Home | History | Annotate | Download | only in X86
      1 //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the various pseudo instructions used by the compiler,
     11 // as well as Pat patterns used during instruction selection.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 //===----------------------------------------------------------------------===//
     16 // Pattern Matching Support
     17 
     18 def GetLo32XForm : SDNodeXForm<imm, [{
     19   // Transformation function: get the low 32 bits.
     20   return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
     21 }]>;
     22 
     23 def GetLo8XForm : SDNodeXForm<imm, [{
     24   // Transformation function: get the low 8 bits.
     25   return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
     26 }]>;
     27 
     28 
     29 //===----------------------------------------------------------------------===//
     30 // Random Pseudo Instructions.
     31 
     32 // PIC base construction.  This expands to code that looks like this:
     33 //     call  $next_inst
     34 //     popl %destreg"
     35 let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
     36   def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
     37                       "", []>;
     38 
     39 
     40 // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
     41 // a stack adjustment and the codegen must know that they may modify the stack
     42 // pointer before prolog-epilog rewriting occurs.
     43 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
     44 // sub / add which can clobber EFLAGS.
     45 let Defs = [ESP, EFLAGS], Uses = [ESP] in {
     46 def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     47                            "#ADJCALLSTACKDOWN",
     48                            []>,
     49                           Requires<[NotLP64]>;
     50 def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     51                            "#ADJCALLSTACKUP",
     52                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
     53                           Requires<[NotLP64]>;
     54 }
     55 def : Pat<(X86callseq_start timm:$amt1),
     56           (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
     57 
     58 
     59 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
     60 // a stack adjustment and the codegen must know that they may modify the stack
     61 // pointer before prolog-epilog rewriting occurs.
     62 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
     63 // sub / add which can clobber EFLAGS.
     64 let Defs = [RSP, EFLAGS], Uses = [RSP] in {
     65 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     66                            "#ADJCALLSTACKDOWN",
     67                            []>,
     68                           Requires<[IsLP64]>;
     69 def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     70                            "#ADJCALLSTACKUP",
     71                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
     72                           Requires<[IsLP64]>;
     73 }
     74 def : Pat<(X86callseq_start timm:$amt1),
     75           (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
     76 
     77 
     78 // x86-64 va_start lowering magic.
     79 let usesCustomInserter = 1, Defs = [EFLAGS] in {
     80 def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
     81                               (outs),
     82                               (ins GR8:$al,
     83                                    i64imm:$regsavefi, i64imm:$offset,
     84                                    variable_ops),
     85                               "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
     86                               [(X86vastart_save_xmm_regs GR8:$al,
     87                                                          imm:$regsavefi,
     88                                                          imm:$offset),
     89                                (implicit EFLAGS)]>;
     90 
     91 // The VAARG_64 pseudo-instruction takes the address of the va_list,
     92 // and places the address of the next argument into a register.
     93 let Defs = [EFLAGS] in
     94 def VAARG_64 : I<0, Pseudo,
     95                  (outs GR64:$dst),
     96                  (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
     97                  "#VAARG_64 $dst, $ap, $size, $mode, $align",
     98                  [(set GR64:$dst,
     99                     (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
    100                   (implicit EFLAGS)]>;
    101 
    102 
    103 // When using segmented stacks these are lowered into instructions which first
    104 // check if the current stacklet has enough free memory. If it does, memory is
    105 // allocated by bumping the stack pointer. Otherwise memory is allocated from
    106 // the heap.
    107 
    108 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
    109 def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
    110                       "# variable sized alloca for segmented stacks",
    111                       [(set GR32:$dst,
    112                          (X86SegAlloca GR32:$size))]>,
    113                     Requires<[NotLP64]>;
    114 
    115 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
    116 def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
    117                       "# variable sized alloca for segmented stacks",
    118                       [(set GR64:$dst,
    119                          (X86SegAlloca GR64:$size))]>,
    120                     Requires<[In64BitMode]>;
    121 }
    122 
    123 // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
    124 // targets.  These calls are needed to probe the stack when allocating more than
    125 // 4k bytes in one go. Touching the stack at 4K increments is necessary to
    126 // ensure that the guard pages used by the OS virtual memory manager are
    127 // allocated in correct sequence.
    128 // The main point of having separate instruction are extra unmodelled effects
    129 // (compared to ordinary calls) like stack pointer change.
    130 
    131 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
    132 def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
    133                      "# dynamic stack allocation",
    134                      [(X86WinAlloca GR32:$size)]>,
    135                      Requires<[NotLP64]>;
    136 
    137 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
    138 def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
    139                      "# dynamic stack allocation",
    140                      [(X86WinAlloca GR64:$size)]>,
    141                      Requires<[In64BitMode]>;
    142 
    143 
    144 //===----------------------------------------------------------------------===//
    145 // EH Pseudo Instructions
    146 //
    147 let SchedRW = [WriteSystem] in {
    148 let isTerminator = 1, isReturn = 1, isBarrier = 1,
    149     hasCtrlDep = 1, isCodeGenOnly = 1 in {
    150 def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
    151                     "ret\t#eh_return, addr: $addr",
    152                     [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
    153 
    154 }
    155 
    156 let isTerminator = 1, isReturn = 1, isBarrier = 1,
    157     hasCtrlDep = 1, isCodeGenOnly = 1 in {
    158 def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
    159                      "ret\t#eh_return, addr: $addr",
    160                      [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
    161 
    162 }
    163 
    164 let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
    165     isCodeGenOnly = 1, isReturn = 1 in {
    166   def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
    167 
    168   // CATCHRET needs a custom inserter for SEH.
    169   let usesCustomInserter = 1 in
    170     def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
    171                      "# CATCHRET",
    172                      [(catchret bb:$dst, bb:$from)]>;
    173 }
    174 
    175 let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
    176     usesCustomInserter = 1 in
    177 def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
    178 
    179 // This instruction is responsible for re-establishing stack pointers after an
    180 // exception has been caught and we are rejoining normal control flow in the
    181 // parent function or funclet. It generally sets ESP and EBP, and optionally
    182 // ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
    183 // elsewhere.
    184 let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
    185 def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
    186 
    187 let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
    188     usesCustomInserter = 1 in {
    189   def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
    190                             "#EH_SJLJ_SETJMP32",
    191                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
    192                           Requires<[Not64BitMode]>;
    193   def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
    194                             "#EH_SJLJ_SETJMP64",
    195                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
    196                           Requires<[In64BitMode]>;
    197   let isTerminator = 1 in {
    198   def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
    199                             "#EH_SJLJ_LONGJMP32",
    200                             [(X86eh_sjlj_longjmp addr:$buf)]>,
    201                           Requires<[Not64BitMode]>;
    202   def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
    203                             "#EH_SJLJ_LONGJMP64",
    204                             [(X86eh_sjlj_longjmp addr:$buf)]>,
    205                           Requires<[In64BitMode]>;
    206   }
    207 }
    208 } // SchedRW
    209 
    210 let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
    211   def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
    212                         "#EH_SjLj_Setup\t$dst", []>;
    213 }
    214 
    215 //===----------------------------------------------------------------------===//
    216 // Pseudo instructions used by unwind info.
    217 //
    218 let isPseudo = 1 in {
    219   def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
    220                             "#SEH_PushReg $reg", []>;
    221   def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
    222                             "#SEH_SaveReg $reg, $dst", []>;
    223   def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
    224                             "#SEH_SaveXMM $reg, $dst", []>;
    225   def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
    226                             "#SEH_StackAlloc $size", []>;
    227   def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
    228                             "#SEH_SetFrame $reg, $offset", []>;
    229   def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
    230                             "#SEH_PushFrame $mode", []>;
    231   def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
    232                             "#SEH_EndPrologue", []>;
    233   def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
    234                             "#SEH_Epilogue", []>;
    235 }
    236 
    237 //===----------------------------------------------------------------------===//
    238 // Pseudo instructions used by segmented stacks.
    239 //
    240 
    241 // This is lowered into a RET instruction by MCInstLower.  We need
    242 // this so that we don't have to have a MachineBasicBlock which ends
    243 // with a RET and also has successors.
    244 let isPseudo = 1 in {
    245 def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
    246                           "", []>;
    247 
    248 // This instruction is lowered to a RET followed by a MOV.  The two
    249 // instructions are not generated on a higher level since then the
    250 // verifier sees a MachineBasicBlock ending with a non-terminator.
    251 def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
    252                                   "", []>;
    253 }
    254 
    255 //===----------------------------------------------------------------------===//
    256 // Alias Instructions
    257 //===----------------------------------------------------------------------===//
    258 
    259 // Alias instruction mapping movr0 to xor.
    260 // FIXME: remove when we can teach regalloc that xor reg, reg is ok.
    261 let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
    262     isPseudo = 1, AddedComplexity = 20 in
    263 def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    264                  [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
    265 
    266 // Other widths can also make use of the 32-bit xor, which may have a smaller
    267 // encoding and avoid partial register updates.
    268 def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
    269 def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
    270 def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
    271   let AddedComplexity = 20;
    272 }
    273 
    274 let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
    275     AddedComplexity = 15 in {
    276   // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
    277   // which only require 3 bytes compared to MOV32ri which requires 5.
    278   let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
    279     def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    280                         [(set GR32:$dst, 1)]>;
    281     def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    282                         [(set GR32:$dst, -1)]>;
    283   }
    284 
    285   // MOV16ri is 4 bytes, so the instructions above are smaller.
    286   def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
    287   def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
    288 }
    289 
    290 let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 10 in {
    291 // AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
    292 // FIXME: Add itinerary class and Schedule.
    293 def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
    294                        [(set GR32:$dst, i32immSExt8:$src)]>,
    295                      Requires<[OptForMinSize, NotWin64WithoutFP]>;
    296 def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
    297                        [(set GR64:$dst, i64immSExt8:$src)]>,
    298                      Requires<[OptForMinSize, NotWin64WithoutFP]>;
    299 }
    300 
    301 // Materialize i64 constant where top 32-bits are zero. This could theoretically
    302 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
    303 // that would make it more difficult to rematerialize.
    304 let isReMaterializable = 1, isAsCheapAsAMove = 1,
    305     isPseudo = 1, hasSideEffects = 0 in
    306 def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
    307 
    308 // This 64-bit pseudo-move can be used for both a 64-bit constant that is
    309 // actually the zero-extension of a 32-bit constant and for labels in the
    310 // x86-64 small code model.
    311 def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
    312 
    313 let AddedComplexity = 1 in
    314 def : Pat<(i64 mov64imm32:$src),
    315           (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
    316 
    317 // Use sbb to materialize carry bit.
    318 let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
    319 // FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
    320 // However, Pat<> can't replicate the destination reg into the inputs of the
    321 // result.
    322 def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
    323                  [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    324 def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
    325                  [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    326 def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    327                  [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    328 def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
    329                  [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    330 } // isCodeGenOnly
    331 
    332 
    333 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    334           (SETB_C16r)>;
    335 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    336           (SETB_C32r)>;
    337 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    338           (SETB_C64r)>;
    339 
    340 def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    341           (SETB_C16r)>;
    342 def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    343           (SETB_C32r)>;
    344 def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    345           (SETB_C64r)>;
    346 
    347 // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
    348 // will be eliminated and that the sbb can be extended up to a wider type.  When
    349 // this happens, it is great.  However, if we are left with an 8-bit sbb and an
    350 // and, we might as well just match it as a setb.
    351 def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
    352           (SETBr)>;
    353 
    354 // (add OP, SETB) -> (adc OP, 0)
    355 def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
    356           (ADC8ri GR8:$op, 0)>;
    357 def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
    358           (ADC32ri8 GR32:$op, 0)>;
    359 def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
    360           (ADC64ri8 GR64:$op, 0)>;
    361 
    362 // (sub OP, SETB) -> (sbb OP, 0)
    363 def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
    364           (SBB8ri GR8:$op, 0)>;
    365 def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
    366           (SBB32ri8 GR32:$op, 0)>;
    367 def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
    368           (SBB64ri8 GR64:$op, 0)>;
    369 
    370 // (sub OP, SETCC_CARRY) -> (adc OP, 0)
    371 def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
    372           (ADC8ri GR8:$op, 0)>;
    373 def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
    374           (ADC32ri8 GR32:$op, 0)>;
    375 def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
    376           (ADC64ri8 GR64:$op, 0)>;
    377 
    378 //===----------------------------------------------------------------------===//
    379 // String Pseudo Instructions
    380 //
    381 let SchedRW = [WriteMicrocoded] in {
    382 let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
    383 def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
    384                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
    385                    Requires<[Not64BitMode]>;
    386 def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
    387                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
    388                    Requires<[Not64BitMode]>;
    389 def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
    390                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
    391                    Requires<[Not64BitMode]>;
    392 }
    393 
    394 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
    395 def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
    396                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
    397                    Requires<[In64BitMode]>;
    398 def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
    399                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
    400                    Requires<[In64BitMode]>;
    401 def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
    402                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
    403                    Requires<[In64BitMode]>;
    404 def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
    405                     [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
    406                    Requires<[In64BitMode]>;
    407 }
    408 
    409 // FIXME: Should use "(X86rep_stos AL)" as the pattern.
    410 let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
    411   let Uses = [AL,ECX,EDI] in
    412   def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
    413                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
    414                      Requires<[Not64BitMode]>;
    415   let Uses = [AX,ECX,EDI] in
    416   def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
    417                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
    418                      Requires<[Not64BitMode]>;
    419   let Uses = [EAX,ECX,EDI] in
    420   def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
    421                       [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
    422                      Requires<[Not64BitMode]>;
    423 }
    424 
    425 let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
    426   let Uses = [AL,RCX,RDI] in
    427   def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
    428                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
    429                      Requires<[In64BitMode]>;
    430   let Uses = [AX,RCX,RDI] in
    431   def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
    432                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
    433                      Requires<[In64BitMode]>;
    434   let Uses = [RAX,RCX,RDI] in
    435   def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
    436                       [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
    437                      Requires<[In64BitMode]>;
    438 
    439   let Uses = [RAX,RCX,RDI] in
    440   def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
    441                       [(X86rep_stos i64)], IIC_REP_STOS>, REP,
    442                      Requires<[In64BitMode]>;
    443 }
    444 } // SchedRW
    445 
    446 //===----------------------------------------------------------------------===//
    447 // Thread Local Storage Instructions
    448 //
    449 
    450 // ELF TLS Support
    451 // All calls clobber the non-callee saved registers. ESP is marked as
    452 // a use to prevent stack-pointer assignments that appear immediately
    453 // before calls from potentially appearing dead.
    454 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
    455             ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
    456             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
    457             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
    458             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
    459     usesCustomInserter = 1, Uses = [ESP] in {
    460 def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
    461                   "# TLS_addr32",
    462                   [(X86tlsaddr tls32addr:$sym)]>,
    463                   Requires<[Not64BitMode]>;
    464 def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
    465                   "# TLS_base_addr32",
    466                   [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
    467                   Requires<[Not64BitMode]>;
    468 }
    469 
    470 // All calls clobber the non-callee saved registers. RSP is marked as
    471 // a use to prevent stack-pointer assignments that appear immediately
    472 // before calls from potentially appearing dead.
    473 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
    474             FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
    475             ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
    476             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
    477             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
    478             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
    479     usesCustomInserter = 1, Uses = [RSP] in {
    480 def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
    481                    "# TLS_addr64",
    482                   [(X86tlsaddr tls64addr:$sym)]>,
    483                   Requires<[In64BitMode]>;
    484 def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
    485                    "# TLS_base_addr64",
    486                   [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
    487                   Requires<[In64BitMode]>;
    488 }
    489 
    490 // Darwin TLS Support
    491 // For i386, the address of the thunk is passed on the stack, on return the
    492 // address of the variable is in %eax.  %ecx is trashed during the function
    493 // call.  All other registers are preserved.
    494 let Defs = [EAX, ECX, EFLAGS],
    495     Uses = [ESP],
    496     usesCustomInserter = 1 in
    497 def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
    498                 "# TLSCall_32",
    499                 [(X86TLSCall addr:$sym)]>,
    500                 Requires<[Not64BitMode]>;
    501 
    502 // For x86_64, the address of the thunk is passed in %rdi, but the
    503 // pseudo directly use the symbol, so do not add an implicit use of
    504 // %rdi. The lowering will do the right thing with RDI.
    505 // On return the address of the variable is in %rax.  All other
    506 // registers are preserved.
    507 let Defs = [RAX, EFLAGS],
    508     Uses = [RSP],
    509     usesCustomInserter = 1 in
    510 def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
    511                   "# TLSCall_64",
    512                   [(X86TLSCall addr:$sym)]>,
    513                   Requires<[In64BitMode]>;
    514 
    515 
    516 //===----------------------------------------------------------------------===//
    517 // Conditional Move Pseudo Instructions
    518 
    519 // CMOV* - Used to implement the SELECT DAG operation.  Expanded after
    520 // instruction selection into a branch sequence.
    521 multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
    522   def CMOV#NAME  : I<0, Pseudo,
    523                     (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
    524                     "#CMOV_"#NAME#" PSEUDO!",
    525                     [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
    526                                                 EFLAGS)))]>;
    527 }
    528 
    529 let usesCustomInserter = 1, Uses = [EFLAGS] in {
    530   // X86 doesn't have 8-bit conditional moves. Use a customInserter to
    531   // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
    532   // however that requires promoting the operands, and can induce additional
    533   // i8 register pressure.
    534   defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
    535 
    536   let Predicates = [NoCMov] in {
    537     defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
    538     defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
    539   } // Predicates = [NoCMov]
    540 
    541   // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
    542   // SSE1/SSE2.
    543   let Predicates = [FPStackf32] in
    544     defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
    545 
    546   let Predicates = [FPStackf64] in
    547     defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
    548 
    549   defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
    550 
    551   defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
    552   defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
    553   defm _FR128  : CMOVrr_PSEUDO<FR128, f128>;
    554   defm _V4F32  : CMOVrr_PSEUDO<VR128, v4f32>;
    555   defm _V2F64  : CMOVrr_PSEUDO<VR128, v2f64>;
    556   defm _V2I64  : CMOVrr_PSEUDO<VR128, v2i64>;
    557   defm _V8F32  : CMOVrr_PSEUDO<VR256, v8f32>;
    558   defm _V4F64  : CMOVrr_PSEUDO<VR256, v4f64>;
    559   defm _V4I64  : CMOVrr_PSEUDO<VR256, v4i64>;
    560   defm _V8I64  : CMOVrr_PSEUDO<VR512, v8i64>;
    561   defm _V8F64  : CMOVrr_PSEUDO<VR512, v8f64>;
    562   defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
    563   defm _V8I1   : CMOVrr_PSEUDO<VK8,  v8i1>;
    564   defm _V16I1  : CMOVrr_PSEUDO<VK16, v16i1>;
    565   defm _V32I1  : CMOVrr_PSEUDO<VK32, v32i1>;
    566   defm _V64I1  : CMOVrr_PSEUDO<VK64, v64i1>;
    567 } // usesCustomInserter = 1, Uses = [EFLAGS]
    568 
    569 //===----------------------------------------------------------------------===//
    570 // Normal-Instructions-With-Lock-Prefix Pseudo Instructions
    571 //===----------------------------------------------------------------------===//
    572 
    573 // FIXME: Use normal instructions and add lock prefix dynamically.
    574 
    575 // Memory barriers
    576 
    577 // TODO: Get this to fold the constant into the instruction.
    578 let isCodeGenOnly = 1, Defs = [EFLAGS] in
    579 def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
    580                       "or{l}\t{$zero, $dst|$dst, $zero}", [],
    581                       IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK,
    582                     Sched<[WriteALULd, WriteRMW]>;
    583 
    584 let hasSideEffects = 1 in
    585 def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
    586                      "#MEMBARRIER",
    587                      [(X86MemBarrier)]>, Sched<[WriteLoad]>;
    588 
    589 // RegOpc corresponds to the mr version of the instruction
    590 // ImmOpc corresponds to the mi version of the instruction
    591 // ImmOpc8 corresponds to the mi8 version of the instruction
    592 // ImmMod corresponds to the instruction format of the mi and mi8 versions
    593 multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
    594                            Format ImmMod, SDPatternOperator Op, string mnemonic> {
    595 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    596     SchedRW = [WriteALULd, WriteRMW] in {
    597 
    598 def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    599                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
    600                   MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
    601                   !strconcat(mnemonic, "{b}\t",
    602                              "{$src2, $dst|$dst, $src2}"),
    603                   [(set EFLAGS, (Op addr:$dst, GR8:$src2))],
    604                   IIC_ALU_NONMEM>, LOCK;
    605 
    606 def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    607                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
    608                    MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
    609                    !strconcat(mnemonic, "{w}\t",
    610                               "{$src2, $dst|$dst, $src2}"),
    611                    [(set EFLAGS, (Op addr:$dst, GR16:$src2))],
    612                    IIC_ALU_NONMEM>, OpSize16, LOCK;
    613 
    614 def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    615                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
    616                    MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
    617                    !strconcat(mnemonic, "{l}\t",
    618                               "{$src2, $dst|$dst, $src2}"),
    619                    [(set EFLAGS, (Op addr:$dst, GR32:$src2))],
    620                    IIC_ALU_NONMEM>, OpSize32, LOCK;
    621 
    622 def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    623                     RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
    624                     MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
    625                     !strconcat(mnemonic, "{q}\t",
    626                                "{$src2, $dst|$dst, $src2}"),
    627                     [(set EFLAGS, (Op addr:$dst, GR64:$src2))],
    628                     IIC_ALU_NONMEM>, LOCK;
    629 
    630 def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    631                     ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
    632                     ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
    633                     !strconcat(mnemonic, "{b}\t",
    634                                "{$src2, $dst|$dst, $src2}"),
    635                     [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))],
    636                     IIC_ALU_MEM>, LOCK;
    637 
    638 def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    639                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
    640                       ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
    641                       !strconcat(mnemonic, "{w}\t",
    642                                  "{$src2, $dst|$dst, $src2}"),
    643                       [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))],
    644                       IIC_ALU_MEM>, OpSize16, LOCK;
    645 
    646 def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    647                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
    648                       ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
    649                       !strconcat(mnemonic, "{l}\t",
    650                                  "{$src2, $dst|$dst, $src2}"),
    651                       [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))],
    652                       IIC_ALU_MEM>, OpSize32, LOCK;
    653 
    654 def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    655                           ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
    656                           ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
    657                           !strconcat(mnemonic, "{q}\t",
    658                                      "{$src2, $dst|$dst, $src2}"),
    659                           [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))],
    660                           IIC_ALU_MEM>, LOCK;
    661 
    662 def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
    663                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
    664                       ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
    665                       !strconcat(mnemonic, "{w}\t",
    666                                  "{$src2, $dst|$dst, $src2}"),
    667                       [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))],
    668                       IIC_ALU_MEM>, OpSize16, LOCK;
    669 
    670 def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
    671                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
    672                       ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
    673                       !strconcat(mnemonic, "{l}\t",
    674                                  "{$src2, $dst|$dst, $src2}"),
    675                       [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))],
    676                       IIC_ALU_MEM>, OpSize32, LOCK;
    677 
    678 def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
    679                        ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
    680                        ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
    681                        !strconcat(mnemonic, "{q}\t",
    682                                   "{$src2, $dst|$dst, $src2}"),
    683                        [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))],
    684                        IIC_ALU_MEM>, LOCK;
    685 
    686 }
    687 
    688 }
    689 
    690 defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
    691 defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
    692 defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
    693 defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
    694 defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
    695 
    696 multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
    697                           int Increment, string mnemonic> {
    698 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    699     SchedRW = [WriteALULd, WriteRMW], Predicates = [NotSlowIncDec] in {
    700 def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
    701                  !strconcat(mnemonic, "{b}\t$dst"),
    702                  [(set EFLAGS, (X86lock_add addr:$dst, (i8 Increment)))],
    703                   IIC_UNARY_MEM>, LOCK;
    704 def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
    705                  !strconcat(mnemonic, "{w}\t$dst"),
    706                  [(set EFLAGS, (X86lock_add addr:$dst, (i16 Increment)))],
    707                  IIC_UNARY_MEM>, OpSize16, LOCK;
    708 def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
    709                  !strconcat(mnemonic, "{l}\t$dst"),
    710                  [(set EFLAGS, (X86lock_add addr:$dst, (i32 Increment)))],
    711                  IIC_UNARY_MEM>, OpSize32, LOCK;
    712 def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
    713                   !strconcat(mnemonic, "{q}\t$dst"),
    714                   [(set EFLAGS, (X86lock_add addr:$dst, (i64 Increment)))],
    715                   IIC_UNARY_MEM>, LOCK;
    716 }
    717 }
    718 
    719 defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m,  1, "inc">;
    720 defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, -1, "dec">;
    721 
    722 // Atomic compare and swap.
    723 multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
    724                          SDPatternOperator frag, X86MemOperand x86memop,
    725                          InstrItinClass itin> {
    726 let isCodeGenOnly = 1 in {
    727   def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
    728                !strconcat(mnemonic, "\t$ptr"),
    729                [(frag addr:$ptr)], itin>, TB, LOCK;
    730 }
    731 }
    732 
    733 multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
    734                           string mnemonic, SDPatternOperator frag,
    735                           InstrItinClass itin8, InstrItinClass itin> {
    736 let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
    737   let Defs = [AL, EFLAGS], Uses = [AL] in
    738   def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
    739                   !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
    740                   [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
    741   let Defs = [AX, EFLAGS], Uses = [AX] in
    742   def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
    743                   !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
    744                   [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
    745   let Defs = [EAX, EFLAGS], Uses = [EAX] in
    746   def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
    747                   !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
    748                   [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
    749   let Defs = [RAX, EFLAGS], Uses = [RAX] in
    750   def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
    751                    !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
    752                    [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
    753 }
    754 }
    755 
    756 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
    757     SchedRW = [WriteALULd, WriteRMW] in {
    758 defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
    759                                 X86cas8, i64mem,
    760                                 IIC_CMPX_LOCK_8B>;
    761 }
    762 
    763 // This pseudo must be used when the frame uses RBX as
    764 // the base pointer. Indeed, in such situation RBX is a reserved
    765 // register and the register allocator will ignore any use/def of
    766 // it. In other words, the register will not fix the clobbering of
    767 // RBX that will happen when setting the arguments for the instrucion.
    768 // 
    769 // Unlike the actual related instuction, we mark that this one
    770 // defines EBX (instead of using EBX).
    771 // The rationale is that we will define RBX during the expansion of
    772 // the pseudo. The argument feeding EBX is ebx_input.
    773 //
    774 // The additional argument, $ebx_save, is a temporary register used to
    775 // save the value of RBX accross the actual instruction.
    776 //
    777 // To make sure the register assigned to $ebx_save does not interfere with
    778 // the definition of the actual instruction, we use a definition $dst which
    779 // is tied to $rbx_save. That way, the live-range of $rbx_save spans accross
    780 // the instruction and we are sure we will have a valid register to restore
    781 // the value of RBX.
    782 let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
    783     SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1,
    784     Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
    785 def LCMPXCHG8B_SAVE_EBX :
    786     I<0, Pseudo, (outs GR32:$dst),
    787       (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
    788       !strconcat("cmpxchg8b", "\t$ptr"),
    789       [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
    790                                         GR32:$ebx_save))],
    791       IIC_CMPX_LOCK_8B>;
    792 }
    793 
    794 
    795 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
    796     Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
    797 defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
    798                                  X86cas16, i128mem,
    799                                  IIC_CMPX_LOCK_16B>, REX_W;
    800 }
    801 
    802 // Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
    803 let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
    804     Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW],
    805     isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
    806     usesCustomInserter = 1 in {
    807 def LCMPXCHG16B_SAVE_RBX :
    808     I<0, Pseudo, (outs GR64:$dst),
    809       (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
    810       !strconcat("cmpxchg16b", "\t$ptr"),
    811       [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
    812                                                     GR64:$rbx_save))],
    813       IIC_CMPX_LOCK_16B>;
    814 }
    815 
    816 defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
    817                                X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
    818 
    819 // Atomic exchange and add
    820 multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
    821                              string frag,
    822                              InstrItinClass itin8, InstrItinClass itin> {
    823   let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
    824       SchedRW = [WriteALULd, WriteRMW] in {
    825     def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
    826                     (ins GR8:$val, i8mem:$ptr),
    827                     !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
    828                     [(set GR8:$dst,
    829                           (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
    830                     itin8>;
    831     def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
    832                     (ins GR16:$val, i16mem:$ptr),
    833                     !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
    834                     [(set
    835                        GR16:$dst,
    836                        (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
    837                     itin>, OpSize16;
    838     def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
    839                     (ins GR32:$val, i32mem:$ptr),
    840                     !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
    841                     [(set
    842                        GR32:$dst,
    843                        (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
    844                     itin>, OpSize32;
    845     def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
    846                      (ins GR64:$val, i64mem:$ptr),
    847                      !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
    848                      [(set
    849                         GR64:$dst,
    850                         (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
    851                      itin>;
    852   }
    853 }
    854 
    855 defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
    856                                IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
    857              TB, LOCK;
    858 
    859 /* The following multiclass tries to make sure that in code like
    860  *    x.store (immediate op x.load(acquire), release)
    861  * and
    862  *    x.store (register op x.load(acquire), release)
    863  * an operation directly on memory is generated instead of wasting a register.
    864  * It is not automatic as atomic_store/load are only lowered to MOV instructions
    865  * extremely late to prevent them from being accidentally reordered in the backend
    866  * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
    867  */
    868 multiclass RELEASE_BINOP_MI<SDNode op> {
    869     def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
    870         "#BINOP "#NAME#"8mi PSEUDO!",
    871         [(atomic_store_8 addr:$dst, (op
    872             (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
    873     def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
    874         "#BINOP "#NAME#"8mr PSEUDO!",
    875         [(atomic_store_8 addr:$dst, (op
    876             (atomic_load_8 addr:$dst), GR8:$src))]>;
    877     // NAME#16 is not generated as 16-bit arithmetic instructions are considered
    878     // costly and avoided as far as possible by this backend anyway
    879     def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
    880         "#BINOP "#NAME#"32mi PSEUDO!",
    881         [(atomic_store_32 addr:$dst, (op
    882             (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
    883     def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
    884         "#BINOP "#NAME#"32mr PSEUDO!",
    885         [(atomic_store_32 addr:$dst, (op
    886             (atomic_load_32 addr:$dst), GR32:$src))]>;
    887     def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
    888         "#BINOP "#NAME#"64mi32 PSEUDO!",
    889         [(atomic_store_64 addr:$dst, (op
    890             (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
    891     def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
    892         "#BINOP "#NAME#"64mr PSEUDO!",
    893         [(atomic_store_64 addr:$dst, (op
    894             (atomic_load_64 addr:$dst), GR64:$src))]>;
    895 }
    896 let Defs = [EFLAGS] in {
    897   defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
    898   defm RELEASE_AND : RELEASE_BINOP_MI<and>;
    899   defm RELEASE_OR  : RELEASE_BINOP_MI<or>;
    900   defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
    901   // Note: we don't deal with sub, because substractions of constants are
    902   //       optimized into additions before this code can run.
    903 }
    904 
    905 // Same as above, but for floating-point.
    906 // FIXME: imm version.
    907 // FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
    908 // FIXME: This could also handle SIMD operations with *ps and *pd instructions.
    909 let usesCustomInserter = 1 in {
    910 multiclass RELEASE_FP_BINOP_MI<SDNode op> {
    911     def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
    912         "#BINOP "#NAME#"32mr PSEUDO!",
    913         [(atomic_store_32 addr:$dst,
    914 	   (i32 (bitconvert (op
    915              (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
    916 	      FR32:$src))))]>, Requires<[HasSSE1]>;
    917     def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
    918         "#BINOP "#NAME#"64mr PSEUDO!",
    919         [(atomic_store_64 addr:$dst,
    920 	   (i64 (bitconvert (op
    921              (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
    922 	      FR64:$src))))]>, Requires<[HasSSE2]>;
    923 }
    924 defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
    925 // FIXME: Add fsub, fmul, fdiv, ...
    926 }
    927 
    928 multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
    929     def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
    930         "#UNOP "#NAME#"8m PSEUDO!",
    931         [(atomic_store_8 addr:$dst, dag8)]>;
    932     def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
    933         "#UNOP "#NAME#"16m PSEUDO!",
    934         [(atomic_store_16 addr:$dst, dag16)]>;
    935     def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
    936         "#UNOP "#NAME#"32m PSEUDO!",
    937         [(atomic_store_32 addr:$dst, dag32)]>;
    938     def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
    939         "#UNOP "#NAME#"64m PSEUDO!",
    940         [(atomic_store_64 addr:$dst, dag64)]>;
    941 }
    942 
    943 let Defs = [EFLAGS] in {
    944   defm RELEASE_INC : RELEASE_UNOP<
    945       (add (atomic_load_8  addr:$dst), (i8 1)),
    946       (add (atomic_load_16 addr:$dst), (i16 1)),
    947       (add (atomic_load_32 addr:$dst), (i32 1)),
    948       (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
    949   defm RELEASE_DEC : RELEASE_UNOP<
    950       (add (atomic_load_8  addr:$dst), (i8 -1)),
    951       (add (atomic_load_16 addr:$dst), (i16 -1)),
    952       (add (atomic_load_32 addr:$dst), (i32 -1)),
    953       (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
    954 }
    955 /*
    956 TODO: These don't work because the type inference of TableGen fails.
    957 TODO: find a way to fix it.
    958 let Defs = [EFLAGS] in {
    959   defm RELEASE_NEG : RELEASE_UNOP<
    960       (ineg (atomic_load_8  addr:$dst)),
    961       (ineg (atomic_load_16 addr:$dst)),
    962       (ineg (atomic_load_32 addr:$dst)),
    963       (ineg (atomic_load_64 addr:$dst))>;
    964 }
    965 // NOT doesn't set flags.
    966 defm RELEASE_NOT : RELEASE_UNOP<
    967     (not (atomic_load_8  addr:$dst)),
    968     (not (atomic_load_16 addr:$dst)),
    969     (not (atomic_load_32 addr:$dst)),
    970     (not (atomic_load_64 addr:$dst))>;
    971 */
    972 
    973 def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
    974 			"#RELEASE_MOV8mi PSEUDO!",
    975 			[(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
    976 def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
    977 			"#RELEASE_MOV16mi PSEUDO!",
    978 			[(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
    979 def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
    980 			"#RELEASE_MOV32mi PSEUDO!",
    981 			[(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
    982 def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
    983 			"#RELEASE_MOV64mi32 PSEUDO!",
    984 			[(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
    985 
    986 def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
    987                         "#RELEASE_MOV8mr PSEUDO!",
    988                         [(atomic_store_8  addr:$dst, GR8 :$src)]>;
    989 def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
    990                         "#RELEASE_MOV16mr PSEUDO!",
    991                         [(atomic_store_16 addr:$dst, GR16:$src)]>;
    992 def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
    993                         "#RELEASE_MOV32mr PSEUDO!",
    994                         [(atomic_store_32 addr:$dst, GR32:$src)]>;
    995 def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
    996                         "#RELEASE_MOV64mr PSEUDO!",
    997                         [(atomic_store_64 addr:$dst, GR64:$src)]>;
    998 
    999 def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
   1000                       "#ACQUIRE_MOV8rm PSEUDO!",
   1001                       [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
   1002 def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
   1003                       "#ACQUIRE_MOV16rm PSEUDO!",
   1004                       [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
   1005 def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
   1006                       "#ACQUIRE_MOV32rm PSEUDO!",
   1007                       [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
   1008 def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
   1009                       "#ACQUIRE_MOV64rm PSEUDO!",
   1010                       [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
   1011 
   1012 //===----------------------------------------------------------------------===//
   1013 // DAG Pattern Matching Rules
   1014 //===----------------------------------------------------------------------===//
   1015 
   1016 // Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
   1017 // binary size compared to a regular MOV, but it introduces an unnecessary
   1018 // load, so is not suitable for regular or optsize functions.
   1019 let Predicates = [OptForMinSize] in {
   1020 def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
   1021 def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
   1022 def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
   1023 def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
   1024 def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
   1025 def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
   1026 }
   1027 
   1028 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
   1029 def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
   1030 def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
   1031 def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
   1032 def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
   1033 def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
   1034 def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
   1035 def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
   1036 
   1037 def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
   1038           (ADD32ri GR32:$src1, tconstpool:$src2)>;
   1039 def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
   1040           (ADD32ri GR32:$src1, tjumptable:$src2)>;
   1041 def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
   1042           (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
   1043 def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
   1044           (ADD32ri GR32:$src1, texternalsym:$src2)>;
   1045 def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
   1046           (ADD32ri GR32:$src1, mcsym:$src2)>;
   1047 def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
   1048           (ADD32ri GR32:$src1, tblockaddress:$src2)>;
   1049 
   1050 def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
   1051           (MOV32mi addr:$dst, tglobaladdr:$src)>;
   1052 def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
   1053           (MOV32mi addr:$dst, texternalsym:$src)>;
   1054 def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
   1055           (MOV32mi addr:$dst, mcsym:$src)>;
   1056 def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
   1057           (MOV32mi addr:$dst, tblockaddress:$src)>;
   1058 
   1059 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
   1060 // code model mode, should use 'movabs'.  FIXME: This is really a hack, the
   1061 //  'movabs' predicate should handle this sort of thing.
   1062 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
   1063           (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
   1064 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
   1065           (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
   1066 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
   1067           (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
   1068 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
   1069           (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
   1070 def : Pat<(i64 (X86Wrapper mcsym:$dst)),
   1071           (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
   1072 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
   1073           (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
   1074 
   1075 // In kernel code model, we can get the address of a label
   1076 // into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
   1077 // the MOV64ri32 should accept these.
   1078 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
   1079           (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
   1080 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
   1081           (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
   1082 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
   1083           (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
   1084 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
   1085           (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
   1086 def : Pat<(i64 (X86Wrapper mcsym:$dst)),
   1087           (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
   1088 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
   1089           (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
   1090 
   1091 // If we have small model and -static mode, it is safe to store global addresses
   1092 // directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
   1093 // for MOV64mi32 should handle this sort of thing.
   1094 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
   1095           (MOV64mi32 addr:$dst, tconstpool:$src)>,
   1096           Requires<[NearData, IsNotPIC]>;
   1097 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
   1098           (MOV64mi32 addr:$dst, tjumptable:$src)>,
   1099           Requires<[NearData, IsNotPIC]>;
   1100 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
   1101           (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
   1102           Requires<[NearData, IsNotPIC]>;
   1103 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
   1104           (MOV64mi32 addr:$dst, texternalsym:$src)>,
   1105           Requires<[NearData, IsNotPIC]>;
   1106 def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
   1107           (MOV64mi32 addr:$dst, mcsym:$src)>,
   1108           Requires<[NearData, IsNotPIC]>;
   1109 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
   1110           (MOV64mi32 addr:$dst, tblockaddress:$src)>,
   1111           Requires<[NearData, IsNotPIC]>;
   1112 
   1113 def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
   1114 def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
   1115 
   1116 // Calls
   1117 
   1118 // tls has some funny stuff here...
   1119 // This corresponds to movabs $foo@tpoff, %rax
   1120 def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
   1121           (MOV64ri32 tglobaltlsaddr :$dst)>;
   1122 // This corresponds to add $foo@tpoff, %rax
   1123 def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
   1124           (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
   1125 
   1126 
   1127 // Direct PC relative function call for small code model. 32-bit displacement
   1128 // sign extended to 64-bit.
   1129 def : Pat<(X86call (i64 tglobaladdr:$dst)),
   1130           (CALL64pcrel32 tglobaladdr:$dst)>;
   1131 def : Pat<(X86call (i64 texternalsym:$dst)),
   1132           (CALL64pcrel32 texternalsym:$dst)>;
   1133 
   1134 // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
   1135 // can never use callee-saved registers. That is the purpose of the GR64_TC
   1136 // register classes.
   1137 //
   1138 // The only volatile register that is never used by the calling convention is
   1139 // %r11. This happens when calling a vararg function with 6 arguments.
   1140 //
   1141 // Match an X86tcret that uses less than 7 volatile registers.
   1142 def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
   1143                              (X86tcret node:$ptr, node:$off), [{
   1144   // X86tcret args: (*chain, ptr, imm, regs..., glue)
   1145   unsigned NumRegs = 0;
   1146   for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
   1147     if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
   1148       return false;
   1149   return true;
   1150 }]>;
   1151 
   1152 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
   1153           (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
   1154           Requires<[Not64BitMode]>;
   1155 
   1156 // FIXME: This is disabled for 32-bit PIC mode because the global base
   1157 // register which is part of the address mode may be assigned a
   1158 // callee-saved register.
   1159 def : Pat<(X86tcret (load addr:$dst), imm:$off),
   1160           (TCRETURNmi addr:$dst, imm:$off)>,
   1161           Requires<[Not64BitMode, IsNotPIC]>;
   1162 
   1163 def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
   1164           (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
   1165           Requires<[NotLP64]>;
   1166 
   1167 def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
   1168           (TCRETURNdi texternalsym:$dst, imm:$off)>,
   1169           Requires<[NotLP64]>;
   1170 
   1171 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
   1172           (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
   1173           Requires<[In64BitMode]>;
   1174 
   1175 // Don't fold loads into X86tcret requiring more than 6 regs.
   1176 // There wouldn't be enough scratch registers for base+index.
   1177 def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
   1178           (TCRETURNmi64 addr:$dst, imm:$off)>,
   1179           Requires<[In64BitMode]>;
   1180 
   1181 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
   1182           (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
   1183           Requires<[IsLP64]>;
   1184 
   1185 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
   1186           (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
   1187           Requires<[IsLP64]>;
   1188 
   1189 // Normal calls, with various flavors of addresses.
   1190 def : Pat<(X86call (i32 tglobaladdr:$dst)),
   1191           (CALLpcrel32 tglobaladdr:$dst)>;
   1192 def : Pat<(X86call (i32 texternalsym:$dst)),
   1193           (CALLpcrel32 texternalsym:$dst)>;
   1194 def : Pat<(X86call (i32 imm:$dst)),
   1195           (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
   1196 
   1197 // Comparisons.
   1198 
   1199 // TEST R,R is smaller than CMP R,0
   1200 def : Pat<(X86cmp GR8:$src1, 0),
   1201           (TEST8rr GR8:$src1, GR8:$src1)>;
   1202 def : Pat<(X86cmp GR16:$src1, 0),
   1203           (TEST16rr GR16:$src1, GR16:$src1)>;
   1204 def : Pat<(X86cmp GR32:$src1, 0),
   1205           (TEST32rr GR32:$src1, GR32:$src1)>;
   1206 def : Pat<(X86cmp GR64:$src1, 0),
   1207           (TEST64rr GR64:$src1, GR64:$src1)>;
   1208 
   1209 // Conditional moves with folded loads with operands swapped and conditions
   1210 // inverted.
   1211 multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
   1212                   Instruction Inst64> {
   1213   let Predicates = [HasCMov] in {
   1214     def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
   1215               (Inst16 GR16:$src2, addr:$src1)>;
   1216     def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
   1217               (Inst32 GR32:$src2, addr:$src1)>;
   1218     def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
   1219               (Inst64 GR64:$src2, addr:$src1)>;
   1220   }
   1221 }
   1222 
   1223 defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
   1224 defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
   1225 defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
   1226 defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
   1227 defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
   1228 defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
   1229 defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
   1230 defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
   1231 defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
   1232 defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
   1233 defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
   1234 defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
   1235 defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
   1236 defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
   1237 defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
   1238 defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
   1239 
   1240 // zextload bool -> zextload byte
   1241 // i1 stored in one byte in zero-extended form.
   1242 // Upper bits cleanup should be executed before Store.
   1243 def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
   1244 def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
   1245 def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
   1246 def : Pat<(zextloadi64i1 addr:$src),
   1247           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
   1248 
   1249 // extload bool -> extload byte
   1250 // When extloading from 16-bit and smaller memory locations into 64-bit
   1251 // registers, use zero-extending loads so that the entire 64-bit register is
   1252 // defined, avoiding partial-register updates.
   1253 
   1254 def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
   1255 def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
   1256 def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
   1257 def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
   1258 def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
   1259 def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
   1260 
   1261 // For other extloads, use subregs, since the high contents of the register are
   1262 // defined after an extload.
   1263 def : Pat<(extloadi64i1 addr:$src),
   1264           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
   1265 def : Pat<(extloadi64i8 addr:$src),
   1266           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
   1267 def : Pat<(extloadi64i16 addr:$src),
   1268           (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
   1269 def : Pat<(extloadi64i32 addr:$src),
   1270           (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
   1271 
   1272 // anyext. Define these to do an explicit zero-extend to
   1273 // avoid partial-register updates.
   1274 def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
   1275                                      (MOVZX32rr8 GR8 :$src), sub_16bit)>;
   1276 def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
   1277 
   1278 // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
   1279 def : Pat<(i32 (anyext GR16:$src)),
   1280           (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
   1281 
   1282 def : Pat<(i64 (anyext GR8 :$src)),
   1283           (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
   1284 def : Pat<(i64 (anyext GR16:$src)),
   1285           (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
   1286 def : Pat<(i64 (anyext GR32:$src)),
   1287           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
   1288 
   1289 
   1290 // Any instruction that defines a 32-bit result leaves the high half of the
   1291 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
   1292 // be copying from a truncate. And x86's cmov doesn't do anything if the
   1293 // condition is false. But any other 32-bit operation will zero-extend
   1294 // up to 64 bits.
   1295 def def32 : PatLeaf<(i32 GR32:$src), [{
   1296   return N->getOpcode() != ISD::TRUNCATE &&
   1297          N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
   1298          N->getOpcode() != ISD::CopyFromReg &&
   1299          N->getOpcode() != ISD::AssertSext &&
   1300          N->getOpcode() != X86ISD::CMOV;
   1301 }]>;
   1302 
   1303 // In the case of a 32-bit def that is known to implicitly zero-extend,
   1304 // we can use a SUBREG_TO_REG.
   1305 def : Pat<(i64 (zext def32:$src)),
   1306           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
   1307 
   1308 //===----------------------------------------------------------------------===//
   1309 // Pattern match OR as ADD
   1310 //===----------------------------------------------------------------------===//
   1311 
   1312 // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
   1313 // 3-addressified into an LEA instruction to avoid copies.  However, we also
   1314 // want to finally emit these instructions as an or at the end of the code
   1315 // generator to make the generated code easier to read.  To do this, we select
   1316 // into "disjoint bits" pseudo ops.
   1317 
   1318 // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
   1319 def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
   1320   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
   1321     return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
   1322 
   1323   APInt KnownZero0, KnownOne0;
   1324   CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
   1325   APInt KnownZero1, KnownOne1;
   1326   CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
   1327   return (~KnownZero0 & ~KnownZero1) == 0;
   1328 }]>;
   1329 
   1330 
   1331 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
   1332 // Try this before the selecting to OR.
   1333 let AddedComplexity = 5, SchedRW = [WriteALU] in {
   1334 
   1335 let isConvertibleToThreeAddress = 1,
   1336     Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
   1337 let isCommutable = 1 in {
   1338 def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
   1339                     "", // orw/addw REG, REG
   1340                     [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
   1341 def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
   1342                     "", // orl/addl REG, REG
   1343                     [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
   1344 def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
   1345                     "", // orq/addq REG, REG
   1346                     [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
   1347 } // isCommutable
   1348 
   1349 // NOTE: These are order specific, we want the ri8 forms to be listed
   1350 // first so that they are slightly preferred to the ri forms.
   1351 
   1352 def ADD16ri8_DB : I<0, Pseudo,
   1353                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
   1354                     "", // orw/addw REG, imm8
   1355                     [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
   1356 def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
   1357                     "", // orw/addw REG, imm
   1358                     [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
   1359 
   1360 def ADD32ri8_DB : I<0, Pseudo,
   1361                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
   1362                     "", // orl/addl REG, imm8
   1363                     [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
   1364 def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
   1365                     "", // orl/addl REG, imm
   1366                     [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
   1367 
   1368 
   1369 def ADD64ri8_DB : I<0, Pseudo,
   1370                     (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
   1371                     "", // orq/addq REG, imm8
   1372                     [(set GR64:$dst, (or_is_add GR64:$src1,
   1373                                                 i64immSExt8:$src2))]>;
   1374 def ADD64ri32_DB : I<0, Pseudo,
   1375                      (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
   1376                       "", // orq/addq REG, imm
   1377                       [(set GR64:$dst, (or_is_add GR64:$src1,
   1378                                                   i64immSExt32:$src2))]>;
   1379 }
   1380 } // AddedComplexity, SchedRW
   1381 
   1382 
   1383 //===----------------------------------------------------------------------===//
   1384 // Some peepholes
   1385 //===----------------------------------------------------------------------===//
   1386 
   1387 // Odd encoding trick: -128 fits into an 8-bit immediate field while
   1388 // +128 doesn't, so in this special case use a sub instead of an add.
   1389 def : Pat<(add GR16:$src1, 128),
   1390           (SUB16ri8 GR16:$src1, -128)>;
   1391 def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
   1392           (SUB16mi8 addr:$dst, -128)>;
   1393 
   1394 def : Pat<(add GR32:$src1, 128),
   1395           (SUB32ri8 GR32:$src1, -128)>;
   1396 def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
   1397           (SUB32mi8 addr:$dst, -128)>;
   1398 
   1399 def : Pat<(add GR64:$src1, 128),
   1400           (SUB64ri8 GR64:$src1, -128)>;
   1401 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
   1402           (SUB64mi8 addr:$dst, -128)>;
   1403 
   1404 // The same trick applies for 32-bit immediate fields in 64-bit
   1405 // instructions.
   1406 def : Pat<(add GR64:$src1, 0x0000000080000000),
   1407           (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
   1408 def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
   1409           (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
   1410 
   1411 // To avoid needing to materialize an immediate in a register, use a 32-bit and
   1412 // with implicit zero-extension instead of a 64-bit and if the immediate has at
   1413 // least 32 bits of leading zeros. If in addition the last 32 bits can be
   1414 // represented with a sign extension of a 8 bit constant, use that.
   1415 // This can also reduce instruction size by eliminating the need for the REX
   1416 // prefix.
   1417 
   1418 // AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
   1419 let AddedComplexity = 1 in {
   1420 def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
   1421           (SUBREG_TO_REG
   1422             (i64 0),
   1423             (AND32ri8
   1424               (EXTRACT_SUBREG GR64:$src, sub_32bit),
   1425               (i32 (GetLo8XForm imm:$imm))),
   1426             sub_32bit)>;
   1427 
   1428 def : Pat<(and GR64:$src, i64immZExt32:$imm),
   1429           (SUBREG_TO_REG
   1430             (i64 0),
   1431             (AND32ri
   1432               (EXTRACT_SUBREG GR64:$src, sub_32bit),
   1433               (i32 (GetLo32XForm imm:$imm))),
   1434             sub_32bit)>;
   1435 } // AddedComplexity = 1
   1436 
   1437 
   1438 // AddedComplexity is needed due to the increased complexity on the
   1439 // i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
   1440 // the MOVZX patterns keeps thems together in DAGIsel tables.
   1441 let AddedComplexity = 1 in {
   1442 // r & (2^16-1) ==> movz
   1443 def : Pat<(and GR32:$src1, 0xffff),
   1444           (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
   1445 // r & (2^8-1) ==> movz
   1446 def : Pat<(and GR32:$src1, 0xff),
   1447           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
   1448                                                              GR32_ABCD)),
   1449                                       sub_8bit))>,
   1450       Requires<[Not64BitMode]>;
   1451 // r & (2^8-1) ==> movz
   1452 def : Pat<(and GR16:$src1, 0xff),
   1453            (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
   1454             (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
   1455              sub_16bit)>,
   1456       Requires<[Not64BitMode]>;
   1457 
   1458 // r & (2^32-1) ==> movz
   1459 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
   1460           (SUBREG_TO_REG (i64 0),
   1461                          (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
   1462                          sub_32bit)>;
   1463 // r & (2^16-1) ==> movz
   1464 def : Pat<(and GR64:$src, 0xffff),
   1465           (SUBREG_TO_REG (i64 0),
   1466                       (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
   1467                       sub_32bit)>;
   1468 // r & (2^8-1) ==> movz
   1469 def : Pat<(and GR64:$src, 0xff),
   1470           (SUBREG_TO_REG (i64 0),
   1471                          (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
   1472                          sub_32bit)>;
   1473 // r & (2^8-1) ==> movz
   1474 def : Pat<(and GR32:$src1, 0xff),
   1475            (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
   1476       Requires<[In64BitMode]>;
   1477 // r & (2^8-1) ==> movz
   1478 def : Pat<(and GR16:$src1, 0xff),
   1479            (EXTRACT_SUBREG (MOVZX32rr8 (i8
   1480             (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
   1481       Requires<[In64BitMode]>;
   1482 } // AddedComplexity = 1
   1483 
   1484 
   1485 // sext_inreg patterns
   1486 def : Pat<(sext_inreg GR32:$src, i16),
   1487           (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
   1488 def : Pat<(sext_inreg GR32:$src, i8),
   1489           (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1490                                                              GR32_ABCD)),
   1491                                       sub_8bit))>,
   1492       Requires<[Not64BitMode]>;
   1493 
   1494 def : Pat<(sext_inreg GR16:$src, i8),
   1495            (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
   1496             (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
   1497              sub_16bit)>,
   1498       Requires<[Not64BitMode]>;
   1499 
   1500 def : Pat<(sext_inreg GR64:$src, i32),
   1501           (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
   1502 def : Pat<(sext_inreg GR64:$src, i16),
   1503           (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
   1504 def : Pat<(sext_inreg GR64:$src, i8),
   1505           (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
   1506 def : Pat<(sext_inreg GR32:$src, i8),
   1507           (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
   1508       Requires<[In64BitMode]>;
   1509 def : Pat<(sext_inreg GR16:$src, i8),
   1510            (EXTRACT_SUBREG (MOVSX32rr8
   1511             (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
   1512       Requires<[In64BitMode]>;
   1513 
   1514 // sext, sext_load, zext, zext_load
   1515 def: Pat<(i16 (sext GR8:$src)),
   1516           (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
   1517 def: Pat<(sextloadi16i8 addr:$src),
   1518           (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
   1519 def: Pat<(i16 (zext GR8:$src)),
   1520           (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
   1521 def: Pat<(zextloadi16i8 addr:$src),
   1522           (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
   1523 
   1524 // trunc patterns
   1525 def : Pat<(i16 (trunc GR32:$src)),
   1526           (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
   1527 def : Pat<(i8 (trunc GR32:$src)),
   1528           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1529                           sub_8bit)>,
   1530       Requires<[Not64BitMode]>;
   1531 def : Pat<(i8 (trunc GR16:$src)),
   1532           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1533                           sub_8bit)>,
   1534       Requires<[Not64BitMode]>;
   1535 def : Pat<(i32 (trunc GR64:$src)),
   1536           (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
   1537 def : Pat<(i16 (trunc GR64:$src)),
   1538           (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
   1539 def : Pat<(i8 (trunc GR64:$src)),
   1540           (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
   1541 def : Pat<(i8 (trunc GR32:$src)),
   1542           (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
   1543       Requires<[In64BitMode]>;
   1544 def : Pat<(i8 (trunc GR16:$src)),
   1545           (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
   1546       Requires<[In64BitMode]>;
   1547 
   1548 // h-register tricks
   1549 def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
   1550           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1551                           sub_8bit_hi)>,
   1552       Requires<[Not64BitMode]>;
   1553 def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
   1554           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1555                           sub_8bit_hi)>,
   1556       Requires<[Not64BitMode]>;
   1557 def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
   1558           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1559                           sub_8bit_hi)>,
   1560       Requires<[Not64BitMode]>;
   1561 def : Pat<(srl GR16:$src, (i8 8)),
   1562           (EXTRACT_SUBREG
   1563             (MOVZX32rr8
   1564               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1565                               sub_8bit_hi)),
   1566             sub_16bit)>,
   1567       Requires<[Not64BitMode]>;
   1568 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
   1569           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
   1570                                                              GR16_ABCD)),
   1571                                       sub_8bit_hi))>,
   1572       Requires<[Not64BitMode]>;
   1573 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
   1574           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
   1575                                                              GR16_ABCD)),
   1576                                       sub_8bit_hi))>,
   1577       Requires<[Not64BitMode]>;
   1578 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
   1579           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1580                                                              GR32_ABCD)),
   1581                                       sub_8bit_hi))>,
   1582       Requires<[Not64BitMode]>;
   1583 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
   1584           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1585                                                              GR32_ABCD)),
   1586                                       sub_8bit_hi))>,
   1587       Requires<[Not64BitMode]>;
   1588 
   1589 // h-register tricks.
   1590 // For now, be conservative on x86-64 and use an h-register extract only if the
   1591 // value is immediately zero-extended or stored, which are somewhat common
   1592 // cases. This uses a bunch of code to prevent a register requiring a REX prefix
   1593 // from being allocated in the same instruction as the h register, as there's
   1594 // currently no way to describe this requirement to the register allocator.
   1595 
   1596 // h-register extract and zero-extend.
   1597 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
   1598           (SUBREG_TO_REG
   1599             (i64 0),
   1600             (MOVZX32_NOREXrr8
   1601               (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
   1602                               sub_8bit_hi)),
   1603             sub_32bit)>;
   1604 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
   1605           (MOVZX32_NOREXrr8
   1606             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1607                             sub_8bit_hi))>,
   1608       Requires<[In64BitMode]>;
   1609 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
   1610           (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1611                                                                    GR32_ABCD)),
   1612                                              sub_8bit_hi))>,
   1613       Requires<[In64BitMode]>;
   1614 def : Pat<(srl GR16:$src, (i8 8)),
   1615           (EXTRACT_SUBREG
   1616             (MOVZX32_NOREXrr8
   1617               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1618                               sub_8bit_hi)),
   1619             sub_16bit)>,
   1620       Requires<[In64BitMode]>;
   1621 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
   1622           (MOVZX32_NOREXrr8
   1623             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1624                             sub_8bit_hi))>,
   1625       Requires<[In64BitMode]>;
   1626 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
   1627           (MOVZX32_NOREXrr8
   1628             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1629                             sub_8bit_hi))>,
   1630       Requires<[In64BitMode]>;
   1631 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
   1632           (SUBREG_TO_REG
   1633             (i64 0),
   1634             (MOVZX32_NOREXrr8
   1635               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1636                               sub_8bit_hi)),
   1637             sub_32bit)>;
   1638 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
   1639           (SUBREG_TO_REG
   1640             (i64 0),
   1641             (MOVZX32_NOREXrr8
   1642               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1643                               sub_8bit_hi)),
   1644             sub_32bit)>;
   1645 
   1646 // h-register extract and store.
   1647 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
   1648           (MOV8mr_NOREX
   1649             addr:$dst,
   1650             (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
   1651                             sub_8bit_hi))>;
   1652 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
   1653           (MOV8mr_NOREX
   1654             addr:$dst,
   1655             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1656                             sub_8bit_hi))>,
   1657       Requires<[In64BitMode]>;
   1658 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
   1659           (MOV8mr_NOREX
   1660             addr:$dst,
   1661             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1662                             sub_8bit_hi))>,
   1663       Requires<[In64BitMode]>;
   1664 
   1665 
   1666 // (shl x, 1) ==> (add x, x)
   1667 // Note that if x is undef (immediate or otherwise), we could theoretically
   1668 // end up with the two uses of x getting different values, producing a result
   1669 // where the least significant bit is not 0. However, the probability of this
   1670 // happening is considered low enough that this is officially not a
   1671 // "real problem".
   1672 def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
   1673 def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
   1674 def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
   1675 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
   1676 
   1677 // Helper imms that check if a mask doesn't change significant shift bits.
   1678 def immShift32 : ImmLeaf<i8, [{
   1679   return countTrailingOnes<uint64_t>(Imm) >= 5;
   1680 }]>;
   1681 def immShift64 : ImmLeaf<i8, [{
   1682   return countTrailingOnes<uint64_t>(Imm) >= 6;
   1683 }]>;
   1684 
   1685 // Shift amount is implicitly masked.
   1686 multiclass MaskedShiftAmountPats<SDNode frag, string name> {
   1687   // (shift x (and y, 31)) ==> (shift x, y)
   1688   def : Pat<(frag GR8:$src1, (and CL, immShift32)),
   1689             (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
   1690   def : Pat<(frag GR16:$src1, (and CL, immShift32)),
   1691             (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
   1692   def : Pat<(frag GR32:$src1, (and CL, immShift32)),
   1693             (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
   1694   def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
   1695             (!cast<Instruction>(name # "8mCL") addr:$dst)>;
   1696   def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
   1697             (!cast<Instruction>(name # "16mCL") addr:$dst)>;
   1698   def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
   1699             (!cast<Instruction>(name # "32mCL") addr:$dst)>;
   1700 
   1701   // (shift x (and y, 63)) ==> (shift x, y)
   1702   def : Pat<(frag GR64:$src1, (and CL, immShift64)),
   1703             (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
   1704   def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
   1705             (!cast<Instruction>(name # "64mCL") addr:$dst)>;
   1706 }
   1707 
   1708 defm : MaskedShiftAmountPats<shl, "SHL">;
   1709 defm : MaskedShiftAmountPats<srl, "SHR">;
   1710 defm : MaskedShiftAmountPats<sra, "SAR">;
   1711 defm : MaskedShiftAmountPats<rotl, "ROL">;
   1712 defm : MaskedShiftAmountPats<rotr, "ROR">;
   1713 
   1714 // (anyext (setcc_carry)) -> (setcc_carry)
   1715 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
   1716           (SETB_C16r)>;
   1717 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
   1718           (SETB_C32r)>;
   1719 def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
   1720           (SETB_C32r)>;
   1721 
   1722 
   1723 
   1724 
   1725 //===----------------------------------------------------------------------===//
   1726 // EFLAGS-defining Patterns
   1727 //===----------------------------------------------------------------------===//
   1728 
   1729 // add reg, reg
   1730 def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
   1731 def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
   1732 def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
   1733 
   1734 // add reg, mem
   1735 def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
   1736           (ADD8rm GR8:$src1, addr:$src2)>;
   1737 def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
   1738           (ADD16rm GR16:$src1, addr:$src2)>;
   1739 def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
   1740           (ADD32rm GR32:$src1, addr:$src2)>;
   1741 
   1742 // add reg, imm
   1743 def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
   1744 def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
   1745 def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
   1746 def : Pat<(add GR16:$src1, i16immSExt8:$src2),
   1747           (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1748 def : Pat<(add GR32:$src1, i32immSExt8:$src2),
   1749           (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1750 
   1751 // sub reg, reg
   1752 def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
   1753 def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
   1754 def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
   1755 
   1756 // sub reg, mem
   1757 def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
   1758           (SUB8rm GR8:$src1, addr:$src2)>;
   1759 def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
   1760           (SUB16rm GR16:$src1, addr:$src2)>;
   1761 def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
   1762           (SUB32rm GR32:$src1, addr:$src2)>;
   1763 
   1764 // sub reg, imm
   1765 def : Pat<(sub GR8:$src1, imm:$src2),
   1766           (SUB8ri GR8:$src1, imm:$src2)>;
   1767 def : Pat<(sub GR16:$src1, imm:$src2),
   1768           (SUB16ri GR16:$src1, imm:$src2)>;
   1769 def : Pat<(sub GR32:$src1, imm:$src2),
   1770           (SUB32ri GR32:$src1, imm:$src2)>;
   1771 def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
   1772           (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1773 def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
   1774           (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1775 
   1776 // sub 0, reg
   1777 def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
   1778 def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
   1779 def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
   1780 def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
   1781 
   1782 // mul reg, reg
   1783 def : Pat<(mul GR16:$src1, GR16:$src2),
   1784           (IMUL16rr GR16:$src1, GR16:$src2)>;
   1785 def : Pat<(mul GR32:$src1, GR32:$src2),
   1786           (IMUL32rr GR32:$src1, GR32:$src2)>;
   1787 
   1788 // mul reg, mem
   1789 def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
   1790           (IMUL16rm GR16:$src1, addr:$src2)>;
   1791 def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
   1792           (IMUL32rm GR32:$src1, addr:$src2)>;
   1793 
   1794 // mul reg, imm
   1795 def : Pat<(mul GR16:$src1, imm:$src2),
   1796           (IMUL16rri GR16:$src1, imm:$src2)>;
   1797 def : Pat<(mul GR32:$src1, imm:$src2),
   1798           (IMUL32rri GR32:$src1, imm:$src2)>;
   1799 def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
   1800           (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
   1801 def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
   1802           (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
   1803 
   1804 // reg = mul mem, imm
   1805 def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
   1806           (IMUL16rmi addr:$src1, imm:$src2)>;
   1807 def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
   1808           (IMUL32rmi addr:$src1, imm:$src2)>;
   1809 def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
   1810           (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
   1811 def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
   1812           (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
   1813 
   1814 // Patterns for nodes that do not produce flags, for instructions that do.
   1815 
   1816 // addition
   1817 def : Pat<(add GR64:$src1, GR64:$src2),
   1818           (ADD64rr GR64:$src1, GR64:$src2)>;
   1819 def : Pat<(add GR64:$src1, i64immSExt8:$src2),
   1820           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1821 def : Pat<(add GR64:$src1, i64immSExt32:$src2),
   1822           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1823 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
   1824           (ADD64rm GR64:$src1, addr:$src2)>;
   1825 
   1826 // subtraction
   1827 def : Pat<(sub GR64:$src1, GR64:$src2),
   1828           (SUB64rr GR64:$src1, GR64:$src2)>;
   1829 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
   1830           (SUB64rm GR64:$src1, addr:$src2)>;
   1831 def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
   1832           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1833 def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
   1834           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1835 
   1836 // Multiply
   1837 def : Pat<(mul GR64:$src1, GR64:$src2),
   1838           (IMUL64rr GR64:$src1, GR64:$src2)>;
   1839 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
   1840           (IMUL64rm GR64:$src1, addr:$src2)>;
   1841 def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
   1842           (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
   1843 def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
   1844           (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
   1845 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
   1846           (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
   1847 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
   1848           (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
   1849 
   1850 // Increment/Decrement reg.
   1851 // Do not make INC/DEC if it is slow
   1852 let Predicates = [NotSlowIncDec] in {
   1853   def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
   1854   def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
   1855   def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
   1856   def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
   1857   def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
   1858   def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
   1859   def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
   1860   def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
   1861 }
   1862 
   1863 // or reg/reg.
   1864 def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
   1865 def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
   1866 def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
   1867 def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
   1868 
   1869 // or reg/mem
   1870 def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
   1871           (OR8rm GR8:$src1, addr:$src2)>;
   1872 def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
   1873           (OR16rm GR16:$src1, addr:$src2)>;
   1874 def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
   1875           (OR32rm GR32:$src1, addr:$src2)>;
   1876 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
   1877           (OR64rm GR64:$src1, addr:$src2)>;
   1878 
   1879 // or reg/imm
   1880 def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
   1881 def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
   1882 def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
   1883 def : Pat<(or GR16:$src1, i16immSExt8:$src2),
   1884           (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1885 def : Pat<(or GR32:$src1, i32immSExt8:$src2),
   1886           (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1887 def : Pat<(or GR64:$src1, i64immSExt8:$src2),
   1888           (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1889 def : Pat<(or GR64:$src1, i64immSExt32:$src2),
   1890           (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1891 
   1892 // xor reg/reg
   1893 def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
   1894 def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
   1895 def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
   1896 def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
   1897 
   1898 // xor reg/mem
   1899 def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
   1900           (XOR8rm GR8:$src1, addr:$src2)>;
   1901 def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
   1902           (XOR16rm GR16:$src1, addr:$src2)>;
   1903 def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
   1904           (XOR32rm GR32:$src1, addr:$src2)>;
   1905 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
   1906           (XOR64rm GR64:$src1, addr:$src2)>;
   1907 
   1908 // xor reg/imm
   1909 def : Pat<(xor GR8:$src1, imm:$src2),
   1910           (XOR8ri GR8:$src1, imm:$src2)>;
   1911 def : Pat<(xor GR16:$src1, imm:$src2),
   1912           (XOR16ri GR16:$src1, imm:$src2)>;
   1913 def : Pat<(xor GR32:$src1, imm:$src2),
   1914           (XOR32ri GR32:$src1, imm:$src2)>;
   1915 def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
   1916           (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1917 def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
   1918           (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1919 def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
   1920           (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1921 def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
   1922           (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1923 
   1924 // and reg/reg
   1925 def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
   1926 def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
   1927 def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
   1928 def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
   1929 
   1930 // and reg/mem
   1931 def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
   1932           (AND8rm GR8:$src1, addr:$src2)>;
   1933 def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
   1934           (AND16rm GR16:$src1, addr:$src2)>;
   1935 def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
   1936           (AND32rm GR32:$src1, addr:$src2)>;
   1937 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
   1938           (AND64rm GR64:$src1, addr:$src2)>;
   1939 
   1940 // and reg/imm
   1941 def : Pat<(and GR8:$src1, imm:$src2),
   1942           (AND8ri GR8:$src1, imm:$src2)>;
   1943 def : Pat<(and GR16:$src1, imm:$src2),
   1944           (AND16ri GR16:$src1, imm:$src2)>;
   1945 def : Pat<(and GR32:$src1, imm:$src2),
   1946           (AND32ri GR32:$src1, imm:$src2)>;
   1947 def : Pat<(and GR16:$src1, i16immSExt8:$src2),
   1948           (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1949 def : Pat<(and GR32:$src1, i32immSExt8:$src2),
   1950           (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1951 def : Pat<(and GR64:$src1, i64immSExt8:$src2),
   1952           (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1953 def : Pat<(and GR64:$src1, i64immSExt32:$src2),
   1954           (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1955 
   1956 // Bit scan instruction patterns to match explicit zero-undef behavior.
   1957 def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
   1958 def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
   1959 def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
   1960 def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
   1961 def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
   1962 def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
   1963 
   1964 // When HasMOVBE is enabled it is possible to get a non-legalized
   1965 // register-register 16 bit bswap. This maps it to a ROL instruction.
   1966 let Predicates = [HasMOVBE] in {
   1967  def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
   1968 }
   1969