParserMatchClass = CoprocRegAsmOperand; 1230 } 1231 def CoprocOptionAsmOperand : AsmOperandClass { 1232 let Name = "CoprocOption"; 1233 let ParserMethod = "parseCoprocOptionOperand"; 1234 } 1235 def coproc_option_imm : Operand<i32> { 1236 let PrintMethod = "printCoprocOptionImm"; 1237 let ParserMatchClass = CoprocOptionAsmOperand; 1238 } 1239 1240 //===----------------------------------------------------------------------===// 1241 1242 include "ARMInstrFormats.td" 1243 1244 //===----------------------------------------------------------------------===// 1245 // Multiclass helpers... 1246 // 1247 1248 /// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a 1249 /// binop that produces a value. 1250 let TwoOperandAliasConstraint = "$Rn = $Rd" in 1251 multiclass AsI1_bin_irs<bits<4> opcod, string opc, 1252 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 1253 SDPatternOperator opnode, bit Commutable = 0> { 1254 // The register-immediate version is re-materializable. This is useful 1255 // in particular for taking the address of a local. 1256 let isReMaterializable = 1 in { 1257 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm, 1258 iii, opc, "\t$Rd, $Rn, $imm", 1259 [(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>, 1260 Sched<[WriteALU, ReadALU]> { 1261 bits<4> Rd; 1262 bits<4> Rn; 1263 bits<12> imm; 1264 let Inst{25} = 1; 1265 let Inst{19-16} = Rn; 1266 let Inst{15-12} = Rd; 1267 let Inst{11-0} = imm; 1268 } 1269 } 1270 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, 1271 iir, opc, "\t$Rd, $Rn, $Rm", 1272 [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>, 1273 Sched<[WriteALU, ReadALU, ReadALU]> { 1274 bits<4> Rd; 1275 bits<4> Rn; 1276 bits<4> Rm; 1277 let Inst{25} = 0; 1278 let isCommutable = Commutable; 1279 let Inst{19-16} = Rn; 1280 let Inst{15-12} = Rd; 1281 let Inst{11-4} = 0b00000000; 1282 let Inst{3-0} = Rm; 1283 } 1284 1285 def rsi : AsI1<opcod, (outs GPR:$Rd), 1286 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, 1287 iis, opc, "\t$Rd, $Rn, $shift", 1288 [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>, 1289 Sched<[WriteALUsi, ReadALU]> { 1290 bits<4> Rd; 1291 bits<4> Rn; 1292 bits<12> shift; 1293 let Inst{25} = 0; 1294 let Inst{19-16} = Rn; 1295 let Inst{15-12} = Rd; 1296 let Inst{11-5} = shift{11-5}; 1297 let Inst{4} = 0; 1298 let Inst{3-0} = shift{3-0}; 1299 } 1300 1301 def rsr : AsI1<opcod, (outs GPR:$Rd), 1302 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, 1303 iis, opc, "\t$Rd, $Rn, $shift", 1304 [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>, 1305 Sched<[WriteALUsr, ReadALUsr]> { 1306 bits<4> Rd; 1307 bits<4> Rn; 1308 bits<12> shift; 1309 let Inst{25} = 0; 1310 let Inst{19-16} = Rn; 1311 let Inst{15-12} = Rd; 1312 let Inst{11-8} = shift{11-8}; 1313 let Inst{7} = 0; 1314 let Inst{6-5} = shift{6-5}; 1315 let Inst{4} = 1; 1316 let Inst{3-0} = shift{3-0}; 1317 } 1318 } 1319 1320 /// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are 1321 /// reversed. The 'rr' form is only defined for the disassembler; for codegen 1322 /// it is equivalent to the AsI1_bin_irs counterpart. 1323 let TwoOperandAliasConstraint = "$Rn = $Rd" in 1324 multiclass AsI1_rbin_irs<bits<4> opcod, string opc, 1325 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 1326 SDNode opnode, bit Commutable = 0> { 1327 // The register-immediate version is re-materializable. This is useful 1328 // in particular for taking the address of a local. 1329 let isReMaterializable = 1 in { 1330 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm, 1331 iii, opc, "\t$Rd, $Rn, $imm", 1332 [(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>, 1333 Sched<[WriteALU, ReadALU]> { 1334 bits<4> Rd; 1335 bits<4> Rn; 1336 bits<12> imm; 1337 let Inst{25} = 1; 1338 let Inst{19-16} = Rn; 1339 let Inst{15-12} = Rd; 1340 let Inst{11-0} = imm; 1341 } 1342 } 1343 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, 1344 iir, opc, "\t$Rd, $Rn, $Rm", 1345 [/* pattern left blank */]>, 1346 Sched<[WriteALU, ReadALU, ReadALU]> { 1347 bits<4> Rd; 1348 bits<4> Rn; 1349 bits<4> Rm; 1350 let Inst{11-4} = 0b00000000; 1351 let Inst{25} = 0; 1352 let Inst{3-0} = Rm; 1353 let Inst{15-12} = Rd; 1354 let Inst{19-16} = Rn; 1355 } 1356 1357 def rsi : AsI1<opcod, (outs GPR:$Rd), 1358 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, 1359 iis, opc, "\t$Rd, $Rn, $shift", 1360 [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>, 1361 Sched<[WriteALUsi, ReadALU]> { 1362 bits<4> Rd; 1363 bits<4> Rn; 1364 bits<12> shift; 1365 let Inst{25} = 0; 1366 let Inst{19-16} = Rn; 1367 let Inst{15-12} = Rd; 1368 let Inst{11-5} = shift{11-5}; 1369 let Inst{4} = 0; 1370 let Inst{3-0} = shift{3-0}; 1371 } 1372 1373 def rsr : AsI1<opcod, (outs GPR:$Rd), 1374 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, 1375 iis, opc, "\t$Rd, $Rn, $shift", 1376 [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>, 1377 Sched<[WriteALUsr, ReadALUsr]> { 1378 bits<4> Rd; 1379 bits<4> Rn; 1380 bits<12> shift; 1381 let Inst{25} = 0; 1382 let Inst{19-16} = Rn; 1383 let Inst{15-12} = Rd; 1384 let Inst{11-8} = shift{11-8}; 1385 let Inst{7} = 0; 1386 let Inst{6-5} = shift{6-5}; 1387 let Inst{4} = 1; 1388 let Inst{3-0} = shift{3-0}; 1389 } 1390 } 1391 1392 /// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default. 1393 /// 1394 /// These opcodes will be converted to the real non-S opcodes by 1395 /// AdjustInstrPostInstrSelection after giving them an optional CPSR operand. 1396 let hasPostISelHook = 1, Defs = [CPSR] in { 1397 multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir, 1398 InstrItinClass iis, SDNode opnode, 1399 bit Commutable = 0> { 1400 def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p), 1401 4, iii, 1402 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>, 1403 Sched<[WriteALU, ReadALU]>; 1404 1405 def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p), 1406 4, iir, 1407 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>, 1408 Sched<[WriteALU, ReadALU, ReadALU]> { 1409 let isCommutable = Commutable; 1410 } 1411 def rsi : ARMPseudoInst<(outs GPR:$Rd), 1412 (ins GPR:$Rn, so_reg_imm:$shift, pred:$p), 1413 4, iis, 1414 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, 1415 so_reg_imm:$shift))]>, 1416 Sched<[WriteALUsi, ReadALU]>; 1417 1418 def rsr : ARMPseudoInst<(outs GPR:$Rd), 1419 (ins GPR:$Rn, so_reg_reg:$shift, pred:$p), 1420 4, iis, 1421 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, 1422 so_reg_reg:$shift))]>, 1423 Sched<[WriteALUSsr, ReadALUsr]>; 1424 } 1425 } 1426 1427 /// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG 1428 /// operands are reversed. 1429 let hasPostISelHook = 1, Defs = [CPSR] in { 1430 multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir, 1431 InstrItinClass iis, SDNode opnode, 1432 bit Commutable = 0> { 1433 def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p), 1434 4, iii, 1435 [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>, 1436 Sched<[WriteALU, ReadALU]>; 1437 1438 def rsi : ARMPseudoInst<(outs GPR:$Rd), 1439 (ins GPR:$Rn, so_reg_imm:$shift, pred:$p), 1440 4, iis, 1441 [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, 1442 GPR:$Rn))]>, 1443 Sched<[WriteALUsi, ReadALU]>; 1444 1445 def rsr : ARMPseudoInst<(outs GPR:$Rd), 1446 (ins GPR:$Rn, so_reg_reg:$shift, pred:$p), 1447 4, iis, 1448 [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, 1449 GPR:$Rn))]>, 1450 Sched<[WriteALUSsr, ReadALUsr]>; 1451 } 1452 } 1453 1454 /// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test 1455 /// patterns. Similar to AsI1_bin_irs except the instruction does not produce 1456 /// a explicit result, only implicitly set CPSR. 1457 let isCompare = 1, Defs = [CPSR] in { 1458 multiclass AI1_cmp_irs<bits<4> opcod, string opc, 1459 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 1460 SDPatternOperator opnode, bit Commutable = 0, 1461 string rrDecoderMethod = ""> { 1462 def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii, 1463 opc, "\t$Rn, $imm", 1464 [(opnode GPR:$Rn, mod_imm:$imm)]>, 1465 Sched<[WriteCMP, ReadALU]> { 1466 bits<4> Rn; 1467 bits<12> imm; 1468 let Inst{25} = 1; 1469 let Inst{20} = 1; 1470 let Inst{19-16} = Rn; 1471 let Inst{15-12} = 0b0000; 1472 let Inst{11-0} = imm; 1473 1474 let Unpredictable{15-12} = 0b1111; 1475 } 1476 def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir, 1477 opc, "\t$Rn, $Rm", 1478 [(opnode GPR:$Rn, GPR:$Rm)]>, 1479 Sched<[WriteCMP, ReadALU, ReadALU]> { 1480 bits<4> Rn; 1481 bits<4> Rm; 1482 let isCommutable = Commutable; 1483 let Inst{25} = 0; 1484 let Inst{20} = 1; 1485 let Inst{19-16} = Rn; 1486 let Inst{15-12} = 0b0000; 1487 let Inst{11-4} = 0b00000000; 1488 let Inst{3-0} = Rm; 1489 let DecoderMethod = rrDecoderMethod; 1490 1491 let Unpredictable{15-12} = 0b1111; 1492 } 1493 def rsi : AI1<opcod, (outs), 1494 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis, 1495 opc, "\t$Rn, $shift", 1496 [(opnode GPR:$Rn, so_reg_imm:$shift)]>, 1497 Sched<[WriteCMPsi, ReadALU]> { 1498 bits<4> Rn; 1499 bits<12> shift; 1500 let Inst{25} = 0; 1501 let Inst{20} = 1; 1502 let Inst{19-16} = Rn; 1503 let Inst{15-12} = 0b0000; 1504 let Inst{11-5} = shift{11-5}; 1505 let Inst{4} = 0; 1506 let Inst{3-0} = shift{3-0}; 1507 1508 let Unpredictable{15-12} = 0b1111; 1509 } 1510 def rsr : AI1<opcod, (outs), 1511 (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis, 1512 opc, "\t$Rn, $shift", 1513 [(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>, 1514 Sched<[WriteCMPsr, ReadALU]> { 1515 bits<4> Rn; 1516 bits<12> shift; 1517 let Inst{25} = 0; 1518 let Inst{20} = 1; 1519 let Inst{19-16} = Rn; 1520 let Inst{15-12} = 0b0000; 1521 let Inst{11-8} = shift{11-8}; 1522 let Inst{7} = 0; 1523 let Inst{6-5} = shift{6-5}; 1524 let Inst{4} = 1; 1525 let Inst{3-0} = shift{3-0}; 1526 1527 let Unpredictable{15-12} = 0b1111; 1528 } 1529 1530 } 1531 } 1532 1533 /// AI_ext_rrot - A unary operation with two forms: one whose operand is a 1534 /// register and one whose operand is a register rotated by 8/16/24. 1535 /// FIXME: Remove the 'r' variant. Its rot_imm is zero. 1536 class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode> 1537 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot), 1538 IIC_iEXTr, opc, "\t$Rd, $Rm$rot", 1539 [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>, 1540 Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> { 1541 bits<4> Rd; 1542 bits<4> Rm; 1543 bits<2> rot; 1544 let Inst{19-16} = 0b1111; 1545 let Inst{15-12} = Rd; 1546 let Inst{11-10} = rot; 1547 let Inst{3-0} = Rm; 1548 } 1549 1550 class AI_ext_rrot_np<bits<8> opcod, string opc> 1551 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot), 1552 IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>, 1553 Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> { 1554 bits<2> rot; 1555 let Inst{19-16} = 0b1111; 1556 let Inst{11-10} = rot; 1557 } 1558 1559 /// AI_exta_rrot - A binary operation with two forms: one whose operand is a 1560 /// register and one whose operand is a register rotated by 8/16/24. 1561 class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode> 1562 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot), 1563 IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", 1564 [(set GPRnopc:$Rd, (opnode GPR:$Rn, 1565 (rotr GPRnopc:$Rm, rot_imm:$rot)))]>, 1566 Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> { 1567 bits<4> Rd; 1568 bits<4> Rm; 1569 bits<4> Rn; 1570 bits<2> rot; 1571 let Inst{19-16} = Rn; 1572 let Inst{15-12} = Rd; 1573 let Inst{11-10} = rot; 1574 let Inst{9-4} = 0b000111; 1575 let Inst{3-0} = Rm; 1576 } 1577 1578 class AI_exta_rrot_np<bits<8> opcod, string opc> 1579 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot), 1580 IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>, 1581 Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> { 1582 bits<4> Rn; 1583 bits<2> rot; 1584 let Inst{19-16} = Rn; 1585 let Inst{11-10} = rot; 1586 } 1587 1588 /// AI1_adde_sube_irs - Define instructions and patterns for adde and sube. 1589 let TwoOperandAliasConstraint = "$Rn = $Rd" in 1590 multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, SDNode opnode, 1591 bit Commutable = 0> { 1592 let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in { 1593 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), 1594 DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm", 1595 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>, 1596 Requires<[IsARM]>, 1597 Sched<[WriteALU, ReadALU]> { 1598 bits<4> Rd; 1599 bits<4> Rn; 1600 bits<12> imm; 1601 let Inst{25} = 1; 1602 let Inst{15-12} = Rd; 1603 let Inst{19-16} = Rn; 1604 let Inst{11-0} = imm; 1605 } 1606 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 1607 DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm", 1608 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>, 1609 Requires<[IsARM]>, 1610 Sched<[WriteALU, ReadALU, ReadALU]> { 1611 bits<4> Rd; 1612 bits<4> Rn; 1613 bits<4> Rm; 1614 let Inst{11-4} = 0b00000000; 1615 let Inst{25} = 0; 1616 let isCommutable = Commutable; 1617 let Inst{3-0} = Rm; 1618 let Inst{15-12} = Rd; 1619 let Inst{19-16} = Rn; 1620 } 1621 def rsi : AsI1<opcod, (outs GPR:$Rd), 1622 (ins GPR:$Rn, so_reg_imm:$shift), 1623 DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1624 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>, 1625 Requires<[IsARM]>, 1626 Sched<[WriteALUsi, ReadALU]> { 1627 bits<4> Rd; 1628 bits<4> Rn; 1629 bits<12> shift; 1630 let Inst{25} = 0; 1631 let Inst{19-16} = Rn; 1632 let Inst{15-12} = Rd; 1633 let Inst{11-5} = shift{11-5}; 1634 let Inst{4} = 0; 1635 let Inst{3-0} = shift{3-0}; 1636 } 1637 def rsr : AsI1<opcod, (outs GPRnopc:$Rd), 1638 (ins GPRnopc:$Rn, so_reg_reg:$shift), 1639 DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1640 [(set GPRnopc:$Rd, CPSR, 1641 (opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>, 1642 Requires<[IsARM]>, 1643 Sched<[WriteALUsr, ReadALUsr]> { 1644 bits<4> Rd; 1645 bits<4> Rn; 1646 bits<12> shift; 1647 let Inst{25} = 0; 1648 let Inst{19-16} = Rn; 1649 let Inst{15-12} = Rd; 1650 let Inst{11-8} = shift{11-8}; 1651 let Inst{7} = 0; 1652 let Inst{6-5} = shift{6-5}; 1653 let Inst{4} = 1; 1654 let Inst{3-0} = shift{3-0}; 1655 } 1656 } 1657 } 1658 1659 /// AI1_rsc_irs - Define instructions and patterns for rsc 1660 let TwoOperandAliasConstraint = "$Rn = $Rd" in 1661 multiclass AI1_rsc_irs<bits<4> opcod, string opc, SDNode opnode> { 1662 let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in { 1663 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), 1664 DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm", 1665 [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>, 1666 Requires<[IsARM]>, 1667 Sched<[WriteALU, ReadALU]> { 1668 bits<4> Rd; 1669 bits<4> Rn; 1670 bits<12> imm; 1671 let Inst{25} = 1; 1672 let Inst{15-12} = Rd; 1673 let Inst{19-16} = Rn; 1674 let Inst{11-0} = imm; 1675 } 1676 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 1677 DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm", 1678 [/* pattern left blank */]>, 1679 Sched<[WriteALU, ReadALU, ReadALU]> { 1680 bits<4> Rd; 1681 bits<4> Rn; 1682 bits<4> Rm; 1683 let Inst{11-4} = 0b00000000; 1684 let Inst{25} = 0; 1685 let Inst{3-0} = Rm; 1686 let Inst{15-12} = Rd; 1687 let Inst{19-16} = Rn; 1688 } 1689 def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift), 1690 DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1691 [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>, 1692 Requires<[IsARM]>, 1693 Sched<[WriteALUsi, ReadALU]> { 1694 bits<4> Rd; 1695 bits<4> Rn; 1696 bits<12> shift; 1697 let Inst{25} = 0; 1698 let Inst{19-16} = Rn; 1699 let Inst{15-12} = Rd; 1700 let Inst{11-5} = shift{11-5}; 1701 let Inst{4} = 0; 1702 let Inst{3-0} = shift{3-0}; 1703 } 1704 def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift), 1705 DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1706 [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>, 1707 Requires<[IsARM]>, 1708 Sched<[WriteALUsr, ReadALUsr]> { 1709 bits<4> Rd; 1710 bits<4> Rn; 1711 bits<12> shift; 1712 let Inst{25} = 0; 1713 let Inst{19-16} = Rn; 1714 let Inst{15-12} = Rd; 1715 let Inst{11-8} = shift{11-8}; 1716 let Inst{7} = 0; 1717 let Inst{6-5} = shift{6-5}; 1718 let Inst{4} = 1; 1719 let Inst{3-0} = shift{3-0}; 1720 } 1721 } 1722 } 1723 1724 let canFoldAsLoad = 1, isReMaterializable = 1 in { 1725 multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii, 1726 InstrItinClass iir, PatFrag opnode> { 1727 // Note: We use the complex addrmode_imm12 rather than just an input 1728 // GPR and a constrained immediate so that we can use this to match 1729 // frame index references and avoid matching constant pool references. 1730 def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr), 1731 AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr", 1732 [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> { 1733 bits<4> Rt; 1734 bits<17> addr; 1735 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1736 let Inst{19-16} = addr{16-13}; // Rn 1737 let Inst{15-12} = Rt; 1738 let Inst{11-0} = addr{11-0}; // imm12 1739 } 1740 def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift), 1741 AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift", 1742 [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> { 1743 bits<4> Rt; 1744 bits<17> shift; 1745 let shift{4} = 0; // Inst{4} = 0 1746 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1747 let Inst{19-16} = shift{16-13}; // Rn 1748 let Inst{15-12} = Rt; 1749 let Inst{11-0} = shift{11-0}; 1750 } 1751 } 1752 } 1753 1754 let canFoldAsLoad = 1, isReMaterializable = 1 in { 1755 multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii, 1756 InstrItinClass iir, PatFrag opnode> { 1757 // Note: We use the complex addrmode_imm12 rather than just an input 1758 // GPR and a constrained immediate so that we can use this to match 1759 // frame index references and avoid matching constant pool references. 1760 def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt), 1761 (ins addrmode_imm12:$addr), 1762 AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr", 1763 [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> { 1764 bits<4> Rt; 1765 bits<17> addr; 1766 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1767 let Inst{19-16} = addr{16-13}; // Rn 1768 let Inst{15-12} = Rt; 1769 let Inst{11-0} = addr{11-0}; // imm12 1770 } 1771 def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt), 1772 (ins ldst_so_reg:$shift), 1773 AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift", 1774 [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> { 1775 bits<4> Rt; 1776 bits<17> shift; 1777 let shift{4} = 0; // Inst{4} = 0 1778 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1779 let Inst{19-16} = shift{16-13}; // Rn 1780 let Inst{15-12} = Rt; 1781 let Inst{11-0} = shift{11-0}; 1782 } 1783 } 1784 } 1785 1786 1787 multiclass AI_str1<bit isByte, string opc, InstrItinClass iii, 1788 InstrItinClass iir, PatFrag opnode> { 1789 // Note: We use the complex addrmode_imm12 rather than just an input 1790 // GPR and a constrained immediate so that we can use this to match 1791 // frame index references and avoid matching constant pool references. 1792 def i12 : AI2ldst<0b010, 0, isByte, (outs), 1793 (ins GPR:$Rt, addrmode_imm12:$addr), 1794 AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr", 1795 [(opnode GPR:$Rt, addrmode_imm12:$addr)]> { 1796 bits<4> Rt; 1797 bits<17> addr; 1798 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1799 let Inst{19-16} = addr{16-13}; // Rn 1800 let Inst{15-12} = Rt; 1801 let Inst{11-0} = addr{11-0}; // imm12 1802 } 1803 def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift), 1804 AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift", 1805 [(opnode GPR:$Rt, ldst_so_reg:$shift)]> { 1806 bits<4> Rt; 1807 bits<17> shift; 1808 let shift{4} = 0; // Inst{4} = 0 1809 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1810 let Inst{19-16} = shift{16-13}; // Rn 1811 let Inst{15-12} = Rt; 1812 let Inst{11-0} = shift{11-0}; 1813 } 1814 } 1815 1816 multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii, 1817 InstrItinClass iir, PatFrag opnode> { 1818 // Note: We use the complex addrmode_imm12 rather than just an input 1819 // GPR and a constrained immediate so that we can use this to match 1820 // frame index references and avoid matching constant pool references. 1821 def i12 : AI2ldst<0b010, 0, isByte, (outs), 1822 (ins GPRnopc:$Rt, addrmode_imm12:$addr), 1823 AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr", 1824 [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> { 1825 bits<4> Rt; 1826 bits<17> addr; 1827 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1828 let Inst{19-16} = addr{16-13}; // Rn 1829 let Inst{15-12} = Rt; 1830 let Inst{11-0} = addr{11-0}; // imm12 1831 } 1832 def rs : AI2ldst<0b011, 0, isByte, (outs), 1833 (ins GPRnopc:$Rt, ldst_so_reg:$shift), 1834 AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift", 1835 [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> { 1836 bits<4> Rt; 1837 bits<17> shift; 1838 let shift{4} = 0; // Inst{4} = 0 1839 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1840 let Inst{19-16} = shift{16-13}; // Rn 1841 let Inst{15-12} = Rt; 1842 let Inst{11-0} = shift{11-0}; 1843 } 1844 } 1845 1846 1847 //===----------------------------------------------------------------------===// 1848 // Instructions 1849 //===----------------------------------------------------------------------===// 1850 1851 //===----------------------------------------------------------------------===// 1852 // Miscellaneous Instructions. 1853 // 1854 1855 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in 1856 /// the function. The first operand is the ID# for this instruction, the second 1857 /// is the index into the MachineConstantPool that this is, the third is the 1858 /// size in bytes of this constant pool entry. 1859 let hasSideEffects = 0, isNotDuplicable = 1 in 1860 def CONSTPOOL_ENTRY : 1861 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1862 i32imm:$size), NoItinerary, []>; 1863 1864 /// A jumptable consisting of direct 32-bit addresses of the destination basic 1865 /// blocks (either absolute, or relative to the start of the jump-table in PIC 1866 /// mode). Used mostly in ARM and Thumb-1 modes. 1867 def JUMPTABLE_ADDRS : 1868 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1869 i32imm:$size), NoItinerary, []>; 1870 1871 /// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables 1872 /// that cannot be optimised to use TBB or TBH. 1873 def JUMPTABLE_INSTS : 1874 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1875 i32imm:$size), NoItinerary, []>; 1876 1877 /// A jumptable consisting of 8-bit unsigned integers representing offsets from 1878 /// a TBB instruction. 1879 def JUMPTABLE_TBB : 1880 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1881 i32imm:$size), NoItinerary, []>; 1882 1883 /// A jumptable consisting of 16-bit unsigned integers representing offsets from 1884 /// a TBH instruction. 1885 def JUMPTABLE_TBH : 1886 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1887 i32imm:$size), NoItinerary, []>; 1888 1889 1890 // FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE 1891 // from removing one half of the matched pairs. That breaks PEI, which assumes 1892 // these will always be in pairs, and asserts if it finds otherwise. Better way? 1893 let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { 1894 def ADJCALLSTACKUP : 1895 PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary, 1896 [(ARMcallseq_end timm:$amt1, timm:$amt2)]>; 1897 1898 def ADJCALLSTACKDOWN : 1899 PseudoInst<(outs), (ins i32imm:$amt, pred:$p), NoItinerary, 1900 [(ARMcallseq_start timm:$amt)]>; 1901 } 1902 1903 def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary, 1904 "hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>, 1905 Requires<[IsARM, HasV6]> { 1906 bits<8> imm; 1907 let Inst{27-8} = 0b00110010000011110000; 1908 let Inst{7-0} = imm; 1909 let DecoderMethod = "DecodeHINTInstruction"; 1910 } 1911 1912 def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>; 1913 def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>; 1914 def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>; 1915 def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>; 1916 def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>; 1917 def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>; 1918 def : InstAlias<"esb$p", (HINT 16, pred:$p)>, Requires<[IsARM, HasRAS]>; 1919 1920 def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel", 1921 "\t$Rd, $Rn, $Rm", []>, Requires<[IsARM, HasV6]> { 1922 bits<4> Rd; 1923 bits<4> Rn; 1924 bits<4> Rm; 1925 let Inst{3-0} = Rm; 1926 let Inst{15-12} = Rd; 1927 let Inst{19-16} = Rn; 1928 let Inst{27-20} = 0b01101000; 1929 let Inst{7-4} = 0b1011; 1930 let Inst{11-8} = 0b1111; 1931 let Unpredictable{11-8} = 0b1111; 1932 } 1933 1934 // The 16-bit operand $val can be used by a debugger to store more information 1935 // about the breakpoint. 1936 def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary, 1937 "bkpt", "\t$val", []>, Requires<[IsARM]> { 1938 bits<16> val; 1939 let Inst{3-0} = val{3-0}; 1940 let Inst{19-8} = val{15-4}; 1941 let Inst{27-20} = 0b00010010; 1942 let Inst{31-28} = 0xe; // AL 1943 let Inst{7-4} = 0b0111; 1944 } 1945 // default immediate for breakpoint mnemonic 1946 def : InstAlias<"bkpt", (BKPT 0), 0>, Requires<[IsARM]>; 1947 1948 def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary, 1949 "hlt", "\t$val", []>, Requires<[IsARM, HasV8]> { 1950 bits<16> val; 1951 let Inst{3-0} = val{3-0}; 1952 let Inst{19-8} = val{15-4}; 1953 let Inst{27-20} = 0b00010000; 1954 let Inst{31-28} = 0xe; // AL 1955 let Inst{7-4} = 0b0111; 1956 } 1957 1958 // Change Processor State 1959 // FIXME: We should use InstAlias to handle the optional operands. 1960 class CPS<dag iops, string asm_ops> 1961 : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops), 1962 []>, Requires<[IsARM]> { 1963 bits<2> imod; 1964 bits<3> iflags; 1965 bits<5> mode; 1966 bit M; 1967 1968 let Inst{31-28} = 0b1111; 1969 let Inst{27-20} = 0b00010000; 1970 let Inst{19-18} = imod; 1971 let Inst{17} = M; // Enabled if mode is set; 1972 let Inst{16-9} = 0b00000000; 1973 let Inst{8-6} = iflags; 1974 let Inst{5} = 0; 1975 let Inst{4-0} = mode; 1976 } 1977 1978 let DecoderMethod = "DecodeCPSInstruction" in { 1979 let M = 1 in 1980 def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode), 1981 "$imod\t$iflags, $mode">; 1982 let mode = 0, M = 0 in 1983 def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">; 1984 1985 let imod = 0, iflags = 0, M = 1 in 1986 def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">; 1987 } 1988 1989 // Preload signals the memory system of possible future data/instruction access. 1990 multiclass APreLoad<bits<1> read, bits<1> data, string opc> { 1991 1992 def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm, 1993 IIC_Preload, !strconcat(opc, "\t$addr"), 1994 [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>, 1995 Sched<[WritePreLd]> { 1996 bits<4> Rt; 1997 bits<17> addr; 1998 let Inst{31-26} = 0b111101; 1999 let Inst{25} = 0; // 0 for immediate form 2000 let Inst{24} = data; 2001 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2002 let Inst{22} = read; 2003 let Inst{21-20} = 0b01; 2004 let Inst{19-16} = addr{16-13}; // Rn 2005 let Inst{15-12} = 0b1111; 2006 let Inst{11-0} = addr{11-0}; // imm12 2007 } 2008 2009 def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload, 2010 !strconcat(opc, "\t$shift"), 2011 [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>, 2012 Sched<[WritePreLd]> { 2013 bits<17> shift; 2014 let Inst{31-26} = 0b111101; 2015 let Inst{25} = 1; // 1 for register form 2016 let Inst{24} = data; 2017 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 2018 let Inst{22} = read; 2019 let Inst{21-20} = 0b01; 2020 let Inst{19-16} = shift{16-13}; // Rn 2021 let Inst{15-12} = 0b1111; 2022 let Inst{11-0} = shift{11-0}; 2023 let Inst{4} = 0; 2024 } 2025 } 2026 2027 defm PLD : APreLoad<1, 1, "pld">, Requires<[IsARM]>; 2028 defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>; 2029 defm PLI : APreLoad<1, 0, "pli">, Requires<[IsARM,HasV7]>; 2030 2031 def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary, 2032 "setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> { 2033 bits<1> end; 2034 let Inst{31-10} = 0b1111000100000001000000; 2035 let Inst{9} = end; 2036 let Inst{8-0} = 0; 2037 } 2038 2039 def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt", 2040 [(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> { 2041 bits<4> opt; 2042 let Inst{27-4} = 0b001100100000111100001111; 2043 let Inst{3-0} = opt; 2044 } 2045 2046 // A8.8.247 UDF - Undefined (Encoding A1) 2047 def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary, 2048 "udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> { 2049 bits<16> imm16; 2050 let Inst{31-28} = 0b1110; // AL 2051 let Inst{27-25} = 0b011; 2052 let Inst{24-20} = 0b11111; 2053 let Inst{19-8} = imm16{15-4}; 2054 let Inst{7-4} = 0b1111; 2055 let Inst{3-0} = imm16{3-0}; 2056 } 2057 2058 /* 2059 * A5.4 Permanently UNDEFINED instructions. 2060 * 2061 * For most targets use UDF #65006, for which the OS will generate SIGTRAP. 2062 * Other UDF encodings generate SIGILL. 2063 * 2064 * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb. 2065 * Encoding A1: 2066 * 1110 0111 1111 iiii iiii iiii 1111 iiii 2067 * Encoding T1: 2068 * 1101 1110 iiii iiii 2069 * It uses the following encoding: 2070 * 1110 0111 1111 1110 1101 1110 1111 0000 2071 * - In ARM: UDF #60896; 2072 * - In Thumb: UDF #254 followed by a branch-to-self. 2073 */ 2074 let isBarrier = 1, isTerminator = 1 in 2075 def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary, 2076 "trap", [(trap)]>, 2077 Requires<[IsARM,UseNaClTrap]> { 2078 let Inst = 0xe7fedef0; 2079 } 2080 let isBarrier = 1, isTerminator = 1 in 2081 def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary, 2082 "trap", [(trap)]>, 2083 Requires<[IsARM,DontUseNaClTrap]> { 2084 let Inst = 0xe7ffdefe; 2085 } 2086 2087 // Address computation and loads and stores in PIC mode. 2088 let isNotDuplicable = 1 in { 2089 def PICADD : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p), 2090 4, IIC_iALUr, 2091 [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>, 2092 Sched<[WriteALU, ReadALU]>; 2093 2094 let AddedComplexity = 10 in { 2095 def PICLDR : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), 2096 4, IIC_iLoad_r, 2097 [(set GPR:$dst, (load addrmodepc:$addr))]>; 2098 2099 def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 2100 4, IIC_iLoad_bh_r, 2101 [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>; 2102 2103 def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 2104 4, IIC_iLoad_bh_r, 2105 [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>; 2106 2107 def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 2108 4, IIC_iLoad_bh_r, 2109 [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>; 2110 2111 def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 2112 4, IIC_iLoad_bh_r, 2113 [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>; 2114 } 2115 let AddedComplexity = 10 in { 2116 def PICSTR : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 2117 4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>; 2118 2119 def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 2120 4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src, 2121 addrmodepc:$addr)]>; 2122 2123 def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 2124 4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>; 2125 } 2126 } // isNotDuplicable = 1 2127 2128 2129 // LEApcrel - Load a pc-relative address into a register without offending the 2130 // assembler. 2131 let hasSideEffects = 0, isReMaterializable = 1 in 2132 // The 'adr' mnemonic encodes differently if the label is before or after 2133 // the instruction. The {24-21} opcode bits are set by the fixup, as we don't 2134 // know until then which form of the instruction will be used. 2135 def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label), 2136 MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>, 2137 Sched<[WriteALU, ReadALU]> { 2138 bits<4> Rd; 2139 bits<14> label; 2140 let Inst{27-25} = 0b001; 2141 let Inst{24} = 0; 2142 let Inst{23-22} = label{13-12}; 2143 let Inst{21} = 0; 2144 let Inst{20} = 0; 2145 let Inst{19-16} = 0b1111; 2146 let Inst{15-12} = Rd; 2147 let Inst{11-0} = label{11-0}; 2148 } 2149 2150 let hasSideEffects = 1 in { 2151 def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p), 2152 4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>; 2153 2154 def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd), 2155 (ins i32imm:$label, pred:$p), 2156 4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>; 2157 } 2158 2159 //===----------------------------------------------------------------------===// 2160 // Control Flow Instructions. 2161 // 2162 2163 let isReturn = 1, isTerminator = 1, isBarrier = 1 in { 2164 // ARMV4T and above 2165 def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br, 2166 "bx", "\tlr", [(ARMretflag)]>, 2167 Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> { 2168 let Inst{27-0} = 0b0001001011111111111100011110; 2169 } 2170 2171 // ARMV4 only 2172 def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br, 2173 "mov", "\tpc, lr", [(ARMretflag)]>, 2174 Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> { 2175 let Inst{27-0} = 0b0001101000001111000000001110; 2176 } 2177 2178 // Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets 2179 // the user-space one). 2180 def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p), 2181 4, IIC_Br, 2182 [(ARMintretflag imm:$offset)]>; 2183 } 2184 2185 // Indirect branches 2186 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 2187 // ARMV4T and above 2188 def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst", 2189 [(brind GPR:$dst)]>, 2190 Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> { 2191 bits<4> dst; 2192 let Inst{31-4} = 0b1110000100101111111111110001; 2193 let Inst{3-0} = dst; 2194 } 2195 2196 def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, 2197 "bx", "\t$dst", [/* pattern left blank */]>, 2198 Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> { 2199 bits<4> dst; 2200 let Inst{27-4} = 0b000100101111111111110001; 2201 let Inst{3-0} = dst; 2202 } 2203 } 2204 2205 // SP is marked as a use to prevent stack-pointer assignments that appear 2206 // immediately before calls from potentially appearing dead. 2207 let isCall = 1, 2208 // FIXME: Do we really need a non-predicated version? If so, it should 2209 // at least be a pseudo instruction expanding to the predicated version 2210 // at MC lowering time. 2211 Defs = [LR], Uses = [SP] in { 2212 def BL : ABXI<0b1011, (outs), (ins arm_bl_target:$func), 2213 IIC_Br, "bl\t$func", 2214 [(ARMcall tglobaladdr:$func)]>, 2215 Requires<[IsARM]>, Sched<[WriteBrL]> { 2216 let Inst{31-28} = 0b1110; 2217 bits<24> func; 2218 let Inst{23-0} = func; 2219 let DecoderMethod = "DecodeBranchImmInstruction"; 2220 } 2221 2222 def BL_pred : ABI<0b1011, (outs), (ins arm_bl_target:$func), 2223 IIC_Br, "bl", "\t$func", 2224 [(ARMcall_pred tglobaladdr:$func)]>, 2225 Requires<[IsARM]>, Sched<[WriteBrL]> { 2226 bits<24> func; 2227 let Inst{23-0} = func; 2228 let DecoderMethod = "DecodeBranchImmInstruction"; 2229 } 2230 2231 // ARMv5T and above 2232 def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm, 2233 IIC_Br, "blx\t$func", 2234 [(ARMcall GPR:$func)]>, 2235 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> { 2236 bits<4> func; 2237 let Inst{31-4} = 0b1110000100101111111111110011; 2238 let Inst{3-0} = func; 2239 } 2240 2241 def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm, 2242 IIC_Br, "blx", "\t$func", 2243 [(ARMcall_pred GPR:$func)]>, 2244 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> { 2245 bits<4> func; 2246 let Inst{27-4} = 0b000100101111111111110011; 2247 let Inst{3-0} = func; 2248 } 2249 2250 // ARMv4T 2251 // Note: Restrict $func to the tGPR regclass to prevent it being in LR. 2252 def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func), 2253 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, 2254 Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>; 2255 2256 // ARMv4 2257 def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func), 2258 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, 2259 Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>; 2260 2261 // mov lr, pc; b if callee is marked noreturn to avoid confusing the 2262 // return stack predictor. 2263 def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins arm_bl_target:$func), 2264 8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>, 2265 Requires<[IsARM]>, Sched<[WriteBr]>; 2266 } 2267 2268 let isBranch = 1, isTerminator = 1 in { 2269 // FIXME: should be able to write a pattern for ARMBrcond, but can't use 2270 // a two-value operand where a dag node expects two operands. :( 2271 def Bcc : ABI<0b1010, (outs), (ins arm_br_target:$target), 2272 IIC_Br, "b", "\t$target", 2273 [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>, 2274 Sched<[WriteBr]> { 2275 bits<24> target; 2276 let Inst{23-0} = target; 2277 let DecoderMethod = "DecodeBranchImmInstruction"; 2278 } 2279 2280 let isBarrier = 1 in { 2281 // B is "predicable" since it's just a Bcc with an 'always' condition. 2282 let isPredicable = 1 in 2283 // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly 2284 // should be sufficient. 2285 // FIXME: Is B really a Barrier? That doesn't seem right. 2286 def B : ARMPseudoExpand<(outs), (ins arm_br_target:$target), 4, IIC_Br, 2287 [(br bb:$target)], (Bcc arm_br_target:$target, 2288 (ops 14, zero_reg))>, 2289 Sched<[WriteBr]>; 2290 2291 let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in { 2292 def BR_JTr : ARMPseudoInst<(outs), 2293 (ins GPR:$target, i32imm:$jt), 2294 0, IIC_Br, 2295 [(ARMbrjt GPR:$target, tjumptable:$jt)]>, 2296 Sched<[WriteBr]>; 2297 // FIXME: This shouldn't use the generic "addrmode2," but rather be split 2298 // into i12 and rs suffixed versions. 2299 def BR_JTm : ARMPseudoInst<(outs), 2300 (ins addrmode2:$target, i32imm:$jt), 2301 0, IIC_Br, 2302 [(ARMbrjt (i32 (load addrmode2:$target)), 2303 tjumptable:$jt)]>, Sched<[WriteBrTbl]>; 2304 def BR_JTadd : ARMPseudoInst<(outs), 2305 (ins GPR:$target, GPR:$idx, i32imm:$jt), 2306 0, IIC_Br, 2307 [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>, 2308 Sched<[WriteBrTbl]>; 2309 } // isNotDuplicable = 1, isIndirectBranch = 1 2310 } // isBarrier = 1 2311 2312 } 2313 2314 // BLX (immediate) 2315 def BLXi : AXI<(outs), (ins arm_blx_target:$target), BrMiscFrm, NoItinerary, 2316 "blx\t$target", []>, 2317 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> { 2318 let Inst{31-25} = 0b1111101; 2319 bits<25> target; 2320 let Inst{23-0} = target{24-1}; 2321 let Inst{24} = target{0}; 2322 let isCall = 1; 2323 } 2324 2325 // Branch and Exchange Jazelle 2326 def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func", 2327 [/* pattern left blank */]>, Sched<[WriteBr]> { 2328 bits<4> func; 2329 let Inst{23-20} = 0b0010; 2330 let Inst{19-8} = 0xfff; 2331 let Inst{7-4} = 0b0010; 2332 let Inst{3-0} = func; 2333 let isBranch = 1; 2334 } 2335 2336 // Tail calls. 2337 2338 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in { 2339 def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst), IIC_Br, []>, 2340 Sched<[WriteBr]>; 2341 2342 def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst), IIC_Br, []>, 2343 Sched<[WriteBr]>; 2344 2345 def TAILJMPd : ARMPseudoExpand<(outs), (ins arm_br_target:$dst), 2346 4, IIC_Br, [], 2347 (Bcc arm_br_target:$dst, (ops 14, zero_reg))>, 2348 Requires<[IsARM]>, Sched<[WriteBr]>; 2349 2350 def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst), 2351 4, IIC_Br, [], 2352 (BX GPR:$dst)>, Sched<[WriteBr]>, 2353 Requires<[IsARM]>; 2354 } 2355 2356 // Secure Monitor Call is a system instruction. 2357 def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt", 2358 []>, Requires<[IsARM, HasTrustZone]> { 2359 bits<4> opt; 2360 let Inst{23-4} = 0b01100000000000000111; 2361 let Inst{3-0} = opt; 2362 } 2363 def : MnemonicAlias<"smi", "smc">; 2364 2365 // Supervisor Call (Software Interrupt) 2366 let isCall = 1, Uses = [SP] in { 2367 def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>, 2368 Sched<[WriteBr]> { 2369 bits<24> svc; 2370 let Inst{23-0} = svc; 2371 } 2372 } 2373 2374 // Store Return State 2375 class SRSI<bit wb, string asm> 2376 : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm, 2377 NoItinerary, asm, "", []> { 2378 bits<5> mode; 2379 let Inst{31-28} = 0b1111; 2380 let Inst{27-25} = 0b100; 2381 let Inst{22} = 1; 2382 let Inst{21} = wb; 2383 let Inst{20} = 0; 2384 let Inst{19-16} = 0b1101; // SP 2385 let Inst{15-5} = 0b00000101000; 2386 let Inst{4-0} = mode; 2387 } 2388 2389 def SRSDA : SRSI<0, "srsda\tsp, $mode"> { 2390 let Inst{24-23} = 0; 2391 } 2392 def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> { 2393 let Inst{24-23} = 0; 2394 } 2395 def SRSDB : SRSI<0, "srsdb\tsp, $mode"> { 2396 let Inst{24-23} = 0b10; 2397 } 2398 def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> { 2399 let Inst{24-23} = 0b10; 2400 } 2401 def SRSIA : SRSI<0, "srsia\tsp, $mode"> { 2402 let Inst{24-23} = 0b01; 2403 } 2404 def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> { 2405 let Inst{24-23} = 0b01; 2406 } 2407 def SRSIB : SRSI<0, "srsib\tsp, $mode"> { 2408 let Inst{24-23} = 0b11; 2409 } 2410 def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> { 2411 let Inst{24-23} = 0b11; 2412 } 2413 2414 def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>; 2415 def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>; 2416 2417 def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>; 2418 def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>; 2419 2420 def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>; 2421 def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>; 2422 2423 def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>; 2424 def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>; 2425 2426 // Return From Exception 2427 class RFEI<bit wb, string asm> 2428 : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm, 2429 NoItinerary, asm, "", []> { 2430 bits<4> Rn; 2431 let Inst{31-28} = 0b1111; 2432 let Inst{27-25} = 0b100; 2433 let Inst{22} = 0; 2434 let Inst{21} = wb; 2435 let Inst{20} = 1; 2436 let Inst{19-16} = Rn; 2437 let Inst{15-0} = 0xa00; 2438 } 2439 2440 def RFEDA : RFEI<0, "rfeda\t$Rn"> { 2441 let Inst{24-23} = 0; 2442 } 2443 def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> { 2444 let Inst{24-23} = 0; 2445 } 2446 def RFEDB : RFEI<0, "rfedb\t$Rn"> { 2447 let Inst{24-23} = 0b10; 2448 } 2449 def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> { 2450 let Inst{24-23} = 0b10; 2451 } 2452 def RFEIA : RFEI<0, "rfeia\t$Rn"> { 2453 let Inst{24-23} = 0b01; 2454 } 2455 def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> { 2456 let Inst{24-23} = 0b01; 2457 } 2458 def RFEIB : RFEI<0, "rfeib\t$Rn"> { 2459 let Inst{24-23} = 0b11; 2460 } 2461 def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> { 2462 let Inst{24-23} = 0b11; 2463 } 2464 2465 // Hypervisor Call is a system instruction 2466 let isCall = 1 in { 2467 def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary, 2468 "hvc", "\t$imm", []>, 2469 Requires<[IsARM, HasVirtualization]> { 2470 bits<16> imm; 2471 2472 // Even though HVC isn't predicable, it's encoding includes a condition field. 2473 // The instruction is undefined if the condition field is 0xf otherwise it is 2474 // unpredictable if it isn't condition AL (0xe). 2475 let Inst{31-28} = 0b1110; 2476 let Unpredictable{31-28} = 0b1111; 2477 let Inst{27-24} = 0b0001; 2478 let Inst{23-20} = 0b0100; 2479 let Inst{19-8} = imm{15-4}; 2480 let Inst{7-4} = 0b0111; 2481 let Inst{3-0} = imm{3-0}; 2482 } 2483 } 2484 2485 // Return from exception in Hypervisor mode. 2486 let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in 2487 def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>, 2488 Requires<[IsARM, HasVirtualization]> { 2489 let Inst{23-0} = 0b011000000000000001101110; 2490 } 2491 2492 //===----------------------------------------------------------------------===// 2493 // Load / Store Instructions. 2494 // 2495 2496 // Load 2497 2498 2499 defm LDR : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, load>; 2500 defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si, 2501 zextloadi8>; 2502 defm STR : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, store>; 2503 defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si, 2504 truncstorei8>; 2505 2506 // Special LDR for loads from non-pc-relative constpools. 2507 let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0, 2508 isReMaterializable = 1, isCodeGenOnly = 1 in 2509 def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr), 2510 AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr", 2511 []> { 2512 bits<4> Rt; 2513 bits<17> addr; 2514 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2515 let Inst{19-16} = 0b1111; 2516 let Inst{15-12} = Rt; 2517 let Inst{11-0} = addr{11-0}; // imm12 2518 } 2519 2520 // Loads with zero extension 2521 def LDRH : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, 2522 IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr", 2523 [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>; 2524 2525 // Loads with sign extension 2526 def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, 2527 IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr", 2528 [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>; 2529 2530 def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, 2531 IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr", 2532 [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>; 2533 2534 let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in { 2535 // Load doubleword 2536 def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr), 2537 LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>, 2538 Requires<[IsARM, HasV5TE]>; 2539 } 2540 2541 def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr), 2542 NoItinerary, "lda", "\t$Rt, $addr", []>; 2543 def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr), 2544 NoItinerary, "ldab", "\t$Rt, $addr", []>; 2545 def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr), 2546 NoItinerary, "ldah", "\t$Rt, $addr", []>; 2547 2548 // Indexed loads 2549 multiclass AI2_ldridx<bit isByte, string opc, 2550 InstrItinClass iii, InstrItinClass iir> { 2551 def _PRE_IMM : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb), 2552 (ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii, 2553 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2554 bits<17> addr; 2555 let Inst{25} = 0; 2556 let Inst{23} = addr{12}; 2557 let Inst{19-16} = addr{16-13}; 2558 let Inst{11-0} = addr{11-0}; 2559 let DecoderMethod = "DecodeLDRPreImm"; 2560 } 2561 2562 def _PRE_REG : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb), 2563 (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir, 2564 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2565 bits<17> addr; 2566 let Inst{25} = 1; 2567 let Inst{23} = addr{12}; 2568 let Inst{19-16} = addr{16-13}; 2569 let Inst{11-0} = addr{11-0}; 2570 let Inst{4} = 0; 2571 let DecoderMethod = "DecodeLDRPreReg"; 2572 } 2573 2574 def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2575 (ins addr_offset_none:$addr, am2offset_reg:$offset), 2576 IndexModePost, LdFrm, iir, 2577 opc, "\t$Rt, $addr, $offset", 2578 "$addr.base = $Rn_wb", []> { 2579 // {12} isAdd 2580 // {11-0} imm12/Rm 2581 bits<14> offset; 2582 bits<4> addr; 2583 let Inst{25} = 1; 2584 let Inst{23} = offset{12}; 2585 let Inst{19-16} = addr; 2586 let Inst{11-0} = offset{11-0}; 2587 let Inst{4} = 0; 2588 2589 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2590 } 2591 2592 def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2593 (ins addr_offset_none:$addr, am2offset_imm:$offset), 2594 IndexModePost, LdFrm, iii, 2595 opc, "\t$Rt, $addr, $offset", 2596 "$addr.base = $Rn_wb", []> { 2597 // {12} isAdd 2598 // {11-0} imm12/Rm 2599 bits<14> offset; 2600 bits<4> addr; 2601 let Inst{25} = 0; 2602 let Inst{23} = offset{12}; 2603 let Inst{19-16} = addr; 2604 let Inst{11-0} = offset{11-0}; 2605 2606 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2607 } 2608 2609 } 2610 2611 let mayLoad = 1, hasSideEffects = 0 in { 2612 // FIXME: for LDR_PRE_REG etc. the itineray should be either IIC_iLoad_ru or 2613 // IIC_iLoad_siu depending on whether it the offset register is shifted. 2614 defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>; 2615 defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>; 2616 } 2617 2618 multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> { 2619 def _PRE : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb), 2620 (ins addrmode3_pre:$addr), IndexModePre, 2621 LdMiscFrm, itin, 2622 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2623 bits<14> addr; 2624 let Inst{23} = addr{8}; // U bit 2625 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2626 let Inst{19-16} = addr{12-9}; // Rn 2627 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2628 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2629 let DecoderMethod = "DecodeAddrMode3Instruction"; 2630 } 2631 def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2632 (ins addr_offset_none:$addr, am3offset:$offset), 2633 IndexModePost, LdMiscFrm, itin, 2634 opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", 2635 []> { 2636 bits<10> offset; 2637 bits<4> addr; 2638 let Inst{23} = offset{8}; // U bit 2639 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2640 let Inst{19-16} = addr; 2641 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2642 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2643 let DecoderMethod = "DecodeAddrMode3Instruction"; 2644 } 2645 } 2646 2647 let mayLoad = 1, hasSideEffects = 0 in { 2648 defm LDRH : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>; 2649 defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>; 2650 defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>; 2651 let hasExtraDefRegAllocReq = 1 in { 2652 def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb), 2653 (ins addrmode3_pre:$addr), IndexModePre, 2654 LdMiscFrm, IIC_iLoad_d_ru, 2655 "ldrd", "\t$Rt, $Rt2, $addr!", 2656 "$addr.base = $Rn_wb", []> { 2657 bits<14> addr; 2658 let Inst{23} = addr{8}; // U bit 2659 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2660 let Inst{19-16} = addr{12-9}; // Rn 2661 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2662 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2663 let DecoderMethod = "DecodeAddrMode3Instruction"; 2664 } 2665 def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb), 2666 (ins addr_offset_none:$addr, am3offset:$offset), 2667 IndexModePost, LdMiscFrm, IIC_iLoad_d_ru, 2668 "ldrd", "\t$Rt, $Rt2, $addr, $offset", 2669 "$addr.base = $Rn_wb", []> { 2670 bits<10> offset; 2671 bits<4> addr; 2672 let Inst{23} = offset{8}; // U bit 2673 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2674 let Inst{19-16} = addr; 2675 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2676 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2677 let DecoderMethod = "DecodeAddrMode3Instruction"; 2678 } 2679 } // hasExtraDefRegAllocReq = 1 2680 } // mayLoad = 1, hasSideEffects = 0 2681 2682 // LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT. 2683 let mayLoad = 1, hasSideEffects = 0 in { 2684 def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2685 (ins addr_offset_none:$addr, am2offset_reg:$offset), 2686 IndexModePost, LdFrm, IIC_iLoad_ru, 2687 "ldrt", "\t$Rt, $addr, $offset", 2688 "$addr.base = $Rn_wb", []> { 2689 // {12} isAdd 2690 // {11-0} imm12/Rm 2691 bits<14> offset; 2692 bits<4> addr; 2693 let Inst{25} = 1; 2694 let Inst{23} = offset{12}; 2695 let Inst{21} = 1; // overwrite 2696 let Inst{19-16} = addr; 2697 let Inst{11-5} = offset{11-5}; 2698 let Inst{4} = 0; 2699 let Inst{3-0} = offset{3-0}; 2700 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2701 } 2702 2703 def LDRT_POST_IMM 2704 : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2705 (ins addr_offset_none:$addr, am2offset_imm:$offset), 2706 IndexModePost, LdFrm, IIC_iLoad_ru, 2707 "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { 2708 // {12} isAdd 2709 // {11-0} imm12/Rm 2710 bits<14> offset; 2711 bits<4> addr; 2712 let Inst{25} = 0; 2713 let Inst{23} = offset{12}; 2714 let Inst{21} = 1; // overwrite 2715 let Inst{19-16} = addr; 2716 let Inst{11-0} = offset{11-0}; 2717 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2718 } 2719 2720 def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2721 (ins addr_offset_none:$addr, am2offset_reg:$offset), 2722 IndexModePost, LdFrm, IIC_iLoad_bh_ru, 2723 "ldrbt", "\t$Rt, $addr, $offset", 2724 "$addr.base = $Rn_wb", []> { 2725 // {12} isAdd 2726 // {11-0} imm12/Rm 2727 bits<14> offset; 2728 bits<4> addr; 2729 let Inst{25} = 1; 2730 let Inst{23} = offset{12}; 2731 let Inst{21} = 1; // overwrite 2732 let Inst{19-16} = addr; 2733 let Inst{11-5} = offset{11-5}; 2734 let Inst{4} = 0; 2735 let Inst{3-0} = offset{3-0}; 2736 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2737 } 2738 2739 def LDRBT_POST_IMM 2740 : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2741 (ins addr_offset_none:$addr, am2offset_imm:$offset), 2742 IndexModePost, LdFrm, IIC_iLoad_bh_ru, 2743 "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { 2744 // {12} isAdd 2745 // {11-0} imm12/Rm 2746 bits<14> offset; 2747 bits<4> addr; 2748 let Inst{25} = 0; 2749 let Inst{23} = offset{12}; 2750 let Inst{21} = 1; // overwrite 2751 let Inst{19-16} = addr; 2752 let Inst{11-0} = offset{11-0}; 2753 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2754 } 2755 2756 multiclass AI3ldrT<bits<4> op, string opc> { 2757 def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb), 2758 (ins addr_offset_none:$addr, postidx_imm8:$offset), 2759 IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc, 2760 "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> { 2761 bits<9> offset; 2762 let Inst{23} = offset{8}; 2763 let Inst{22} = 1; 2764 let Inst{11-8} = offset{7-4}; 2765 let Inst{3-0} = offset{3-0}; 2766 } 2767 def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb), 2768 (ins addr_offset_none:$addr, postidx_reg:$Rm), 2769 IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc, 2770 "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> { 2771 bits<5> Rm; 2772 let Inst{23} = Rm{4}; 2773 let Inst{22} = 0; 2774 let Inst{11-8} = 0; 2775 let Unpredictable{11-8} = 0b1111; 2776 let Inst{3-0} = Rm{3-0}; 2777 let DecoderMethod = "DecodeLDR"; 2778 } 2779 } 2780 2781 defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">; 2782 defm LDRHT : AI3ldrT<0b1011, "ldrht">; 2783 defm LDRSHT : AI3ldrT<0b1111, "ldrsht">; 2784 } 2785 2786 def LDRT_POST 2787 : ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q), 2788 (outs GPR:$Rt)>; 2789 2790 def LDRBT_POST 2791 : ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q), 2792 (outs GPR:$Rt)>; 2793 2794 // Pseudo instruction ldr Rt, =immediate 2795 def LDRConstPool 2796 : ARMAsmPseudo<"ldr${q} $Rt, $immediate", 2797 (ins const_pool_asm_imm:$immediate, pred:$q), 2798 (outs GPR:$Rt)>; 2799 2800 // Store 2801 2802 // Stores with truncate 2803 def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm, 2804 IIC_iStore_bh_r, "strh", "\t$Rt, $addr", 2805 [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>; 2806 2807 // Store doubleword 2808 let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in { 2809 def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr), 2810 StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>, 2811 Requires<[IsARM, HasV5TE]> { 2812 let Inst{21} = 0; 2813 } 2814 } 2815 2816 // Indexed stores 2817 multiclass AI2_stridx<bit isByte, string opc, 2818 InstrItinClass iii, InstrItinClass iir> { 2819 def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb), 2820 (ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre, 2821 StFrm, iii, 2822 opc, "\t$Rt, $addr!", 2823 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { 2824 bits<17> addr; 2825 let Inst{25} = 0; 2826 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2827 let Inst{19-16} = addr{16-13}; // Rn 2828 let Inst{11-0} = addr{11-0}; // imm12 2829 let DecoderMethod = "DecodeSTRPreImm"; 2830 } 2831 2832 def _PRE_REG : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb), 2833 (ins GPR:$Rt, ldst_so_reg:$addr), 2834 IndexModePre, StFrm, iir, 2835 opc, "\t$Rt, $addr!", 2836 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { 2837 bits<17> addr; 2838 let Inst{25} = 1; 2839 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2840 let Inst{19-16} = addr{16-13}; // Rn 2841 let Inst{11-0} = addr{11-0}; 2842 let Inst{4} = 0; // Inst{4} = 0 2843 let DecoderMethod = "DecodeSTRPreReg"; 2844 } 2845 def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb), 2846 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), 2847 IndexModePost, StFrm, iir, 2848 opc, "\t$Rt, $addr, $offset", 2849 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { 2850 // {12} isAdd 2851 // {11-0} imm12/Rm 2852 bits<14> offset; 2853 bits<4> addr; 2854 let Inst{25} = 1; 2855 let Inst{23} = offset{12}; 2856 let Inst{19-16} = addr; 2857 let Inst{11-0} = offset{11-0}; 2858 let Inst{4} = 0; 2859 2860 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2861 } 2862 2863 def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb), 2864 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), 2865 IndexModePost, StFrm, iii, 2866 opc, "\t$Rt, $addr, $offset", 2867 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { 2868 // {12} isAdd 2869 // {11-0} imm12/Rm 2870 bits<14> offset; 2871 bits<4> addr; 2872 let Inst{25} = 0; 2873 let Inst{23} = offset{12}; 2874 let Inst{19-16} = addr; 2875 let Inst{11-0} = offset{11-0}; 2876 2877 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2878 } 2879 } 2880 2881 let mayStore = 1, hasSideEffects = 0 in { 2882 // FIXME: for STR_PRE_REG etc. the itineray should be either IIC_iStore_ru or 2883 // IIC_iStore_siu depending on whether it the offset register is shifted. 2884 defm STR : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>; 2885 defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>; 2886 } 2887 2888 def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr, 2889 am2offset_reg:$offset), 2890 (STR_POST_REG GPR:$Rt, addr_offset_none:$addr, 2891 am2offset_reg:$offset)>; 2892 def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr, 2893 am2offset_imm:$offset), 2894 (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr, 2895 am2offset_imm:$offset)>; 2896 def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr, 2897 am2offset_reg:$offset), 2898 (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr, 2899 am2offset_reg:$offset)>; 2900 def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr, 2901 am2offset_imm:$offset), 2902 (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr, 2903 am2offset_imm:$offset)>; 2904 2905 // Pseudo-instructions for pattern matching the pre-indexed stores. We can't 2906 // put the patterns on the instruction definitions directly as ISel wants 2907 // the address base and offset to be separate operands, not a single 2908 // complex operand like we represent the instructions themselves. The 2909 // pseudos map between the two. 2910 let usesCustomInserter = 1, 2911 Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in { 2912 def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2913 (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p), 2914 4, IIC_iStore_ru, 2915 [(set GPR:$Rn_wb, 2916 (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>; 2917 def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2918 (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p), 2919 4, IIC_iStore_ru, 2920 [(set GPR:$Rn_wb, 2921 (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>; 2922 def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2923 (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p), 2924 4, IIC_iStore_ru, 2925 [(set GPR:$Rn_wb, 2926 (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>; 2927 def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2928 (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p), 2929 4, IIC_iStore_ru, 2930 [(set GPR:$Rn_wb, 2931 (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>; 2932 def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2933 (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p), 2934 4, IIC_iStore_ru, 2935 [(set GPR:$Rn_wb, 2936 (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>; 2937 } 2938 2939 2940 2941 def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb), 2942 (ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre, 2943 StMiscFrm, IIC_iStore_bh_ru, 2944 "strh", "\t$Rt, $addr!", 2945 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { 2946 bits<14> addr; 2947 let Inst{23} = addr{8}; // U bit 2948 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2949 let Inst{19-16} = addr{12-9}; // Rn 2950 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2951 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2952 let DecoderMethod = "DecodeAddrMode3Instruction"; 2953 } 2954 2955 def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb), 2956 (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset), 2957 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, 2958 "strh", "\t$Rt, $addr, $offset", 2959 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", 2960 [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt, 2961 addr_offset_none:$addr, 2962 am3offset:$offset))]> { 2963 bits<10> offset; 2964 bits<4> addr; 2965 let Inst{23} = offset{8}; // U bit 2966 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2967 let Inst{19-16} = addr; 2968 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2969 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2970 let DecoderMethod = "DecodeAddrMode3Instruction"; 2971 } 2972 2973 let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in { 2974 def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb), 2975 (ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr), 2976 IndexModePre, StMiscFrm, IIC_iStore_d_ru, 2977 "strd", "\t$Rt, $Rt2, $addr!", 2978 "$addr.base = $Rn_wb", []> { 2979 bits<14> addr; 2980 let Inst{23} = addr{8}; // U bit 2981 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2982 let Inst{19-16} = addr{12-9}; // Rn 2983 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2984 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2985 let DecoderMethod = "DecodeAddrMode3Instruction"; 2986 } 2987 2988 def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb), 2989 (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr, 2990 am3offset:$offset), 2991 IndexModePost, StMiscFrm, IIC_iStore_d_ru, 2992 "strd", "\t$Rt, $Rt2, $addr, $offset", 2993 "$addr.base = $Rn_wb", []> { 2994 bits<10> offset; 2995 bits<4> addr; 2996 let Inst{23} = offset{8}; // U bit 2997 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2998 let Inst{19-16} = addr; 2999 let Inst{11-8} = offset{7-4}; // imm7_4/zero 3000 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 3001 let DecoderMethod = "DecodeAddrMode3Instruction"; 3002 } 3003 } // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 3004 3005 // STRT, STRBT, and STRHT 3006 3007 def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb), 3008 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), 3009 IndexModePost, StFrm, IIC_iStore_bh_ru, 3010 "strbt", "\t$Rt, $addr, $offset", 3011 "$addr.base = $Rn_wb", []> { 3012 // {12} isAdd 3013 // {11-0} imm12/Rm 3014 bits<14> offset; 3015 bits<4> addr; 3016 let Inst{25} = 1; 3017 let Inst{23} = offset{12}; 3018 let Inst{21} = 1; // overwrite 3019 let Inst{19-16} = addr; 3020 let Inst{11-5} = offset{11-5}; 3021 let Inst{4} = 0; 3022 let Inst{3-0} = offset{3-0}; 3023 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 3024 } 3025 3026 def STRBT_POST_IMM 3027 : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb), 3028 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), 3029 IndexModePost, StFrm, IIC_iStore_bh_ru, 3030 "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { 3031 // {12} isAdd 3032 // {11-0} imm12/Rm 3033 bits<14> offset; 3034 bits<4> addr; 3035 let Inst{25} = 0; 3036 let Inst{23} = offset{12}; 3037 let Inst{21} = 1; // overwrite 3038 let Inst{19-16} = addr; 3039 let Inst{11-0} = offset{11-0}; 3040 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 3041 } 3042 3043 def STRBT_POST 3044 : ARMAsmPseudo<"strbt${q} $Rt, $addr", 3045 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>; 3046 3047 let mayStore = 1, hasSideEffects = 0 in { 3048 def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb), 3049 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), 3050 IndexModePost, StFrm, IIC_iStore_ru, 3051 "strt", "\t$Rt, $addr, $offset", 3052 "$addr.base = $Rn_wb", []> { 3053 // {12} isAdd 3054 // {11-0} imm12/Rm 3055 bits<14> offset; 3056 bits<4> addr; 3057 let Inst{25} = 1; 3058 let Inst{23} = offset{12}; 3059 let Inst{21} = 1; // overwrite 3060 let Inst{19-16} = addr; 3061 let Inst{11-5} = offset{11-5}; 3062 let Inst{4} = 0; 3063 let Inst{3-0} = offset{3-0}; 3064 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 3065 } 3066 3067 def STRT_POST_IMM 3068 : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb), 3069 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), 3070 IndexModePost, StFrm, IIC_iStore_ru, 3071 "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { 3072 // {12} isAdd 3073 // {11-0} imm12/Rm 3074 bits<14> offset; 3075 bits<4> addr; 3076 let Inst{25} = 0; 3077 let Inst{23} = offset{12}; 3078 let Inst{21} = 1; // overwrite 3079 let Inst{19-16} = addr; 3080 let Inst{11-0} = offset{11-0}; 3081 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 3082 } 3083 } 3084 3085 def STRT_POST 3086 : ARMAsmPseudo<"strt${q} $Rt, $addr", 3087 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>; 3088 3089 multiclass AI3strT<bits<4> op, string opc> { 3090 def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb), 3091 (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset), 3092 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc, 3093 "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> { 3094 bits<9> offset; 3095 let Inst{23} = offset{8}; 3096 let Inst{22} = 1; 3097 let Inst{11-8} = offset{7-4}; 3098 let Inst{3-0} = offset{3-0}; 3099 } 3100 def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb), 3101 (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm), 3102 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc, 3103 "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> { 3104 bits<5> Rm; 3105 let Inst{23} = Rm{4}; 3106 let Inst{22} = 0; 3107 let Inst{11-8} = 0; 3108 let Inst{3-0} = Rm{3-0}; 3109 } 3110 } 3111 3112 3113 defm STRHT : AI3strT<0b1011, "strht">; 3114 3115 def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr), 3116 NoItinerary, "stl", "\t$Rt, $addr", []>; 3117 def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr), 3118 NoItinerary, "stlb", "\t$Rt, $addr", []>; 3119 def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr), 3120 NoItinerary, "stlh", "\t$Rt, $addr", []>; 3121 3122 //===----------------------------------------------------------------------===// 3123 // Load / store multiple Instructions. 3124 // 3125 3126 multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f, 3127 InstrItinClass itin, InstrItinClass itin_upd> { 3128 // IA is the default, so no need for an explicit suffix on the 3129 // mnemonic here. Without it is the canonical spelling. 3130 def IA : 3131 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 3132 IndexModeNone, f, itin, 3133 !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> { 3134 let Inst{24-23} = 0b01; // Increment After 3135 let Inst{22} = P_bit; 3136 let Inst{21} = 0; // No writeback 3137 let Inst{20} = L_bit; 3138 } 3139 def IA_UPD : 3140 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 3141 IndexModeUpd, f, itin_upd, 3142 !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { 3143 let Inst{24-23} = 0b01; // Increment After 3144 let Inst{22} = P_bit; 3145 let Inst{21} = 1; // Writeback 3146 let Inst{20} = L_bit; 3147 3148 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 3149 } 3150 def DA : 3151 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 3152 IndexModeNone, f, itin, 3153 !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> { 3154 let Inst{24-23} = 0b00; // Decrement After 3155 let Inst{22} = P_bit; 3156 let Inst{21} = 0; // No writeback 3157 let Inst{20} = L_bit; 3158 } 3159 def DA_UPD : 3160 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 3161 IndexModeUpd, f, itin_upd, 3162 !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { 3163 let Inst{24-23} = 0b00; // Decrement After 3164 let Inst{22} = P_bit; 3165 let Inst{21} = 1; // Writeback 3166 let Inst{20} = L_bit; 3167 3168 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 3169 } 3170 def DB : 3171 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 3172 IndexModeNone, f, itin, 3173 !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> { 3174 let Inst{24-23} = 0b10; // Decrement Before 3175 let Inst{22} = P_bit; 3176 let Inst{21} = 0; // No writeback 3177 let Inst{20} = L_bit; 3178 } 3179 def DB_UPD : 3180 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 3181 IndexModeUpd, f, itin_upd, 3182 !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { 3183 let Inst{24-23} = 0b10; // Decrement Before 3184 let Inst{22} = P_bit; 3185 let Inst{21} = 1; // Writeback 3186 let Inst{20} = L_bit; 3187 3188 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 3189 } 3190 def IB : 3191 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 3192 IndexModeNone, f, itin, 3193 !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> { 3194 let Inst{24-23} = 0b11; // Increment Before 3195 let Inst{22} = P_bit; 3196 let Inst{21} = 0; // No writeback 3197 let Inst{20} = L_bit; 3198 } 3199 def IB_UPD : 3200 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 3201 IndexModeUpd, f, itin_upd, 3202 !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { 3203 let Inst{24-23} = 0b11; // Increment Before 3204 let Inst{22} = P_bit; 3205 let Inst{21} = 1; // Writeback 3206 let Inst{20} = L_bit; 3207 3208 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 3209 } 3210 } 3211 3212 let hasSideEffects = 0 in { 3213 3214 let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 3215 defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m, 3216 IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">; 3217 3218 let mayStore = 1, hasExtraSrcRegAllocReq = 1 in 3219 defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m, 3220 IIC_iStore_mu>, 3221 ComplexDeprecationPredicate<"ARMStore">; 3222 3223 } // hasSideEffects 3224 3225 // FIXME: remove when we have a way to marking a MI with these properties. 3226 // FIXME: Should pc be an implicit operand like PICADD, etc? 3227 let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, 3228 hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in 3229 def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, 3230 reglist:$regs, variable_ops), 3231 4, IIC_iLoad_mBr, [], 3232 (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>, 3233 RegConstraint<"$Rn = $wb">; 3234 3235 let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 3236 defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m, 3237 IIC_iLoad_mu>; 3238 3239 let mayStore = 1, hasExtraSrcRegAllocReq = 1 in 3240 defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m, 3241 IIC_iStore_mu>; 3242 3243 3244 3245 //===----------------------------------------------------------------------===// 3246 // Move Instructions. 3247 // 3248 3249 let hasSideEffects = 0 in 3250 def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr, 3251 "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> { 3252 bits<4> Rd; 3253 bits<4> Rm; 3254 3255 let Inst{19-16} = 0b0000; 3256 let Inst{11-4} = 0b00000000; 3257 let Inst{25} = 0; 3258 let Inst{3-0} = Rm; 3259 let Inst{15-12} = Rd; 3260 } 3261 3262 // A version for the smaller set of tail call registers. 3263 let hasSideEffects = 0 in 3264 def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm, 3265 IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> { 3266 bits<4> Rd; 3267 bits<4> Rm; 3268 3269 let Inst{11-4} = 0b00000000; 3270 let Inst{25} = 0; 3271 let Inst{3-0} = Rm; 3272 let Inst{15-12} = Rd; 3273 } 3274 3275 def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src), 3276 DPSoRegRegFrm, IIC_iMOVsr, 3277 "mov", "\t$Rd, $src", 3278 [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP, 3279 Sched<[WriteALU]> { 3280 bits<4> Rd; 3281 bits<12> src; 3282 let Inst{15-12} = Rd; 3283 let Inst{19-16} = 0b0000; 3284 let Inst{11-8} = src{11-8}; 3285 let Inst{7} = 0; 3286 let Inst{6-5} = src{6-5}; 3287 let Inst{4} = 1; 3288 let Inst{3-0} = src{3-0}; 3289 let Inst{25} = 0; 3290 } 3291 3292 def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src), 3293 DPSoRegImmFrm, IIC_iMOVsr, 3294 "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>, 3295 UnaryDP, Sched<[WriteALU]> { 3296 bits<4> Rd; 3297 bits<12> src; 3298 let Inst{15-12} = Rd; 3299 let Inst{19-16} = 0b0000; 3300 let Inst{11-5} = src{11-5}; 3301 let Inst{4} = 0; 3302 let Inst{3-0} = src{3-0}; 3303 let Inst{25} = 0; 3304 } 3305 3306 let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in 3307 def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi, 3308 "mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP, 3309 Sched<[WriteALU]> { 3310 bits<4> Rd; 3311 bits<12> imm; 3312 let Inst{25} = 1; 3313 let Inst{15-12} = Rd; 3314 let Inst{19-16} = 0b0000; 3315 let Inst{11-0} = imm; 3316 } 3317 3318 let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in 3319 def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm), 3320 DPFrm, IIC_iMOVi, 3321 "movw", "\t$Rd, $imm", 3322 [(set GPR:$Rd, imm0_65535:$imm)]>, 3323 Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> { 3324 bits<4> Rd; 3325 bits<16> imm; 3326 let Inst{15-12} = Rd; 3327 let Inst{11-0} = imm{11-0}; 3328 let Inst{19-16} = imm{15-12}; 3329 let Inst{20} = 0; 3330 let Inst{25} = 1; 3331 let DecoderMethod = "DecodeArmMOVTWInstruction"; 3332 } 3333 3334 def : InstAlias<"mov${p} $Rd, $imm", 3335 (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p), 0>, 3336 Requires<[IsARM, HasV6T2]>; 3337 3338 def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd), 3339 (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>, 3340 Sched<[WriteALU]>; 3341 3342 let Constraints = "$src = $Rd" in { 3343 def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd), 3344 (ins GPR:$src, imm0_65535_expr:$imm), 3345 DPFrm, IIC_iMOVi, 3346 "movt", "\t$Rd, $imm", 3347 [(set GPRnopc:$Rd, 3348 (or (and GPR:$src, 0xffff), 3349 lo16AllZero:$imm))]>, UnaryDP, 3350 Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> { 3351 bits<4> Rd; 3352 bits<16> imm; 3353 let Inst{15-12} = Rd; 3354 let Inst{11-0} = imm{11-0}; 3355 let Inst{19-16} = imm{15-12}; 3356 let Inst{20} = 0; 3357 let Inst{25} = 1; 3358 let DecoderMethod = "DecodeArmMOVTWInstruction"; 3359 } 3360 3361 def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd), 3362 (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>, 3363 Sched<[WriteALU]>; 3364 3365 } // Constraints 3366 3367 def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>, 3368 Requires<[IsARM, HasV6T2]>; 3369 3370 let Uses = [CPSR] in 3371 def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi, 3372 [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP, 3373 Requires<[IsARM]>, Sched<[WriteALU]>; 3374 3375 // These aren't really mov instructions, but we have to define them this way 3376 // due to flag operands. 3377 3378 let Defs = [CPSR] in { 3379 def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, 3380 [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP, 3381 Sched<[WriteALU]>, Requires<[IsARM]>; 3382 def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, 3383 [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP, 3384 Sched<[WriteALU]>, Requires<[IsARM]>; 3385 } 3386 3387 //===----------------------------------------------------------------------===// 3388 // Extend Instructions. 3389 // 3390 3391 // Sign extenders 3392 3393 def SXTB : AI_ext_rrot<0b01101010, 3394 "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>; 3395 def SXTH : AI_ext_rrot<0b01101011, 3396 "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>; 3397 3398 def SXTAB : AI_exta_rrot<0b01101010, 3399 "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>; 3400 def SXTAH : AI_exta_rrot<0b01101011, 3401 "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>; 3402 3403 def SXTB16 : AI_ext_rrot_np<0b01101000, "sxtb16">; 3404 3405 def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">; 3406 3407 // Zero extenders 3408 3409 let AddedComplexity = 16 in { 3410 def UXTB : AI_ext_rrot<0b01101110, 3411 "uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>; 3412 def UXTH : AI_ext_rrot<0b01101111, 3413 "uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>; 3414 def UXTB16 : AI_ext_rrot<0b01101100, 3415 "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>; 3416 3417 // FIXME: This pattern incorrectly assumes the shl operator is a rotate. 3418 // The transformation should probably be done as a combiner action 3419 // instead so we can include a check for masking back in the upper 3420 // eight bits of the source into the lower eight bits of the result. 3421 //def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF), 3422 // (UXTB16r_rot GPR:$Src, 3)>; 3423 def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF), 3424 (UXTB16 GPR:$Src, 1)>; 3425 3426 def UXTAB : AI_exta_rrot<0b01101110, "uxtab", 3427 BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>; 3428 def UXTAH : AI_exta_rrot<0b01101111, "uxtah", 3429 BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>; 3430 } 3431 3432 // This isn't safe in general, the add is two 16-bit units, not a 32-bit add. 3433 def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">; 3434 3435 3436 def SBFX : I<(outs GPRnopc:$Rd), 3437 (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width), 3438 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3439 "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>, 3440 Requires<[IsARM, HasV6T2]> { 3441 bits<4> Rd; 3442 bits<4> Rn; 3443 bits<5> lsb; 3444 bits<5> width; 3445 let Inst{27-21} = 0b0111101; 3446 let Inst{6-4} = 0b101; 3447 let Inst{20-16} = width; 3448 let Inst{15-12} = Rd; 3449 let Inst{11-7} = lsb; 3450 let Inst{3-0} = Rn; 3451 } 3452 3453 def UBFX : I<(outs GPRnopc:$Rd), 3454 (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width), 3455 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3456 "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>, 3457 Requires<[IsARM, HasV6T2]> { 3458 bits<4> Rd; 3459 bits<4> Rn; 3460 bits<5> lsb; 3461 bits<5> width; 3462 let Inst{27-21} = 0b0111111; 3463 let Inst{6-4} = 0b101; 3464 let Inst{20-16} = width; 3465 let Inst{15-12} = Rd; 3466 let Inst{11-7} = lsb; 3467 let Inst{3-0} = Rn; 3468 } 3469 3470 //===----------------------------------------------------------------------===// 3471 // Arithmetic Instructions. 3472 // 3473 3474 defm ADD : AsI1_bin_irs<0b0100, "add", 3475 IIC_iALUi, IIC_iALUr, IIC_iALUsr, add, 1>; 3476 defm SUB : AsI1_bin_irs<0b0010, "sub", 3477 IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>; 3478 3479 // ADD and SUB with 's' bit set. 3480 // 3481 // Currently, ADDS/SUBS are pseudo opcodes that exist only in the 3482 // selection DAG. They are "lowered" to real ADD/SUB opcodes by 3483 // AdjustInstrPostInstrSelection where we determine whether or not to 3484 // set the "s" bit based on CPSR liveness. 3485 // 3486 // FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen 3487 // support for an optional CPSR definition that corresponds to the DAG 3488 // node's second value. We can then eliminate the implicit def of CPSR. 3489 defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMaddc, 1>; 3490 defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>; 3491 3492 defm ADC : AI1_adde_sube_irs<0b0101, "adc", ARMadde, 1>; 3493 defm SBC : AI1_adde_sube_irs<0b0110, "sbc", ARMsube>; 3494 3495 defm RSB : AsI1_rbin_irs<0b0011, "rsb", 3496 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3497 sub>; 3498 3499 // FIXME: Eliminate them if we can write def : Pat patterns which defines 3500 // CPSR and the implicit def of CPSR is not needed. 3501 defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>; 3502 3503 defm RSC : AI1_rsc_irs<0b0111, "rsc", ARMsube>; 3504 3505 // (sub X, imm) gets canonicalized to (add X, -imm). Match this form. 3506 // The assume-no-carry-in form uses the negation of the input since add/sub 3507 // assume opposite meanings of the carry flag (i.e., carry == !borrow). 3508 // See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory 3509 // details. 3510 def : ARMPat<(add GPR:$src, mod_imm_neg:$imm), 3511 (SUBri GPR:$src, mod_imm_neg:$imm)>; 3512 def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm), 3513 (SUBSri GPR:$src, mod_imm_neg:$imm)>; 3514 3515 def : ARMPat<(add GPR:$src, imm0_65535_neg:$imm), 3516 (SUBrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>, 3517 Requires<[IsARM, HasV6T2]>; 3518 def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm), 3519 (SUBSrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>, 3520 Requires<[IsARM, HasV6T2]>; 3521 3522 // The with-carry-in form matches bitwise not instead of the negation. 3523 // Effectively, the inverse interpretation of the carry flag already accounts 3524 // for part of the negation. 3525 def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR), 3526 (SBCri GPR:$src, mod_imm_not:$imm)>; 3527 def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR), 3528 (SBCrr GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>, 3529 Requires<[IsARM, HasV6T2]>; 3530 3531 // Note: These are implemented in C++ code, because they have to generate 3532 // ADD/SUBrs instructions, which use a complex pattern that a xform function 3533 // cannot produce. 3534 // (mul X, 2^n+1) -> (add (X << n), X) 3535 // (mul X, 2^n-1) -> (rsb X, (X << n)) 3536 3537 // ARM Arithmetic Instruction 3538 // GPR:$dst = GPR:$a op GPR:$b 3539 class AAI<bits<8> op27_20, bits<8> op11_4, string opc, 3540 list<dag> pattern = [], 3541 dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm), 3542 string asm = "\t$Rd, $Rn, $Rm"> 3543 : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>, 3544 Sched<[WriteALU, ReadALU, ReadALU]> { 3545 bits<4> Rn; 3546 bits<4> Rd; 3547 bits<4> Rm; 3548 let Inst{27-20} = op27_20; 3549 let Inst{11-4} = op11_4; 3550 let Inst{19-16} = Rn; 3551 let Inst{15-12} = Rd; 3552 let Inst{3-0} = Rm; 3553 3554 let Unpredictable{11-8} = 0b1111; 3555 } 3556 3557 // Saturating add/subtract 3558 3559 let DecoderMethod = "DecodeQADDInstruction" in 3560 def QADD : AAI<0b00010000, 0b00000101, "qadd", 3561 [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))], 3562 (ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">; 3563 3564 def QSUB : AAI<0b00010010, 0b00000101, "qsub", 3565 [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))], 3566 (ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">; 3567 def QDADD : AAI<0b00010100, 0b00000101, "qdadd", [], 3568 (ins GPRnopc:$Rm, GPRnopc:$Rn), 3569 "\t$Rd, $Rm, $Rn">; 3570 def QDSUB : AAI<0b00010110, 0b00000101, "qdsub", [], 3571 (ins GPRnopc:$Rm, GPRnopc:$Rn), 3572 "\t$Rd, $Rm, $Rn">; 3573 3574 def QADD16 : AAI<0b01100010, 0b11110001, "qadd16">; 3575 def QADD8 : AAI<0b01100010, 0b11111001, "qadd8">; 3576 def QASX : AAI<0b01100010, 0b11110011, "qasx">; 3577 def QSAX : AAI<0b01100010, 0b11110101, "qsax">; 3578 def QSUB16 : AAI<0b01100010, 0b11110111, "qsub16">; 3579 def QSUB8 : AAI<0b01100010, 0b11111111, "qsub8">; 3580 def UQADD16 : AAI<0b01100110, 0b11110001, "uqadd16">; 3581 def UQADD8 : AAI<0b01100110, 0b11111001, "uqadd8">; 3582 def UQASX : AAI<0b01100110, 0b11110011, "uqasx">; 3583 def UQSAX : AAI<0b01100110, 0b11110101, "uqsax">; 3584 def UQSUB16 : AAI<0b01100110, 0b11110111, "uqsub16">; 3585 def UQSUB8 : AAI<0b01100110, 0b11111111, "uqsub8">; 3586 3587 // Signed/Unsigned add/subtract 3588 3589 def SASX : AAI<0b01100001, 0b11110011, "sasx">; 3590 def SADD16 : AAI<0b01100001, 0b11110001, "sadd16">; 3591 def SADD8 : AAI<0b01100001, 0b11111001, "sadd8">; 3592 def SSAX : AAI<0b01100001, 0b11110101, "ssax">; 3593 def SSUB16 : AAI<0b01100001, 0b11110111, "ssub16">; 3594 def SSUB8 : AAI<0b01100001, 0b11111111, "ssub8">; 3595 def UASX : AAI<0b01100101, 0b11110011, "uasx">; 3596 def UADD16 : AAI<0b01100101, 0b11110001, "uadd16">; 3597 def UADD8 : AAI<0b01100101, 0b11111001, "uadd8">; 3598 def USAX : AAI<0b01100101, 0b11110101, "usax">; 3599 def USUB16 : AAI<0b01100101, 0b11110111, "usub16">; 3600 def USUB8 : AAI<0b01100101, 0b11111111, "usub8">; 3601 3602 // Signed/Unsigned halving add/subtract 3603 3604 def SHASX : AAI<0b01100011, 0b11110011, "shasx">; 3605 def SHADD16 : AAI<0b01100011, 0b11110001, "shadd16">; 3606 def SHADD8 : AAI<0b01100011, 0b11111001, "shadd8">; 3607 def SHSAX : AAI<0b01100011, 0b11110101, "shsax">; 3608 def SHSUB16 : AAI<0b01100011, 0b11110111, "shsub16">; 3609 def SHSUB8 : AAI<0b01100011, 0b11111111, "shsub8">; 3610 def UHASX : AAI<0b01100111, 0b11110011, "uhasx">; 3611 def UHADD16 : AAI<0b01100111, 0b11110001, "uhadd16">; 3612 def UHADD8 : AAI<0b01100111, 0b11111001, "uhadd8">; 3613 def UHSAX : AAI<0b01100111, 0b11110101, "uhsax">; 3614 def UHSUB16 : AAI<0b01100111, 0b11110111, "uhsub16">; 3615 def UHSUB8 : AAI<0b01100111, 0b11111111, "uhsub8">; 3616 3617 // Unsigned Sum of Absolute Differences [and Accumulate]. 3618 3619 def USAD8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3620 MulFrm /* for convenience */, NoItinerary, "usad8", 3621 "\t$Rd, $Rn, $Rm", []>, 3622 Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> { 3623 bits<4> Rd; 3624 bits<4> Rn; 3625 bits<4> Rm; 3626 let Inst{27-20} = 0b01111000; 3627 let Inst{15-12} = 0b1111; 3628 let Inst{7-4} = 0b0001; 3629 let Inst{19-16} = Rd; 3630 let Inst{11-8} = Rm; 3631 let Inst{3-0} = Rn; 3632 } 3633 def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3634 MulFrm /* for convenience */, NoItinerary, "usada8", 3635 "\t$Rd, $Rn, $Rm, $Ra", []>, 3636 Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{ 3637 bits<4> Rd; 3638 bits<4> Rn; 3639 bits<4> Rm; 3640 bits<4> Ra; 3641 let Inst{27-20} = 0b01111000; 3642 let Inst{7-4} = 0b0001; 3643 let Inst{19-16} = Rd; 3644 let Inst{15-12} = Ra; 3645 let Inst{11-8} = Rm; 3646 let Inst{3-0} = Rn; 3647 } 3648 3649 // Signed/Unsigned saturate 3650 3651 def SSAT : AI<(outs GPRnopc:$Rd), 3652 (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh), 3653 SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []> { 3654 bits<4> Rd; 3655 bits<5> sat_imm; 3656 bits<4> Rn; 3657 bits<8> sh; 3658 let Inst{27-21} = 0b0110101; 3659 let Inst{5-4} = 0b01; 3660 let Inst{20-16} = sat_imm; 3661 let Inst{15-12} = Rd; 3662 let Inst{11-7} = sh{4-0}; 3663 let Inst{6} = sh{5}; 3664 let Inst{3-0} = Rn; 3665 } 3666 3667 def SSAT16 : AI<(outs GPRnopc:$Rd), 3668 (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm, 3669 NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []> { 3670 bits<4> Rd; 3671 bits<4> sat_imm; 3672 bits<4> Rn; 3673 let Inst{27-20} = 0b01101010; 3674 let Inst{11-4} = 0b11110011; 3675 let Inst{15-12} = Rd; 3676 let Inst{19-16} = sat_imm; 3677 let Inst{3-0} = Rn; 3678 } 3679 3680 def USAT : AI<(outs GPRnopc:$Rd), 3681 (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh), 3682 SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []> { 3683 bits<4> Rd; 3684 bits<5> sat_imm; 3685 bits<4> Rn; 3686 bits<8> sh; 3687 let Inst{27-21} = 0b0110111; 3688 let Inst{5-4} = 0b01; 3689 let Inst{15-12} = Rd; 3690 let Inst{11-7} = sh{4-0}; 3691 let Inst{6} = sh{5}; 3692 let Inst{20-16} = sat_imm; 3693 let Inst{3-0} = Rn; 3694 } 3695 3696 def USAT16 : AI<(outs GPRnopc:$Rd), 3697 (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm, 3698 NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []> { 3699 bits<4> Rd; 3700 bits<4> sat_imm; 3701 bits<4> Rn; 3702 let Inst{27-20} = 0b01101110; 3703 let Inst{11-4} = 0b11110011; 3704 let Inst{15-12} = Rd; 3705 let Inst{19-16} = sat_imm; 3706 let Inst{3-0} = Rn; 3707 } 3708 3709 def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm1_32:$pos), 3710 (SSAT imm1_32:$pos, GPRnopc:$a, 0)>; 3711 def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm0_31:$pos), 3712 (USAT imm0_31:$pos, GPRnopc:$a, 0)>; 3713 def : ARMPat<(ARMssatnoshift GPRnopc:$Rn, imm0_31:$imm), 3714 (SSAT imm0_31:$imm, GPRnopc:$Rn, 0)>; 3715 3716 //===----------------------------------------------------------------------===// 3717 // Bitwise Instructions. 3718 // 3719 3720 defm AND : AsI1_bin_irs<0b0000, "and", 3721 IIC_iBITi, IIC_iBITr, IIC_iBITsr, and, 1>; 3722 defm ORR : AsI1_bin_irs<0b1100, "orr", 3723 IIC_iBITi, IIC_iBITr, IIC_iBITsr, or, 1>; 3724 defm EOR : AsI1_bin_irs<0b0001, "eor", 3725 IIC_iBITi, IIC_iBITr, IIC_iBITsr, xor, 1>; 3726 defm BIC : AsI1_bin_irs<0b1110, "bic", 3727 IIC_iBITi, IIC_iBITr, IIC_iBITsr, 3728 BinOpFrag<(and node:$LHS, (not node:$RHS))>>; 3729 3730 // FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just 3731 // like in the actual instruction encoding. The complexity of mapping the mask 3732 // to the lsb/msb pair should be handled by ISel, not encapsulated in the 3733 // instruction description. 3734 def BFC : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm), 3735 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3736 "bfc", "\t$Rd, $imm", "$src = $Rd", 3737 [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>, 3738 Requires<[IsARM, HasV6T2]> { 3739 bits<4> Rd; 3740 bits<10> imm; 3741 let Inst{27-21} = 0b0111110; 3742 let Inst{6-0} = 0b0011111; 3743 let Inst{15-12} = Rd; 3744 let Inst{11-7} = imm{4-0}; // lsb 3745 let Inst{20-16} = imm{9-5}; // msb 3746 } 3747 3748 // A8.6.18 BFI - Bitfield insert (Encoding A1) 3749 def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm), 3750 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3751 "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd", 3752 [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn, 3753 bf_inv_mask_imm:$imm))]>, 3754 Requires<[IsARM, HasV6T2]> { 3755 bits<4> Rd; 3756 bits<4> Rn; 3757 bits<10> imm; 3758 let Inst{27-21} = 0b0111110; 3759 let Inst{6-4} = 0b001; // Rn: Inst{3-0} != 15 3760 let Inst{15-12} = Rd; 3761 let Inst{11-7} = imm{4-0}; // lsb 3762 let Inst{20-16} = imm{9-5}; // width 3763 let Inst{3-0} = Rn; 3764 } 3765 3766 def MVNr : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr, 3767 "mvn", "\t$Rd, $Rm", 3768 [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> { 3769 bits<4> Rd; 3770 bits<4> Rm; 3771 let Inst{25} = 0; 3772 let Inst{19-16} = 0b0000; 3773 let Inst{11-4} = 0b00000000; 3774 let Inst{15-12} = Rd; 3775 let Inst{3-0} = Rm; 3776 } 3777 def MVNsi : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift), 3778 DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift", 3779 [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP, 3780 Sched<[WriteALU]> { 3781 bits<4> Rd; 3782 bits<12> shift; 3783 let Inst{25} = 0; 3784 let Inst{19-16} = 0b0000; 3785 let Inst{15-12} = Rd; 3786 let Inst{11-5} = shift{11-5}; 3787 let Inst{4} = 0; 3788 let Inst{3-0} = shift{3-0}; 3789 } 3790 def MVNsr : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_reg:$shift), 3791 DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift", 3792 [(set GPR:$Rd, (not so_reg_reg:$shift))]>, UnaryDP, 3793 Sched<[WriteALU]> { 3794 bits<4> Rd; 3795 bits<12> shift; 3796 let Inst{25} = 0; 3797 let Inst{19-16} = 0b0000; 3798 let Inst{15-12} = Rd; 3799 let Inst{11-8} = shift{11-8}; 3800 let Inst{7} = 0; 3801 let Inst{6-5} = shift{6-5}; 3802 let Inst{4} = 1; 3803 let Inst{3-0} = shift{3-0}; 3804 } 3805 let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in 3806 def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, 3807 IIC_iMVNi, "mvn", "\t$Rd, $imm", 3808 [(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> { 3809 bits<4> Rd; 3810 bits<12> imm; 3811 let Inst{25} = 1; 3812 let Inst{19-16} = 0b0000; 3813 let Inst{15-12} = Rd; 3814 let Inst{11-0} = imm; 3815 } 3816 3817 def : ARMPat<(and GPR:$src, mod_imm_not:$imm), 3818 (BICri GPR:$src, mod_imm_not:$imm)>; 3819 3820 //===----------------------------------------------------------------------===// 3821 // Multiply Instructions. 3822 // 3823 class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, 3824 string opc, string asm, list<dag> pattern> 3825 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> { 3826 bits<4> Rd; 3827 bits<4> Rm; 3828 bits<4> Rn; 3829 let Inst{19-16} = Rd; 3830 let Inst{11-8} = Rm; 3831 let Inst{3-0} = Rn; 3832 } 3833 class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, 3834 string opc, string asm, list<dag> pattern> 3835 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> { 3836 bits<4> RdLo; 3837 bits<4> RdHi; 3838 bits<4> Rm; 3839 bits<4> Rn; 3840 let Inst{19-16} = RdHi; 3841 let Inst{15-12} = RdLo; 3842 let Inst{11-8} = Rm; 3843 let Inst{3-0} = Rn; 3844 } 3845 class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, 3846 string opc, string asm, list<dag> pattern> 3847 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> { 3848 bits<4> RdLo; 3849 bits<4> RdHi; 3850 bits<4> Rm; 3851 bits<4> Rn; 3852 let Inst{19-16} = RdHi; 3853 let Inst{15-12} = RdLo; 3854 let Inst{11-8} = Rm; 3855 let Inst{3-0} = Rn; 3856 } 3857 3858 // FIXME: The v5 pseudos are only necessary for the additional Constraint 3859 // property. Remove them when it's possible to add those properties 3860 // on an individual MachineInstr, not just an instruction description. 3861 let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in { 3862 def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd), 3863 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3864 IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", 3865 [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>, 3866 Requires<[IsARM, HasV6]> { 3867 let Inst{15-12} = 0b0000; 3868 let Unpredictable{15-12} = 0b1111; 3869 } 3870 3871 let Constraints = "@earlyclobber $Rd" in 3872 def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, 3873 pred:$p, cc_out:$s), 3874 4, IIC_iMUL32, 3875 [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))], 3876 (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>, 3877 Requires<[IsARM, NoV6, UseMulOps]>; 3878 } 3879 3880 def MLA : AsMul1I32<0b0000001, (outs GPRnopc:$Rd), 3881 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra), 3882 IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra", 3883 [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>, 3884 Requires<[IsARM, HasV6, UseMulOps]> { 3885 bits<4> Ra; 3886 let Inst{15-12} = Ra; 3887 } 3888 3889 let Constraints = "@earlyclobber $Rd" in 3890 def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd), 3891 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, 3892 pred:$p, cc_out:$s), 4, IIC_iMAC32, 3893 [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))], 3894 (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>, 3895 Requires<[IsARM, NoV6]>; 3896 3897 def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3898 IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra", 3899 [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>, 3900 Requires<[IsARM, HasV6T2, UseMulOps]> { 3901 bits<4> Rd; 3902 bits<4> Rm; 3903 bits<4> Rn; 3904 bits<4> Ra; 3905 let Inst{19-16} = Rd; 3906 let Inst{15-12} = Ra; 3907 let Inst{11-8} = Rm; 3908 let Inst{3-0} = Rn; 3909 } 3910 3911 // Extra precision multiplies with low / high results 3912 let hasSideEffects = 0 in { 3913 let isCommutable = 1 in { 3914 def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi), 3915 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64, 3916 "smull", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3917 Requires<[IsARM, HasV6]>; 3918 3919 def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi), 3920 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64, 3921 "umull", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3922 Requires<[IsARM, HasV6]>; 3923 3924 let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in { 3925 def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3926 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 3927 4, IIC_iMUL64, [], 3928 (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 3929 Requires<[IsARM, NoV6]>; 3930 3931 def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3932 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 3933 4, IIC_iMUL64, [], 3934 (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 3935 Requires<[IsARM, NoV6]>; 3936 } 3937 } 3938 3939 // Multiply + accumulate 3940 def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi), 3941 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64, 3942 "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3943 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>; 3944 def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi), 3945 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64, 3946 "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3947 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>; 3948 3949 def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi), 3950 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), 3951 IIC_iMAC64, 3952 "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3953 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]> { 3954 bits<4> RdLo; 3955 bits<4> RdHi; 3956 bits<4> Rm; 3957 bits<4> Rn; 3958 let Inst{19-16} = RdHi; 3959 let Inst{15-12} = RdLo; 3960 let Inst{11-8} = Rm; 3961 let Inst{3-0} = Rn; 3962 } 3963 3964 let Constraints = 3965 "@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in { 3966 def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3967 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s), 3968 4, IIC_iMAC64, [], 3969 (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, 3970 pred:$p, cc_out:$s)>, 3971 Requires<[IsARM, NoV6]>; 3972 def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3973 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s), 3974 4, IIC_iMAC64, [], 3975 (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, 3976 pred:$p, cc_out:$s)>, 3977 Requires<[IsARM, NoV6]>; 3978 } 3979 3980 } // hasSideEffects 3981 3982 // Most significant word multiply 3983 def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3984 IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm", 3985 [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>, 3986 Requires<[IsARM, HasV6]> { 3987 let Inst{15-12} = 0b1111; 3988 } 3989 3990 def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3991 IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm", []>, 3992 Requires<[IsARM, HasV6]> { 3993 let Inst{15-12} = 0b1111; 3994 } 3995 3996 def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd), 3997 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3998 IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra", 3999 [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>, 4000 Requires<[IsARM, HasV6, UseMulOps]>; 4001 4002 def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd), 4003 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 4004 IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra", []>, 4005 Requires<[IsARM, HasV6]>; 4006 4007 def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd), 4008 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 4009 IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>, 4010 Requires<[IsARM, HasV6, UseMulOps]>; 4011 4012 def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd), 4013 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 4014 IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra", []>, 4015 Requires<[IsARM, HasV6]>; 4016 4017 multiclass AI_smul<string opc> { 4018 def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 4019 IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm", 4020 [(set GPR:$Rd, (mul (sext_inreg GPR:$Rn, i16), 4021 (sext_inreg GPR:$Rm, i16)))]>, 4022 Requires<[IsARM, HasV5TE]>; 4023 4024 def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 4025 IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm", 4026 [(set GPR:$Rd, (mul (sext_inreg GPR:$Rn, i16), 4027 (sra GPR:$Rm, (i32 16))))]>, 4028 Requires<[IsARM, HasV5TE]>; 4029 4030 def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 4031 IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm", 4032 [(set GPR:$Rd, (mul (sra GPR:$Rn, (i32 16)), 4033 (sext_inreg GPR:$Rm, i16)))]>, 4034 Requires<[IsARM, HasV5TE]>; 4035 4036 def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 4037 IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm", 4038 [(set GPR:$Rd, (mul (sra GPR:$Rn, (i32 16)), 4039 (sra GPR:$Rm, (i32 16))))]>, 4040 Requires<[IsARM, HasV5TE]>; 4041 4042 def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 4043 IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm", 4044 []>, 4045 Requires<[IsARM, HasV5TE]>; 4046 4047 def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 4048 IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm", 4049 []>, 4050 Requires<[IsARM, HasV5TE]>; 4051 } 4052 4053 4054 multiclass AI_smla<string opc> { 4055 let DecoderMethod = "DecodeSMLAInstruction" in { 4056 def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd), 4057 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 4058 IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra", 4059 [(set GPRnopc:$Rd, (add GPR:$Ra, 4060 (mul (sext_inreg GPRnopc:$Rn, i16), 4061 (sext_inreg GPRnopc:$Rm, i16))))]>, 4062 Requires<[IsARM, HasV5TE, UseMulOps]>; 4063 4064 def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd), 4065 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 4066 IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra", 4067 [(set GPRnopc:$Rd, 4068 (add GPR:$Ra, (mul (sext_inreg GPRnopc:$Rn, i16), 4069 (sra GPRnopc:$Rm, (i32 16)))))]>, 4070 Requires<[IsARM, HasV5TE, UseMulOps]>; 4071 4072 def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd), 4073 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 4074 IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra", 4075 [(set GPRnopc:$Rd, 4076 (add GPR:$Ra, (mul (sra GPRnopc:$Rn, (i32 16)), 4077 (sext_inreg GPRnopc:$Rm, i16))))]>, 4078 Requires<[IsARM, HasV5TE, UseMulOps]>; 4079 4080 def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd), 4081 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 4082 IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra", 4083 [(set GPRnopc:$Rd, 4084 (add GPR:$Ra, (mul (sra GPRnopc:$Rn, (i32 16)), 4085 (sra GPRnopc:$Rm, (i32 16)))))]>, 4086 Requires<[IsARM, HasV5TE, UseMulOps]>; 4087 4088 def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd), 4089 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 4090 IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra", 4091 []>, 4092 Requires<[IsARM, HasV5TE, UseMulOps]>; 4093 4094 def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd), 4095 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 4096 IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra", 4097 []>, 4098 Requires<[IsARM, HasV5TE, UseMulOps]>; 4099 } 4100 } 4101 4102 defm SMUL : AI_smul<"smul">; 4103 defm SMLA : AI_smla<"smla">; 4104 4105 // Halfword multiply accumulate long: SMLAL<x><y>. 4106 def SMLALBB : AMulxyI64<0b0001010, 0b00, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 4107 (ins GPRnopc:$Rn, GPRnopc:$Rm), 4108 IIC_iMAC64, "smlalbb", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 4109 Requires<[IsARM, HasV5TE]>; 4110 4111 def SMLALBT : AMulxyI64<0b0001010, 0b10, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 4112 (ins GPRnopc:$Rn, GPRnopc:$Rm), 4113 IIC_iMAC64, "smlalbt", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 4114 Requires<[IsARM, HasV5TE]>; 4115 4116 def SMLALTB : AMulxyI64<0b0001010, 0b01, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 4117 (ins GPRnopc:$Rn, GPRnopc:$Rm), 4118 IIC_iMAC64, "smlaltb", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 4119 Requires<[IsARM, HasV5TE]>; 4120 4121 def SMLALTT : AMulxyI64<0b0001010, 0b11, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 4122 (ins GPRnopc:$Rn, GPRnopc:$Rm), 4123 IIC_iMAC64, "smlaltt", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 4124 Requires<[IsARM, HasV5TE]>; 4125 4126 // Helper class for AI_smld. 4127 class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops, 4128 InstrItinClass itin, string opc, string asm> 4129 : AI<oops, iops, MulFrm, itin, opc, asm, []>, Requires<[IsARM, HasV6]> { 4130 bits<4> Rn; 4131 bits<4> Rm; 4132 let Inst{27-23} = 0b01110; 4133 let Inst{22} = long; 4134 let Inst{21-20} = 0b00; 4135 let Inst{11-8} = Rm; 4136 let Inst{7} = 0; 4137 let Inst{6} = sub; 4138 let Inst{5} = swap; 4139 let Inst{4} = 1; 4140 let Inst{3-0} = Rn; 4141 } 4142 class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops, 4143 InstrItinClass itin, string opc, string asm> 4144 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> { 4145 bits<4> Rd; 4146 let Inst{15-12} = 0b1111; 4147 let Inst{19-16} = Rd; 4148 } 4149 class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops, 4150 InstrItinClass itin, string opc, string asm> 4151 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> { 4152 bits<4> Ra; 4153 bits<4> Rd; 4154 let Inst{19-16} = Rd; 4155 let Inst{15-12} = Ra; 4156 } 4157 class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops, 4158 InstrItinClass itin, string opc, string asm> 4159 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> { 4160 bits<4> RdLo; 4161 bits<4> RdHi; 4162 let Inst{19-16} = RdHi; 4163 let Inst{15-12} = RdLo; 4164 } 4165 4166 multiclass AI_smld<bit sub, string opc> { 4167 4168 def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd), 4169 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 4170 NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">; 4171 4172 def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd), 4173 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 4174 NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">; 4175 4176 def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 4177 (ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary, 4178 !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">; 4179 4180 def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 4181 (ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary, 4182 !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">; 4183 4184 } 4185 4186 defm SMLA : AI_smld<0, "smla">; 4187 defm SMLS : AI_smld<1, "smls">; 4188 4189 multiclass AI_sdml<bit sub, string opc> { 4190 4191 def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), 4192 NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">; 4193 def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm), 4194 NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">; 4195 } 4196 4197 defm SMUA : AI_sdml<0, "smua">; 4198 defm SMUS : AI_sdml<1, "smus">; 4199 4200 //===----------------------------------------------------------------------===// 4201 // Division Instructions (ARMv7-A with virtualization extension) 4202 // 4203 def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV, 4204 "sdiv", "\t$Rd, $Rn, $Rm", 4205 [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>, 4206 Requires<[IsARM, HasDivideInARM]>; 4207 4208 def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV, 4209 "udiv", "\t$Rd, $Rn, $Rm", 4210 [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>, 4211 Requires<[IsARM, HasDivideInARM]>; 4212 4213 //===----------------------------------------------------------------------===// 4214 // Misc. Arithmetic Instructions. 4215 // 4216 4217 def CLZ : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm), 4218 IIC_iUNAr, "clz", "\t$Rd, $Rm", 4219 [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>, 4220 Sched<[WriteALU]>; 4221 4222 def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm), 4223 IIC_iUNAr, "rbit", "\t$Rd, $Rm", 4224 [(set GPR:$Rd, (bitreverse GPR:$Rm))]>, 4225 Requires<[IsARM, HasV6T2]>, 4226 Sched<[WriteALU]>; 4227 4228 def REV : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm), 4229 IIC_iUNAr, "rev", "\t$Rd, $Rm", 4230 [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>, 4231 Sched<[WriteALU]>; 4232 4233 let AddedComplexity = 5 in 4234 def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm), 4235 IIC_iUNAr, "rev16", "\t$Rd, $Rm", 4236 [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>, 4237 Requires<[IsARM, HasV6]>, 4238 Sched<[WriteALU]>; 4239 4240 def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)), 4241 (REV16 (LDRH addrmode3:$addr))>; 4242 def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr), 4243 (STRH (REV16 GPR:$Rn), addrmode3:$addr)>; 4244 4245 let AddedComplexity = 5 in 4246 def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm), 4247 IIC_iUNAr, "revsh", "\t$Rd, $Rm", 4248 [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>, 4249 Requires<[IsARM, HasV6]>, 4250 Sched<[WriteALU]>; 4251 4252 def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)), 4253 (and (srl GPR:$Rm, (i32 8)), 0xFF)), 4254 (REVSH GPR:$Rm)>; 4255 4256 def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd), 4257 (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh), 4258 IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh", 4259 [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF), 4260 (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh), 4261 0xFFFF0000)))]>, 4262 Requires<[IsARM, HasV6]>, 4263 Sched<[WriteALUsi, ReadALU]>; 4264 4265 // Alternate cases for PKHBT where identities eliminate some nodes. 4266 def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)), 4267 (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>; 4268 def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)), 4269 (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>; 4270 4271 // Note: Shifts of 1-15 bits will be transformed to srl instead of sra and 4272 // will match the pattern below. 4273 def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd), 4274 (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh), 4275 IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh", 4276 [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000), 4277 (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh), 4278 0xFFFF)))]>, 4279 Requires<[IsARM, HasV6]>, 4280 Sched<[WriteALUsi, ReadALU]>; 4281 4282 // Alternate cases for PKHTB where identities eliminate some nodes. Note that 4283 // a shift amount of 0 is *not legal* here, it is PKHBT instead. 4284 // We also can not replace a srl (17..31) by an arithmetic shift we would use in 4285 // pkhtb src1, src2, asr (17..31). 4286 def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), 4287 (srl GPRnopc:$src2, imm16:$sh)), 4288 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>; 4289 def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), 4290 (sra GPRnopc:$src2, imm16_31:$sh)), 4291 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>; 4292 def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), 4293 (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)), 4294 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>; 4295 4296 //===----------------------------------------------------------------------===// 4297 // CRC Instructions 4298 // 4299 // Polynomials: 4300 // + CRC32{B,H,W} 0x04C11DB7 4301 // + CRC32C{B,H,W} 0x1EDC6F41 4302 // 4303 4304 class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin> 4305 : AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary, 4306 !strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm", 4307 [(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>, 4308 Requires<[IsARM, HasV8, HasCRC]> { 4309 bits<4> Rd; 4310 bits<4> Rn; 4311 bits<4> Rm; 4312 4313 let Inst{31-28} = 0b1110; 4314 let Inst{27-23} = 0b00010; 4315 let Inst{22-21} = sz; 4316 let Inst{20} = 0; 4317 let Inst{19-16} = Rn; 4318 let Inst{15-12} = Rd; 4319 let Inst{11-10} = 0b00; 4320 let Inst{9} = C; 4321 let Inst{8} = 0; 4322 let Inst{7-4} = 0b0100; 4323 let Inst{3-0} = Rm; 4324 4325 let Unpredictable{11-8} = 0b1101; 4326 } 4327 4328 def CRC32B : AI_crc32<0, 0b00, "b", int_arm_crc32b>; 4329 def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>; 4330 def CRC32H : AI_crc32<0, 0b01, "h", int_arm_crc32h>; 4331 def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>; 4332 def CRC32W : AI_crc32<0, 0b10, "w", int_arm_crc32w>; 4333 def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>; 4334 4335 //===----------------------------------------------------------------------===// 4336 // ARMv8.1a Privilege Access Never extension 4337 // 4338 // SETPAN #imm1 4339 4340 def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan", 4341 "\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> { 4342 bits<1> imm; 4343 4344 let Inst{31-28} = 0b1111; 4345 let Inst{27-20} = 0b00010001; 4346 let Inst{19-16} = 0b0000; 4347 let Inst{15-10} = 0b000000; 4348 let Inst{9} = imm; 4349 let Inst{8} = 0b0; 4350 let Inst{7-4} = 0b0000; 4351 let Inst{3-0} = 0b0000; 4352 4353 let Unpredictable{19-16} = 0b1111; 4354 let Unpredictable{15-10} = 0b111111; 4355 let Unpredictable{8} = 0b1; 4356 let Unpredictable{3-0} = 0b1111; 4357 } 4358 4359 //===----------------------------------------------------------------------===// 4360 // Comparison Instructions... 4361 // 4362 4363 defm CMP : AI1_cmp_irs<0b1010, "cmp", 4364 IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, ARMcmp>; 4365 4366 // ARMcmpZ can re-use the above instruction definitions. 4367 def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm), 4368 (CMPri GPR:$src, mod_imm:$imm)>; 4369 def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs), 4370 (CMPrr GPR:$src, GPR:$rhs)>; 4371 def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs), 4372 (CMPrsi GPR:$src, so_reg_imm:$rhs)>; 4373 def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs), 4374 (CMPrsr GPR:$src, so_reg_reg:$rhs)>; 4375 4376 // CMN register-integer 4377 let isCompare = 1, Defs = [CPSR] in { 4378 def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi, 4379 "cmn", "\t$Rn, $imm", 4380 [(ARMcmn GPR:$Rn, mod_imm:$imm)]>, 4381 Sched<[WriteCMP, ReadALU]> { 4382 bits<4> Rn; 4383 bits<12> imm; 4384 let Inst{25} = 1; 4385 let Inst{20} = 1; 4386 let Inst{19-16} = Rn; 4387 let Inst{15-12} = 0b0000; 4388 let Inst{11-0} = imm; 4389 4390 let Unpredictable{15-12} = 0b1111; 4391 } 4392 4393 // CMN register-register/shift 4394 def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr, 4395 "cmn", "\t$Rn, $Rm", 4396 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))> 4397 GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> { 4398 bits<4> Rn; 4399 bits<4> Rm; 4400 let isCommutable = 1; 4401 let Inst{25} = 0; 4402 let Inst{20} = 1; 4403 let Inst{19-16} = Rn; 4404 let Inst{15-12} = 0b0000; 4405 let Inst{11-4} = 0b00000000; 4406 let Inst{3-0} = Rm; 4407 4408 let Unpredictable{15-12} = 0b1111; 4409 } 4410 4411 def CMNzrsi : AI1<0b1011, (outs), 4412 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr, 4413 "cmn", "\t$Rn, $shift", 4414 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))> 4415 GPR:$Rn, so_reg_imm:$shift)]>, 4416 Sched<[WriteCMPsi, ReadALU]> { 4417 bits<4> Rn; 4418 bits<12> shift; 4419 let Inst{25} = 0; 4420 let Inst{20} = 1; 4421 let Inst{19-16} = Rn; 4422 let Inst{15-12} = 0b0000; 4423 let Inst{11-5} = shift{11-5}; 4424 let Inst{4} = 0; 4425 let Inst{3-0} = shift{3-0}; 4426 4427 let Unpredictable{15-12} = 0b1111; 4428 } 4429 4430 def CMNzrsr : AI1<0b1011, (outs), 4431 (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr, 4432 "cmn", "\t$Rn, $shift", 4433 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))> 4434 GPRnopc:$Rn, so_reg_reg:$shift)]>, 4435 Sched<[WriteCMPsr, ReadALU]> { 4436 bits<4> Rn; 4437 bits<12> shift; 4438 let Inst{25} = 0; 4439 let Inst{20} = 1; 4440 let Inst{19-16} = Rn; 4441 let Inst{15-12} = 0b0000; 4442 let Inst{11-8} = shift{11-8}; 4443 let Inst{7} = 0; 4444 let Inst{6-5} = shift{6-5}; 4445 let Inst{4} = 1; 4446 let Inst{3-0} = shift{3-0}; 4447 4448 let Unpredictable{15-12} = 0b1111; 4449 } 4450 4451 } 4452 4453 def : ARMPat<(ARMcmp GPR:$src, mod_imm_neg:$imm), 4454 (CMNri GPR:$src, mod_imm_neg:$imm)>; 4455 4456 def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm), 4457 (CMNri GPR:$src, mod_imm_neg:$imm)>; 4458 4459 // Note that TST/TEQ don't set all the same flags that CMP does! 4460 defm TST : AI1_cmp_irs<0b1000, "tst", 4461 IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr, 4462 BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1, 4463 "DecodeTSTInstruction">; 4464 defm TEQ : AI1_cmp_irs<0b1001, "teq", 4465 IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr, 4466 BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>; 4467 4468 // Pseudo i64 compares for some floating point compares. 4469 let usesCustomInserter = 1, isBranch = 1, isTerminator = 1, 4470 Defs = [CPSR] in { 4471 def BCCi64 : PseudoInst<(outs), 4472 (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst), 4473 IIC_Br, 4474 [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>, 4475 Sched<[WriteBr]>; 4476 4477 def BCCZi64 : PseudoInst<(outs), 4478 (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br, 4479 [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>, 4480 Sched<[WriteBr]>; 4481 } // usesCustomInserter 4482 4483 4484 // Conditional moves 4485 let hasSideEffects = 0 in { 4486 4487 let isCommutable = 1, isSelect = 1 in 4488 def MOVCCr : ARMPseudoInst<(outs GPR:$Rd), 4489 (ins GPR:$false, GPR:$Rm, cmovpred:$p), 4490 4, IIC_iCMOVr, 4491 [(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm, 4492 cmovpred:$p))]>, 4493 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; 4494 4495 def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd), 4496 (ins GPR:$false, so_reg_imm:$shift, cmovpred:$p), 4497 4, IIC_iCMOVsr, 4498 [(set GPR:$Rd, 4499 (ARMcmov GPR:$false, so_reg_imm:$shift, 4500 cmovpred:$p))]>, 4501 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; 4502 def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd), 4503 (ins GPR:$false, so_reg_reg:$shift, cmovpred:$p), 4504 4, IIC_iCMOVsr, 4505 [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift, 4506 cmovpred:$p))]>, 4507 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; 4508 4509 4510 let isMoveImm = 1 in 4511 def MOVCCi16 4512 : ARMPseudoInst<(outs GPR:$Rd), 4513 (ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p), 4514 4, IIC_iMOVi, 4515 [(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm, 4516 cmovpred:$p))]>, 4517 RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>, 4518 Sched<[WriteALU]>; 4519 4520 let isMoveImm = 1 in 4521 def MOVCCi : ARMPseudoInst<(outs GPR:$Rd), 4522 (ins GPR:$false, mod_imm:$imm, cmovpred:$p), 4523 4, IIC_iCMOVi, 4524 [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm, 4525 cmovpred:$p))]>, 4526 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; 4527 4528 // Two instruction predicate mov immediate. 4529 let isMoveImm = 1 in 4530 def MOVCCi32imm 4531 : ARMPseudoInst<(outs GPR:$Rd), 4532 (ins GPR:$false, i32imm:$src, cmovpred:$p), 4533 8, IIC_iCMOVix2, 4534 [(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src, 4535 cmovpred:$p))]>, 4536 RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>; 4537 4538 let isMoveImm = 1 in 4539 def MVNCCi : ARMPseudoInst<(outs GPR:$Rd), 4540 (ins GPR:$false, mod_imm:$imm, cmovpred:$p), 4541 4, IIC_iCMOVi, 4542 [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm, 4543 cmovpred:$p))]>, 4544 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; 4545 4546 } // hasSideEffects 4547 4548 4549 //===----------------------------------------------------------------------===// 4550 // Atomic operations intrinsics 4551 // 4552 4553 def MemBarrierOptOperand : AsmOperandClass { 4554 let Name = "MemBarrierOpt"; 4555 let ParserMethod = "parseMemBarrierOptOperand"; 4556 } 4557 def memb_opt : Operand<i32> { 4558 let PrintMethod = "printMemBOption"; 4559 let ParserMatchClass = MemBarrierOptOperand; 4560 let DecoderMethod = "DecodeMemBarrierOption"; 4561 } 4562 4563 def InstSyncBarrierOptOperand : AsmOperandClass { 4564 let Name = "InstSyncBarrierOpt"; 4565 let ParserMethod = "parseInstSyncBarrierOptOperand"; 4566 } 4567 def instsyncb_opt : Operand<i32> { 4568 let PrintMethod = "printInstSyncBOption"; 4569 let ParserMatchClass = InstSyncBarrierOptOperand; 4570 let DecoderMethod = "DecodeInstSyncBarrierOption"; 4571 } 4572 4573 // Memory barriers protect the atomic sequences 4574 let hasSideEffects = 1 in { 4575 def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, 4576 "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>, 4577 Requires<[IsARM, HasDB]> { 4578 bits<4> opt; 4579 let Inst{31-4} = 0xf57ff05; 4580 let Inst{3-0} = opt; 4581 } 4582 4583 def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, 4584 "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>, 4585 Requires<[IsARM, HasDB]> { 4586 bits<4> opt; 4587 let Inst{31-4} = 0xf57ff04; 4588 let Inst{3-0} = opt; 4589 } 4590 4591 // ISB has only full system option 4592 def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary, 4593 "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>, 4594 Requires<[IsARM, HasDB]> { 4595 bits<4> opt; 4596 let Inst{31-4} = 0xf57ff06; 4597 let Inst{3-0} = opt; 4598 } 4599 } 4600 4601 let usesCustomInserter = 1, Defs = [CPSR] in { 4602 4603 // Pseudo instruction that combines movs + predicated rsbmi 4604 // to implement integer ABS 4605 def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>; 4606 } 4607 4608 let usesCustomInserter = 1 in { 4609 def COPY_STRUCT_BYVAL_I32 : PseudoInst< 4610 (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment), 4611 NoItinerary, 4612 [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>; 4613 } 4614 4615 let hasPostISelHook = 1, Constraints = "$newdst = $dst, $newsrc = $src" in { 4616 // %newsrc, %newdst = MEMCPY %dst, %src, N, ...N scratch regs... 4617 // Copies N registers worth of memory from address %src to address %dst 4618 // and returns the incremented addresses. N scratch register will 4619 // be attached for the copy to use. 4620 def MEMCPY : PseudoInst< 4621 (outs GPR:$newdst, GPR:$newsrc), 4622 (ins GPR:$dst, GPR:$src, i32imm:$nreg, variable_ops), 4623 NoItinerary, 4624 [(set GPR:$newdst, GPR:$newsrc, 4625 (ARMmemcopy GPR:$dst, GPR:$src, imm:$nreg))]>; 4626 } 4627 4628 def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{ 4629 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; 4630 }]>; 4631 4632 def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{ 4633 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; 4634 }]>; 4635 4636 def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{ 4637 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; 4638 }]>; 4639 4640 def strex_1 : PatFrag<(ops node:$val, node:$ptr), 4641 (int_arm_strex node:$val, node:$ptr), [{ 4642 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; 4643 }]>; 4644 4645 def strex_2 : PatFrag<(ops node:$val, node:$ptr), 4646 (int_arm_strex node:$val, node:$ptr), [{ 4647 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; 4648 }]>; 4649 4650 def strex_4 : PatFrag<(ops node:$val, node:$ptr), 4651 (int_arm_strex node:$val, node:$ptr), [{ 4652 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; 4653 }]>; 4654 4655 def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{ 4656 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; 4657 }]>; 4658 4659 def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{ 4660 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; 4661 }]>; 4662 4663 def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{ 4664 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; 4665 }]>; 4666 4667 def stlex_1 : PatFrag<(ops node:$val, node:$ptr), 4668 (int_arm_stlex node:$val, node:$ptr), [{ 4669 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; 4670 }]>; 4671 4672 def stlex_2 : PatFrag<(ops node:$val, node:$ptr), 4673 (int_arm_stlex node:$val, node:$ptr), [{ 4674 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; 4675 }]>; 4676 4677 def stlex_4 : PatFrag<(ops node:$val, node:$ptr), 4678 (int_arm_stlex node:$val, node:$ptr), [{ 4679 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; 4680 }]>; 4681 4682 let mayLoad = 1 in { 4683 def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4684 NoItinerary, "ldrexb", "\t$Rt, $addr", 4685 [(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>; 4686 def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4687 NoItinerary, "ldrexh", "\t$Rt, $addr", 4688 [(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>; 4689 def LDREX : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4690 NoItinerary, "ldrex", "\t$Rt, $addr", 4691 [(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>; 4692 let hasExtraDefRegAllocReq = 1 in 4693 def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr), 4694 NoItinerary, "ldrexd", "\t$Rt, $addr", []> { 4695 let DecoderMethod = "DecodeDoubleRegLoad"; 4696 } 4697 4698 def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4699 NoItinerary, "ldaexb", "\t$Rt, $addr", 4700 [(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>; 4701 def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4702 NoItinerary, "ldaexh", "\t$Rt, $addr", 4703 [(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>; 4704 def LDAEX : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4705 NoItinerary, "ldaex", "\t$Rt, $addr", 4706 [(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>; 4707 let hasExtraDefRegAllocReq = 1 in 4708 def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr), 4709 NoItinerary, "ldaexd", "\t$Rt, $addr", []> { 4710 let DecoderMethod = "DecodeDoubleRegLoad"; 4711 } 4712 } 4713 4714 let mayStore = 1, Constraints = "@earlyclobber $Rd" in { 4715 def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4716 NoItinerary, "strexb", "\t$Rd, $Rt, $addr", 4717 [(set GPR:$Rd, (strex_1 GPR:$Rt, 4718 addr_offset_none:$addr))]>; 4719 def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4720 NoItinerary, "strexh", "\t$Rd, $Rt, $addr", 4721 [(set GPR:$Rd, (strex_2 GPR:$Rt, 4722 addr_offset_none:$addr))]>; 4723 def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4724 NoItinerary, "strex", "\t$Rd, $Rt, $addr", 4725 [(set GPR:$Rd, (strex_4 GPR:$Rt, 4726 addr_offset_none:$addr))]>; 4727 let hasExtraSrcRegAllocReq = 1 in 4728 def STREXD : AIstrex<0b01, (outs GPR:$Rd), 4729 (ins GPRPairOp:$Rt, addr_offset_none:$addr), 4730 NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> { 4731 let DecoderMethod = "DecodeDoubleRegStore"; 4732 } 4733 def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4734 NoItinerary, "stlexb", "\t$Rd, $Rt, $addr", 4735 [(set GPR:$Rd, 4736 (stlex_1 GPR:$Rt, addr_offset_none:$addr))]>; 4737 def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4738 NoItinerary, "stlexh", "\t$Rd, $Rt, $addr", 4739 [(set GPR:$Rd, 4740 (stlex_2 GPR:$Rt, addr_offset_none:$addr))]>; 4741 def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4742 NoItinerary, "stlex", "\t$Rd, $Rt, $addr", 4743 [(set GPR:$Rd, 4744 (stlex_4 GPR:$Rt, addr_offset_none:$addr))]>; 4745 let hasExtraSrcRegAllocReq = 1 in 4746 def STLEXD : AIstlex<0b01, (outs GPR:$Rd), 4747 (ins GPRPairOp:$Rt, addr_offset_none:$addr), 4748 NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> { 4749 let DecoderMethod = "DecodeDoubleRegStore"; 4750 } 4751 } 4752 4753 def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex", 4754 [(int_arm_clrex)]>, 4755 Requires<[IsARM, HasV6K]> { 4756 let Inst{31-0} = 0b11110101011111111111000000011111; 4757 } 4758 4759 def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr), 4760 (STREXB GPR:$Rt, addr_offset_none:$addr)>; 4761 def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr), 4762 (STREXH GPR:$Rt, addr_offset_none:$addr)>; 4763 4764 def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr), 4765 (STLEXB GPR:$Rt, addr_offset_none:$addr)>; 4766 def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr), 4767 (STLEXH GPR:$Rt, addr_offset_none:$addr)>; 4768 4769 class acquiring_load<PatFrag base> 4770 : PatFrag<(ops node:$ptr), (base node:$ptr), [{ 4771 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering(); 4772 return isAcquireOrStronger(Ordering); 4773 }]>; 4774 4775 def atomic_load_acquire_8 : acquiring_load<atomic_load_8>; 4776 def atomic_load_acquire_16 : acquiring_load<atomic_load_16>; 4777 def atomic_load_acquire_32 : acquiring_load<atomic_load_32>; 4778 4779 class releasing_store<PatFrag base> 4780 : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{ 4781 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering(); 4782 return isReleaseOrStronger(Ordering); 4783 }]>; 4784 4785 def atomic_store_release_8 : releasing_store<atomic_store_8>; 4786 def atomic_store_release_16 : releasing_store<atomic_store_16>; 4787 def atomic_store_release_32 : releasing_store<atomic_store_32>; 4788 4789 let AddedComplexity = 8 in { 4790 def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr), (LDAB addr_offset_none:$addr)>; 4791 def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>; 4792 def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA addr_offset_none:$addr)>; 4793 def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val), (STLB GPR:$val, addr_offset_none:$addr)>; 4794 def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>; 4795 def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL GPR:$val, addr_offset_none:$addr)>; 4796 } 4797 4798 // SWP/SWPB are deprecated in V6/V7. 4799 let mayLoad = 1, mayStore = 1 in { 4800 def SWP : AIswp<0, (outs GPRnopc:$Rt), 4801 (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>, 4802 Requires<[PreV8]>; 4803 def SWPB: AIswp<1, (outs GPRnopc:$Rt), 4804 (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>, 4805 Requires<[PreV8]>; 4806 } 4807 4808 //===----------------------------------------------------------------------===// 4809 // Coprocessor Instructions. 4810 // 4811 4812 def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1, 4813 c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), 4814 NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2", 4815 [(int_arm_cdp imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn, 4816 imm:$CRm, imm:$opc2)]>, 4817 Requires<[PreV8]> { 4818 bits<4> opc1; 4819 bits<4> CRn; 4820 bits<4> CRd; 4821 bits<4> cop; 4822 bits<3> opc2; 4823 bits<4> CRm; 4824 4825 let Inst{3-0} = CRm; 4826 let Inst{4} = 0; 4827 let Inst{7-5} = opc2; 4828 let Inst{11-8} = cop; 4829 let Inst{15-12} = CRd; 4830 let Inst{19-16} = CRn; 4831 let Inst{23-20} = opc1; 4832 } 4833 4834 def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1, 4835 c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), 4836 NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2", 4837 [(int_arm_cdp2 imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn, 4838 imm:$CRm, imm:$opc2)]>, 4839 Requires<[PreV8]> { 4840 let Inst{31-28} = 0b1111; 4841 bits<4> opc1; 4842 bits<4> CRn; 4843 bits<4> CRd; 4844 bits<4> cop; 4845 bits<3> opc2; 4846 bits<4> CRm; 4847 4848 let Inst{3-0} = CRm; 4849 let Inst{4} = 0; 4850 let Inst{7-5} = opc2; 4851 let Inst{11-8} = cop; 4852 let Inst{15-12} = CRd; 4853 let Inst{19-16} = CRn; 4854 let Inst{23-20} = opc1; 4855 } 4856 4857 class ACI<dag oops, dag iops, string opc, string asm, 4858 list<dag> pattern, IndexMode im = IndexModeNone> 4859 : I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary, 4860 opc, asm, "", pattern> { 4861 let Inst{27-25} = 0b110; 4862 } 4863 class ACInoP<dag oops, dag iops, string opc, string asm, 4864 list<dag> pattern, IndexMode im = IndexModeNone> 4865 : InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary, 4866 opc, asm, "", pattern> { 4867 let Inst{31-28} = 0b1111; 4868 let Inst{27-25} = 0b110; 4869 } 4870 multiclass LdStCop<bit load, bit Dbit, string asm, list<dag> pattern> { 4871 def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4872 asm, "\t$cop, $CRd, $addr", pattern> { 4873 bits<13> addr; 4874 bits<4> cop; 4875 bits<4> CRd; 4876 let Inst{24} = 1; // P = 1 4877 let Inst{23} = addr{8}; 4878 let Inst{22} = Dbit; 4879 let Inst{21} = 0; // W = 0 4880 let Inst{20} = load; 4881 let Inst{19-16} = addr{12-9}; 4882 let Inst{15-12} = CRd; 4883 let Inst{11-8} = cop; 4884 let Inst{7-0} = addr{7-0}; 4885 let DecoderMethod = "DecodeCopMemInstruction"; 4886 } 4887 def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr), 4888 asm, "\t$cop, $CRd, $addr!", [], IndexModePre> { 4889 bits<13> addr; 4890 bits<4> cop; 4891 bits<4> CRd; 4892 let Inst{24} = 1; // P = 1 4893 let Inst{23} = addr{8}; 4894 let Inst{22} = Dbit; 4895 let Inst{21} = 1; // W = 1 4896 let Inst{20} = load; 4897 let Inst{19-16} = addr{12-9}; 4898 let Inst{15-12} = CRd; 4899 let Inst{11-8} = cop; 4900 let Inst{7-0} = addr{7-0}; 4901 let DecoderMethod = "DecodeCopMemInstruction"; 4902 } 4903 def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4904 postidx_imm8s4:$offset), 4905 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> { 4906 bits<9> offset; 4907 bits<4> addr; 4908 bits<4> cop; 4909 bits<4> CRd; 4910 let Inst{24} = 0; // P = 0 4911 let Inst{23} = offset{8}; 4912 let Inst{22} = Dbit; 4913 let Inst{21} = 1; // W = 1 4914 let Inst{20} = load; 4915 let Inst{19-16} = addr; 4916 let Inst{15-12} = CRd; 4917 let Inst{11-8} = cop; 4918 let Inst{7-0} = offset{7-0}; 4919 let DecoderMethod = "DecodeCopMemInstruction"; 4920 } 4921 def _OPTION : ACI<(outs), 4922 (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4923 coproc_option_imm:$option), 4924 asm, "\t$cop, $CRd, $addr, $option", []> { 4925 bits<8> option; 4926 bits<4> addr; 4927 bits<4> cop; 4928 bits<4> CRd; 4929 let Inst{24} = 0; // P = 0 4930 let Inst{23} = 1; // U = 1 4931 let Inst{22} = Dbit; 4932 let Inst{21} = 0; // W = 0 4933 let Inst{20} = load; 4934 let Inst{19-16} = addr; 4935 let Inst{15-12} = CRd; 4936 let Inst{11-8} = cop; 4937 let Inst{7-0} = option; 4938 let DecoderMethod = "DecodeCopMemInstruction"; 4939 } 4940 } 4941 multiclass LdSt2Cop<bit load, bit Dbit, string asm, list<dag> pattern> { 4942 def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4943 asm, "\t$cop, $CRd, $addr", pattern> { 4944 bits<13> addr; 4945 bits<4> cop; 4946 bits<4> CRd; 4947 let Inst{24} = 1; // P = 1 4948 let Inst{23} = addr{8}; 4949 let Inst{22} = Dbit; 4950 let Inst{21} = 0; // W = 0 4951 let Inst{20} = load; 4952 let Inst{19-16} = addr{12-9}; 4953 let Inst{15-12} = CRd; 4954 let Inst{11-8} = cop; 4955 let Inst{7-0} = addr{7-0}; 4956 let DecoderMethod = "DecodeCopMemInstruction"; 4957 } 4958 def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr), 4959 asm, "\t$cop, $CRd, $addr!", [], IndexModePre> { 4960 bits<13> addr; 4961 bits<4> cop; 4962 bits<4> CRd; 4963 let Inst{24} = 1; // P = 1 4964 let Inst{23} = addr{8}; 4965 let Inst{22} = Dbit; 4966 let Inst{21} = 1; // W = 1 4967 let Inst{20} = load; 4968 let Inst{19-16} = addr{12-9}; 4969 let Inst{15-12} = CRd; 4970 let Inst{11-8} = cop; 4971 let Inst{7-0} = addr{7-0}; 4972 let DecoderMethod = "DecodeCopMemInstruction"; 4973 } 4974 def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4975 postidx_imm8s4:$offset), 4976 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> { 4977 bits<9> offset; 4978 bits<4> addr; 4979 bits<4> cop; 4980 bits<4> CRd; 4981 let Inst{24} = 0; // P = 0 4982 let Inst{23} = offset{8}; 4983 let Inst{22} = Dbit; 4984 let Inst{21} = 1; // W = 1 4985 let Inst{20} = load; 4986 let Inst{19-16} = addr; 4987 let Inst{15-12} = CRd; 4988 let Inst{11-8} = cop; 4989 let Inst{7-0} = offset{7-0}; 4990 let DecoderMethod = "DecodeCopMemInstruction"; 4991 } 4992 def _OPTION : ACInoP<(outs), 4993 (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4994 coproc_option_imm:$option), 4995 asm, "\t$cop, $CRd, $addr, $option", []> { 4996 bits<8> option; 4997 bits<4> addr; 4998 bits<4> cop; 4999 bits<4> CRd; 5000 let Inst{24} = 0; // P = 0 5001 let Inst{23} = 1; // U = 1 5002 let Inst{22} = Dbit; 5003 let Inst{21} = 0; // W = 0 5004 let Inst{20} = load; 5005 let Inst{19-16} = addr; 5006 let Inst{15-12} = CRd; 5007 let Inst{11-8} = cop; 5008 let Inst{7-0} = option; 5009 let DecoderMethod = "DecodeCopMemInstruction"; 5010 } 5011 } 5012 5013 defm LDC : LdStCop <1, 0, "ldc", [(int_arm_ldc imm:$cop, imm:$CRd, addrmode5:$addr)]>; 5014 defm LDCL : LdStCop <1, 1, "ldcl", [(int_arm_ldcl imm:$cop, imm:$CRd, addrmode5:$addr)]>; 5015 defm LDC2 : LdSt2Cop<1, 0, "ldc2", [(int_arm_ldc2 imm:$cop, imm:$CRd, addrmode5:$addr)]>, Requires<[PreV8]>; 5016 defm LDC2L : LdSt2Cop<1, 1, "ldc2l", [(int_arm_ldc2l imm:$cop, imm:$CRd, addrmode5:$addr)]>, Requires<[PreV8]>; 5017 5018 defm STC : LdStCop <0, 0, "stc", [(int_arm_stc imm:$cop, imm:$CRd, addrmode5:$addr)]>; 5019 defm STCL : LdStCop <0, 1, "stcl", [(int_arm_stcl imm:$cop, imm:$CRd, addrmode5:$addr)]>; 5020 defm STC2 : LdSt2Cop<0, 0, "stc2", [(int_arm_stc2 imm:$cop, imm:$CRd, addrmode5:$addr)]>, Requires<[PreV8]>; 5021 defm STC2L : LdSt2Cop<0, 1, "stc2l", [(int_arm_stc2l imm:$cop, imm:$CRd, addrmode5:$addr)]>, Requires<[PreV8]>; 5022 5023 //===----------------------------------------------------------------------===// 5024 // Move between coprocessor and ARM core register. 5025 // 5026 5027 class MovRCopro<string opc, bit direction, dag oops, dag iops, 5028 list<dag> pattern> 5029 : ABI<0b1110, oops, iops, NoItinerary, opc, 5030 "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> { 5031 let Inst{20} = direction; 5032 let Inst{4} = 1; 5033 5034 bits<4> Rt; 5035 bits<4> cop; 5036 bits<3> opc1; 5037 bits<3> opc2; 5038 bits<4> CRm; 5039 bits<4> CRn; 5040 5041 let Inst{15-12} = Rt; 5042 let Inst{11-8} = cop; 5043 let Inst{23-21} = opc1; 5044 let Inst{7-5} = opc2; 5045 let Inst{3-0} = CRm; 5046 let Inst{19-16} = CRn; 5047 } 5048 5049 def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */, 5050 (outs), 5051 (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 5052 c_imm:$CRm, imm0_7:$opc2), 5053 [(int_arm_mcr imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn, 5054 imm:$CRm, imm:$opc2)]>, 5055 ComplexDeprecationPredicate<"MCR">; 5056 def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm", 5057 (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 5058 c_imm:$CRm, 0, pred:$p)>; 5059 def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */, 5060 (outs GPRwithAPSR:$Rt), 5061 (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, 5062 imm0_7:$opc2), []>; 5063 def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm", 5064 (MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, 5065 c_imm:$CRm, 0, pred:$p)>; 5066 5067 def : ARMPat<(int_arm_mrc imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2), 5068 (MRC imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>; 5069 5070 class MovRCopro2<string opc, bit direction, dag oops, dag iops, 5071 list<dag> pattern> 5072 : ABXI<0b1110, oops, iops, NoItinerary, 5073 !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> { 5074 let Inst{31-24} = 0b11111110; 5075 let Inst{20} = direction; 5076 let Inst{4} = 1; 5077 5078 bits<4> Rt; 5079 bits<4> cop; 5080 bits<3> opc1; 5081 bits<3> opc2; 5082 bits<4> CRm; 5083 bits<4> CRn; 5084 5085 let Inst{15-12} = Rt; 5086 let Inst{11-8} = cop; 5087 let Inst{23-21} = opc1; 5088 let Inst{7-5} = opc2; 5089 let Inst{3-0} = CRm; 5090 let Inst{19-16} = CRn; 5091 } 5092 5093 def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */, 5094 (outs), 5095 (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 5096 c_imm:$CRm, imm0_7:$opc2), 5097 [(int_arm_mcr2 imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn, 5098 imm:$CRm, imm:$opc2)]>, 5099 Requires<[PreV8]>; 5100 def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm", 5101 (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 5102 c_imm:$CRm, 0)>; 5103 def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */, 5104 (outs GPRwithAPSR:$Rt), 5105 (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, 5106 imm0_7:$opc2), []>, 5107 Requires<[PreV8]>; 5108 def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm", 5109 (MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, 5110 c_imm:$CRm, 0)>; 5111 5112 def : ARMV5TPat<(int_arm_mrc2 imm:$cop, imm:$opc1, imm:$CRn, 5113 imm:$CRm, imm:$opc2), 5114 (MRC2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>; 5115 5116 class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag> 5117 pattern = []> 5118 : ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", 5119 pattern> { 5120 5121 let Inst{23-21} = 0b010; 5122 let Inst{20} = direction; 5123 5124 bits<4> Rt; 5125 bits<4> Rt2; 5126 bits<4> cop; 5127 bits<4> opc1; 5128 bits<4> CRm; 5129 5130 let Inst{15-12} = Rt; 5131 let Inst{19-16} = Rt2; 5132 let Inst{11-8} = cop; 5133 let Inst{7-4} = opc1; 5134 let Inst{3-0} = CRm; 5135 } 5136 5137 def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */, 5138 (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt, 5139 GPRnopc:$Rt2, c_imm:$CRm), 5140 [(int_arm_mcrr imm:$cop, imm:$opc1, GPRnopc:$Rt, 5141 GPRnopc:$Rt2, imm:$CRm)]>; 5142 def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */, 5143 (outs GPRnopc:$Rt, GPRnopc:$Rt2), 5144 (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>; 5145 5146 class MovRRCopro2<string opc, bit direction, dag oops, dag iops, 5147 list<dag> pattern = []> 5148 : ABXI<0b1100, oops, iops, NoItinerary, 5149 !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>, 5150 Requires<[PreV8]> { 5151 let Inst{31-28} = 0b1111; 5152 let Inst{23-21} = 0b010; 5153 let Inst{20} = direction; 5154 5155 bits<4> Rt; 5156 bits<4> Rt2; 5157 bits<4> cop; 5158 bits<4> opc1; 5159 bits<4> CRm; 5160 5161 let Inst{15-12} = Rt; 5162 let Inst{19-16} = Rt2; 5163 let Inst{11-8} = cop; 5164 let Inst{7-4} = opc1; 5165 let Inst{3-0} = CRm; 5166 5167 let DecoderMethod = "DecoderForMRRC2AndMCRR2"; 5168 } 5169 5170 def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */, 5171 (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt, 5172 GPRnopc:$Rt2, c_imm:$CRm), 5173 [(int_arm_mcrr2 imm:$cop, imm:$opc1, GPRnopc:$Rt, 5174 GPRnopc:$Rt2, imm:$CRm)]>; 5175 5176 def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */, 5177 (outs GPRnopc:$Rt, GPRnopc:$Rt2), 5178 (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>; 5179 5180 //===----------------------------------------------------------------------===// 5181 // Move between special register and ARM core register 5182 // 5183 5184 // Move to ARM core register from Special Register 5185 def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary, 5186 "mrs", "\t$Rd, apsr", []> { 5187 bits<4> Rd; 5188 let Inst{23-16} = 0b00001111; 5189 let Unpredictable{19-17} = 0b111; 5190 5191 let Inst{15-12} = Rd; 5192 5193 let Inst{11-0} = 0b000000000000; 5194 let Unpredictable{11-0} = 0b110100001111; 5195 } 5196 5197 def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p), 0>, 5198 Requires<[IsARM]>; 5199 5200 // The MRSsys instruction is the MRS instruction from the ARM ARM, 5201 // section B9.3.9, with the R bit set to 1. 5202 def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary, 5203 "mrs", "\t$Rd, spsr", []> { 5204 bits<4> Rd; 5205 let Inst{23-16} = 0b01001111; 5206 let Unpredictable{19-16} = 0b1111; 5207 5208 let Inst{15-12} = Rd; 5209 5210 let Inst{11-0} = 0b000000000000; 5211 let Unpredictable{11-0} = 0b110100001111; 5212 } 5213 5214 // However, the MRS (banked register) system instruction (ARMv7VE) *does* have a 5215 // separate encoding (distinguished by bit 5. 5216 def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked), 5217 NoItinerary, "mrs", "\t$Rd, $banked", []>, 5218 Requires<[IsARM, HasVirtualization]> { 5219 bits<6> banked; 5220 bits<4> Rd; 5221 5222 let Inst{23} = 0; 5223 let Inst{22} = banked{5}; // R bit 5224 let Inst{21-20} = 0b00; 5225 let Inst{19-16} = banked{3-0}; 5226 let Inst{15-12} = Rd; 5227 let Inst{11-9} = 0b001; 5228 let Inst{8} = banked{4}; 5229 let Inst{7-0} = 0b00000000; 5230 } 5231 5232 // Move from ARM core register to Special Register 5233 // 5234 // No need to have both system and application versions of MSR (immediate) or 5235 // MSR (register), the encodings are the same and the assembly parser has no way 5236 // to distinguish between them. The mask operand contains the special register 5237 // (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be 5238 // accessed in the special register. 5239 let Defs = [CPSR] in 5240 def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary, 5241 "msr", "\t$mask, $Rn", []> { 5242 bits<5> mask; 5243 bits<4> Rn; 5244 5245 let Inst{23} = 0; 5246 let Inst{22} = mask{4}; // R bit 5247 let Inst{21-20} = 0b10; 5248 let Inst{19-16} = mask{3-0}; 5249 let Inst{15-12} = 0b1111; 5250 let Inst{11-4} = 0b00000000; 5251 let Inst{3-0} = Rn; 5252 } 5253 5254 let Defs = [CPSR] in 5255 def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, mod_imm:$imm), NoItinerary, 5256 "msr", "\t$mask, $imm", []> { 5257 bits<5> mask; 5258 bits<12> imm; 5259 5260 let Inst{23} = 0; 5261 let Inst{22} = mask{4}; // R bit 5262 let Inst{21-20} = 0b10; 5263 let Inst{19-16} = mask{3-0}; 5264 let Inst{15-12} = 0b1111; 5265 let Inst{11-0} = imm; 5266 } 5267 5268 // However, the MSR (banked register) system instruction (ARMv7VE) *does* have a 5269 // separate encoding (distinguished by bit 5. 5270 def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn), 5271 NoItinerary, "msr", "\t$banked, $Rn", []>, 5272 Requires<[IsARM, HasVirtualization]> { 5273 bits<6> banked; 5274 bits<4> Rn; 5275 5276 let Inst{23} = 0; 5277 let Inst{22} = banked{5}; // R bit 5278 let Inst{21-20} = 0b10; 5279 let Inst{19-16} = banked{3-0}; 5280 let Inst{15-12} = 0b1111; 5281 let Inst{11-9} = 0b001; 5282 let Inst{8} = banked{4}; 5283 let Inst{7-4} = 0b0000; 5284 let Inst{3-0} = Rn; 5285 } 5286 5287 // Dynamic stack allocation yields a _chkstk for Windows targets. These calls 5288 // are needed to probe the stack when allocating more than 5289 // 4k bytes in one go. Touching the stack at 4K increments is necessary to 5290 // ensure that the guard pages used by the OS virtual memory manager are 5291 // allocated in correct sequence. 5292 // The main point of having separate instruction are extra unmodelled effects 5293 // (compared to ordinary calls) like stack pointer change. 5294 5295 def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone, 5296 [SDNPHasChain, SDNPSideEffect]>; 5297 let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP] in 5298 def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>; 5299 5300 def win__dbzchk : SDNode<"ARMISD::WIN__DBZCHK", SDT_WIN__DBZCHK, 5301 [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; 5302 let usesCustomInserter = 1, Defs = [CPSR] in 5303 def WIN__DBZCHK : PseudoInst<(outs), (ins tGPR:$divisor), NoItinerary, 5304 [(win__dbzchk tGPR:$divisor)]>; 5305 5306 //===----------------------------------------------------------------------===// 5307 // TLS Instructions 5308 // 5309 5310 // __aeabi_read_tp preserves the registers r1-r3. 5311 // This is a pseudo inst so that we can get the encoding right, 5312 // complete with fixup for the aeabi_read_tp function. 5313 // TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern 5314 // is defined in "ARMInstrThumb.td". 5315 let isCall = 1, 5316 Defs = [R0, R12, LR, CPSR], Uses = [SP] in { 5317 def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br, 5318 [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>; 5319 } 5320 5321 //===----------------------------------------------------------------------===// 5322 // SJLJ Exception handling intrinsics 5323 // eh_sjlj_setjmp() is an instruction sequence to store the return 5324 // address and save #0 in R0 for the non-longjmp case. 5325 // Since by its nature we may be coming from some other function to get 5326 // here, and we're using the stack frame for the containing function to 5327 // save/restore registers, we can't keep anything live in regs across 5328 // the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon 5329 // when we get here from a longjmp(). We force everything out of registers 5330 // except for our own input by listing the relevant registers in Defs. By 5331 // doing so, we also cause the prologue/epilogue code to actively preserve 5332 // all of the callee-saved resgisters, which is exactly what we want. 5333 // A constant value is passed in $val, and we use the location as a scratch. 5334 // 5335 // These are pseudo-instructions and are lowered to individual MC-insts, so 5336 // no encoding information is necessary. 5337 let Defs = 5338 [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR, 5339 Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ], 5340 hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in { 5341 def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val), 5342 NoItinerary, 5343 [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>, 5344 Requires<[IsARM, HasVFP2]>; 5345 } 5346 5347 let Defs = 5348 [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR ], 5349 hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in { 5350 def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val), 5351 NoItinerary, 5352 [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>, 5353 Requires<[IsARM, NoVFP]>; 5354 } 5355 5356 // FIXME: Non-IOS version(s) 5357 let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, 5358 Defs = [ R7, LR, SP ] in { 5359 def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch), 5360 NoItinerary, 5361 [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>, 5362 Requires<[IsARM]>; 5363 } 5364 5365 let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in 5366 def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary, 5367 [(ARMeh_sjlj_setup_dispatch)]>; 5368 5369 // eh.sjlj.dispatchsetup pseudo-instruction. 5370 // This pseudo is used for both ARM and Thumb. Any differences are handled when 5371 // the pseudo is expanded (which happens before any passes that need the 5372 // instruction size). 5373 let isBarrier = 1 in 5374 def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>; 5375 5376 5377 //===----------------------------------------------------------------------===// 5378 // Non-Instruction Patterns 5379 // 5380 5381 // ARMv4 indirect branch using (MOVr PC, dst) 5382 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in 5383 def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst), 5384 4, IIC_Br, [(brind GPR:$dst)], 5385 (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>, 5386 Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>; 5387 5388 // Large immediate handling. 5389 5390 // 32-bit immediate using two piece mod_imms or movw + movt. 5391 // This is a single pseudo instruction, the benefit is that it can be remat'd 5392 // as a single unit instead of having to handle reg inputs. 5393 // FIXME: Remove this when we can do generalized remat. 5394 let isReMaterializable = 1, isMoveImm = 1 in 5395 def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2, 5396 [(set GPR:$dst, (arm_i32imm:$src))]>, 5397 Requires<[IsARM]>; 5398 5399 def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i, 5400 [(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>, 5401 Requires<[IsARM, DontUseMovt]>; 5402 5403 // Pseudo instruction that combines movw + movt + add pc (if PIC). 5404 // It also makes it possible to rematerialize the instructions. 5405 // FIXME: Remove this when we can do generalized remat and when machine licm 5406 // can properly the instructions. 5407 let isReMaterializable = 1 in { 5408 def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 5409 IIC_iMOVix2addpc, 5410 [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>, 5411 Requires<[IsARM, UseMovt]>; 5412 5413 def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 5414 IIC_iLoadiALU, 5415 [(set GPR:$dst, 5416 (ARMWrapperPIC tglobaladdr:$addr))]>, 5417 Requires<[IsARM, DontUseMovt]>; 5418 5419 let AddedComplexity = 10 in 5420 def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 5421 NoItinerary, 5422 [(set GPR:$dst, 5423 (load (ARMWrapperPIC tglobaladdr:$addr)))]>, 5424 Requires<[IsARM, DontUseMovt]>; 5425 5426 let AddedComplexity = 10 in 5427 def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 5428 IIC_iMOVix2ld, 5429 [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>, 5430 Requires<[IsARM, UseMovt]>; 5431 } // isReMaterializable 5432 5433 // The many different faces of TLS access. 5434 def : ARMPat<(ARMWrapper tglobaltlsaddr :$dst), 5435 (MOVi32imm tglobaltlsaddr :$dst)>, 5436 Requires<[IsARM, UseMovt]>; 5437 5438 def : Pat<(ARMWrapper tglobaltlsaddr:$src), 5439 (LDRLIT_ga_abs tglobaltlsaddr:$src)>, 5440 Requires<[IsARM, DontUseMovt]>; 5441 5442 def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr), 5443 (MOV_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovt]>; 5444 5445 def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr), 5446 (LDRLIT_ga_pcrel tglobaltlsaddr:$addr)>, 5447 Requires<[IsARM, DontUseMovt]>; 5448 let AddedComplexity = 10 in 5449 def : Pat<(load (ARMWrapperPIC tglobaltlsaddr:$addr)), 5450 (MOV_ga_pcrel_ldr tglobaltlsaddr:$addr)>, 5451 Requires<[IsARM, UseMovt]>; 5452 5453 5454 // ConstantPool, GlobalAddress, and JumpTable 5455 def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>; 5456 def : ARMPat<(ARMWrapper tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>, 5457 Requires<[IsARM, UseMovt]>; 5458 def : ARMPat<(ARMWrapper texternalsym :$dst), (MOVi32imm texternalsym :$dst)>, 5459 Requires<[IsARM, UseMovt]>; 5460 def : ARMPat<(ARMWrapperJT tjumptable:$dst), 5461 (LEApcrelJT tjumptable:$dst)>; 5462 5463 // TODO: add,sub,and, 3-instr forms? 5464 5465 // Tail calls. These patterns also apply to Thumb mode. 5466 def : Pat<(ARMtcret tcGPR:$dst), (TCRETURNri tcGPR:$dst)>; 5467 def : Pat<(ARMtcret (i32 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>; 5468 def : Pat<(ARMtcret (i32 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>; 5469 5470 // Direct calls 5471 def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>; 5472 def : ARMPat<(ARMcall_nolink texternalsym:$func), 5473 (BMOVPCB_CALL texternalsym:$func)>; 5474 5475 // zextload i1 -> zextload i8 5476 def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; 5477 def : ARMPat<(zextloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; 5478 5479 // extload -> zextload 5480 def : ARMPat<(extloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; 5481 def : ARMPat<(extloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; 5482 def : ARMPat<(extloadi8 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; 5483 def : ARMPat<(extloadi8 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; 5484 5485 def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>; 5486 5487 def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>; 5488 def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>; 5489 5490 // smul* and smla* 5491 def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 5492 (sra (shl GPR:$b, (i32 16)), (i32 16))), 5493 (SMULBB GPR:$a, GPR:$b)>; 5494 def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b), 5495 (SMULBB GPR:$a, GPR:$b)>; 5496 def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 5497 (sra GPR:$b, (i32 16))), 5498 (SMULBT GPR:$a, GPR:$b)>; 5499 def : ARMV5TEPat<(mul sext_16_node:$a, (sra GPR:$b, (i32 16))), 5500 (SMULBT GPR:$a, GPR:$b)>; 5501 def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), 5502 (sra (shl GPR:$b, (i32 16)), (i32 16))), 5503 (SMULTB GPR:$a, GPR:$b)>; 5504 def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), sext_16_node:$b), 5505 (SMULTB GPR:$a, GPR:$b)>; 5506 5507 def : ARMV5MOPat<(add GPR:$acc, 5508 (mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 5509 (sra (shl GPR:$b, (i32 16)), (i32 16)))), 5510 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; 5511 def : ARMV5MOPat<(add GPR:$acc, 5512 (mul sext_16_node:$a, sext_16_node:$b)), 5513 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; 5514 def : ARMV5MOPat<(add GPR:$acc, 5515 (mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 5516 (sra GPR:$b, (i32 16)))), 5517 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; 5518 def : ARMV5MOPat<(add GPR:$acc, 5519 (mul sext_16_node:$a, (sra GPR:$b, (i32 16)))), 5520 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; 5521 def : ARMV5MOPat<(add GPR:$acc, 5522 (mul (sra GPR:$a, (i32 16)), 5523 (sra (shl GPR:$b, (i32 16)), (i32 16)))), 5524 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; 5525 def : ARMV5MOPat<(add GPR:$acc, 5526 (mul (sra GPR:$a, (i32 16)), sext_16_node:$b)), 5527 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; 5528 5529 5530 // Pre-v7 uses MCR for synchronization barriers. 5531 def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>, 5532 Requires<[IsARM, HasV6]>; 5533 5534 // SXT/UXT with no rotate 5535 let AddedComplexity = 16 in { 5536 def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>; 5537 def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>; 5538 def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>; 5539 def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)), 5540 (UXTAB GPR:$Rn, GPR:$Rm, 0)>; 5541 def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)), 5542 (UXTAH GPR:$Rn, GPR:$Rm, 0)>; 5543 } 5544 5545 def : ARMV6Pat<(sext_inreg GPR:$Src, i8), (SXTB GPR:$Src, 0)>; 5546 def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>; 5547 5548 def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)), 5549 (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>; 5550 def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)), 5551 (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>; 5552 5553 // Atomic load/store patterns 5554 def : ARMPat<(atomic_load_8 ldst_so_reg:$src), 5555 (LDRBrs ldst_so_reg:$src)>; 5556 def : ARMPat<(atomic_load_8 addrmode_imm12:$src), 5557 (LDRBi12 addrmode_imm12:$src)>; 5558 def : ARMPat<(atomic_load_16 addrmode3:$src), 5559 (LDRH addrmode3:$src)>; 5560 def : ARMPat<(atomic_load_32 ldst_so_reg:$src), 5561 (LDRrs ldst_so_reg:$src)>; 5562 def : ARMPat<(atomic_load_32 addrmode_imm12:$src), 5563 (LDRi12 addrmode_imm12:$src)>; 5564 def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val), 5565 (STRBrs GPR:$val, ldst_so_reg:$ptr)>; 5566 def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val), 5567 (STRBi12 GPR:$val, addrmode_imm12:$ptr)>; 5568 def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val), 5569 (STRH GPR:$val, addrmode3:$ptr)>; 5570 def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val), 5571 (STRrs GPR:$val, ldst_so_reg:$ptr)>; 5572 def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val), 5573 (STRi12 GPR:$val, addrmode_imm12:$ptr)>; 5574 5575 5576 //===----------------------------------------------------------------------===// 5577 // Thumb Support 5578 // 5579 5580 include "ARMInstrThumb.td" 5581 5582 //===----------------------------------------------------------------------===// 5583 // Thumb2 Support 5584 // 5585 5586 include "ARMInstrThumb2.td" 5587 5588 //===----------------------------------------------------------------------===// 5589 // Floating Point Support 5590 // 5591 5592 include "ARMInstrVFP.td" 5593 5594 //===----------------------------------------------------------------------===// 5595 // Advanced SIMD (NEON) Support 5596 // 5597 5598 include "ARMInstrNEON.td" 5599 5600 //===----------------------------------------------------------------------===// 5601 // Assembler aliases 5602 // 5603 5604 // Memory barriers 5605 def : InstAlias<"dmb", (DMB 0xf), 0>, Requires<[IsARM, HasDB]>; 5606 def : InstAlias<"dsb", (DSB 0xf), 0>, Requires<[IsARM, HasDB]>; 5607 def : InstAlias<"isb", (ISB 0xf), 0>, Requires<[IsARM, HasDB]>; 5608 5609 // System instructions 5610 def : MnemonicAlias<"swi", "svc">; 5611 5612 // Load / Store Multiple 5613 def : MnemonicAlias<"ldmfd", "ldm">; 5614 def : MnemonicAlias<"ldmia", "ldm">; 5615 def : MnemonicAlias<"ldmea", "ldmdb">; 5616 def : MnemonicAlias<"stmfd", "stmdb">; 5617 def : MnemonicAlias<"stmia", "stm">; 5618 def : MnemonicAlias<"stmea", "stm">; 5619 5620 // PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT with the 5621 // input operands swapped when the shift amount is zero (i.e., unspecified). 5622 def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm", 5623 (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p), 0>, 5624 Requires<[IsARM, HasV6]>; 5625 def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm", 5626 (PKHBT GPRnopc:$Rd, GPRnopc:$Rm, GPRnopc:$Rn, 0, pred:$p), 0>, 5627 Requires<[IsARM, HasV6]>; 5628 5629 // PUSH/POP aliases for STM/LDM 5630 def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>; 5631 def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>; 5632 5633 // SSAT/USAT optional shift operand. 5634 def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn", 5635 (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>; 5636 def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn", 5637 (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>; 5638 5639 5640 // Extend instruction optional rotate operand. 5641 def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm", 5642 (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5643 def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm", 5644 (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5645 def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm", 5646 (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5647 def : ARMInstAlias<"sxtb${p} $Rd, $Rm", 5648 (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5649 def : ARMInstAlias<"sxtb16${p} $Rd, $Rm", 5650 (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5651 def : ARMInstAlias<"sxth${p} $Rd, $Rm", 5652 (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5653 5654 def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm", 5655 (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5656 def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm", 5657 (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5658 def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm", 5659 (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5660 def : ARMInstAlias<"uxtb${p} $Rd, $Rm", 5661 (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5662 def : ARMInstAlias<"uxtb16${p} $Rd, $Rm", 5663 (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5664 def : ARMInstAlias<"uxth${p} $Rd, $Rm", 5665 (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5666 5667 5668 // RFE aliases 5669 def : MnemonicAlias<"rfefa", "rfeda">; 5670 def : MnemonicAlias<"rfeea", "rfedb">; 5671 def : MnemonicAlias<"rfefd", "rfeia">; 5672 def : MnemonicAlias<"rfeed", "rfeib">; 5673 def : MnemonicAlias<"rfe", "rfeia">; 5674 5675 // SRS aliases 5676 def : MnemonicAlias<"srsfa", "srsib">; 5677 def : MnemonicAlias<"srsea", "srsia">; 5678 def : MnemonicAlias<"srsfd", "srsdb">; 5679 def : MnemonicAlias<"srsed", "srsda">; 5680 def : MnemonicAlias<"srs", "srsia">; 5681 5682 // QSAX == QSUBADDX 5683 def : MnemonicAlias<"qsubaddx", "qsax">; 5684 // SASX == SADDSUBX 5685 def : MnemonicAlias<"saddsubx", "sasx">; 5686 // SHASX == SHADDSUBX 5687 def : MnemonicAlias<"shaddsubx", "shasx">; 5688 // SHSAX == SHSUBADDX 5689 def : MnemonicAlias<"shsubaddx", "shsax">; 5690 // SSAX == SSUBADDX 5691 def : MnemonicAlias<"ssubaddx", "ssax">; 5692 // UASX == UADDSUBX 5693 def : MnemonicAlias<"uaddsubx", "uasx">; 5694 // UHASX == UHADDSUBX 5695 def : MnemonicAlias<"uhaddsubx", "uhasx">; 5696 // UHSAX == UHSUBADDX 5697 def : MnemonicAlias<"uhsubaddx", "uhsax">; 5698 // UQASX == UQADDSUBX 5699 def : MnemonicAlias<"uqaddsubx", "uqasx">; 5700 // UQSAX == UQSUBADDX 5701 def : MnemonicAlias<"uqsubaddx", "uqsax">; 5702 // USAX == USUBADDX 5703 def : MnemonicAlias<"usubaddx", "usax">; 5704 5705 // "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like 5706 // for isel. 5707 def : ARMInstAlias<"mov${s}${p} $Rd, $imm", 5708 (MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>; 5709 def : ARMInstAlias<"mvn${s}${p} $Rd, $imm", 5710 (MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>; 5711 // Same for AND <--> BIC 5712 def : ARMInstAlias<"bic${s}${p} $Rd, $Rn, $imm", 5713 (ANDri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, 5714 pred:$p, cc_out:$s)>; 5715 def : ARMInstAlias<"bic${s}${p} $Rdn, $imm", 5716 (ANDri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, 5717 pred:$p, cc_out:$s)>; 5718 def : ARMInstAlias<"and${s}${p} $Rd, $Rn, $imm", 5719 (BICri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, 5720 pred:$p, cc_out:$s)>; 5721 def : ARMInstAlias<"and${s}${p} $Rdn, $imm", 5722 (BICri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, 5723 pred:$p, cc_out:$s)>; 5724 5725 // Likewise, "add Rd, mod_imm_neg" -> sub 5726 def : ARMInstAlias<"add${s}${p} $Rd, $Rn, $imm", 5727 (SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>; 5728 def : ARMInstAlias<"add${s}${p} $Rd, $imm", 5729 (SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>; 5730 // Same for CMP <--> CMN via mod_imm_neg 5731 def : ARMInstAlias<"cmp${p} $Rd, $imm", 5732 (CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>; 5733 def : ARMInstAlias<"cmn${p} $Rd, $imm", 5734 (CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>; 5735 5736 // The shifter forms of the MOV instruction are aliased to the ASR, LSL, 5737 // LSR, ROR, and RRX instructions. 5738 // FIXME: We need C++ parser hooks to map the alias to the MOV 5739 // encoding. It seems we should be able to do that sort of thing 5740 // in tblgen, but it could get ugly. 5741 let TwoOperandAliasConstraint = "$Rm = $Rd" in { 5742 def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm", 5743 (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p, 5744 cc_out:$s)>; 5745 def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm", 5746 (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p, 5747 cc_out:$s)>; 5748 def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm", 5749 (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p, 5750 cc_out:$s)>; 5751 def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm", 5752 (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p, 5753 cc_out:$s)>; 5754 } 5755 def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm", 5756 (ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>; 5757 let TwoOperandAliasConstraint = "$Rn = $Rd" in { 5758 def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm", 5759 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, 5760 cc_out:$s)>; 5761 def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm", 5762 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, 5763 cc_out:$s)>; 5764 def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm", 5765 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, 5766 cc_out:$s)>; 5767 def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm", 5768 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, 5769 cc_out:$s)>; 5770 } 5771 5772 // "neg" is and alias for "rsb rd, rn, #0" 5773 def : ARMInstAlias<"neg${s}${p} $Rd, $Rm", 5774 (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>; 5775 5776 // Pre-v6, 'mov r0, r0' was used as a NOP encoding. 5777 def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg)>, 5778 Requires<[IsARM, NoV6]>; 5779 5780 // MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but 5781 // the instruction definitions need difference constraints pre-v6. 5782 // Use these aliases for the assembly parsing on pre-v6. 5783 def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm", 5784 (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 0>, 5785 Requires<[IsARM, NoV6]>; 5786 def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra", 5787 (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, 5788 pred:$p, cc_out:$s), 0>, 5789 Requires<[IsARM, NoV6]>; 5790 def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm", 5791 (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>, 5792 Requires<[IsARM, NoV6]>; 5793 def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm", 5794 (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>, 5795 Requires<[IsARM, NoV6]>; 5796 def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm", 5797 (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>, 5798 Requires<[IsARM, NoV6]>; 5799 def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm", 5800 (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>, 5801 Requires<[IsARM, NoV6]>; 5802 5803 // 'it' blocks in ARM mode just validate the predicates. The IT itself 5804 // is discarded. 5805 def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>, 5806 ComplexDeprecationPredicate<"IT">; 5807 5808 let mayLoad = 1, mayStore =1, hasSideEffects = 1 in 5809 def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn), 5810 NoItinerary, 5811 [(set GPR:$Rd, (int_arm_space imm:$size, GPR:$Rn))]>; 5812 5813 //===---------------------------------- 5814 // Atomic cmpxchg for -O0 5815 //===---------------------------------- 5816 5817 // The fast register allocator used during -O0 inserts spills to cover any VRegs 5818 // live across basic block boundaries. When this happens between an LDXR and an 5819 // STXR it can clear the exclusive monitor, causing all cmpxchg attempts to 5820 // fail. 5821 5822 // Unfortunately, this means we have to have an alternative (expanded 5823 // post-regalloc) path for -O0 compilations. Fortunately this path can be 5824 // significantly more naive than the standard expansion: we conservatively 5825 // assume seq_cst, strong cmpxchg and omit clrex on failure. 5826 5827 let Constraints = "@earlyclobber $Rd,@earlyclobber $status", 5828 mayLoad = 1, mayStore = 1 in { 5829 def CMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$status), 5830 (ins GPR:$addr, GPR:$desired, GPR:$new), 5831 NoItinerary, []>, Sched<[]>; 5832 5833 def CMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$status), 5834 (ins GPR:$addr, GPR:$desired, GPR:$new), 5835 NoItinerary, []>, Sched<[]>; 5836 5837 def CMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, GPR:$status), 5838 (ins GPR:$addr, GPR:$desired, GPR:$new), 5839 NoItinerary, []>, Sched<[]>; 5840 5841 def CMP_SWAP_64 : PseudoInst<(outs GPRPair:$Rd, GPR:$status), 5842 (ins GPR:$addr, GPRPair:$desired, GPRPair:$new), 5843 NoItinerary, []>, Sched<[]>; 5844 } 5845