Home | History | Annotate | Download | only in X86
      1 //===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the X86 x87 FPU instruction set, defining the
     11 // instructions, and properties of the instructions which are needed for code
     12 // generation, machine code emission, and analysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 //===----------------------------------------------------------------------===//
     17 // FPStack specific DAG Nodes.
     18 //===----------------------------------------------------------------------===//
     19 
     20 def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
     21                                            SDTCisVT<1, f80>]>;
     22 def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
     23                                            SDTCisPtrTy<1>,
     24                                            SDTCisVT<2, OtherVT>]>;
     25 def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
     26                                            SDTCisPtrTy<1>,
     27                                            SDTCisVT<2, OtherVT>]>;
     28 def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
     29                                            SDTCisVT<2, OtherVT>]>;
     30 def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
     31 def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
     32 
     33 def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
     34 
     35 def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
     36                              [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
     37 def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
     38                              [SDNPHasChain, SDNPInGlue, SDNPMayStore,
     39                               SDNPMemOperand]>;
     40 def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
     41                              [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
     42 def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
     43                              [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
     44                               SDNPMemOperand]>;
     45 def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
     46 def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
     47                              [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
     48 def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
     49                              [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
     50 def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
     51                              [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
     52 def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
     53                              [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
     54                               SDNPMemOperand]>;
     55 
     56 //===----------------------------------------------------------------------===//
     57 // FPStack pattern fragments
     58 //===----------------------------------------------------------------------===//
     59 
     60 def fpimm0 : PatLeaf<(fpimm), [{
     61   return N->isExactlyValue(+0.0);
     62 }]>;
     63 
     64 def fpimmneg0 : PatLeaf<(fpimm), [{
     65   return N->isExactlyValue(-0.0);
     66 }]>;
     67 
     68 def fpimm1 : PatLeaf<(fpimm), [{
     69   return N->isExactlyValue(+1.0);
     70 }]>;
     71 
     72 def fpimmneg1 : PatLeaf<(fpimm), [{
     73   return N->isExactlyValue(-1.0);
     74 }]>;
     75 
     76 // Some 'special' instructions
     77 let usesCustomInserter = 1 in {  // Expanded after instruction selection.
     78   def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
     79                               [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
     80   def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
     81                               [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
     82   def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
     83                               [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
     84   def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
     85                               [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
     86   def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
     87                               [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
     88   def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
     89                               [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
     90   def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
     91                               [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
     92   def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
     93                               [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
     94   def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
     95                               [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
     96 }
     97 
     98 // All FP Stack operations are represented with four instructions here.  The
     99 // first three instructions, generated by the instruction selector, use "RFP32"
    100 // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
    101 // 64-bit or 80-bit floating point values.  These sizes apply to the values,
    102 // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
    103 // copied to each other without losing information.  These instructions are all
    104 // pseudo instructions and use the "_Fp" suffix.
    105 // In some cases there are additional variants with a mixture of different
    106 // register sizes.
    107 // The second instruction is defined with FPI, which is the actual instruction
    108 // emitted by the assembler.  These use "RST" registers, although frequently
    109 // the actual register(s) used are implicit.  These are always 80 bits.
    110 // The FP stackifier pass converts one to the other after register allocation
    111 // occurs.
    112 //
    113 // Note that the FpI instruction should have instruction selection info (e.g.
    114 // a pattern) and the FPI instruction should have emission info (e.g. opcode
    115 // encoding and asm printing info).
    116 
    117 // FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
    118 // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
    119 // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
    120 // f80 instructions cannot use SSE and use neither of these.
    121 class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
    122   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
    123 class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
    124   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
    125 
    126 // Factoring for arithmetic.
    127 multiclass FPBinary_rr<SDNode OpNode> {
    128 // Register op register -> register
    129 // These are separated out because they have no reversed form.
    130 def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
    131                 [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
    132 def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
    133                 [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
    134 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
    135                 [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
    136 }
    137 // The FopST0 series are not included here because of the irregularities
    138 // in where the 'r' goes in assembly output.
    139 // These instructions cannot address 80-bit memory.
    140 multiclass FPBinary<SDNode OpNode, Format fp, string asmstring,
    141                     bit Forward = 1> {
    142 // ST(0) = ST(0) + [mem]
    143 def _Fp32m  : FpIf32<(outs RFP32:$dst),
    144                      (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
    145                   [!if(Forward,
    146                        (set RFP32:$dst,
    147                         (OpNode RFP32:$src1, (loadf32 addr:$src2))),
    148                        (set RFP32:$dst,
    149                         (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
    150 def _Fp64m  : FpIf64<(outs RFP64:$dst),
    151                      (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
    152                   [!if(Forward,
    153                        (set RFP64:$dst,
    154                         (OpNode RFP64:$src1, (loadf64 addr:$src2))),
    155                        (set RFP64:$dst,
    156                         (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
    157 def _Fp64m32: FpIf64<(outs RFP64:$dst),
    158                      (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
    159                   [!if(Forward,
    160                        (set RFP64:$dst,
    161                         (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
    162                        (set RFP64:$dst,
    163                         (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
    164 def _Fp80m32: FpI_<(outs RFP80:$dst),
    165                    (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
    166                   [!if(Forward,
    167                        (set RFP80:$dst,
    168                         (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
    169                        (set RFP80:$dst,
    170                         (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
    171 def _Fp80m64: FpI_<(outs RFP80:$dst),
    172                    (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
    173                   [!if(Forward,
    174                        (set RFP80:$dst,
    175                         (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
    176                        (set RFP80:$dst,
    177                         (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
    178 let mayLoad = 1 in
    179 def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
    180                  !strconcat("f", asmstring, "{s}\t$src")>;
    181 let mayLoad = 1 in
    182 def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
    183                  !strconcat("f", asmstring, "{l}\t$src")>;
    184 // ST(0) = ST(0) + [memint]
    185 def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
    186                        OneArgFPRW,
    187                        [!if(Forward,
    188                             (set RFP32:$dst,
    189                              (OpNode RFP32:$src1, (X86fild addr:$src2, i16))),
    190                             (set RFP32:$dst,
    191                              (OpNode (X86fild addr:$src2, i16), RFP32:$src1)))]>;
    192 def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
    193                        OneArgFPRW,
    194                        [!if(Forward,
    195                             (set RFP32:$dst,
    196                              (OpNode RFP32:$src1, (X86fild addr:$src2, i32))),
    197                             (set RFP32:$dst,
    198                              (OpNode (X86fild addr:$src2, i32), RFP32:$src1)))]>;
    199 def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
    200                        OneArgFPRW,
    201                        [!if(Forward,
    202                             (set RFP64:$dst,
    203                              (OpNode RFP64:$src1, (X86fild addr:$src2, i16))),
    204                             (set RFP64:$dst,
    205                              (OpNode (X86fild addr:$src2, i16), RFP64:$src1)))]>;
    206 def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
    207                        OneArgFPRW,
    208                        [!if(Forward,
    209                             (set RFP64:$dst,
    210                              (OpNode RFP64:$src1, (X86fild addr:$src2, i32))),
    211                             (set RFP64:$dst,
    212                              (OpNode (X86fild addr:$src2, i32), RFP64:$src1)))]>;
    213 def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
    214                      OneArgFPRW,
    215                      [!if(Forward,
    216                           (set RFP80:$dst,
    217                            (OpNode RFP80:$src1, (X86fild addr:$src2, i16))),
    218                           (set RFP80:$dst,
    219                            (OpNode (X86fild addr:$src2, i16), RFP80:$src1)))]>;
    220 def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
    221                      OneArgFPRW,
    222                      [!if(Forward,
    223                           (set RFP80:$dst,
    224                            (OpNode RFP80:$src1, (X86fild addr:$src2, i32))),
    225                           (set RFP80:$dst,
    226                            (OpNode (X86fild addr:$src2, i32), RFP80:$src1)))]>;
    227 let mayLoad = 1 in
    228 def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
    229                   !strconcat("fi", asmstring, "{s}\t$src")>;
    230 let mayLoad = 1 in
    231 def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
    232                   !strconcat("fi", asmstring, "{l}\t$src")>;
    233 }
    234 
    235 let Defs = [FPSW] in {
    236 // FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
    237 // resources.
    238 defm ADD : FPBinary_rr<fadd>;
    239 defm SUB : FPBinary_rr<fsub>;
    240 defm MUL : FPBinary_rr<fmul>;
    241 defm DIV : FPBinary_rr<fdiv>;
    242 // Sets the scheduling resources for the actual NAME#_F<size>m defintions.
    243 let SchedRW = [WriteFAddLd] in {
    244 defm ADD : FPBinary<fadd, MRM0m, "add">;
    245 defm SUB : FPBinary<fsub, MRM4m, "sub">;
    246 defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>;
    247 }
    248 let SchedRW = [WriteFMulLd] in {
    249 defm MUL : FPBinary<fmul, MRM1m, "mul">;
    250 }
    251 let SchedRW = [WriteFDivLd] in {
    252 defm DIV : FPBinary<fdiv, MRM6m, "div">;
    253 defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>;
    254 }
    255 }
    256 
    257 class FPST0rInst<Format fp, string asm>
    258   : FPI<0xD8, fp, (outs), (ins RST:$op), asm>;
    259 class FPrST0Inst<Format fp, string asm>
    260   : FPI<0xDC, fp, (outs), (ins RST:$op), asm>;
    261 class FPrST0PInst<Format fp, string asm>
    262   : FPI<0xDE, fp, (outs), (ins RST:$op), asm>;
    263 
    264 // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
    265 // of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
    266 // we have to put some 'r's in and take them out of weird places.
    267 let SchedRW = [WriteFAdd] in {
    268 def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t$op">;
    269 def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">;
    270 def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t$op">;
    271 def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t$op">;
    272 def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">;
    273 def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t$op">;
    274 def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t$op">;
    275 def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">;
    276 def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">;
    277 } // SchedRW
    278 let SchedRW = [WriteFMul] in {
    279 def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t$op">;
    280 def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">;
    281 def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t$op">;
    282 } // SchedRW
    283 let SchedRW = [WriteFDiv] in {
    284 def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t$op">;
    285 def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">;
    286 def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">;
    287 def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t$op">;
    288 def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">;
    289 def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">;
    290 } // SchedRW
    291 
    292 def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
    293 def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
    294 
    295 // Unary operations.
    296 multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
    297 def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
    298                  [(set RFP32:$dst, (OpNode RFP32:$src))]>;
    299 def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
    300                  [(set RFP64:$dst, (OpNode RFP64:$src))]>;
    301 def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
    302                  [(set RFP80:$dst, (OpNode RFP80:$src))]>;
    303 def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
    304 }
    305 
    306 let Defs = [FPSW] in {
    307 defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
    308 defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
    309 let SchedRW = [WriteFSqrt] in {
    310 defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
    311 }
    312 defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
    313 defm COS : FPUnary<fcos, MRM_FF, "fcos">;
    314 
    315 let hasSideEffects = 0 in {
    316 def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
    317 def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
    318 def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
    319 }
    320 def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
    321 } // Defs = [FPSW]
    322 
    323 // Versions of FP instructions that take a single memory operand.  Added for the
    324 //   disassembler; remove as they are included with patterns elsewhere.
    325 def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
    326 def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
    327 
    328 def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
    329 def FSTENVm  : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">;
    330 
    331 def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
    332 def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
    333 
    334 def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
    335 def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
    336 
    337 def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">;
    338 def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">;
    339 def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
    340 
    341 def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
    342 def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
    343 
    344 def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
    345 def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
    346 
    347 // Floating point cmovs.
    348 class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
    349   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
    350 class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
    351   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
    352 
    353 multiclass FPCMov<PatLeaf cc> {
    354   def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
    355                        CondMovFP,
    356                      [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
    357                                         cc, EFLAGS))]>;
    358   def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
    359                        CondMovFP,
    360                      [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
    361                                         cc, EFLAGS))]>;
    362   def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
    363                      CondMovFP,
    364                      [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
    365                                         cc, EFLAGS))]>,
    366                                         Requires<[HasCMov]>;
    367 }
    368 
    369 let Defs = [FPSW] in {
    370 let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
    371 defm CMOVB  : FPCMov<X86_COND_B>;
    372 defm CMOVBE : FPCMov<X86_COND_BE>;
    373 defm CMOVE  : FPCMov<X86_COND_E>;
    374 defm CMOVP  : FPCMov<X86_COND_P>;
    375 defm CMOVNB : FPCMov<X86_COND_AE>;
    376 defm CMOVNBE: FPCMov<X86_COND_A>;
    377 defm CMOVNE : FPCMov<X86_COND_NE>;
    378 defm CMOVNP : FPCMov<X86_COND_NP>;
    379 } // Uses = [EFLAGS], Constraints = "$src1 = $dst"
    380 
    381 let Predicates = [HasCMov] in {
    382 // These are not factored because there's no clean way to pass DA/DB.
    383 def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RST:$op),
    384                   "fcmovb\t{$op, %st(0)|st(0), $op}">;
    385 def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RST:$op),
    386                   "fcmovbe\t{$op, %st(0)|st(0), $op}">;
    387 def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RST:$op),
    388                   "fcmove\t{$op, %st(0)|st(0), $op}">;
    389 def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RST:$op),
    390                   "fcmovu\t{$op, %st(0)|st(0), $op}">;
    391 def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RST:$op),
    392                   "fcmovnb\t{$op, %st(0)|st(0), $op}">;
    393 def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RST:$op),
    394                   "fcmovnbe\t{$op, %st(0)|st(0), $op}">;
    395 def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RST:$op),
    396                   "fcmovne\t{$op, %st(0)|st(0), $op}">;
    397 def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RST:$op),
    398                   "fcmovnu\t{$op, %st(0)|st(0), $op}">;
    399 } // Predicates = [HasCMov]
    400 
    401 // Floating point loads & stores.
    402 let canFoldAsLoad = 1 in {
    403 def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
    404                   [(set RFP32:$dst, (loadf32 addr:$src))]>;
    405 let isReMaterializable = 1 in
    406   def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
    407                   [(set RFP64:$dst, (loadf64 addr:$src))]>;
    408 def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
    409                   [(set RFP80:$dst, (loadf80 addr:$src))]>;
    410 }
    411 def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
    412                   [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
    413 def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
    414                   [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
    415 def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
    416                   [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
    417 def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
    418                   [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
    419 def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
    420                   [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
    421 def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
    422                   [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
    423 def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
    424                   [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
    425 def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
    426                   [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
    427 def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
    428                   [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
    429 def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
    430                   [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
    431 def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
    432                   [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
    433 def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
    434                   [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
    435 
    436 def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
    437                   [(store RFP32:$src, addr:$op)]>;
    438 def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
    439                   [(truncstoref32 RFP64:$src, addr:$op)]>;
    440 def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
    441                   [(store RFP64:$src, addr:$op)]>;
    442 def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
    443                   [(truncstoref32 RFP80:$src, addr:$op)]>;
    444 def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
    445                   [(truncstoref64 RFP80:$src, addr:$op)]>;
    446 // FST does not support 80-bit memory target; FSTP must be used.
    447 
    448 let mayStore = 1, hasSideEffects = 0 in {
    449 def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
    450 def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
    451 def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
    452 def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
    453 def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
    454 }
    455 def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
    456                     [(store RFP80:$src, addr:$op)]>;
    457 let mayStore = 1, hasSideEffects = 0 in {
    458 def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
    459 def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
    460 def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
    461 def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
    462 def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
    463 def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
    464 def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
    465 def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
    466 def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
    467 }
    468 
    469 let mayLoad = 1, SchedRW = [WriteLoad] in {
    470 def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src",
    471                     IIC_FLD>;
    472 def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src",
    473                     IIC_FLD>;
    474 def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src",
    475                     IIC_FLD80>;
    476 def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src",
    477                     IIC_FILD>;
    478 def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src",
    479                     IIC_FILD>;
    480 def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src",
    481                     IIC_FILD>;
    482 }
    483 let mayStore = 1, SchedRW = [WriteStore] in {
    484 def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst",
    485                     IIC_FST>;
    486 def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst",
    487                     IIC_FST>;
    488 def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst",
    489                     IIC_FST>;
    490 def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst",
    491                     IIC_FST>;
    492 def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst",
    493                     IIC_FST80>;
    494 def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst",
    495                     IIC_FIST>;
    496 def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst",
    497                     IIC_FIST>;
    498 def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst",
    499                     IIC_FIST>;
    500 def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst",
    501                     IIC_FIST>;
    502 def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst",
    503                     IIC_FIST>;
    504 }
    505 
    506 // FISTTP requires SSE3 even though it's a FPStack op.
    507 let Predicates = [HasSSE3] in {
    508 def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
    509                     [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
    510 def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
    511                     [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
    512 def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
    513                     [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
    514 def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
    515                     [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
    516 def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
    517                     [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
    518 def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
    519                     [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
    520 def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
    521                     [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
    522 def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
    523                     [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
    524 def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
    525                     [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
    526 } // Predicates = [HasSSE3]
    527 
    528 let mayStore = 1, SchedRW = [WriteStore] in {
    529 def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
    530   IIC_FST>;
    531 def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
    532   IIC_FST>;
    533 def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
    534   "fisttp{ll}\t$dst", IIC_FST>;
    535 }
    536 
    537 // FP Stack manipulation instructions.
    538 let SchedRW = [WriteMove] in {
    539 def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op", IIC_FLD>;
    540 def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op", IIC_FST>;
    541 def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op", IIC_FST>;
    542 def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op", IIC_FXCH>;
    543 }
    544 
    545 // Floating point constant loads.
    546 let isReMaterializable = 1 in {
    547 def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
    548                 [(set RFP32:$dst, fpimm0)]>;
    549 def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
    550                 [(set RFP32:$dst, fpimm1)]>;
    551 def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
    552                 [(set RFP64:$dst, fpimm0)]>;
    553 def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
    554                 [(set RFP64:$dst, fpimm1)]>;
    555 def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
    556                 [(set RFP80:$dst, fpimm0)]>;
    557 def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
    558                 [(set RFP80:$dst, fpimm1)]>;
    559 }
    560 
    561 let SchedRW = [WriteZero] in {
    562 def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz", IIC_FLDZ>;
    563 def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1", IIC_FIST>;
    564 }
    565 
    566 // Floating point compares.
    567 let SchedRW = [WriteFAdd] in {
    568 def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
    569                         [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
    570 def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
    571                         [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
    572 def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
    573                         [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
    574 } // SchedRW
    575 } // Defs = [FPSW]
    576 
    577 let SchedRW = [WriteFAdd] in {
    578 // CC = ST(0) cmp ST(i)
    579 let Defs = [EFLAGS, FPSW] in {
    580 def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
    581                   [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
    582 def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
    583                   [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
    584 def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
    585                   [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
    586 }
    587 
    588 let Defs = [FPSW], Uses = [ST0] in {
    589 def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
    590                     (outs), (ins RST:$reg), "fucom\t$reg", IIC_FUCOM>;
    591 def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
    592                     (outs), (ins RST:$reg), "fucomp\t$reg", IIC_FUCOM>;
    593 def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
    594                     (outs), (ins), "fucompp", IIC_FUCOM>;
    595 }
    596 
    597 let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
    598 def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
    599                     (outs), (ins RST:$reg), "fucomi\t$reg", IIC_FUCOMI>;
    600 def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
    601                     (outs), (ins RST:$reg), "fucompi\t$reg", IIC_FUCOMI>;
    602 }
    603 
    604 let Defs = [EFLAGS, FPSW] in {
    605 def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg),
    606                   "fcomi\t$reg", IIC_FCOMI>;
    607 def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg),
    608                    "fcompi\t$reg", IIC_FCOMI>;
    609 }
    610 } // SchedRW
    611 
    612 // Floating point flag ops.
    613 let SchedRW = [WriteALU] in {
    614 let Defs = [AX], Uses = [FPSW] in
    615 def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
    616                   (outs), (ins), "fnstsw\t{%ax|ax}",
    617                   [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>;
    618 
    619 def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
    620                   (outs), (ins i16mem:$dst), "fnstcw\t$dst",
    621                   [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>;
    622 } // SchedRW
    623 let mayLoad = 1 in
    624 def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
    625                   (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>,
    626                 Sched<[WriteLoad]>;
    627 
    628 // FPU control instructions
    629 let SchedRW = [WriteMicrocoded] in {
    630 let Defs = [FPSW] in
    631 def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", [], IIC_FNINIT>;
    632 def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg),
    633                 "ffree\t$reg", IIC_FFREE>;
    634 // Clear exceptions
    635 
    636 let Defs = [FPSW] in
    637 def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", [], IIC_FNCLEX>;
    638 } // SchedRW
    639 
    640 // Operandless floating-point instructions for the disassembler.
    641 let SchedRW = [WriteMicrocoded] in {
    642 def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>;
    643 
    644 def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", [], IIC_FNOP>;
    645 def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", [], IIC_FXAM>;
    646 def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", [], IIC_FLDL>;
    647 def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", [], IIC_FLDL>;
    648 def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", [], IIC_FLDL>;
    649 def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", [], IIC_FLDL>;
    650 def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", [], IIC_FLDL>;
    651 def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", [], IIC_F2XM1>;
    652 def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", [], IIC_FYL2X>;
    653 def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", [], IIC_FPTAN>;
    654 def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", [], IIC_FPATAN>;
    655 def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", [], IIC_FXTRACT>;
    656 def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", [], IIC_FPREM1>;
    657 def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", [], IIC_FPSTP>;
    658 def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", [], IIC_FPSTP>;
    659 def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", [], IIC_FPREM>;
    660 def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>;
    661 def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", [], IIC_FSINCOS>;
    662 def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", [], IIC_FRNDINT>;
    663 def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", [], IIC_FSCALE>;
    664 def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", [], IIC_FCOMPP>;
    665 
    666 let Predicates = [HasFXSR] in {
    667   def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaque512mem:$dst),
    668                  "fxsave\t$dst", [(int_x86_fxsave addr:$dst)], IIC_FXSAVE>, TB;
    669   def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaque512mem:$dst),
    670                     "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)],
    671                     IIC_FXSAVE>, TB, Requires<[In64BitMode]>;
    672   def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
    673                 "fxrstor\t$src", [(int_x86_fxrstor addr:$src)], IIC_FXRSTOR>, TB;
    674   def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
    675                      "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)],
    676                      IIC_FXRSTOR>, TB, Requires<[In64BitMode]>;
    677 } // Predicates = [FeatureFXSR]
    678 } // SchedRW
    679 
    680 //===----------------------------------------------------------------------===//
    681 // Non-Instruction Patterns
    682 //===----------------------------------------------------------------------===//
    683 
    684 // Required for RET of f32 / f64 / f80 values.
    685 def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
    686 def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
    687 def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
    688 
    689 // Required for CALL which return f32 / f64 / f80 values.
    690 def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
    691 def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
    692                                                           RFP64:$src)>;
    693 def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
    694 def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
    695                                                           RFP80:$src)>;
    696 def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
    697                                                           RFP80:$src)>;
    698 def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
    699                                                          RFP80:$src)>;
    700 
    701 // Floating point constant -0.0 and -1.0
    702 def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
    703 def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
    704 def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
    705 def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
    706 def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
    707 def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
    708 
    709 // Used to conv. i64 to f64 since there isn't a SSE version.
    710 def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
    711 
    712 // FP extensions map onto simple pseudo-value conversions if they are to/from
    713 // the FP stack.
    714 def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
    715           Requires<[FPStackf32]>;
    716 def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
    717            Requires<[FPStackf32]>;
    718 def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
    719            Requires<[FPStackf64]>;
    720 
    721 // FP truncations map onto simple pseudo-value conversions if they are to/from
    722 // the FP stack.  We have validated that only value-preserving truncations make
    723 // it through isel.
    724 def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
    725           Requires<[FPStackf32]>;
    726 def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
    727            Requires<[FPStackf32]>;
    728 def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
    729            Requires<[FPStackf64]>;
    730