1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer, a race detector. 11 // 12 // The tool is under development, for the details about previous versions see 13 // http://code.google.com/p/data-race-test 14 // 15 // The instrumentation phase is quite simple: 16 // - Insert calls to run-time library before every memory access. 17 // - Optimizations may apply to avoid instrumenting some of the accesses. 18 // - Insert calls at function entry/exit. 19 // The rest is handled by the run-time library. 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Instrumentation.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/ProfileData/InstrProf.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ModuleUtils.h" 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "tsan" 52 53 static cl::opt<bool> ClInstrumentMemoryAccesses( 54 "tsan-instrument-memory-accesses", cl::init(true), 55 cl::desc("Instrument memory accesses"), cl::Hidden); 56 static cl::opt<bool> ClInstrumentFuncEntryExit( 57 "tsan-instrument-func-entry-exit", cl::init(true), 58 cl::desc("Instrument function entry and exit"), cl::Hidden); 59 static cl::opt<bool> ClInstrumentAtomics( 60 "tsan-instrument-atomics", cl::init(true), 61 cl::desc("Instrument atomics"), cl::Hidden); 62 static cl::opt<bool> ClInstrumentMemIntrinsics( 63 "tsan-instrument-memintrinsics", cl::init(true), 64 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 65 66 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 67 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 68 STATISTIC(NumOmittedReadsBeforeWrite, 69 "Number of reads ignored due to following writes"); 70 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 71 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 72 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 73 STATISTIC(NumOmittedReadsFromConstantGlobals, 74 "Number of reads from constant globals"); 75 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 76 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); 77 78 static const char *const kTsanModuleCtorName = "tsan.module_ctor"; 79 static const char *const kTsanInitName = "__tsan_init"; 80 81 namespace { 82 83 /// ThreadSanitizer: instrument the code in module to find races. 84 struct ThreadSanitizer : public FunctionPass { 85 ThreadSanitizer() : FunctionPass(ID) {} 86 const char *getPassName() const override; 87 void getAnalysisUsage(AnalysisUsage &AU) const override; 88 bool runOnFunction(Function &F) override; 89 bool doInitialization(Module &M) override; 90 static char ID; // Pass identification, replacement for typeid. 91 92 private: 93 void initializeCallbacks(Module &M); 94 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); 95 bool instrumentAtomic(Instruction *I, const DataLayout &DL); 96 bool instrumentMemIntrinsic(Instruction *I); 97 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, 98 SmallVectorImpl<Instruction *> &All, 99 const DataLayout &DL); 100 bool addrPointsToConstantData(Value *Addr); 101 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); 102 103 Type *IntptrTy; 104 IntegerType *OrdTy; 105 // Callbacks to run-time library are computed in doInitialization. 106 Function *TsanFuncEntry; 107 Function *TsanFuncExit; 108 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 109 static const size_t kNumberOfAccessSizes = 5; 110 Function *TsanRead[kNumberOfAccessSizes]; 111 Function *TsanWrite[kNumberOfAccessSizes]; 112 Function *TsanUnalignedRead[kNumberOfAccessSizes]; 113 Function *TsanUnalignedWrite[kNumberOfAccessSizes]; 114 Function *TsanAtomicLoad[kNumberOfAccessSizes]; 115 Function *TsanAtomicStore[kNumberOfAccessSizes]; 116 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes]; 117 Function *TsanAtomicCAS[kNumberOfAccessSizes]; 118 Function *TsanAtomicThreadFence; 119 Function *TsanAtomicSignalFence; 120 Function *TsanVptrUpdate; 121 Function *TsanVptrLoad; 122 Function *MemmoveFn, *MemcpyFn, *MemsetFn; 123 Function *TsanCtorFunction; 124 }; 125 } // namespace 126 127 char ThreadSanitizer::ID = 0; 128 INITIALIZE_PASS_BEGIN( 129 ThreadSanitizer, "tsan", 130 "ThreadSanitizer: detects data races.", 131 false, false) 132 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 133 INITIALIZE_PASS_END( 134 ThreadSanitizer, "tsan", 135 "ThreadSanitizer: detects data races.", 136 false, false) 137 138 const char *ThreadSanitizer::getPassName() const { 139 return "ThreadSanitizer"; 140 } 141 142 void ThreadSanitizer::getAnalysisUsage(AnalysisUsage &AU) const { 143 AU.addRequired<TargetLibraryInfoWrapperPass>(); 144 } 145 146 FunctionPass *llvm::createThreadSanitizerPass() { 147 return new ThreadSanitizer(); 148 } 149 150 void ThreadSanitizer::initializeCallbacks(Module &M) { 151 IRBuilder<> IRB(M.getContext()); 152 // Initialize the callbacks. 153 TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 154 "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 155 TsanFuncExit = checkSanitizerInterfaceFunction( 156 M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr)); 157 OrdTy = IRB.getInt32Ty(); 158 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 159 const unsigned ByteSize = 1U << i; 160 const unsigned BitSize = ByteSize * 8; 161 std::string ByteSizeStr = utostr(ByteSize); 162 std::string BitSizeStr = utostr(BitSize); 163 SmallString<32> ReadName("__tsan_read" + ByteSizeStr); 164 TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 165 ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 166 167 SmallString<32> WriteName("__tsan_write" + ByteSizeStr); 168 TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 169 WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 170 171 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); 172 TsanUnalignedRead[i] = 173 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 174 UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 175 176 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); 177 TsanUnalignedWrite[i] = 178 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 179 UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 180 181 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 182 Type *PtrTy = Ty->getPointerTo(); 183 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); 184 TsanAtomicLoad[i] = checkSanitizerInterfaceFunction( 185 M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr)); 186 187 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); 188 TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 189 AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr)); 190 191 for (int op = AtomicRMWInst::FIRST_BINOP; 192 op <= AtomicRMWInst::LAST_BINOP; ++op) { 193 TsanAtomicRMW[op][i] = nullptr; 194 const char *NamePart = nullptr; 195 if (op == AtomicRMWInst::Xchg) 196 NamePart = "_exchange"; 197 else if (op == AtomicRMWInst::Add) 198 NamePart = "_fetch_add"; 199 else if (op == AtomicRMWInst::Sub) 200 NamePart = "_fetch_sub"; 201 else if (op == AtomicRMWInst::And) 202 NamePart = "_fetch_and"; 203 else if (op == AtomicRMWInst::Or) 204 NamePart = "_fetch_or"; 205 else if (op == AtomicRMWInst::Xor) 206 NamePart = "_fetch_xor"; 207 else if (op == AtomicRMWInst::Nand) 208 NamePart = "_fetch_nand"; 209 else 210 continue; 211 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 212 TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction( 213 M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr)); 214 } 215 216 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + 217 "_compare_exchange_val"); 218 TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 219 AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr)); 220 } 221 TsanVptrUpdate = checkSanitizerInterfaceFunction( 222 M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(), 223 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr)); 224 TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 225 "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr)); 226 TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 227 "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr)); 228 TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 229 "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr)); 230 231 MemmoveFn = checkSanitizerInterfaceFunction( 232 M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 233 IRB.getInt8PtrTy(), IntptrTy, nullptr)); 234 MemcpyFn = checkSanitizerInterfaceFunction( 235 M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 236 IRB.getInt8PtrTy(), IntptrTy, nullptr)); 237 MemsetFn = checkSanitizerInterfaceFunction( 238 M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 239 IRB.getInt32Ty(), IntptrTy, nullptr)); 240 } 241 242 bool ThreadSanitizer::doInitialization(Module &M) { 243 const DataLayout &DL = M.getDataLayout(); 244 IntptrTy = DL.getIntPtrType(M.getContext()); 245 std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( 246 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, 247 /*InitArgs=*/{}); 248 249 appendToGlobalCtors(M, TsanCtorFunction, 0); 250 251 return true; 252 } 253 254 static bool isVtableAccess(Instruction *I) { 255 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 256 return Tag->isTBAAVtableAccess(); 257 return false; 258 } 259 260 // Do not instrument known races/"benign races" that come from compiler 261 // instrumentatin. The user has no way of suppressing them. 262 static bool shouldInstrumentReadWriteFromAddress(Value *Addr) { 263 // Peel off GEPs and BitCasts. 264 Addr = Addr->stripInBoundsOffsets(); 265 266 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 267 if (GV->hasSection()) { 268 StringRef SectionName = GV->getSection(); 269 // Check if the global is in the PGO counters section. 270 if (SectionName.endswith(getInstrProfCountersSectionName( 271 /*AddSegment=*/false))) 272 return false; 273 } 274 275 // Check if the global is in a GCOV counter array. 276 if (GV->getName().startswith("__llvm_gcov_ctr")) 277 return false; 278 } 279 280 // Do not instrument acesses from different address spaces; we cannot deal 281 // with them. 282 if (Addr) { 283 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 284 if (PtrTy->getPointerAddressSpace() != 0) 285 return false; 286 } 287 288 return true; 289 } 290 291 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 292 // If this is a GEP, just analyze its pointer operand. 293 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 294 Addr = GEP->getPointerOperand(); 295 296 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 297 if (GV->isConstant()) { 298 // Reads from constant globals can not race with any writes. 299 NumOmittedReadsFromConstantGlobals++; 300 return true; 301 } 302 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 303 if (isVtableAccess(L)) { 304 // Reads from a vtable pointer can not race with any writes. 305 NumOmittedReadsFromVtable++; 306 return true; 307 } 308 } 309 return false; 310 } 311 312 // Instrumenting some of the accesses may be proven redundant. 313 // Currently handled: 314 // - read-before-write (within same BB, no calls between) 315 // - not captured variables 316 // 317 // We do not handle some of the patterns that should not survive 318 // after the classic compiler optimizations. 319 // E.g. two reads from the same temp should be eliminated by CSE, 320 // two writes should be eliminated by DSE, etc. 321 // 322 // 'Local' is a vector of insns within the same BB (no calls between). 323 // 'All' is a vector of insns that will be instrumented. 324 void ThreadSanitizer::chooseInstructionsToInstrument( 325 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All, 326 const DataLayout &DL) { 327 SmallSet<Value*, 8> WriteTargets; 328 // Iterate from the end. 329 for (Instruction *I : reverse(Local)) { 330 if (StoreInst *Store = dyn_cast<StoreInst>(I)) { 331 Value *Addr = Store->getPointerOperand(); 332 if (!shouldInstrumentReadWriteFromAddress(Addr)) 333 continue; 334 WriteTargets.insert(Addr); 335 } else { 336 LoadInst *Load = cast<LoadInst>(I); 337 Value *Addr = Load->getPointerOperand(); 338 if (!shouldInstrumentReadWriteFromAddress(Addr)) 339 continue; 340 if (WriteTargets.count(Addr)) { 341 // We will write to this temp, so no reason to analyze the read. 342 NumOmittedReadsBeforeWrite++; 343 continue; 344 } 345 if (addrPointsToConstantData(Addr)) { 346 // Addr points to some constant data -- it can not race with any writes. 347 continue; 348 } 349 } 350 Value *Addr = isa<StoreInst>(*I) 351 ? cast<StoreInst>(I)->getPointerOperand() 352 : cast<LoadInst>(I)->getPointerOperand(); 353 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 354 !PointerMayBeCaptured(Addr, true, true)) { 355 // The variable is addressable but not captured, so it cannot be 356 // referenced from a different thread and participate in a data race 357 // (see llvm/Analysis/CaptureTracking.h for details). 358 NumOmittedNonCaptured++; 359 continue; 360 } 361 All.push_back(I); 362 } 363 Local.clear(); 364 } 365 366 static bool isAtomic(Instruction *I) { 367 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 368 return LI->isAtomic() && LI->getSynchScope() == CrossThread; 369 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 370 return SI->isAtomic() && SI->getSynchScope() == CrossThread; 371 if (isa<AtomicRMWInst>(I)) 372 return true; 373 if (isa<AtomicCmpXchgInst>(I)) 374 return true; 375 if (isa<FenceInst>(I)) 376 return true; 377 return false; 378 } 379 380 bool ThreadSanitizer::runOnFunction(Function &F) { 381 // This is required to prevent instrumenting call to __tsan_init from within 382 // the module constructor. 383 if (&F == TsanCtorFunction) 384 return false; 385 initializeCallbacks(*F.getParent()); 386 SmallVector<Instruction*, 8> RetVec; 387 SmallVector<Instruction*, 8> AllLoadsAndStores; 388 SmallVector<Instruction*, 8> LocalLoadsAndStores; 389 SmallVector<Instruction*, 8> AtomicAccesses; 390 SmallVector<Instruction*, 8> MemIntrinCalls; 391 bool Res = false; 392 bool HasCalls = false; 393 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 394 const DataLayout &DL = F.getParent()->getDataLayout(); 395 const TargetLibraryInfo *TLI = 396 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 397 398 // Traverse all instructions, collect loads/stores/returns, check for calls. 399 for (auto &BB : F) { 400 for (auto &Inst : BB) { 401 if (isAtomic(&Inst)) 402 AtomicAccesses.push_back(&Inst); 403 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 404 LocalLoadsAndStores.push_back(&Inst); 405 else if (isa<ReturnInst>(Inst)) 406 RetVec.push_back(&Inst); 407 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 408 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 409 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 410 if (isa<MemIntrinsic>(Inst)) 411 MemIntrinCalls.push_back(&Inst); 412 HasCalls = true; 413 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, 414 DL); 415 } 416 } 417 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); 418 } 419 420 // We have collected all loads and stores. 421 // FIXME: many of these accesses do not need to be checked for races 422 // (e.g. variables that do not escape, etc). 423 424 // Instrument memory accesses only if we want to report bugs in the function. 425 if (ClInstrumentMemoryAccesses && SanitizeFunction) 426 for (auto Inst : AllLoadsAndStores) { 427 Res |= instrumentLoadOrStore(Inst, DL); 428 } 429 430 // Instrument atomic memory accesses in any case (they can be used to 431 // implement synchronization). 432 if (ClInstrumentAtomics) 433 for (auto Inst : AtomicAccesses) { 434 Res |= instrumentAtomic(Inst, DL); 435 } 436 437 if (ClInstrumentMemIntrinsics && SanitizeFunction) 438 for (auto Inst : MemIntrinCalls) { 439 Res |= instrumentMemIntrinsic(Inst); 440 } 441 442 // Instrument function entry/exit points if there were instrumented accesses. 443 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 444 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 445 Value *ReturnAddress = IRB.CreateCall( 446 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 447 IRB.getInt32(0)); 448 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 449 for (auto RetInst : RetVec) { 450 IRBuilder<> IRBRet(RetInst); 451 IRBRet.CreateCall(TsanFuncExit, {}); 452 } 453 Res = true; 454 } 455 return Res; 456 } 457 458 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I, 459 const DataLayout &DL) { 460 IRBuilder<> IRB(I); 461 bool IsWrite = isa<StoreInst>(*I); 462 Value *Addr = IsWrite 463 ? cast<StoreInst>(I)->getPointerOperand() 464 : cast<LoadInst>(I)->getPointerOperand(); 465 int Idx = getMemoryAccessFuncIndex(Addr, DL); 466 if (Idx < 0) 467 return false; 468 if (IsWrite && isVtableAccess(I)) { 469 DEBUG(dbgs() << " VPTR : " << *I << "\n"); 470 Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); 471 // StoredValue may be a vector type if we are storing several vptrs at once. 472 // In this case, just take the first element of the vector since this is 473 // enough to find vptr races. 474 if (isa<VectorType>(StoredValue->getType())) 475 StoredValue = IRB.CreateExtractElement( 476 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 477 if (StoredValue->getType()->isIntegerTy()) 478 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 479 // Call TsanVptrUpdate. 480 IRB.CreateCall(TsanVptrUpdate, 481 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 482 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); 483 NumInstrumentedVtableWrites++; 484 return true; 485 } 486 if (!IsWrite && isVtableAccess(I)) { 487 IRB.CreateCall(TsanVptrLoad, 488 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 489 NumInstrumentedVtableReads++; 490 return true; 491 } 492 const unsigned Alignment = IsWrite 493 ? cast<StoreInst>(I)->getAlignment() 494 : cast<LoadInst>(I)->getAlignment(); 495 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 496 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 497 Value *OnAccessFunc = nullptr; 498 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) 499 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 500 else 501 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; 502 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 503 if (IsWrite) NumInstrumentedWrites++; 504 else NumInstrumentedReads++; 505 return true; 506 } 507 508 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 509 uint32_t v = 0; 510 switch (ord) { 511 case AtomicOrdering::NotAtomic: 512 llvm_unreachable("unexpected atomic ordering!"); 513 case AtomicOrdering::Unordered: // Fall-through. 514 case AtomicOrdering::Monotonic: v = 0; break; 515 // Not specified yet: 516 // case AtomicOrdering::Consume: v = 1; break; 517 case AtomicOrdering::Acquire: v = 2; break; 518 case AtomicOrdering::Release: v = 3; break; 519 case AtomicOrdering::AcquireRelease: v = 4; break; 520 case AtomicOrdering::SequentiallyConsistent: v = 5; break; 521 } 522 return IRB->getInt32(v); 523 } 524 525 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 526 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 527 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 528 // instead we simply replace them with regular function calls, which are then 529 // intercepted by the run-time. 530 // Since tsan is running after everyone else, the calls should not be 531 // replaced back with intrinsics. If that becomes wrong at some point, 532 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 533 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 534 IRBuilder<> IRB(I); 535 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 536 IRB.CreateCall( 537 MemsetFn, 538 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 539 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 540 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 541 I->eraseFromParent(); 542 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 543 IRB.CreateCall( 544 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 545 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 546 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 547 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); 548 I->eraseFromParent(); 549 } 550 return false; 551 } 552 553 static Value *createIntOrPtrToIntCast(Value *V, Type* Ty, IRBuilder<> &IRB) { 554 return isa<PointerType>(V->getType()) ? 555 IRB.CreatePtrToInt(V, Ty) : IRB.CreateIntCast(V, Ty, false); 556 } 557 558 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 559 // standards. For background see C++11 standard. A slightly older, publicly 560 // available draft of the standard (not entirely up-to-date, but close enough 561 // for casual browsing) is available here: 562 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 563 // The following page contains more background information: 564 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 565 566 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { 567 IRBuilder<> IRB(I); 568 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 569 Value *Addr = LI->getPointerOperand(); 570 int Idx = getMemoryAccessFuncIndex(Addr, DL); 571 if (Idx < 0) 572 return false; 573 const unsigned ByteSize = 1U << Idx; 574 const unsigned BitSize = ByteSize * 8; 575 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 576 Type *PtrTy = Ty->getPointerTo(); 577 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 578 createOrdering(&IRB, LI->getOrdering())}; 579 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); 580 if (Ty == OrigTy) { 581 Instruction *C = CallInst::Create(TsanAtomicLoad[Idx], Args); 582 ReplaceInstWithInst(I, C); 583 } else { 584 // We are loading a pointer, so we need to cast the return value. 585 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); 586 Instruction *Cast = CastInst::Create(Instruction::IntToPtr, C, OrigTy); 587 ReplaceInstWithInst(I, Cast); 588 } 589 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 590 Value *Addr = SI->getPointerOperand(); 591 int Idx = getMemoryAccessFuncIndex(Addr, DL); 592 if (Idx < 0) 593 return false; 594 const unsigned ByteSize = 1U << Idx; 595 const unsigned BitSize = ByteSize * 8; 596 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 597 Type *PtrTy = Ty->getPointerTo(); 598 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 599 createIntOrPtrToIntCast(SI->getValueOperand(), Ty, IRB), 600 createOrdering(&IRB, SI->getOrdering())}; 601 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 602 ReplaceInstWithInst(I, C); 603 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 604 Value *Addr = RMWI->getPointerOperand(); 605 int Idx = getMemoryAccessFuncIndex(Addr, DL); 606 if (Idx < 0) 607 return false; 608 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 609 if (!F) 610 return false; 611 const unsigned ByteSize = 1U << Idx; 612 const unsigned BitSize = ByteSize * 8; 613 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 614 Type *PtrTy = Ty->getPointerTo(); 615 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 616 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 617 createOrdering(&IRB, RMWI->getOrdering())}; 618 CallInst *C = CallInst::Create(F, Args); 619 ReplaceInstWithInst(I, C); 620 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 621 Value *Addr = CASI->getPointerOperand(); 622 int Idx = getMemoryAccessFuncIndex(Addr, DL); 623 if (Idx < 0) 624 return false; 625 const unsigned ByteSize = 1U << Idx; 626 const unsigned BitSize = ByteSize * 8; 627 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 628 Type *PtrTy = Ty->getPointerTo(); 629 Value *CmpOperand = 630 createIntOrPtrToIntCast(CASI->getCompareOperand(), Ty, IRB); 631 Value *NewOperand = 632 createIntOrPtrToIntCast(CASI->getNewValOperand(), Ty, IRB); 633 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 634 CmpOperand, 635 NewOperand, 636 createOrdering(&IRB, CASI->getSuccessOrdering()), 637 createOrdering(&IRB, CASI->getFailureOrdering())}; 638 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 639 Value *Success = IRB.CreateICmpEQ(C, CmpOperand); 640 Value *OldVal = C; 641 Type *OrigOldValTy = CASI->getNewValOperand()->getType(); 642 if (Ty != OrigOldValTy) { 643 // The value is a pointer, so we need to cast the return value. 644 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); 645 } 646 647 Value *Res = 648 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); 649 Res = IRB.CreateInsertValue(Res, Success, 1); 650 651 I->replaceAllUsesWith(Res); 652 I->eraseFromParent(); 653 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 654 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 655 Function *F = FI->getSynchScope() == SingleThread ? 656 TsanAtomicSignalFence : TsanAtomicThreadFence; 657 CallInst *C = CallInst::Create(F, Args); 658 ReplaceInstWithInst(I, C); 659 } 660 return true; 661 } 662 663 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, 664 const DataLayout &DL) { 665 Type *OrigPtrTy = Addr->getType(); 666 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 667 assert(OrigTy->isSized()); 668 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); 669 if (TypeSize != 8 && TypeSize != 16 && 670 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 671 NumAccessesWithBadSize++; 672 // Ignore all unusual sizes. 673 return -1; 674 } 675 size_t Idx = countTrailingZeros(TypeSize / 8); 676 assert(Idx < kNumberOfAccessSizes); 677 return Idx; 678 } 679