1 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Correlated Value Propagation pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LazyValueInfo.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 using namespace llvm; 30 31 #define DEBUG_TYPE "correlated-value-propagation" 32 33 STATISTIC(NumPhis, "Number of phis propagated"); 34 STATISTIC(NumSelects, "Number of selects propagated"); 35 STATISTIC(NumMemAccess, "Number of memory access targets propagated"); 36 STATISTIC(NumCmps, "Number of comparisons propagated"); 37 STATISTIC(NumReturns, "Number of return values propagated"); 38 STATISTIC(NumDeadCases, "Number of switch cases removed"); 39 STATISTIC(NumSDivs, "Number of sdiv converted to udiv"); 40 STATISTIC(NumSRems, "Number of srem converted to urem"); 41 42 namespace { 43 class CorrelatedValuePropagation : public FunctionPass { 44 public: 45 static char ID; 46 CorrelatedValuePropagation(): FunctionPass(ID) { 47 initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry()); 48 } 49 50 bool runOnFunction(Function &F) override; 51 52 void getAnalysisUsage(AnalysisUsage &AU) const override { 53 AU.addRequired<LazyValueInfoWrapperPass>(); 54 AU.addPreserved<GlobalsAAWrapperPass>(); 55 } 56 }; 57 } 58 59 char CorrelatedValuePropagation::ID = 0; 60 INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation", 61 "Value Propagation", false, false) 62 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 63 INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation", 64 "Value Propagation", false, false) 65 66 // Public interface to the Value Propagation pass 67 Pass *llvm::createCorrelatedValuePropagationPass() { 68 return new CorrelatedValuePropagation(); 69 } 70 71 static bool processSelect(SelectInst *S, LazyValueInfo *LVI) { 72 if (S->getType()->isVectorTy()) return false; 73 if (isa<Constant>(S->getOperand(0))) return false; 74 75 Constant *C = LVI->getConstant(S->getOperand(0), S->getParent(), S); 76 if (!C) return false; 77 78 ConstantInt *CI = dyn_cast<ConstantInt>(C); 79 if (!CI) return false; 80 81 Value *ReplaceWith = S->getOperand(1); 82 Value *Other = S->getOperand(2); 83 if (!CI->isOne()) std::swap(ReplaceWith, Other); 84 if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType()); 85 86 S->replaceAllUsesWith(ReplaceWith); 87 S->eraseFromParent(); 88 89 ++NumSelects; 90 91 return true; 92 } 93 94 static bool processPHI(PHINode *P, LazyValueInfo *LVI) { 95 bool Changed = false; 96 97 BasicBlock *BB = P->getParent(); 98 for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { 99 Value *Incoming = P->getIncomingValue(i); 100 if (isa<Constant>(Incoming)) continue; 101 102 Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P); 103 104 // Look if the incoming value is a select with a scalar condition for which 105 // LVI can tells us the value. In that case replace the incoming value with 106 // the appropriate value of the select. This often allows us to remove the 107 // select later. 108 if (!V) { 109 SelectInst *SI = dyn_cast<SelectInst>(Incoming); 110 if (!SI) continue; 111 112 Value *Condition = SI->getCondition(); 113 if (!Condition->getType()->isVectorTy()) { 114 if (Constant *C = LVI->getConstantOnEdge( 115 Condition, P->getIncomingBlock(i), BB, P)) { 116 if (C->isOneValue()) { 117 V = SI->getTrueValue(); 118 } else if (C->isZeroValue()) { 119 V = SI->getFalseValue(); 120 } 121 // Once LVI learns to handle vector types, we could also add support 122 // for vector type constants that are not all zeroes or all ones. 123 } 124 } 125 126 // Look if the select has a constant but LVI tells us that the incoming 127 // value can never be that constant. In that case replace the incoming 128 // value with the other value of the select. This often allows us to 129 // remove the select later. 130 if (!V) { 131 Constant *C = dyn_cast<Constant>(SI->getFalseValue()); 132 if (!C) continue; 133 134 if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, 135 P->getIncomingBlock(i), BB, P) != 136 LazyValueInfo::False) 137 continue; 138 V = SI->getTrueValue(); 139 } 140 141 DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n'); 142 } 143 144 P->setIncomingValue(i, V); 145 Changed = true; 146 } 147 148 // FIXME: Provide TLI, DT, AT to SimplifyInstruction. 149 const DataLayout &DL = BB->getModule()->getDataLayout(); 150 if (Value *V = SimplifyInstruction(P, DL)) { 151 P->replaceAllUsesWith(V); 152 P->eraseFromParent(); 153 Changed = true; 154 } 155 156 if (Changed) 157 ++NumPhis; 158 159 return Changed; 160 } 161 162 static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) { 163 Value *Pointer = nullptr; 164 if (LoadInst *L = dyn_cast<LoadInst>(I)) 165 Pointer = L->getPointerOperand(); 166 else 167 Pointer = cast<StoreInst>(I)->getPointerOperand(); 168 169 if (isa<Constant>(Pointer)) return false; 170 171 Constant *C = LVI->getConstant(Pointer, I->getParent(), I); 172 if (!C) return false; 173 174 ++NumMemAccess; 175 I->replaceUsesOfWith(Pointer, C); 176 return true; 177 } 178 179 /// See if LazyValueInfo's ability to exploit edge conditions or range 180 /// information is sufficient to prove this comparison. Even for local 181 /// conditions, this can sometimes prove conditions instcombine can't by 182 /// exploiting range information. 183 static bool processCmp(CmpInst *C, LazyValueInfo *LVI) { 184 Value *Op0 = C->getOperand(0); 185 Constant *Op1 = dyn_cast<Constant>(C->getOperand(1)); 186 if (!Op1) return false; 187 188 // As a policy choice, we choose not to waste compile time on anything where 189 // the comparison is testing local values. While LVI can sometimes reason 190 // about such cases, it's not its primary purpose. We do make sure to do 191 // the block local query for uses from terminator instructions, but that's 192 // handled in the code for each terminator. 193 auto *I = dyn_cast<Instruction>(Op0); 194 if (I && I->getParent() == C->getParent()) 195 return false; 196 197 LazyValueInfo::Tristate Result = 198 LVI->getPredicateAt(C->getPredicate(), Op0, Op1, C); 199 if (Result == LazyValueInfo::Unknown) return false; 200 201 ++NumCmps; 202 if (Result == LazyValueInfo::True) 203 C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext())); 204 else 205 C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext())); 206 C->eraseFromParent(); 207 208 return true; 209 } 210 211 /// Simplify a switch instruction by removing cases which can never fire. If the 212 /// uselessness of a case could be determined locally then constant propagation 213 /// would already have figured it out. Instead, walk the predecessors and 214 /// statically evaluate cases based on information available on that edge. Cases 215 /// that cannot fire no matter what the incoming edge can safely be removed. If 216 /// a case fires on every incoming edge then the entire switch can be removed 217 /// and replaced with a branch to the case destination. 218 static bool processSwitch(SwitchInst *SI, LazyValueInfo *LVI) { 219 Value *Cond = SI->getCondition(); 220 BasicBlock *BB = SI->getParent(); 221 222 // If the condition was defined in same block as the switch then LazyValueInfo 223 // currently won't say anything useful about it, though in theory it could. 224 if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB) 225 return false; 226 227 // If the switch is unreachable then trying to improve it is a waste of time. 228 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 229 if (PB == PE) return false; 230 231 // Analyse each switch case in turn. This is done in reverse order so that 232 // removing a case doesn't cause trouble for the iteration. 233 bool Changed = false; 234 for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE; 235 ) { 236 ConstantInt *Case = CI.getCaseValue(); 237 238 // Check to see if the switch condition is equal to/not equal to the case 239 // value on every incoming edge, equal/not equal being the same each time. 240 LazyValueInfo::Tristate State = LazyValueInfo::Unknown; 241 for (pred_iterator PI = PB; PI != PE; ++PI) { 242 // Is the switch condition equal to the case value? 243 LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ, 244 Cond, Case, *PI, 245 BB, SI); 246 // Give up on this case if nothing is known. 247 if (Value == LazyValueInfo::Unknown) { 248 State = LazyValueInfo::Unknown; 249 break; 250 } 251 252 // If this was the first edge to be visited, record that all other edges 253 // need to give the same result. 254 if (PI == PB) { 255 State = Value; 256 continue; 257 } 258 259 // If this case is known to fire for some edges and known not to fire for 260 // others then there is nothing we can do - give up. 261 if (Value != State) { 262 State = LazyValueInfo::Unknown; 263 break; 264 } 265 } 266 267 if (State == LazyValueInfo::False) { 268 // This case never fires - remove it. 269 CI.getCaseSuccessor()->removePredecessor(BB); 270 SI->removeCase(CI); // Does not invalidate the iterator. 271 272 // The condition can be modified by removePredecessor's PHI simplification 273 // logic. 274 Cond = SI->getCondition(); 275 276 ++NumDeadCases; 277 Changed = true; 278 } else if (State == LazyValueInfo::True) { 279 // This case always fires. Arrange for the switch to be turned into an 280 // unconditional branch by replacing the switch condition with the case 281 // value. 282 SI->setCondition(Case); 283 NumDeadCases += SI->getNumCases(); 284 Changed = true; 285 break; 286 } 287 } 288 289 if (Changed) 290 // If the switch has been simplified to the point where it can be replaced 291 // by a branch then do so now. 292 ConstantFoldTerminator(BB); 293 294 return Changed; 295 } 296 297 /// Infer nonnull attributes for the arguments at the specified callsite. 298 static bool processCallSite(CallSite CS, LazyValueInfo *LVI) { 299 SmallVector<unsigned, 4> Indices; 300 unsigned ArgNo = 0; 301 302 for (Value *V : CS.args()) { 303 PointerType *Type = dyn_cast<PointerType>(V->getType()); 304 // Try to mark pointer typed parameters as non-null. We skip the 305 // relatively expensive analysis for constants which are obviously either 306 // null or non-null to start with. 307 if (Type && !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) && 308 !isa<Constant>(V) && 309 LVI->getPredicateAt(ICmpInst::ICMP_EQ, V, 310 ConstantPointerNull::get(Type), 311 CS.getInstruction()) == LazyValueInfo::False) 312 Indices.push_back(ArgNo + 1); 313 ArgNo++; 314 } 315 316 assert(ArgNo == CS.arg_size() && "sanity check"); 317 318 if (Indices.empty()) 319 return false; 320 321 AttributeSet AS = CS.getAttributes(); 322 LLVMContext &Ctx = CS.getInstruction()->getContext(); 323 AS = AS.addAttribute(Ctx, Indices, Attribute::get(Ctx, Attribute::NonNull)); 324 CS.setAttributes(AS); 325 326 return true; 327 } 328 329 // Helper function to rewrite srem and sdiv. As a policy choice, we choose not 330 // to waste compile time on anything where the operands are local defs. While 331 // LVI can sometimes reason about such cases, it's not its primary purpose. 332 static bool hasLocalDefs(BinaryOperator *SDI) { 333 for (Value *O : SDI->operands()) { 334 auto *I = dyn_cast<Instruction>(O); 335 if (I && I->getParent() == SDI->getParent()) 336 return true; 337 } 338 return false; 339 } 340 341 static bool hasPositiveOperands(BinaryOperator *SDI, LazyValueInfo *LVI) { 342 Constant *Zero = ConstantInt::get(SDI->getType(), 0); 343 for (Value *O : SDI->operands()) { 344 auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI); 345 if (Result != LazyValueInfo::True) 346 return false; 347 } 348 return true; 349 } 350 351 static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) { 352 if (SDI->getType()->isVectorTy() || hasLocalDefs(SDI) || 353 !hasPositiveOperands(SDI, LVI)) 354 return false; 355 356 ++NumSRems; 357 auto *BO = BinaryOperator::CreateURem(SDI->getOperand(0), SDI->getOperand(1), 358 SDI->getName(), SDI); 359 SDI->replaceAllUsesWith(BO); 360 SDI->eraseFromParent(); 361 return true; 362 } 363 364 /// See if LazyValueInfo's ability to exploit edge conditions or range 365 /// information is sufficient to prove the both operands of this SDiv are 366 /// positive. If this is the case, replace the SDiv with a UDiv. Even for local 367 /// conditions, this can sometimes prove conditions instcombine can't by 368 /// exploiting range information. 369 static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) { 370 if (SDI->getType()->isVectorTy() || hasLocalDefs(SDI) || 371 !hasPositiveOperands(SDI, LVI)) 372 return false; 373 374 ++NumSDivs; 375 auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1), 376 SDI->getName(), SDI); 377 BO->setIsExact(SDI->isExact()); 378 SDI->replaceAllUsesWith(BO); 379 SDI->eraseFromParent(); 380 381 return true; 382 } 383 384 static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) { 385 if (Constant *C = LVI->getConstant(V, At->getParent(), At)) 386 return C; 387 388 // TODO: The following really should be sunk inside LVI's core algorithm, or 389 // at least the outer shims around such. 390 auto *C = dyn_cast<CmpInst>(V); 391 if (!C) return nullptr; 392 393 Value *Op0 = C->getOperand(0); 394 Constant *Op1 = dyn_cast<Constant>(C->getOperand(1)); 395 if (!Op1) return nullptr; 396 397 LazyValueInfo::Tristate Result = 398 LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At); 399 if (Result == LazyValueInfo::Unknown) 400 return nullptr; 401 402 return (Result == LazyValueInfo::True) ? 403 ConstantInt::getTrue(C->getContext()) : 404 ConstantInt::getFalse(C->getContext()); 405 } 406 407 static bool runImpl(Function &F, LazyValueInfo *LVI) { 408 bool FnChanged = false; 409 410 for (BasicBlock &BB : F) { 411 bool BBChanged = false; 412 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 413 Instruction *II = &*BI++; 414 switch (II->getOpcode()) { 415 case Instruction::Select: 416 BBChanged |= processSelect(cast<SelectInst>(II), LVI); 417 break; 418 case Instruction::PHI: 419 BBChanged |= processPHI(cast<PHINode>(II), LVI); 420 break; 421 case Instruction::ICmp: 422 case Instruction::FCmp: 423 BBChanged |= processCmp(cast<CmpInst>(II), LVI); 424 break; 425 case Instruction::Load: 426 case Instruction::Store: 427 BBChanged |= processMemAccess(II, LVI); 428 break; 429 case Instruction::Call: 430 case Instruction::Invoke: 431 BBChanged |= processCallSite(CallSite(II), LVI); 432 break; 433 case Instruction::SRem: 434 BBChanged |= processSRem(cast<BinaryOperator>(II), LVI); 435 break; 436 case Instruction::SDiv: 437 BBChanged |= processSDiv(cast<BinaryOperator>(II), LVI); 438 break; 439 } 440 } 441 442 Instruction *Term = BB.getTerminator(); 443 switch (Term->getOpcode()) { 444 case Instruction::Switch: 445 BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI); 446 break; 447 case Instruction::Ret: { 448 auto *RI = cast<ReturnInst>(Term); 449 // Try to determine the return value if we can. This is mainly here to 450 // simplify the writing of unit tests, but also helps to enable IPO by 451 // constant folding the return values of callees. 452 auto *RetVal = RI->getReturnValue(); 453 if (!RetVal) break; // handle "ret void" 454 if (isa<Constant>(RetVal)) break; // nothing to do 455 if (auto *C = getConstantAt(RetVal, RI, LVI)) { 456 ++NumReturns; 457 RI->replaceUsesOfWith(RetVal, C); 458 BBChanged = true; 459 } 460 } 461 }; 462 463 FnChanged |= BBChanged; 464 } 465 466 return FnChanged; 467 } 468 469 bool CorrelatedValuePropagation::runOnFunction(Function &F) { 470 if (skipFunction(F)) 471 return false; 472 473 LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 474 return runImpl(F, LVI); 475 } 476 477 PreservedAnalyses 478 CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) { 479 480 LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); 481 bool Changed = runImpl(F, LVI); 482 483 // FIXME: We need to invalidate LVI to avoid PR28400. Is there a better 484 // solution? 485 AM.invalidate<LazyValueAnalysis>(F); 486 487 if (!Changed) 488 return PreservedAnalyses::all(); 489 PreservedAnalyses PA; 490 PA.preserve<GlobalsAA>(); 491 return PA; 492 } 493