1 //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the various pseudo instructions used by the compiler, 11 // as well as Pat patterns used during instruction selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 //===----------------------------------------------------------------------===// 16 // Pattern Matching Support 17 18 def GetLo32XForm : SDNodeXForm<imm, [{ 19 // Transformation function: get the low 32 bits. 20 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N)); 21 }]>; 22 23 def GetLo8XForm : SDNodeXForm<imm, [{ 24 // Transformation function: get the low 8 bits. 25 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N)); 26 }]>; 27 28 29 //===----------------------------------------------------------------------===// 30 // Random Pseudo Instructions. 31 32 // PIC base construction. This expands to code that looks like this: 33 // call $next_inst 34 // popl %destreg" 35 let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in 36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), 37 "", []>; 38 39 40 // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into 41 // a stack adjustment and the codegen must know that they may modify the stack 42 // pointer before prolog-epilog rewriting occurs. 43 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become 44 // sub / add which can clobber EFLAGS. 45 let Defs = [ESP, EFLAGS], Uses = [ESP] in { 46 def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), 47 "#ADJCALLSTACKDOWN", 48 []>, 49 Requires<[NotLP64]>; 50 def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), 51 "#ADJCALLSTACKUP", 52 [(X86callseq_end timm:$amt1, timm:$amt2)]>, 53 Requires<[NotLP64]>; 54 } 55 def : Pat<(X86callseq_start timm:$amt1), 56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>; 57 58 59 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into 60 // a stack adjustment and the codegen must know that they may modify the stack 61 // pointer before prolog-epilog rewriting occurs. 62 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become 63 // sub / add which can clobber EFLAGS. 64 let Defs = [RSP, EFLAGS], Uses = [RSP] in { 65 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), 66 "#ADJCALLSTACKDOWN", 67 []>, 68 Requires<[IsLP64]>; 69 def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), 70 "#ADJCALLSTACKUP", 71 [(X86callseq_end timm:$amt1, timm:$amt2)]>, 72 Requires<[IsLP64]>; 73 } 74 def : Pat<(X86callseq_start timm:$amt1), 75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>; 76 77 78 // x86-64 va_start lowering magic. 79 let usesCustomInserter = 1, Defs = [EFLAGS] in { 80 def VASTART_SAVE_XMM_REGS : I<0, Pseudo, 81 (outs), 82 (ins GR8:$al, 83 i64imm:$regsavefi, i64imm:$offset, 84 variable_ops), 85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", 86 [(X86vastart_save_xmm_regs GR8:$al, 87 imm:$regsavefi, 88 imm:$offset), 89 (implicit EFLAGS)]>; 90 91 // The VAARG_64 pseudo-instruction takes the address of the va_list, 92 // and places the address of the next argument into a register. 93 let Defs = [EFLAGS] in 94 def VAARG_64 : I<0, Pseudo, 95 (outs GR64:$dst), 96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), 97 "#VAARG_64 $dst, $ap, $size, $mode, $align", 98 [(set GR64:$dst, 99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), 100 (implicit EFLAGS)]>; 101 102 103 // When using segmented stacks these are lowered into instructions which first 104 // check if the current stacklet has enough free memory. If it does, memory is 105 // allocated by bumping the stack pointer. Otherwise memory is allocated from 106 // the heap. 107 108 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in 109 def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), 110 "# variable sized alloca for segmented stacks", 111 [(set GR32:$dst, 112 (X86SegAlloca GR32:$size))]>, 113 Requires<[NotLP64]>; 114 115 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in 116 def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), 117 "# variable sized alloca for segmented stacks", 118 [(set GR64:$dst, 119 (X86SegAlloca GR64:$size))]>, 120 Requires<[In64BitMode]>; 121 } 122 123 // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows 124 // targets. These calls are needed to probe the stack when allocating more than 125 // 4k bytes in one go. Touching the stack at 4K increments is necessary to 126 // ensure that the guard pages used by the OS virtual memory manager are 127 // allocated in correct sequence. 128 // The main point of having separate instruction are extra unmodelled effects 129 // (compared to ordinary calls) like stack pointer change. 130 131 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in 132 def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size), 133 "# dynamic stack allocation", 134 [(X86WinAlloca GR32:$size)]>, 135 Requires<[NotLP64]>; 136 137 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in 138 def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size), 139 "# dynamic stack allocation", 140 [(X86WinAlloca GR64:$size)]>, 141 Requires<[In64BitMode]>; 142 143 144 //===----------------------------------------------------------------------===// 145 // EH Pseudo Instructions 146 // 147 let SchedRW = [WriteSystem] in { 148 let isTerminator = 1, isReturn = 1, isBarrier = 1, 149 hasCtrlDep = 1, isCodeGenOnly = 1 in { 150 def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), 151 "ret\t#eh_return, addr: $addr", 152 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; 153 154 } 155 156 let isTerminator = 1, isReturn = 1, isBarrier = 1, 157 hasCtrlDep = 1, isCodeGenOnly = 1 in { 158 def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), 159 "ret\t#eh_return, addr: $addr", 160 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; 161 162 } 163 164 let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, 165 isCodeGenOnly = 1, isReturn = 1 in { 166 def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>; 167 168 // CATCHRET needs a custom inserter for SEH. 169 let usesCustomInserter = 1 in 170 def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from), 171 "# CATCHRET", 172 [(catchret bb:$dst, bb:$from)]>; 173 } 174 175 let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1, 176 usesCustomInserter = 1 in 177 def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>; 178 179 // This instruction is responsible for re-establishing stack pointers after an 180 // exception has been caught and we are rejoining normal control flow in the 181 // parent function or funclet. It generally sets ESP and EBP, and optionally 182 // ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us 183 // elsewhere. 184 let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in 185 def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>; 186 187 let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, 188 usesCustomInserter = 1 in { 189 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), 190 "#EH_SJLJ_SETJMP32", 191 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, 192 Requires<[Not64BitMode]>; 193 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), 194 "#EH_SJLJ_SETJMP64", 195 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, 196 Requires<[In64BitMode]>; 197 let isTerminator = 1 in { 198 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), 199 "#EH_SJLJ_LONGJMP32", 200 [(X86eh_sjlj_longjmp addr:$buf)]>, 201 Requires<[Not64BitMode]>; 202 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), 203 "#EH_SJLJ_LONGJMP64", 204 [(X86eh_sjlj_longjmp addr:$buf)]>, 205 Requires<[In64BitMode]>; 206 } 207 } 208 } // SchedRW 209 210 let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { 211 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), 212 "#EH_SjLj_Setup\t$dst", []>; 213 } 214 215 //===----------------------------------------------------------------------===// 216 // Pseudo instructions used by unwind info. 217 // 218 let isPseudo = 1 in { 219 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg), 220 "#SEH_PushReg $reg", []>; 221 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), 222 "#SEH_SaveReg $reg, $dst", []>; 223 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), 224 "#SEH_SaveXMM $reg, $dst", []>; 225 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size), 226 "#SEH_StackAlloc $size", []>; 227 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset), 228 "#SEH_SetFrame $reg, $offset", []>; 229 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode), 230 "#SEH_PushFrame $mode", []>; 231 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins), 232 "#SEH_EndPrologue", []>; 233 def SEH_Epilogue : I<0, Pseudo, (outs), (ins), 234 "#SEH_Epilogue", []>; 235 } 236 237 //===----------------------------------------------------------------------===// 238 // Pseudo instructions used by segmented stacks. 239 // 240 241 // This is lowered into a RET instruction by MCInstLower. We need 242 // this so that we don't have to have a MachineBasicBlock which ends 243 // with a RET and also has successors. 244 let isPseudo = 1 in { 245 def MORESTACK_RET: I<0, Pseudo, (outs), (ins), 246 "", []>; 247 248 // This instruction is lowered to a RET followed by a MOV. The two 249 // instructions are not generated on a higher level since then the 250 // verifier sees a MachineBasicBlock ending with a non-terminator. 251 def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), 252 "", []>; 253 } 254 255 //===----------------------------------------------------------------------===// 256 // Alias Instructions 257 //===----------------------------------------------------------------------===// 258 259 // Alias instruction mapping movr0 to xor. 260 // FIXME: remove when we can teach regalloc that xor reg, reg is ok. 261 let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, 262 isPseudo = 1, AddedComplexity = 20 in 263 def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "", 264 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>; 265 266 // Other widths can also make use of the 32-bit xor, which may have a smaller 267 // encoding and avoid partial register updates. 268 def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>; 269 def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>; 270 def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> { 271 let AddedComplexity = 20; 272 } 273 274 let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode], 275 AddedComplexity = 15 in { 276 // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC, 277 // which only require 3 bytes compared to MOV32ri which requires 5. 278 let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in { 279 def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", 280 [(set GR32:$dst, 1)]>; 281 def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", 282 [(set GR32:$dst, -1)]>; 283 } 284 285 // MOV16ri is 4 bytes, so the instructions above are smaller. 286 def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>; 287 def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>; 288 } 289 290 let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 10 in { 291 // AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1. 292 // FIXME: Add itinerary class and Schedule. 293 def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "", 294 [(set GR32:$dst, i32immSExt8:$src)]>, 295 Requires<[OptForMinSize, NotWin64WithoutFP]>; 296 def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "", 297 [(set GR64:$dst, i64immSExt8:$src)]>, 298 Requires<[OptForMinSize, NotWin64WithoutFP]>; 299 } 300 301 // Materialize i64 constant where top 32-bits are zero. This could theoretically 302 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however 303 // that would make it more difficult to rematerialize. 304 let isReMaterializable = 1, isAsCheapAsAMove = 1, 305 isPseudo = 1, hasSideEffects = 0 in 306 def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>; 307 308 // This 64-bit pseudo-move can be used for both a 64-bit constant that is 309 // actually the zero-extension of a 32-bit constant and for labels in the 310 // x86-64 small code model. 311 def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>; 312 313 let AddedComplexity = 1 in 314 def : Pat<(i64 mov64imm32:$src), 315 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>; 316 317 // Use sbb to materialize carry bit. 318 let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in { 319 // FIXME: These are pseudo ops that should be replaced with Pat<> patterns. 320 // However, Pat<> can't replicate the destination reg into the inputs of the 321 // result. 322 def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", 323 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 324 def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", 325 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 326 def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", 327 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 328 def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", 329 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 330 } // isCodeGenOnly 331 332 333 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 334 (SETB_C16r)>; 335 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 336 (SETB_C32r)>; 337 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 338 (SETB_C64r)>; 339 340 def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 341 (SETB_C16r)>; 342 def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 343 (SETB_C32r)>; 344 def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 345 (SETB_C64r)>; 346 347 // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and 348 // will be eliminated and that the sbb can be extended up to a wider type. When 349 // this happens, it is great. However, if we are left with an 8-bit sbb and an 350 // and, we might as well just match it as a setb. 351 def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), 352 (SETBr)>; 353 354 // (add OP, SETB) -> (adc OP, 0) 355 def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), 356 (ADC8ri GR8:$op, 0)>; 357 def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), 358 (ADC32ri8 GR32:$op, 0)>; 359 def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), 360 (ADC64ri8 GR64:$op, 0)>; 361 362 // (sub OP, SETB) -> (sbb OP, 0) 363 def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), 364 (SBB8ri GR8:$op, 0)>; 365 def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), 366 (SBB32ri8 GR32:$op, 0)>; 367 def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), 368 (SBB64ri8 GR64:$op, 0)>; 369 370 // (sub OP, SETCC_CARRY) -> (adc OP, 0) 371 def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), 372 (ADC8ri GR8:$op, 0)>; 373 def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), 374 (ADC32ri8 GR32:$op, 0)>; 375 def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), 376 (ADC64ri8 GR64:$op, 0)>; 377 378 //===----------------------------------------------------------------------===// 379 // String Pseudo Instructions 380 // 381 let SchedRW = [WriteMicrocoded] in { 382 let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { 383 def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", 384 [(X86rep_movs i8)], IIC_REP_MOVS>, REP, 385 Requires<[Not64BitMode]>; 386 def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", 387 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, 388 Requires<[Not64BitMode]>; 389 def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", 390 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, 391 Requires<[Not64BitMode]>; 392 } 393 394 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { 395 def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", 396 [(X86rep_movs i8)], IIC_REP_MOVS>, REP, 397 Requires<[In64BitMode]>; 398 def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", 399 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, 400 Requires<[In64BitMode]>; 401 def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", 402 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, 403 Requires<[In64BitMode]>; 404 def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", 405 [(X86rep_movs i64)], IIC_REP_MOVS>, REP, 406 Requires<[In64BitMode]>; 407 } 408 409 // FIXME: Should use "(X86rep_stos AL)" as the pattern. 410 let Defs = [ECX,EDI], isCodeGenOnly = 1 in { 411 let Uses = [AL,ECX,EDI] in 412 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", 413 [(X86rep_stos i8)], IIC_REP_STOS>, REP, 414 Requires<[Not64BitMode]>; 415 let Uses = [AX,ECX,EDI] in 416 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", 417 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, 418 Requires<[Not64BitMode]>; 419 let Uses = [EAX,ECX,EDI] in 420 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", 421 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, 422 Requires<[Not64BitMode]>; 423 } 424 425 let Defs = [RCX,RDI], isCodeGenOnly = 1 in { 426 let Uses = [AL,RCX,RDI] in 427 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", 428 [(X86rep_stos i8)], IIC_REP_STOS>, REP, 429 Requires<[In64BitMode]>; 430 let Uses = [AX,RCX,RDI] in 431 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", 432 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, 433 Requires<[In64BitMode]>; 434 let Uses = [RAX,RCX,RDI] in 435 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", 436 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, 437 Requires<[In64BitMode]>; 438 439 let Uses = [RAX,RCX,RDI] in 440 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", 441 [(X86rep_stos i64)], IIC_REP_STOS>, REP, 442 Requires<[In64BitMode]>; 443 } 444 } // SchedRW 445 446 //===----------------------------------------------------------------------===// 447 // Thread Local Storage Instructions 448 // 449 450 // ELF TLS Support 451 // All calls clobber the non-callee saved registers. ESP is marked as 452 // a use to prevent stack-pointer assignments that appear immediately 453 // before calls from potentially appearing dead. 454 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, 455 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, 456 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, 457 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 458 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], 459 usesCustomInserter = 1, Uses = [ESP] in { 460 def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), 461 "# TLS_addr32", 462 [(X86tlsaddr tls32addr:$sym)]>, 463 Requires<[Not64BitMode]>; 464 def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), 465 "# TLS_base_addr32", 466 [(X86tlsbaseaddr tls32baseaddr:$sym)]>, 467 Requires<[Not64BitMode]>; 468 } 469 470 // All calls clobber the non-callee saved registers. RSP is marked as 471 // a use to prevent stack-pointer assignments that appear immediately 472 // before calls from potentially appearing dead. 473 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, 474 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, 475 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, 476 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, 477 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 478 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], 479 usesCustomInserter = 1, Uses = [RSP] in { 480 def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), 481 "# TLS_addr64", 482 [(X86tlsaddr tls64addr:$sym)]>, 483 Requires<[In64BitMode]>; 484 def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), 485 "# TLS_base_addr64", 486 [(X86tlsbaseaddr tls64baseaddr:$sym)]>, 487 Requires<[In64BitMode]>; 488 } 489 490 // Darwin TLS Support 491 // For i386, the address of the thunk is passed on the stack, on return the 492 // address of the variable is in %eax. %ecx is trashed during the function 493 // call. All other registers are preserved. 494 let Defs = [EAX, ECX, EFLAGS], 495 Uses = [ESP], 496 usesCustomInserter = 1 in 497 def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), 498 "# TLSCall_32", 499 [(X86TLSCall addr:$sym)]>, 500 Requires<[Not64BitMode]>; 501 502 // For x86_64, the address of the thunk is passed in %rdi, but the 503 // pseudo directly use the symbol, so do not add an implicit use of 504 // %rdi. The lowering will do the right thing with RDI. 505 // On return the address of the variable is in %rax. All other 506 // registers are preserved. 507 let Defs = [RAX, EFLAGS], 508 Uses = [RSP], 509 usesCustomInserter = 1 in 510 def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), 511 "# TLSCall_64", 512 [(X86TLSCall addr:$sym)]>, 513 Requires<[In64BitMode]>; 514 515 516 //===----------------------------------------------------------------------===// 517 // Conditional Move Pseudo Instructions 518 519 // CMOV* - Used to implement the SELECT DAG operation. Expanded after 520 // instruction selection into a branch sequence. 521 multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> { 522 def CMOV#NAME : I<0, Pseudo, 523 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond), 524 "#CMOV_"#NAME#" PSEUDO!", 525 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond, 526 EFLAGS)))]>; 527 } 528 529 let usesCustomInserter = 1, Uses = [EFLAGS] in { 530 // X86 doesn't have 8-bit conditional moves. Use a customInserter to 531 // emit control flow. An alternative to this is to mark i8 SELECT as Promote, 532 // however that requires promoting the operands, and can induce additional 533 // i8 register pressure. 534 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>; 535 536 let Predicates = [NoCMov] in { 537 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>; 538 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>; 539 } // Predicates = [NoCMov] 540 541 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no 542 // SSE1/SSE2. 543 let Predicates = [FPStackf32] in 544 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>; 545 546 let Predicates = [FPStackf64] in 547 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>; 548 549 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>; 550 551 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>; 552 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>; 553 defm _FR128 : CMOVrr_PSEUDO<FR128, f128>; 554 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>; 555 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>; 556 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>; 557 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>; 558 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>; 559 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>; 560 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>; 561 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>; 562 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>; 563 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>; 564 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>; 565 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>; 566 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>; 567 } // usesCustomInserter = 1, Uses = [EFLAGS] 568 569 //===----------------------------------------------------------------------===// 570 // Normal-Instructions-With-Lock-Prefix Pseudo Instructions 571 //===----------------------------------------------------------------------===// 572 573 // FIXME: Use normal instructions and add lock prefix dynamically. 574 575 // Memory barriers 576 577 // TODO: Get this to fold the constant into the instruction. 578 let isCodeGenOnly = 1, Defs = [EFLAGS] in 579 def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), 580 "or{l}\t{$zero, $dst|$dst, $zero}", [], 581 IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK, 582 Sched<[WriteALULd, WriteRMW]>; 583 584 let hasSideEffects = 1 in 585 def Int_MemBarrier : I<0, Pseudo, (outs), (ins), 586 "#MEMBARRIER", 587 [(X86MemBarrier)]>, Sched<[WriteLoad]>; 588 589 // RegOpc corresponds to the mr version of the instruction 590 // ImmOpc corresponds to the mi version of the instruction 591 // ImmOpc8 corresponds to the mi8 version of the instruction 592 // ImmMod corresponds to the instruction format of the mi and mi8 versions 593 multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, 594 Format ImmMod, SDPatternOperator Op, string mnemonic> { 595 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, 596 SchedRW = [WriteALULd, WriteRMW] in { 597 598 def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 599 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, 600 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), 601 !strconcat(mnemonic, "{b}\t", 602 "{$src2, $dst|$dst, $src2}"), 603 [(set EFLAGS, (Op addr:$dst, GR8:$src2))], 604 IIC_ALU_NONMEM>, LOCK; 605 606 def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 607 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, 608 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), 609 !strconcat(mnemonic, "{w}\t", 610 "{$src2, $dst|$dst, $src2}"), 611 [(set EFLAGS, (Op addr:$dst, GR16:$src2))], 612 IIC_ALU_NONMEM>, OpSize16, LOCK; 613 614 def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 615 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, 616 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), 617 !strconcat(mnemonic, "{l}\t", 618 "{$src2, $dst|$dst, $src2}"), 619 [(set EFLAGS, (Op addr:$dst, GR32:$src2))], 620 IIC_ALU_NONMEM>, OpSize32, LOCK; 621 622 def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 623 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, 624 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), 625 !strconcat(mnemonic, "{q}\t", 626 "{$src2, $dst|$dst, $src2}"), 627 [(set EFLAGS, (Op addr:$dst, GR64:$src2))], 628 IIC_ALU_NONMEM>, LOCK; 629 630 def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 631 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, 632 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), 633 !strconcat(mnemonic, "{b}\t", 634 "{$src2, $dst|$dst, $src2}"), 635 [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))], 636 IIC_ALU_MEM>, LOCK; 637 638 def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 639 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, 640 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), 641 !strconcat(mnemonic, "{w}\t", 642 "{$src2, $dst|$dst, $src2}"), 643 [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))], 644 IIC_ALU_MEM>, OpSize16, LOCK; 645 646 def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 647 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, 648 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), 649 !strconcat(mnemonic, "{l}\t", 650 "{$src2, $dst|$dst, $src2}"), 651 [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))], 652 IIC_ALU_MEM>, OpSize32, LOCK; 653 654 def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 655 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, 656 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), 657 !strconcat(mnemonic, "{q}\t", 658 "{$src2, $dst|$dst, $src2}"), 659 [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))], 660 IIC_ALU_MEM>, LOCK; 661 662 def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, 663 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, 664 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), 665 !strconcat(mnemonic, "{w}\t", 666 "{$src2, $dst|$dst, $src2}"), 667 [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))], 668 IIC_ALU_MEM>, OpSize16, LOCK; 669 670 def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, 671 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, 672 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), 673 !strconcat(mnemonic, "{l}\t", 674 "{$src2, $dst|$dst, $src2}"), 675 [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))], 676 IIC_ALU_MEM>, OpSize32, LOCK; 677 678 def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, 679 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, 680 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), 681 !strconcat(mnemonic, "{q}\t", 682 "{$src2, $dst|$dst, $src2}"), 683 [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))], 684 IIC_ALU_MEM>, LOCK; 685 686 } 687 688 } 689 690 defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">; 691 defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">; 692 defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">; 693 defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">; 694 defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">; 695 696 multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, 697 int Increment, string mnemonic> { 698 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, 699 SchedRW = [WriteALULd, WriteRMW], Predicates = [NotSlowIncDec] in { 700 def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), 701 !strconcat(mnemonic, "{b}\t$dst"), 702 [(set EFLAGS, (X86lock_add addr:$dst, (i8 Increment)))], 703 IIC_UNARY_MEM>, LOCK; 704 def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), 705 !strconcat(mnemonic, "{w}\t$dst"), 706 [(set EFLAGS, (X86lock_add addr:$dst, (i16 Increment)))], 707 IIC_UNARY_MEM>, OpSize16, LOCK; 708 def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), 709 !strconcat(mnemonic, "{l}\t$dst"), 710 [(set EFLAGS, (X86lock_add addr:$dst, (i32 Increment)))], 711 IIC_UNARY_MEM>, OpSize32, LOCK; 712 def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), 713 !strconcat(mnemonic, "{q}\t$dst"), 714 [(set EFLAGS, (X86lock_add addr:$dst, (i64 Increment)))], 715 IIC_UNARY_MEM>, LOCK; 716 } 717 } 718 719 defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, 1, "inc">; 720 defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, -1, "dec">; 721 722 // Atomic compare and swap. 723 multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, 724 SDPatternOperator frag, X86MemOperand x86memop, 725 InstrItinClass itin> { 726 let isCodeGenOnly = 1 in { 727 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), 728 !strconcat(mnemonic, "\t$ptr"), 729 [(frag addr:$ptr)], itin>, TB, LOCK; 730 } 731 } 732 733 multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, 734 string mnemonic, SDPatternOperator frag, 735 InstrItinClass itin8, InstrItinClass itin> { 736 let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { 737 let Defs = [AL, EFLAGS], Uses = [AL] in 738 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), 739 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), 740 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK; 741 let Defs = [AX, EFLAGS], Uses = [AX] in 742 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), 743 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), 744 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK; 745 let Defs = [EAX, EFLAGS], Uses = [EAX] in 746 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), 747 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), 748 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK; 749 let Defs = [RAX, EFLAGS], Uses = [RAX] in 750 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), 751 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), 752 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK; 753 } 754 } 755 756 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], 757 SchedRW = [WriteALULd, WriteRMW] in { 758 defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", 759 X86cas8, i64mem, 760 IIC_CMPX_LOCK_8B>; 761 } 762 763 // This pseudo must be used when the frame uses RBX as 764 // the base pointer. Indeed, in such situation RBX is a reserved 765 // register and the register allocator will ignore any use/def of 766 // it. In other words, the register will not fix the clobbering of 767 // RBX that will happen when setting the arguments for the instrucion. 768 // 769 // Unlike the actual related instuction, we mark that this one 770 // defines EBX (instead of using EBX). 771 // The rationale is that we will define RBX during the expansion of 772 // the pseudo. The argument feeding EBX is ebx_input. 773 // 774 // The additional argument, $ebx_save, is a temporary register used to 775 // save the value of RBX accross the actual instruction. 776 // 777 // To make sure the register assigned to $ebx_save does not interfere with 778 // the definition of the actual instruction, we use a definition $dst which 779 // is tied to $rbx_save. That way, the live-range of $rbx_save spans accross 780 // the instruction and we are sure we will have a valid register to restore 781 // the value of RBX. 782 let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX], 783 SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1, 784 Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in { 785 def LCMPXCHG8B_SAVE_EBX : 786 I<0, Pseudo, (outs GR32:$dst), 787 (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save), 788 !strconcat("cmpxchg8b", "\t$ptr"), 789 [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input, 790 GR32:$ebx_save))], 791 IIC_CMPX_LOCK_8B>; 792 } 793 794 795 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], 796 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in { 797 defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", 798 X86cas16, i128mem, 799 IIC_CMPX_LOCK_16B>, REX_W; 800 } 801 802 // Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant. 803 let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX], 804 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW], 805 isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst", 806 usesCustomInserter = 1 in { 807 def LCMPXCHG16B_SAVE_RBX : 808 I<0, Pseudo, (outs GR64:$dst), 809 (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), 810 !strconcat("cmpxchg16b", "\t$ptr"), 811 [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input, 812 GR64:$rbx_save))], 813 IIC_CMPX_LOCK_16B>; 814 } 815 816 defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", 817 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>; 818 819 // Atomic exchange and add 820 multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, 821 string frag, 822 InstrItinClass itin8, InstrItinClass itin> { 823 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1, 824 SchedRW = [WriteALULd, WriteRMW] in { 825 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), 826 (ins GR8:$val, i8mem:$ptr), 827 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), 828 [(set GR8:$dst, 829 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], 830 itin8>; 831 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), 832 (ins GR16:$val, i16mem:$ptr), 833 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), 834 [(set 835 GR16:$dst, 836 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], 837 itin>, OpSize16; 838 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), 839 (ins GR32:$val, i32mem:$ptr), 840 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), 841 [(set 842 GR32:$dst, 843 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], 844 itin>, OpSize32; 845 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), 846 (ins GR64:$val, i64mem:$ptr), 847 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), 848 [(set 849 GR64:$dst, 850 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], 851 itin>; 852 } 853 } 854 855 defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add", 856 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>, 857 TB, LOCK; 858 859 /* The following multiclass tries to make sure that in code like 860 * x.store (immediate op x.load(acquire), release) 861 * and 862 * x.store (register op x.load(acquire), release) 863 * an operation directly on memory is generated instead of wasting a register. 864 * It is not automatic as atomic_store/load are only lowered to MOV instructions 865 * extremely late to prevent them from being accidentally reordered in the backend 866 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions) 867 */ 868 multiclass RELEASE_BINOP_MI<SDNode op> { 869 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), 870 "#BINOP "#NAME#"8mi PSEUDO!", 871 [(atomic_store_8 addr:$dst, (op 872 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>; 873 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src), 874 "#BINOP "#NAME#"8mr PSEUDO!", 875 [(atomic_store_8 addr:$dst, (op 876 (atomic_load_8 addr:$dst), GR8:$src))]>; 877 // NAME#16 is not generated as 16-bit arithmetic instructions are considered 878 // costly and avoided as far as possible by this backend anyway 879 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), 880 "#BINOP "#NAME#"32mi PSEUDO!", 881 [(atomic_store_32 addr:$dst, (op 882 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>; 883 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), 884 "#BINOP "#NAME#"32mr PSEUDO!", 885 [(atomic_store_32 addr:$dst, (op 886 (atomic_load_32 addr:$dst), GR32:$src))]>; 887 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), 888 "#BINOP "#NAME#"64mi32 PSEUDO!", 889 [(atomic_store_64 addr:$dst, (op 890 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>; 891 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), 892 "#BINOP "#NAME#"64mr PSEUDO!", 893 [(atomic_store_64 addr:$dst, (op 894 (atomic_load_64 addr:$dst), GR64:$src))]>; 895 } 896 let Defs = [EFLAGS] in { 897 defm RELEASE_ADD : RELEASE_BINOP_MI<add>; 898 defm RELEASE_AND : RELEASE_BINOP_MI<and>; 899 defm RELEASE_OR : RELEASE_BINOP_MI<or>; 900 defm RELEASE_XOR : RELEASE_BINOP_MI<xor>; 901 // Note: we don't deal with sub, because substractions of constants are 902 // optimized into additions before this code can run. 903 } 904 905 // Same as above, but for floating-point. 906 // FIXME: imm version. 907 // FIXME: Version that doesn't clobber $src, using AVX's VADDSS. 908 // FIXME: This could also handle SIMD operations with *ps and *pd instructions. 909 let usesCustomInserter = 1 in { 910 multiclass RELEASE_FP_BINOP_MI<SDNode op> { 911 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src), 912 "#BINOP "#NAME#"32mr PSEUDO!", 913 [(atomic_store_32 addr:$dst, 914 (i32 (bitconvert (op 915 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))), 916 FR32:$src))))]>, Requires<[HasSSE1]>; 917 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src), 918 "#BINOP "#NAME#"64mr PSEUDO!", 919 [(atomic_store_64 addr:$dst, 920 (i64 (bitconvert (op 921 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))), 922 FR64:$src))))]>, Requires<[HasSSE2]>; 923 } 924 defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>; 925 // FIXME: Add fsub, fmul, fdiv, ... 926 } 927 928 multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> { 929 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst), 930 "#UNOP "#NAME#"8m PSEUDO!", 931 [(atomic_store_8 addr:$dst, dag8)]>; 932 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst), 933 "#UNOP "#NAME#"16m PSEUDO!", 934 [(atomic_store_16 addr:$dst, dag16)]>; 935 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst), 936 "#UNOP "#NAME#"32m PSEUDO!", 937 [(atomic_store_32 addr:$dst, dag32)]>; 938 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst), 939 "#UNOP "#NAME#"64m PSEUDO!", 940 [(atomic_store_64 addr:$dst, dag64)]>; 941 } 942 943 let Defs = [EFLAGS] in { 944 defm RELEASE_INC : RELEASE_UNOP< 945 (add (atomic_load_8 addr:$dst), (i8 1)), 946 (add (atomic_load_16 addr:$dst), (i16 1)), 947 (add (atomic_load_32 addr:$dst), (i32 1)), 948 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>; 949 defm RELEASE_DEC : RELEASE_UNOP< 950 (add (atomic_load_8 addr:$dst), (i8 -1)), 951 (add (atomic_load_16 addr:$dst), (i16 -1)), 952 (add (atomic_load_32 addr:$dst), (i32 -1)), 953 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>; 954 } 955 /* 956 TODO: These don't work because the type inference of TableGen fails. 957 TODO: find a way to fix it. 958 let Defs = [EFLAGS] in { 959 defm RELEASE_NEG : RELEASE_UNOP< 960 (ineg (atomic_load_8 addr:$dst)), 961 (ineg (atomic_load_16 addr:$dst)), 962 (ineg (atomic_load_32 addr:$dst)), 963 (ineg (atomic_load_64 addr:$dst))>; 964 } 965 // NOT doesn't set flags. 966 defm RELEASE_NOT : RELEASE_UNOP< 967 (not (atomic_load_8 addr:$dst)), 968 (not (atomic_load_16 addr:$dst)), 969 (not (atomic_load_32 addr:$dst)), 970 (not (atomic_load_64 addr:$dst))>; 971 */ 972 973 def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), 974 "#RELEASE_MOV8mi PSEUDO!", 975 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>; 976 def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src), 977 "#RELEASE_MOV16mi PSEUDO!", 978 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>; 979 def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), 980 "#RELEASE_MOV32mi PSEUDO!", 981 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>; 982 def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), 983 "#RELEASE_MOV64mi32 PSEUDO!", 984 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>; 985 986 def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), 987 "#RELEASE_MOV8mr PSEUDO!", 988 [(atomic_store_8 addr:$dst, GR8 :$src)]>; 989 def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), 990 "#RELEASE_MOV16mr PSEUDO!", 991 [(atomic_store_16 addr:$dst, GR16:$src)]>; 992 def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), 993 "#RELEASE_MOV32mr PSEUDO!", 994 [(atomic_store_32 addr:$dst, GR32:$src)]>; 995 def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), 996 "#RELEASE_MOV64mr PSEUDO!", 997 [(atomic_store_64 addr:$dst, GR64:$src)]>; 998 999 def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), 1000 "#ACQUIRE_MOV8rm PSEUDO!", 1001 [(set GR8:$dst, (atomic_load_8 addr:$src))]>; 1002 def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), 1003 "#ACQUIRE_MOV16rm PSEUDO!", 1004 [(set GR16:$dst, (atomic_load_16 addr:$src))]>; 1005 def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), 1006 "#ACQUIRE_MOV32rm PSEUDO!", 1007 [(set GR32:$dst, (atomic_load_32 addr:$src))]>; 1008 def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), 1009 "#ACQUIRE_MOV64rm PSEUDO!", 1010 [(set GR64:$dst, (atomic_load_64 addr:$src))]>; 1011 1012 //===----------------------------------------------------------------------===// 1013 // DAG Pattern Matching Rules 1014 //===----------------------------------------------------------------------===// 1015 1016 // Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves 1017 // binary size compared to a regular MOV, but it introduces an unnecessary 1018 // load, so is not suitable for regular or optsize functions. 1019 let Predicates = [OptForMinSize] in { 1020 def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>; 1021 def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>; 1022 def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>; 1023 def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>; 1024 def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>; 1025 def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>; 1026 } 1027 1028 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable 1029 def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; 1030 def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; 1031 def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; 1032 def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; 1033 def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; 1034 def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>; 1035 def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>; 1036 1037 def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), 1038 (ADD32ri GR32:$src1, tconstpool:$src2)>; 1039 def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), 1040 (ADD32ri GR32:$src1, tjumptable:$src2)>; 1041 def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), 1042 (ADD32ri GR32:$src1, tglobaladdr:$src2)>; 1043 def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), 1044 (ADD32ri GR32:$src1, texternalsym:$src2)>; 1045 def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)), 1046 (ADD32ri GR32:$src1, mcsym:$src2)>; 1047 def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)), 1048 (ADD32ri GR32:$src1, tblockaddress:$src2)>; 1049 1050 def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), 1051 (MOV32mi addr:$dst, tglobaladdr:$src)>; 1052 def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), 1053 (MOV32mi addr:$dst, texternalsym:$src)>; 1054 def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst), 1055 (MOV32mi addr:$dst, mcsym:$src)>; 1056 def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst), 1057 (MOV32mi addr:$dst, tblockaddress:$src)>; 1058 1059 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small 1060 // code model mode, should use 'movabs'. FIXME: This is really a hack, the 1061 // 'movabs' predicate should handle this sort of thing. 1062 def : Pat<(i64 (X86Wrapper tconstpool :$dst)), 1063 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>; 1064 def : Pat<(i64 (X86Wrapper tjumptable :$dst)), 1065 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>; 1066 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), 1067 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>; 1068 def : Pat<(i64 (X86Wrapper texternalsym:$dst)), 1069 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>; 1070 def : Pat<(i64 (X86Wrapper mcsym:$dst)), 1071 (MOV64ri mcsym:$dst)>, Requires<[FarData]>; 1072 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), 1073 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>; 1074 1075 // In kernel code model, we can get the address of a label 1076 // into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of 1077 // the MOV64ri32 should accept these. 1078 def : Pat<(i64 (X86Wrapper tconstpool :$dst)), 1079 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; 1080 def : Pat<(i64 (X86Wrapper tjumptable :$dst)), 1081 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; 1082 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), 1083 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; 1084 def : Pat<(i64 (X86Wrapper texternalsym:$dst)), 1085 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; 1086 def : Pat<(i64 (X86Wrapper mcsym:$dst)), 1087 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>; 1088 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), 1089 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; 1090 1091 // If we have small model and -static mode, it is safe to store global addresses 1092 // directly as immediates. FIXME: This is really a hack, the 'imm' predicate 1093 // for MOV64mi32 should handle this sort of thing. 1094 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), 1095 (MOV64mi32 addr:$dst, tconstpool:$src)>, 1096 Requires<[NearData, IsNotPIC]>; 1097 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), 1098 (MOV64mi32 addr:$dst, tjumptable:$src)>, 1099 Requires<[NearData, IsNotPIC]>; 1100 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), 1101 (MOV64mi32 addr:$dst, tglobaladdr:$src)>, 1102 Requires<[NearData, IsNotPIC]>; 1103 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), 1104 (MOV64mi32 addr:$dst, texternalsym:$src)>, 1105 Requires<[NearData, IsNotPIC]>; 1106 def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst), 1107 (MOV64mi32 addr:$dst, mcsym:$src)>, 1108 Requires<[NearData, IsNotPIC]>; 1109 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), 1110 (MOV64mi32 addr:$dst, tblockaddress:$src)>, 1111 Requires<[NearData, IsNotPIC]>; 1112 1113 def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>; 1114 def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>; 1115 1116 // Calls 1117 1118 // tls has some funny stuff here... 1119 // This corresponds to movabs $foo@tpoff, %rax 1120 def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), 1121 (MOV64ri32 tglobaltlsaddr :$dst)>; 1122 // This corresponds to add $foo@tpoff, %rax 1123 def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), 1124 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; 1125 1126 1127 // Direct PC relative function call for small code model. 32-bit displacement 1128 // sign extended to 64-bit. 1129 def : Pat<(X86call (i64 tglobaladdr:$dst)), 1130 (CALL64pcrel32 tglobaladdr:$dst)>; 1131 def : Pat<(X86call (i64 texternalsym:$dst)), 1132 (CALL64pcrel32 texternalsym:$dst)>; 1133 1134 // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they 1135 // can never use callee-saved registers. That is the purpose of the GR64_TC 1136 // register classes. 1137 // 1138 // The only volatile register that is never used by the calling convention is 1139 // %r11. This happens when calling a vararg function with 6 arguments. 1140 // 1141 // Match an X86tcret that uses less than 7 volatile registers. 1142 def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), 1143 (X86tcret node:$ptr, node:$off), [{ 1144 // X86tcret args: (*chain, ptr, imm, regs..., glue) 1145 unsigned NumRegs = 0; 1146 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) 1147 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) 1148 return false; 1149 return true; 1150 }]>; 1151 1152 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), 1153 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, 1154 Requires<[Not64BitMode]>; 1155 1156 // FIXME: This is disabled for 32-bit PIC mode because the global base 1157 // register which is part of the address mode may be assigned a 1158 // callee-saved register. 1159 def : Pat<(X86tcret (load addr:$dst), imm:$off), 1160 (TCRETURNmi addr:$dst, imm:$off)>, 1161 Requires<[Not64BitMode, IsNotPIC]>; 1162 1163 def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), 1164 (TCRETURNdi tglobaladdr:$dst, imm:$off)>, 1165 Requires<[NotLP64]>; 1166 1167 def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), 1168 (TCRETURNdi texternalsym:$dst, imm:$off)>, 1169 Requires<[NotLP64]>; 1170 1171 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), 1172 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, 1173 Requires<[In64BitMode]>; 1174 1175 // Don't fold loads into X86tcret requiring more than 6 regs. 1176 // There wouldn't be enough scratch registers for base+index. 1177 def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), 1178 (TCRETURNmi64 addr:$dst, imm:$off)>, 1179 Requires<[In64BitMode]>; 1180 1181 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), 1182 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, 1183 Requires<[IsLP64]>; 1184 1185 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), 1186 (TCRETURNdi64 texternalsym:$dst, imm:$off)>, 1187 Requires<[IsLP64]>; 1188 1189 // Normal calls, with various flavors of addresses. 1190 def : Pat<(X86call (i32 tglobaladdr:$dst)), 1191 (CALLpcrel32 tglobaladdr:$dst)>; 1192 def : Pat<(X86call (i32 texternalsym:$dst)), 1193 (CALLpcrel32 texternalsym:$dst)>; 1194 def : Pat<(X86call (i32 imm:$dst)), 1195 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; 1196 1197 // Comparisons. 1198 1199 // TEST R,R is smaller than CMP R,0 1200 def : Pat<(X86cmp GR8:$src1, 0), 1201 (TEST8rr GR8:$src1, GR8:$src1)>; 1202 def : Pat<(X86cmp GR16:$src1, 0), 1203 (TEST16rr GR16:$src1, GR16:$src1)>; 1204 def : Pat<(X86cmp GR32:$src1, 0), 1205 (TEST32rr GR32:$src1, GR32:$src1)>; 1206 def : Pat<(X86cmp GR64:$src1, 0), 1207 (TEST64rr GR64:$src1, GR64:$src1)>; 1208 1209 // Conditional moves with folded loads with operands swapped and conditions 1210 // inverted. 1211 multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32, 1212 Instruction Inst64> { 1213 let Predicates = [HasCMov] in { 1214 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), 1215 (Inst16 GR16:$src2, addr:$src1)>; 1216 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), 1217 (Inst32 GR32:$src2, addr:$src1)>; 1218 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), 1219 (Inst64 GR64:$src2, addr:$src1)>; 1220 } 1221 } 1222 1223 defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>; 1224 defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>; 1225 defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>; 1226 defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>; 1227 defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>; 1228 defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>; 1229 defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>; 1230 defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>; 1231 defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>; 1232 defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>; 1233 defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>; 1234 defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>; 1235 defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>; 1236 defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>; 1237 defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>; 1238 defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>; 1239 1240 // zextload bool -> zextload byte 1241 // i1 stored in one byte in zero-extended form. 1242 // Upper bits cleanup should be executed before Store. 1243 def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; 1244 def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; 1245 def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; 1246 def : Pat<(zextloadi64i1 addr:$src), 1247 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; 1248 1249 // extload bool -> extload byte 1250 // When extloading from 16-bit and smaller memory locations into 64-bit 1251 // registers, use zero-extending loads so that the entire 64-bit register is 1252 // defined, avoiding partial-register updates. 1253 1254 def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; 1255 def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; 1256 def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; 1257 def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; 1258 def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; 1259 def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; 1260 1261 // For other extloads, use subregs, since the high contents of the register are 1262 // defined after an extload. 1263 def : Pat<(extloadi64i1 addr:$src), 1264 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; 1265 def : Pat<(extloadi64i8 addr:$src), 1266 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; 1267 def : Pat<(extloadi64i16 addr:$src), 1268 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; 1269 def : Pat<(extloadi64i32 addr:$src), 1270 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; 1271 1272 // anyext. Define these to do an explicit zero-extend to 1273 // avoid partial-register updates. 1274 def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG 1275 (MOVZX32rr8 GR8 :$src), sub_16bit)>; 1276 def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; 1277 1278 // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. 1279 def : Pat<(i32 (anyext GR16:$src)), 1280 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; 1281 1282 def : Pat<(i64 (anyext GR8 :$src)), 1283 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>; 1284 def : Pat<(i64 (anyext GR16:$src)), 1285 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>; 1286 def : Pat<(i64 (anyext GR32:$src)), 1287 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; 1288 1289 1290 // Any instruction that defines a 32-bit result leaves the high half of the 1291 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may 1292 // be copying from a truncate. And x86's cmov doesn't do anything if the 1293 // condition is false. But any other 32-bit operation will zero-extend 1294 // up to 64 bits. 1295 def def32 : PatLeaf<(i32 GR32:$src), [{ 1296 return N->getOpcode() != ISD::TRUNCATE && 1297 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && 1298 N->getOpcode() != ISD::CopyFromReg && 1299 N->getOpcode() != ISD::AssertSext && 1300 N->getOpcode() != X86ISD::CMOV; 1301 }]>; 1302 1303 // In the case of a 32-bit def that is known to implicitly zero-extend, 1304 // we can use a SUBREG_TO_REG. 1305 def : Pat<(i64 (zext def32:$src)), 1306 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; 1307 1308 //===----------------------------------------------------------------------===// 1309 // Pattern match OR as ADD 1310 //===----------------------------------------------------------------------===// 1311 1312 // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be 1313 // 3-addressified into an LEA instruction to avoid copies. However, we also 1314 // want to finally emit these instructions as an or at the end of the code 1315 // generator to make the generated code easier to read. To do this, we select 1316 // into "disjoint bits" pseudo ops. 1317 1318 // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. 1319 def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ 1320 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) 1321 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); 1322 1323 APInt KnownZero0, KnownOne0; 1324 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0); 1325 APInt KnownZero1, KnownOne1; 1326 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0); 1327 return (~KnownZero0 & ~KnownZero1) == 0; 1328 }]>; 1329 1330 1331 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. 1332 // Try this before the selecting to OR. 1333 let AddedComplexity = 5, SchedRW = [WriteALU] in { 1334 1335 let isConvertibleToThreeAddress = 1, 1336 Constraints = "$src1 = $dst", Defs = [EFLAGS] in { 1337 let isCommutable = 1 in { 1338 def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), 1339 "", // orw/addw REG, REG 1340 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; 1341 def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), 1342 "", // orl/addl REG, REG 1343 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; 1344 def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), 1345 "", // orq/addq REG, REG 1346 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; 1347 } // isCommutable 1348 1349 // NOTE: These are order specific, we want the ri8 forms to be listed 1350 // first so that they are slightly preferred to the ri forms. 1351 1352 def ADD16ri8_DB : I<0, Pseudo, 1353 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), 1354 "", // orw/addw REG, imm8 1355 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; 1356 def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), 1357 "", // orw/addw REG, imm 1358 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; 1359 1360 def ADD32ri8_DB : I<0, Pseudo, 1361 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), 1362 "", // orl/addl REG, imm8 1363 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; 1364 def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), 1365 "", // orl/addl REG, imm 1366 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; 1367 1368 1369 def ADD64ri8_DB : I<0, Pseudo, 1370 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), 1371 "", // orq/addq REG, imm8 1372 [(set GR64:$dst, (or_is_add GR64:$src1, 1373 i64immSExt8:$src2))]>; 1374 def ADD64ri32_DB : I<0, Pseudo, 1375 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), 1376 "", // orq/addq REG, imm 1377 [(set GR64:$dst, (or_is_add GR64:$src1, 1378 i64immSExt32:$src2))]>; 1379 } 1380 } // AddedComplexity, SchedRW 1381 1382 1383 //===----------------------------------------------------------------------===// 1384 // Some peepholes 1385 //===----------------------------------------------------------------------===// 1386 1387 // Odd encoding trick: -128 fits into an 8-bit immediate field while 1388 // +128 doesn't, so in this special case use a sub instead of an add. 1389 def : Pat<(add GR16:$src1, 128), 1390 (SUB16ri8 GR16:$src1, -128)>; 1391 def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), 1392 (SUB16mi8 addr:$dst, -128)>; 1393 1394 def : Pat<(add GR32:$src1, 128), 1395 (SUB32ri8 GR32:$src1, -128)>; 1396 def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), 1397 (SUB32mi8 addr:$dst, -128)>; 1398 1399 def : Pat<(add GR64:$src1, 128), 1400 (SUB64ri8 GR64:$src1, -128)>; 1401 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), 1402 (SUB64mi8 addr:$dst, -128)>; 1403 1404 // The same trick applies for 32-bit immediate fields in 64-bit 1405 // instructions. 1406 def : Pat<(add GR64:$src1, 0x0000000080000000), 1407 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; 1408 def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst), 1409 (SUB64mi32 addr:$dst, 0xffffffff80000000)>; 1410 1411 // To avoid needing to materialize an immediate in a register, use a 32-bit and 1412 // with implicit zero-extension instead of a 64-bit and if the immediate has at 1413 // least 32 bits of leading zeros. If in addition the last 32 bits can be 1414 // represented with a sign extension of a 8 bit constant, use that. 1415 // This can also reduce instruction size by eliminating the need for the REX 1416 // prefix. 1417 1418 // AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32. 1419 let AddedComplexity = 1 in { 1420 def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), 1421 (SUBREG_TO_REG 1422 (i64 0), 1423 (AND32ri8 1424 (EXTRACT_SUBREG GR64:$src, sub_32bit), 1425 (i32 (GetLo8XForm imm:$imm))), 1426 sub_32bit)>; 1427 1428 def : Pat<(and GR64:$src, i64immZExt32:$imm), 1429 (SUBREG_TO_REG 1430 (i64 0), 1431 (AND32ri 1432 (EXTRACT_SUBREG GR64:$src, sub_32bit), 1433 (i32 (GetLo32XForm imm:$imm))), 1434 sub_32bit)>; 1435 } // AddedComplexity = 1 1436 1437 1438 // AddedComplexity is needed due to the increased complexity on the 1439 // i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all 1440 // the MOVZX patterns keeps thems together in DAGIsel tables. 1441 let AddedComplexity = 1 in { 1442 // r & (2^16-1) ==> movz 1443 def : Pat<(and GR32:$src1, 0xffff), 1444 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; 1445 // r & (2^8-1) ==> movz 1446 def : Pat<(and GR32:$src1, 0xff), 1447 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, 1448 GR32_ABCD)), 1449 sub_8bit))>, 1450 Requires<[Not64BitMode]>; 1451 // r & (2^8-1) ==> movz 1452 def : Pat<(and GR16:$src1, 0xff), 1453 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG 1454 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)), 1455 sub_16bit)>, 1456 Requires<[Not64BitMode]>; 1457 1458 // r & (2^32-1) ==> movz 1459 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), 1460 (SUBREG_TO_REG (i64 0), 1461 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)), 1462 sub_32bit)>; 1463 // r & (2^16-1) ==> movz 1464 def : Pat<(and GR64:$src, 0xffff), 1465 (SUBREG_TO_REG (i64 0), 1466 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))), 1467 sub_32bit)>; 1468 // r & (2^8-1) ==> movz 1469 def : Pat<(and GR64:$src, 0xff), 1470 (SUBREG_TO_REG (i64 0), 1471 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))), 1472 sub_32bit)>; 1473 // r & (2^8-1) ==> movz 1474 def : Pat<(and GR32:$src1, 0xff), 1475 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>, 1476 Requires<[In64BitMode]>; 1477 // r & (2^8-1) ==> movz 1478 def : Pat<(and GR16:$src1, 0xff), 1479 (EXTRACT_SUBREG (MOVZX32rr8 (i8 1480 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>, 1481 Requires<[In64BitMode]>; 1482 } // AddedComplexity = 1 1483 1484 1485 // sext_inreg patterns 1486 def : Pat<(sext_inreg GR32:$src, i16), 1487 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; 1488 def : Pat<(sext_inreg GR32:$src, i8), 1489 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 1490 GR32_ABCD)), 1491 sub_8bit))>, 1492 Requires<[Not64BitMode]>; 1493 1494 def : Pat<(sext_inreg GR16:$src, i8), 1495 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG 1496 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))), 1497 sub_16bit)>, 1498 Requires<[Not64BitMode]>; 1499 1500 def : Pat<(sext_inreg GR64:$src, i32), 1501 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; 1502 def : Pat<(sext_inreg GR64:$src, i16), 1503 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; 1504 def : Pat<(sext_inreg GR64:$src, i8), 1505 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; 1506 def : Pat<(sext_inreg GR32:$src, i8), 1507 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>, 1508 Requires<[In64BitMode]>; 1509 def : Pat<(sext_inreg GR16:$src, i8), 1510 (EXTRACT_SUBREG (MOVSX32rr8 1511 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>, 1512 Requires<[In64BitMode]>; 1513 1514 // sext, sext_load, zext, zext_load 1515 def: Pat<(i16 (sext GR8:$src)), 1516 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; 1517 def: Pat<(sextloadi16i8 addr:$src), 1518 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; 1519 def: Pat<(i16 (zext GR8:$src)), 1520 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; 1521 def: Pat<(zextloadi16i8 addr:$src), 1522 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; 1523 1524 // trunc patterns 1525 def : Pat<(i16 (trunc GR32:$src)), 1526 (EXTRACT_SUBREG GR32:$src, sub_16bit)>; 1527 def : Pat<(i8 (trunc GR32:$src)), 1528 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), 1529 sub_8bit)>, 1530 Requires<[Not64BitMode]>; 1531 def : Pat<(i8 (trunc GR16:$src)), 1532 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1533 sub_8bit)>, 1534 Requires<[Not64BitMode]>; 1535 def : Pat<(i32 (trunc GR64:$src)), 1536 (EXTRACT_SUBREG GR64:$src, sub_32bit)>; 1537 def : Pat<(i16 (trunc GR64:$src)), 1538 (EXTRACT_SUBREG GR64:$src, sub_16bit)>; 1539 def : Pat<(i8 (trunc GR64:$src)), 1540 (EXTRACT_SUBREG GR64:$src, sub_8bit)>; 1541 def : Pat<(i8 (trunc GR32:$src)), 1542 (EXTRACT_SUBREG GR32:$src, sub_8bit)>, 1543 Requires<[In64BitMode]>; 1544 def : Pat<(i8 (trunc GR16:$src)), 1545 (EXTRACT_SUBREG GR16:$src, sub_8bit)>, 1546 Requires<[In64BitMode]>; 1547 1548 // h-register tricks 1549 def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), 1550 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1551 sub_8bit_hi)>, 1552 Requires<[Not64BitMode]>; 1553 def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))), 1554 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1555 sub_8bit_hi)>, 1556 Requires<[Not64BitMode]>; 1557 def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), 1558 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), 1559 sub_8bit_hi)>, 1560 Requires<[Not64BitMode]>; 1561 def : Pat<(srl GR16:$src, (i8 8)), 1562 (EXTRACT_SUBREG 1563 (MOVZX32rr8 1564 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1565 sub_8bit_hi)), 1566 sub_16bit)>, 1567 Requires<[Not64BitMode]>; 1568 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), 1569 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, 1570 GR16_ABCD)), 1571 sub_8bit_hi))>, 1572 Requires<[Not64BitMode]>; 1573 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), 1574 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, 1575 GR16_ABCD)), 1576 sub_8bit_hi))>, 1577 Requires<[Not64BitMode]>; 1578 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), 1579 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 1580 GR32_ABCD)), 1581 sub_8bit_hi))>, 1582 Requires<[Not64BitMode]>; 1583 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), 1584 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 1585 GR32_ABCD)), 1586 sub_8bit_hi))>, 1587 Requires<[Not64BitMode]>; 1588 1589 // h-register tricks. 1590 // For now, be conservative on x86-64 and use an h-register extract only if the 1591 // value is immediately zero-extended or stored, which are somewhat common 1592 // cases. This uses a bunch of code to prevent a register requiring a REX prefix 1593 // from being allocated in the same instruction as the h register, as there's 1594 // currently no way to describe this requirement to the register allocator. 1595 1596 // h-register extract and zero-extend. 1597 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), 1598 (SUBREG_TO_REG 1599 (i64 0), 1600 (MOVZX32_NOREXrr8 1601 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), 1602 sub_8bit_hi)), 1603 sub_32bit)>; 1604 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), 1605 (MOVZX32_NOREXrr8 1606 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), 1607 sub_8bit_hi))>, 1608 Requires<[In64BitMode]>; 1609 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), 1610 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 1611 GR32_ABCD)), 1612 sub_8bit_hi))>, 1613 Requires<[In64BitMode]>; 1614 def : Pat<(srl GR16:$src, (i8 8)), 1615 (EXTRACT_SUBREG 1616 (MOVZX32_NOREXrr8 1617 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1618 sub_8bit_hi)), 1619 sub_16bit)>, 1620 Requires<[In64BitMode]>; 1621 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), 1622 (MOVZX32_NOREXrr8 1623 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1624 sub_8bit_hi))>, 1625 Requires<[In64BitMode]>; 1626 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), 1627 (MOVZX32_NOREXrr8 1628 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1629 sub_8bit_hi))>, 1630 Requires<[In64BitMode]>; 1631 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), 1632 (SUBREG_TO_REG 1633 (i64 0), 1634 (MOVZX32_NOREXrr8 1635 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1636 sub_8bit_hi)), 1637 sub_32bit)>; 1638 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), 1639 (SUBREG_TO_REG 1640 (i64 0), 1641 (MOVZX32_NOREXrr8 1642 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1643 sub_8bit_hi)), 1644 sub_32bit)>; 1645 1646 // h-register extract and store. 1647 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), 1648 (MOV8mr_NOREX 1649 addr:$dst, 1650 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), 1651 sub_8bit_hi))>; 1652 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), 1653 (MOV8mr_NOREX 1654 addr:$dst, 1655 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), 1656 sub_8bit_hi))>, 1657 Requires<[In64BitMode]>; 1658 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), 1659 (MOV8mr_NOREX 1660 addr:$dst, 1661 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1662 sub_8bit_hi))>, 1663 Requires<[In64BitMode]>; 1664 1665 1666 // (shl x, 1) ==> (add x, x) 1667 // Note that if x is undef (immediate or otherwise), we could theoretically 1668 // end up with the two uses of x getting different values, producing a result 1669 // where the least significant bit is not 0. However, the probability of this 1670 // happening is considered low enough that this is officially not a 1671 // "real problem". 1672 def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; 1673 def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; 1674 def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; 1675 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; 1676 1677 // Helper imms that check if a mask doesn't change significant shift bits. 1678 def immShift32 : ImmLeaf<i8, [{ 1679 return countTrailingOnes<uint64_t>(Imm) >= 5; 1680 }]>; 1681 def immShift64 : ImmLeaf<i8, [{ 1682 return countTrailingOnes<uint64_t>(Imm) >= 6; 1683 }]>; 1684 1685 // Shift amount is implicitly masked. 1686 multiclass MaskedShiftAmountPats<SDNode frag, string name> { 1687 // (shift x (and y, 31)) ==> (shift x, y) 1688 def : Pat<(frag GR8:$src1, (and CL, immShift32)), 1689 (!cast<Instruction>(name # "8rCL") GR8:$src1)>; 1690 def : Pat<(frag GR16:$src1, (and CL, immShift32)), 1691 (!cast<Instruction>(name # "16rCL") GR16:$src1)>; 1692 def : Pat<(frag GR32:$src1, (and CL, immShift32)), 1693 (!cast<Instruction>(name # "32rCL") GR32:$src1)>; 1694 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), 1695 (!cast<Instruction>(name # "8mCL") addr:$dst)>; 1696 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), 1697 (!cast<Instruction>(name # "16mCL") addr:$dst)>; 1698 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), 1699 (!cast<Instruction>(name # "32mCL") addr:$dst)>; 1700 1701 // (shift x (and y, 63)) ==> (shift x, y) 1702 def : Pat<(frag GR64:$src1, (and CL, immShift64)), 1703 (!cast<Instruction>(name # "64rCL") GR64:$src1)>; 1704 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst), 1705 (!cast<Instruction>(name # "64mCL") addr:$dst)>; 1706 } 1707 1708 defm : MaskedShiftAmountPats<shl, "SHL">; 1709 defm : MaskedShiftAmountPats<srl, "SHR">; 1710 defm : MaskedShiftAmountPats<sra, "SAR">; 1711 defm : MaskedShiftAmountPats<rotl, "ROL">; 1712 defm : MaskedShiftAmountPats<rotr, "ROR">; 1713 1714 // (anyext (setcc_carry)) -> (setcc_carry) 1715 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 1716 (SETB_C16r)>; 1717 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 1718 (SETB_C32r)>; 1719 def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), 1720 (SETB_C32r)>; 1721 1722 1723 1724 1725 //===----------------------------------------------------------------------===// 1726 // EFLAGS-defining Patterns 1727 //===----------------------------------------------------------------------===// 1728 1729 // add reg, reg 1730 def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; 1731 def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; 1732 def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; 1733 1734 // add reg, mem 1735 def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), 1736 (ADD8rm GR8:$src1, addr:$src2)>; 1737 def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), 1738 (ADD16rm GR16:$src1, addr:$src2)>; 1739 def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), 1740 (ADD32rm GR32:$src1, addr:$src2)>; 1741 1742 // add reg, imm 1743 def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; 1744 def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; 1745 def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; 1746 def : Pat<(add GR16:$src1, i16immSExt8:$src2), 1747 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; 1748 def : Pat<(add GR32:$src1, i32immSExt8:$src2), 1749 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; 1750 1751 // sub reg, reg 1752 def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; 1753 def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; 1754 def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; 1755 1756 // sub reg, mem 1757 def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), 1758 (SUB8rm GR8:$src1, addr:$src2)>; 1759 def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), 1760 (SUB16rm GR16:$src1, addr:$src2)>; 1761 def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), 1762 (SUB32rm GR32:$src1, addr:$src2)>; 1763 1764 // sub reg, imm 1765 def : Pat<(sub GR8:$src1, imm:$src2), 1766 (SUB8ri GR8:$src1, imm:$src2)>; 1767 def : Pat<(sub GR16:$src1, imm:$src2), 1768 (SUB16ri GR16:$src1, imm:$src2)>; 1769 def : Pat<(sub GR32:$src1, imm:$src2), 1770 (SUB32ri GR32:$src1, imm:$src2)>; 1771 def : Pat<(sub GR16:$src1, i16immSExt8:$src2), 1772 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; 1773 def : Pat<(sub GR32:$src1, i32immSExt8:$src2), 1774 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; 1775 1776 // sub 0, reg 1777 def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; 1778 def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; 1779 def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; 1780 def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; 1781 1782 // mul reg, reg 1783 def : Pat<(mul GR16:$src1, GR16:$src2), 1784 (IMUL16rr GR16:$src1, GR16:$src2)>; 1785 def : Pat<(mul GR32:$src1, GR32:$src2), 1786 (IMUL32rr GR32:$src1, GR32:$src2)>; 1787 1788 // mul reg, mem 1789 def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), 1790 (IMUL16rm GR16:$src1, addr:$src2)>; 1791 def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), 1792 (IMUL32rm GR32:$src1, addr:$src2)>; 1793 1794 // mul reg, imm 1795 def : Pat<(mul GR16:$src1, imm:$src2), 1796 (IMUL16rri GR16:$src1, imm:$src2)>; 1797 def : Pat<(mul GR32:$src1, imm:$src2), 1798 (IMUL32rri GR32:$src1, imm:$src2)>; 1799 def : Pat<(mul GR16:$src1, i16immSExt8:$src2), 1800 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; 1801 def : Pat<(mul GR32:$src1, i32immSExt8:$src2), 1802 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; 1803 1804 // reg = mul mem, imm 1805 def : Pat<(mul (loadi16 addr:$src1), imm:$src2), 1806 (IMUL16rmi addr:$src1, imm:$src2)>; 1807 def : Pat<(mul (loadi32 addr:$src1), imm:$src2), 1808 (IMUL32rmi addr:$src1, imm:$src2)>; 1809 def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), 1810 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; 1811 def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), 1812 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; 1813 1814 // Patterns for nodes that do not produce flags, for instructions that do. 1815 1816 // addition 1817 def : Pat<(add GR64:$src1, GR64:$src2), 1818 (ADD64rr GR64:$src1, GR64:$src2)>; 1819 def : Pat<(add GR64:$src1, i64immSExt8:$src2), 1820 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; 1821 def : Pat<(add GR64:$src1, i64immSExt32:$src2), 1822 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; 1823 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), 1824 (ADD64rm GR64:$src1, addr:$src2)>; 1825 1826 // subtraction 1827 def : Pat<(sub GR64:$src1, GR64:$src2), 1828 (SUB64rr GR64:$src1, GR64:$src2)>; 1829 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), 1830 (SUB64rm GR64:$src1, addr:$src2)>; 1831 def : Pat<(sub GR64:$src1, i64immSExt8:$src2), 1832 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; 1833 def : Pat<(sub GR64:$src1, i64immSExt32:$src2), 1834 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; 1835 1836 // Multiply 1837 def : Pat<(mul GR64:$src1, GR64:$src2), 1838 (IMUL64rr GR64:$src1, GR64:$src2)>; 1839 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), 1840 (IMUL64rm GR64:$src1, addr:$src2)>; 1841 def : Pat<(mul GR64:$src1, i64immSExt8:$src2), 1842 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; 1843 def : Pat<(mul GR64:$src1, i64immSExt32:$src2), 1844 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; 1845 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), 1846 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; 1847 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), 1848 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; 1849 1850 // Increment/Decrement reg. 1851 // Do not make INC/DEC if it is slow 1852 let Predicates = [NotSlowIncDec] in { 1853 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>; 1854 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>; 1855 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>; 1856 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; 1857 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>; 1858 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>; 1859 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>; 1860 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; 1861 } 1862 1863 // or reg/reg. 1864 def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; 1865 def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; 1866 def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; 1867 def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; 1868 1869 // or reg/mem 1870 def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), 1871 (OR8rm GR8:$src1, addr:$src2)>; 1872 def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), 1873 (OR16rm GR16:$src1, addr:$src2)>; 1874 def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), 1875 (OR32rm GR32:$src1, addr:$src2)>; 1876 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), 1877 (OR64rm GR64:$src1, addr:$src2)>; 1878 1879 // or reg/imm 1880 def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; 1881 def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; 1882 def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; 1883 def : Pat<(or GR16:$src1, i16immSExt8:$src2), 1884 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; 1885 def : Pat<(or GR32:$src1, i32immSExt8:$src2), 1886 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; 1887 def : Pat<(or GR64:$src1, i64immSExt8:$src2), 1888 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; 1889 def : Pat<(or GR64:$src1, i64immSExt32:$src2), 1890 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; 1891 1892 // xor reg/reg 1893 def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; 1894 def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; 1895 def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; 1896 def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; 1897 1898 // xor reg/mem 1899 def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), 1900 (XOR8rm GR8:$src1, addr:$src2)>; 1901 def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), 1902 (XOR16rm GR16:$src1, addr:$src2)>; 1903 def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), 1904 (XOR32rm GR32:$src1, addr:$src2)>; 1905 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), 1906 (XOR64rm GR64:$src1, addr:$src2)>; 1907 1908 // xor reg/imm 1909 def : Pat<(xor GR8:$src1, imm:$src2), 1910 (XOR8ri GR8:$src1, imm:$src2)>; 1911 def : Pat<(xor GR16:$src1, imm:$src2), 1912 (XOR16ri GR16:$src1, imm:$src2)>; 1913 def : Pat<(xor GR32:$src1, imm:$src2), 1914 (XOR32ri GR32:$src1, imm:$src2)>; 1915 def : Pat<(xor GR16:$src1, i16immSExt8:$src2), 1916 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; 1917 def : Pat<(xor GR32:$src1, i32immSExt8:$src2), 1918 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; 1919 def : Pat<(xor GR64:$src1, i64immSExt8:$src2), 1920 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; 1921 def : Pat<(xor GR64:$src1, i64immSExt32:$src2), 1922 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; 1923 1924 // and reg/reg 1925 def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; 1926 def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; 1927 def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; 1928 def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; 1929 1930 // and reg/mem 1931 def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), 1932 (AND8rm GR8:$src1, addr:$src2)>; 1933 def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), 1934 (AND16rm GR16:$src1, addr:$src2)>; 1935 def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), 1936 (AND32rm GR32:$src1, addr:$src2)>; 1937 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), 1938 (AND64rm GR64:$src1, addr:$src2)>; 1939 1940 // and reg/imm 1941 def : Pat<(and GR8:$src1, imm:$src2), 1942 (AND8ri GR8:$src1, imm:$src2)>; 1943 def : Pat<(and GR16:$src1, imm:$src2), 1944 (AND16ri GR16:$src1, imm:$src2)>; 1945 def : Pat<(and GR32:$src1, imm:$src2), 1946 (AND32ri GR32:$src1, imm:$src2)>; 1947 def : Pat<(and GR16:$src1, i16immSExt8:$src2), 1948 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; 1949 def : Pat<(and GR32:$src1, i32immSExt8:$src2), 1950 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; 1951 def : Pat<(and GR64:$src1, i64immSExt8:$src2), 1952 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; 1953 def : Pat<(and GR64:$src1, i64immSExt32:$src2), 1954 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; 1955 1956 // Bit scan instruction patterns to match explicit zero-undef behavior. 1957 def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; 1958 def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; 1959 def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; 1960 def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; 1961 def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; 1962 def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; 1963 1964 // When HasMOVBE is enabled it is possible to get a non-legalized 1965 // register-register 16 bit bswap. This maps it to a ROL instruction. 1966 let Predicates = [HasMOVBE] in { 1967 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>; 1968 } 1969