Home | History | Annotate | Download | only in Instrumentation
      1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer, a race detector.
     11 //
     12 // The tool is under development, for the details about previous versions see
     13 // http://code.google.com/p/data-race-test
     14 //
     15 // The instrumentation phase is quite simple:
     16 //   - Insert calls to run-time library before every memory access.
     17 //      - Optimizations may apply to avoid instrumenting some of the accesses.
     18 //   - Insert calls at function entry/exit.
     19 // The rest is handled by the run-time library.
     20 //===----------------------------------------------------------------------===//
     21 
     22 #include "llvm/Transforms/Instrumentation.h"
     23 #include "llvm/ADT/SmallSet.h"
     24 #include "llvm/ADT/SmallString.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/ADT/StringExtras.h"
     28 #include "llvm/Analysis/CaptureTracking.h"
     29 #include "llvm/Analysis/TargetLibraryInfo.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/IR/DataLayout.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/IRBuilder.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/Intrinsics.h"
     36 #include "llvm/IR/LLVMContext.h"
     37 #include "llvm/IR/Metadata.h"
     38 #include "llvm/IR/Module.h"
     39 #include "llvm/IR/Type.h"
     40 #include "llvm/ProfileData/InstrProf.h"
     41 #include "llvm/Support/CommandLine.h"
     42 #include "llvm/Support/Debug.h"
     43 #include "llvm/Support/MathExtras.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     46 #include "llvm/Transforms/Utils/Local.h"
     47 #include "llvm/Transforms/Utils/ModuleUtils.h"
     48 
     49 using namespace llvm;
     50 
     51 #define DEBUG_TYPE "tsan"
     52 
     53 static cl::opt<bool>  ClInstrumentMemoryAccesses(
     54     "tsan-instrument-memory-accesses", cl::init(true),
     55     cl::desc("Instrument memory accesses"), cl::Hidden);
     56 static cl::opt<bool>  ClInstrumentFuncEntryExit(
     57     "tsan-instrument-func-entry-exit", cl::init(true),
     58     cl::desc("Instrument function entry and exit"), cl::Hidden);
     59 static cl::opt<bool>  ClInstrumentAtomics(
     60     "tsan-instrument-atomics", cl::init(true),
     61     cl::desc("Instrument atomics"), cl::Hidden);
     62 static cl::opt<bool>  ClInstrumentMemIntrinsics(
     63     "tsan-instrument-memintrinsics", cl::init(true),
     64     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
     65 
     66 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
     67 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
     68 STATISTIC(NumOmittedReadsBeforeWrite,
     69           "Number of reads ignored due to following writes");
     70 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
     71 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
     72 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
     73 STATISTIC(NumOmittedReadsFromConstantGlobals,
     74           "Number of reads from constant globals");
     75 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
     76 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
     77 
     78 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
     79 static const char *const kTsanInitName = "__tsan_init";
     80 
     81 namespace {
     82 
     83 /// ThreadSanitizer: instrument the code in module to find races.
     84 struct ThreadSanitizer : public FunctionPass {
     85   ThreadSanitizer() : FunctionPass(ID) {}
     86   const char *getPassName() const override;
     87   void getAnalysisUsage(AnalysisUsage &AU) const override;
     88   bool runOnFunction(Function &F) override;
     89   bool doInitialization(Module &M) override;
     90   static char ID;  // Pass identification, replacement for typeid.
     91 
     92  private:
     93   void initializeCallbacks(Module &M);
     94   bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
     95   bool instrumentAtomic(Instruction *I, const DataLayout &DL);
     96   bool instrumentMemIntrinsic(Instruction *I);
     97   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
     98                                       SmallVectorImpl<Instruction *> &All,
     99                                       const DataLayout &DL);
    100   bool addrPointsToConstantData(Value *Addr);
    101   int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
    102 
    103   Type *IntptrTy;
    104   IntegerType *OrdTy;
    105   // Callbacks to run-time library are computed in doInitialization.
    106   Function *TsanFuncEntry;
    107   Function *TsanFuncExit;
    108   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
    109   static const size_t kNumberOfAccessSizes = 5;
    110   Function *TsanRead[kNumberOfAccessSizes];
    111   Function *TsanWrite[kNumberOfAccessSizes];
    112   Function *TsanUnalignedRead[kNumberOfAccessSizes];
    113   Function *TsanUnalignedWrite[kNumberOfAccessSizes];
    114   Function *TsanAtomicLoad[kNumberOfAccessSizes];
    115   Function *TsanAtomicStore[kNumberOfAccessSizes];
    116   Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
    117   Function *TsanAtomicCAS[kNumberOfAccessSizes];
    118   Function *TsanAtomicThreadFence;
    119   Function *TsanAtomicSignalFence;
    120   Function *TsanVptrUpdate;
    121   Function *TsanVptrLoad;
    122   Function *MemmoveFn, *MemcpyFn, *MemsetFn;
    123   Function *TsanCtorFunction;
    124 };
    125 }  // namespace
    126 
    127 char ThreadSanitizer::ID = 0;
    128 INITIALIZE_PASS_BEGIN(
    129     ThreadSanitizer, "tsan",
    130     "ThreadSanitizer: detects data races.",
    131     false, false)
    132 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    133 INITIALIZE_PASS_END(
    134     ThreadSanitizer, "tsan",
    135     "ThreadSanitizer: detects data races.",
    136     false, false)
    137 
    138 const char *ThreadSanitizer::getPassName() const {
    139   return "ThreadSanitizer";
    140 }
    141 
    142 void ThreadSanitizer::getAnalysisUsage(AnalysisUsage &AU) const {
    143   AU.addRequired<TargetLibraryInfoWrapperPass>();
    144 }
    145 
    146 FunctionPass *llvm::createThreadSanitizerPass() {
    147   return new ThreadSanitizer();
    148 }
    149 
    150 void ThreadSanitizer::initializeCallbacks(Module &M) {
    151   IRBuilder<> IRB(M.getContext());
    152   // Initialize the callbacks.
    153   TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    154       "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    155   TsanFuncExit = checkSanitizerInterfaceFunction(
    156       M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr));
    157   OrdTy = IRB.getInt32Ty();
    158   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
    159     const unsigned ByteSize = 1U << i;
    160     const unsigned BitSize = ByteSize * 8;
    161     std::string ByteSizeStr = utostr(ByteSize);
    162     std::string BitSizeStr = utostr(BitSize);
    163     SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
    164     TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    165         ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    166 
    167     SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
    168     TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    169         WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    170 
    171     SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
    172     TsanUnalignedRead[i] =
    173         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    174             UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    175 
    176     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
    177     TsanUnalignedWrite[i] =
    178         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    179             UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    180 
    181     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
    182     Type *PtrTy = Ty->getPointerTo();
    183     SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
    184     TsanAtomicLoad[i] = checkSanitizerInterfaceFunction(
    185         M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr));
    186 
    187     SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
    188     TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    189         AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr));
    190 
    191     for (int op = AtomicRMWInst::FIRST_BINOP;
    192         op <= AtomicRMWInst::LAST_BINOP; ++op) {
    193       TsanAtomicRMW[op][i] = nullptr;
    194       const char *NamePart = nullptr;
    195       if (op == AtomicRMWInst::Xchg)
    196         NamePart = "_exchange";
    197       else if (op == AtomicRMWInst::Add)
    198         NamePart = "_fetch_add";
    199       else if (op == AtomicRMWInst::Sub)
    200         NamePart = "_fetch_sub";
    201       else if (op == AtomicRMWInst::And)
    202         NamePart = "_fetch_and";
    203       else if (op == AtomicRMWInst::Or)
    204         NamePart = "_fetch_or";
    205       else if (op == AtomicRMWInst::Xor)
    206         NamePart = "_fetch_xor";
    207       else if (op == AtomicRMWInst::Nand)
    208         NamePart = "_fetch_nand";
    209       else
    210         continue;
    211       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
    212       TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction(
    213           M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr));
    214     }
    215 
    216     SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
    217                                   "_compare_exchange_val");
    218     TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    219         AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr));
    220   }
    221   TsanVptrUpdate = checkSanitizerInterfaceFunction(
    222       M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(),
    223                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr));
    224   TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    225       "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
    226   TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    227       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr));
    228   TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
    229       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr));
    230 
    231   MemmoveFn = checkSanitizerInterfaceFunction(
    232       M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    233                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
    234   MemcpyFn = checkSanitizerInterfaceFunction(
    235       M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    236                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
    237   MemsetFn = checkSanitizerInterfaceFunction(
    238       M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    239                             IRB.getInt32Ty(), IntptrTy, nullptr));
    240 }
    241 
    242 bool ThreadSanitizer::doInitialization(Module &M) {
    243   const DataLayout &DL = M.getDataLayout();
    244   IntptrTy = DL.getIntPtrType(M.getContext());
    245   std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
    246       M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
    247       /*InitArgs=*/{});
    248 
    249   appendToGlobalCtors(M, TsanCtorFunction, 0);
    250 
    251   return true;
    252 }
    253 
    254 static bool isVtableAccess(Instruction *I) {
    255   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
    256     return Tag->isTBAAVtableAccess();
    257   return false;
    258 }
    259 
    260 // Do not instrument known races/"benign races" that come from compiler
    261 // instrumentatin. The user has no way of suppressing them.
    262 static bool shouldInstrumentReadWriteFromAddress(Value *Addr) {
    263   // Peel off GEPs and BitCasts.
    264   Addr = Addr->stripInBoundsOffsets();
    265 
    266   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
    267     if (GV->hasSection()) {
    268       StringRef SectionName = GV->getSection();
    269       // Check if the global is in the PGO counters section.
    270       if (SectionName.endswith(getInstrProfCountersSectionName(
    271             /*AddSegment=*/false)))
    272         return false;
    273     }
    274 
    275     // Check if the global is in a GCOV counter array.
    276     if (GV->getName().startswith("__llvm_gcov_ctr"))
    277       return false;
    278   }
    279 
    280   // Do not instrument acesses from different address spaces; we cannot deal
    281   // with them.
    282   if (Addr) {
    283     Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
    284     if (PtrTy->getPointerAddressSpace() != 0)
    285       return false;
    286   }
    287 
    288   return true;
    289 }
    290 
    291 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
    292   // If this is a GEP, just analyze its pointer operand.
    293   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
    294     Addr = GEP->getPointerOperand();
    295 
    296   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
    297     if (GV->isConstant()) {
    298       // Reads from constant globals can not race with any writes.
    299       NumOmittedReadsFromConstantGlobals++;
    300       return true;
    301     }
    302   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
    303     if (isVtableAccess(L)) {
    304       // Reads from a vtable pointer can not race with any writes.
    305       NumOmittedReadsFromVtable++;
    306       return true;
    307     }
    308   }
    309   return false;
    310 }
    311 
    312 // Instrumenting some of the accesses may be proven redundant.
    313 // Currently handled:
    314 //  - read-before-write (within same BB, no calls between)
    315 //  - not captured variables
    316 //
    317 // We do not handle some of the patterns that should not survive
    318 // after the classic compiler optimizations.
    319 // E.g. two reads from the same temp should be eliminated by CSE,
    320 // two writes should be eliminated by DSE, etc.
    321 //
    322 // 'Local' is a vector of insns within the same BB (no calls between).
    323 // 'All' is a vector of insns that will be instrumented.
    324 void ThreadSanitizer::chooseInstructionsToInstrument(
    325     SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
    326     const DataLayout &DL) {
    327   SmallSet<Value*, 8> WriteTargets;
    328   // Iterate from the end.
    329   for (Instruction *I : reverse(Local)) {
    330     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
    331       Value *Addr = Store->getPointerOperand();
    332       if (!shouldInstrumentReadWriteFromAddress(Addr))
    333         continue;
    334       WriteTargets.insert(Addr);
    335     } else {
    336       LoadInst *Load = cast<LoadInst>(I);
    337       Value *Addr = Load->getPointerOperand();
    338       if (!shouldInstrumentReadWriteFromAddress(Addr))
    339         continue;
    340       if (WriteTargets.count(Addr)) {
    341         // We will write to this temp, so no reason to analyze the read.
    342         NumOmittedReadsBeforeWrite++;
    343         continue;
    344       }
    345       if (addrPointsToConstantData(Addr)) {
    346         // Addr points to some constant data -- it can not race with any writes.
    347         continue;
    348       }
    349     }
    350     Value *Addr = isa<StoreInst>(*I)
    351         ? cast<StoreInst>(I)->getPointerOperand()
    352         : cast<LoadInst>(I)->getPointerOperand();
    353     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
    354         !PointerMayBeCaptured(Addr, true, true)) {
    355       // The variable is addressable but not captured, so it cannot be
    356       // referenced from a different thread and participate in a data race
    357       // (see llvm/Analysis/CaptureTracking.h for details).
    358       NumOmittedNonCaptured++;
    359       continue;
    360     }
    361     All.push_back(I);
    362   }
    363   Local.clear();
    364 }
    365 
    366 static bool isAtomic(Instruction *I) {
    367   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    368     return LI->isAtomic() && LI->getSynchScope() == CrossThread;
    369   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    370     return SI->isAtomic() && SI->getSynchScope() == CrossThread;
    371   if (isa<AtomicRMWInst>(I))
    372     return true;
    373   if (isa<AtomicCmpXchgInst>(I))
    374     return true;
    375   if (isa<FenceInst>(I))
    376     return true;
    377   return false;
    378 }
    379 
    380 bool ThreadSanitizer::runOnFunction(Function &F) {
    381   // This is required to prevent instrumenting call to __tsan_init from within
    382   // the module constructor.
    383   if (&F == TsanCtorFunction)
    384     return false;
    385   initializeCallbacks(*F.getParent());
    386   SmallVector<Instruction*, 8> RetVec;
    387   SmallVector<Instruction*, 8> AllLoadsAndStores;
    388   SmallVector<Instruction*, 8> LocalLoadsAndStores;
    389   SmallVector<Instruction*, 8> AtomicAccesses;
    390   SmallVector<Instruction*, 8> MemIntrinCalls;
    391   bool Res = false;
    392   bool HasCalls = false;
    393   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
    394   const DataLayout &DL = F.getParent()->getDataLayout();
    395   const TargetLibraryInfo *TLI =
    396       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    397 
    398   // Traverse all instructions, collect loads/stores/returns, check for calls.
    399   for (auto &BB : F) {
    400     for (auto &Inst : BB) {
    401       if (isAtomic(&Inst))
    402         AtomicAccesses.push_back(&Inst);
    403       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
    404         LocalLoadsAndStores.push_back(&Inst);
    405       else if (isa<ReturnInst>(Inst))
    406         RetVec.push_back(&Inst);
    407       else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
    408         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
    409           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
    410         if (isa<MemIntrinsic>(Inst))
    411           MemIntrinCalls.push_back(&Inst);
    412         HasCalls = true;
    413         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
    414                                        DL);
    415       }
    416     }
    417     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
    418   }
    419 
    420   // We have collected all loads and stores.
    421   // FIXME: many of these accesses do not need to be checked for races
    422   // (e.g. variables that do not escape, etc).
    423 
    424   // Instrument memory accesses only if we want to report bugs in the function.
    425   if (ClInstrumentMemoryAccesses && SanitizeFunction)
    426     for (auto Inst : AllLoadsAndStores) {
    427       Res |= instrumentLoadOrStore(Inst, DL);
    428     }
    429 
    430   // Instrument atomic memory accesses in any case (they can be used to
    431   // implement synchronization).
    432   if (ClInstrumentAtomics)
    433     for (auto Inst : AtomicAccesses) {
    434       Res |= instrumentAtomic(Inst, DL);
    435     }
    436 
    437   if (ClInstrumentMemIntrinsics && SanitizeFunction)
    438     for (auto Inst : MemIntrinCalls) {
    439       Res |= instrumentMemIntrinsic(Inst);
    440     }
    441 
    442   // Instrument function entry/exit points if there were instrumented accesses.
    443   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
    444     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
    445     Value *ReturnAddress = IRB.CreateCall(
    446         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
    447         IRB.getInt32(0));
    448     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
    449     for (auto RetInst : RetVec) {
    450       IRBuilder<> IRBRet(RetInst);
    451       IRBRet.CreateCall(TsanFuncExit, {});
    452     }
    453     Res = true;
    454   }
    455   return Res;
    456 }
    457 
    458 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
    459                                             const DataLayout &DL) {
    460   IRBuilder<> IRB(I);
    461   bool IsWrite = isa<StoreInst>(*I);
    462   Value *Addr = IsWrite
    463       ? cast<StoreInst>(I)->getPointerOperand()
    464       : cast<LoadInst>(I)->getPointerOperand();
    465   int Idx = getMemoryAccessFuncIndex(Addr, DL);
    466   if (Idx < 0)
    467     return false;
    468   if (IsWrite && isVtableAccess(I)) {
    469     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
    470     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
    471     // StoredValue may be a vector type if we are storing several vptrs at once.
    472     // In this case, just take the first element of the vector since this is
    473     // enough to find vptr races.
    474     if (isa<VectorType>(StoredValue->getType()))
    475       StoredValue = IRB.CreateExtractElement(
    476           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
    477     if (StoredValue->getType()->isIntegerTy())
    478       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
    479     // Call TsanVptrUpdate.
    480     IRB.CreateCall(TsanVptrUpdate,
    481                    {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
    482                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
    483     NumInstrumentedVtableWrites++;
    484     return true;
    485   }
    486   if (!IsWrite && isVtableAccess(I)) {
    487     IRB.CreateCall(TsanVptrLoad,
    488                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
    489     NumInstrumentedVtableReads++;
    490     return true;
    491   }
    492   const unsigned Alignment = IsWrite
    493       ? cast<StoreInst>(I)->getAlignment()
    494       : cast<LoadInst>(I)->getAlignment();
    495   Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
    496   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
    497   Value *OnAccessFunc = nullptr;
    498   if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
    499     OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
    500   else
    501     OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
    502   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
    503   if (IsWrite) NumInstrumentedWrites++;
    504   else         NumInstrumentedReads++;
    505   return true;
    506 }
    507 
    508 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
    509   uint32_t v = 0;
    510   switch (ord) {
    511     case AtomicOrdering::NotAtomic:
    512       llvm_unreachable("unexpected atomic ordering!");
    513     case AtomicOrdering::Unordered:              // Fall-through.
    514     case AtomicOrdering::Monotonic:              v = 0; break;
    515     // Not specified yet:
    516     // case AtomicOrdering::Consume:                v = 1; break;
    517     case AtomicOrdering::Acquire:                v = 2; break;
    518     case AtomicOrdering::Release:                v = 3; break;
    519     case AtomicOrdering::AcquireRelease:         v = 4; break;
    520     case AtomicOrdering::SequentiallyConsistent: v = 5; break;
    521   }
    522   return IRB->getInt32(v);
    523 }
    524 
    525 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
    526 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
    527 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
    528 // instead we simply replace them with regular function calls, which are then
    529 // intercepted by the run-time.
    530 // Since tsan is running after everyone else, the calls should not be
    531 // replaced back with intrinsics. If that becomes wrong at some point,
    532 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
    533 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
    534   IRBuilder<> IRB(I);
    535   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
    536     IRB.CreateCall(
    537         MemsetFn,
    538         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
    539          IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
    540          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
    541     I->eraseFromParent();
    542   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
    543     IRB.CreateCall(
    544         isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
    545         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
    546          IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
    547          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
    548     I->eraseFromParent();
    549   }
    550   return false;
    551 }
    552 
    553 static Value *createIntOrPtrToIntCast(Value *V, Type* Ty, IRBuilder<> &IRB) {
    554   return isa<PointerType>(V->getType()) ?
    555     IRB.CreatePtrToInt(V, Ty) : IRB.CreateIntCast(V, Ty, false);
    556 }
    557 
    558 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
    559 // standards.  For background see C++11 standard.  A slightly older, publicly
    560 // available draft of the standard (not entirely up-to-date, but close enough
    561 // for casual browsing) is available here:
    562 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
    563 // The following page contains more background information:
    564 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
    565 
    566 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
    567   IRBuilder<> IRB(I);
    568   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    569     Value *Addr = LI->getPointerOperand();
    570     int Idx = getMemoryAccessFuncIndex(Addr, DL);
    571     if (Idx < 0)
    572       return false;
    573     const unsigned ByteSize = 1U << Idx;
    574     const unsigned BitSize = ByteSize * 8;
    575     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
    576     Type *PtrTy = Ty->getPointerTo();
    577     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
    578                      createOrdering(&IRB, LI->getOrdering())};
    579     Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
    580     if (Ty == OrigTy) {
    581       Instruction *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
    582       ReplaceInstWithInst(I, C);
    583     } else {
    584       // We are loading a pointer, so we need to cast the return value.
    585       Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
    586       Instruction *Cast = CastInst::Create(Instruction::IntToPtr, C, OrigTy);
    587       ReplaceInstWithInst(I, Cast);
    588     }
    589   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    590     Value *Addr = SI->getPointerOperand();
    591     int Idx = getMemoryAccessFuncIndex(Addr, DL);
    592     if (Idx < 0)
    593       return false;
    594     const unsigned ByteSize = 1U << Idx;
    595     const unsigned BitSize = ByteSize * 8;
    596     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
    597     Type *PtrTy = Ty->getPointerTo();
    598     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
    599                      createIntOrPtrToIntCast(SI->getValueOperand(), Ty, IRB),
    600                      createOrdering(&IRB, SI->getOrdering())};
    601     CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
    602     ReplaceInstWithInst(I, C);
    603   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
    604     Value *Addr = RMWI->getPointerOperand();
    605     int Idx = getMemoryAccessFuncIndex(Addr, DL);
    606     if (Idx < 0)
    607       return false;
    608     Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
    609     if (!F)
    610       return false;
    611     const unsigned ByteSize = 1U << Idx;
    612     const unsigned BitSize = ByteSize * 8;
    613     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
    614     Type *PtrTy = Ty->getPointerTo();
    615     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
    616                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
    617                      createOrdering(&IRB, RMWI->getOrdering())};
    618     CallInst *C = CallInst::Create(F, Args);
    619     ReplaceInstWithInst(I, C);
    620   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
    621     Value *Addr = CASI->getPointerOperand();
    622     int Idx = getMemoryAccessFuncIndex(Addr, DL);
    623     if (Idx < 0)
    624       return false;
    625     const unsigned ByteSize = 1U << Idx;
    626     const unsigned BitSize = ByteSize * 8;
    627     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
    628     Type *PtrTy = Ty->getPointerTo();
    629     Value *CmpOperand =
    630       createIntOrPtrToIntCast(CASI->getCompareOperand(), Ty, IRB);
    631     Value *NewOperand =
    632       createIntOrPtrToIntCast(CASI->getNewValOperand(), Ty, IRB);
    633     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
    634                      CmpOperand,
    635                      NewOperand,
    636                      createOrdering(&IRB, CASI->getSuccessOrdering()),
    637                      createOrdering(&IRB, CASI->getFailureOrdering())};
    638     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
    639     Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
    640     Value *OldVal = C;
    641     Type *OrigOldValTy = CASI->getNewValOperand()->getType();
    642     if (Ty != OrigOldValTy) {
    643       // The value is a pointer, so we need to cast the return value.
    644       OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
    645     }
    646 
    647     Value *Res =
    648       IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
    649     Res = IRB.CreateInsertValue(Res, Success, 1);
    650 
    651     I->replaceAllUsesWith(Res);
    652     I->eraseFromParent();
    653   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
    654     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
    655     Function *F = FI->getSynchScope() == SingleThread ?
    656         TsanAtomicSignalFence : TsanAtomicThreadFence;
    657     CallInst *C = CallInst::Create(F, Args);
    658     ReplaceInstWithInst(I, C);
    659   }
    660   return true;
    661 }
    662 
    663 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
    664                                               const DataLayout &DL) {
    665   Type *OrigPtrTy = Addr->getType();
    666   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
    667   assert(OrigTy->isSized());
    668   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
    669   if (TypeSize != 8  && TypeSize != 16 &&
    670       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
    671     NumAccessesWithBadSize++;
    672     // Ignore all unusual sizes.
    673     return -1;
    674   }
    675   size_t Idx = countTrailingZeros(TypeSize / 8);
    676   assert(Idx < kNumberOfAccessSizes);
    677   return Idx;
    678 }
    679