1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This transformation implements the well known scalar replacement of 11 /// aggregates transformation. It tries to identify promotable elements of an 12 /// aggregate alloca, and promote them to registers. It will also try to 13 /// convert uses of an element (or set of elements) of an alloca into a vector 14 /// or bitfield-style integer scalar if appropriate. 15 /// 16 /// It works to do this with minimal slicing of the alloca so that regions 17 /// which are merely transferred in and out of external memory remain unchanged 18 /// and are not decomposed to scalar code. 19 /// 20 /// Because this also performs alloca promotion, it can be thought of as also 21 /// serving the purpose of SSA formation. The algorithm iterates on the 22 /// function until all opportunities for promotion have been realized. 23 /// 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/SROA.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/PtrUseVisitor.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DIBuilder.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfo.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstVisitor.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/TimeValue.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 57 58 #ifndef NDEBUG 59 // We only use this for a debug check. 60 #include <random> 61 #endif 62 63 using namespace llvm; 64 using namespace llvm::sroa; 65 66 #define DEBUG_TYPE "sroa" 67 68 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 69 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 70 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 71 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 72 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 73 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 74 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 75 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 76 STATISTIC(NumDeleted, "Number of instructions deleted"); 77 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 78 79 /// Hidden option to enable randomly shuffling the slices to help uncover 80 /// instability in their order. 81 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices", 82 cl::init(false), cl::Hidden); 83 84 /// Hidden option to experiment with completely strict handling of inbounds 85 /// GEPs. 86 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 87 cl::Hidden); 88 89 namespace { 90 /// \brief A custom IRBuilder inserter which prefixes all names, but only in 91 /// Assert builds. 92 class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter { 93 std::string Prefix; 94 const Twine getNameWithPrefix(const Twine &Name) const { 95 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 96 } 97 98 public: 99 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 100 101 protected: 102 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 103 BasicBlock::iterator InsertPt) const { 104 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 105 InsertPt); 106 } 107 }; 108 109 /// \brief Provide a typedef for IRBuilder that drops names in release builds. 110 using IRBuilderTy = llvm::IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 111 } 112 113 namespace { 114 /// \brief A used slice of an alloca. 115 /// 116 /// This structure represents a slice of an alloca used by some instruction. It 117 /// stores both the begin and end offsets of this use, a pointer to the use 118 /// itself, and a flag indicating whether we can classify the use as splittable 119 /// or not when forming partitions of the alloca. 120 class Slice { 121 /// \brief The beginning offset of the range. 122 uint64_t BeginOffset; 123 124 /// \brief The ending offset, not included in the range. 125 uint64_t EndOffset; 126 127 /// \brief Storage for both the use of this slice and whether it can be 128 /// split. 129 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 130 131 public: 132 Slice() : BeginOffset(), EndOffset() {} 133 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 134 : BeginOffset(BeginOffset), EndOffset(EndOffset), 135 UseAndIsSplittable(U, IsSplittable) {} 136 137 uint64_t beginOffset() const { return BeginOffset; } 138 uint64_t endOffset() const { return EndOffset; } 139 140 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 141 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 142 143 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 144 145 bool isDead() const { return getUse() == nullptr; } 146 void kill() { UseAndIsSplittable.setPointer(nullptr); } 147 148 /// \brief Support for ordering ranges. 149 /// 150 /// This provides an ordering over ranges such that start offsets are 151 /// always increasing, and within equal start offsets, the end offsets are 152 /// decreasing. Thus the spanning range comes first in a cluster with the 153 /// same start position. 154 bool operator<(const Slice &RHS) const { 155 if (beginOffset() < RHS.beginOffset()) 156 return true; 157 if (beginOffset() > RHS.beginOffset()) 158 return false; 159 if (isSplittable() != RHS.isSplittable()) 160 return !isSplittable(); 161 if (endOffset() > RHS.endOffset()) 162 return true; 163 return false; 164 } 165 166 /// \brief Support comparison with a single offset to allow binary searches. 167 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 168 uint64_t RHSOffset) { 169 return LHS.beginOffset() < RHSOffset; 170 } 171 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 172 const Slice &RHS) { 173 return LHSOffset < RHS.beginOffset(); 174 } 175 176 bool operator==(const Slice &RHS) const { 177 return isSplittable() == RHS.isSplittable() && 178 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 179 } 180 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 181 }; 182 } // end anonymous namespace 183 184 namespace llvm { 185 template <typename T> struct isPodLike; 186 template <> struct isPodLike<Slice> { static const bool value = true; }; 187 } 188 189 /// \brief Representation of the alloca slices. 190 /// 191 /// This class represents the slices of an alloca which are formed by its 192 /// various uses. If a pointer escapes, we can't fully build a representation 193 /// for the slices used and we reflect that in this structure. The uses are 194 /// stored, sorted by increasing beginning offset and with unsplittable slices 195 /// starting at a particular offset before splittable slices. 196 class llvm::sroa::AllocaSlices { 197 public: 198 /// \brief Construct the slices of a particular alloca. 199 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 200 201 /// \brief Test whether a pointer to the allocation escapes our analysis. 202 /// 203 /// If this is true, the slices are never fully built and should be 204 /// ignored. 205 bool isEscaped() const { return PointerEscapingInstr; } 206 207 /// \brief Support for iterating over the slices. 208 /// @{ 209 typedef SmallVectorImpl<Slice>::iterator iterator; 210 typedef iterator_range<iterator> range; 211 iterator begin() { return Slices.begin(); } 212 iterator end() { return Slices.end(); } 213 214 typedef SmallVectorImpl<Slice>::const_iterator const_iterator; 215 typedef iterator_range<const_iterator> const_range; 216 const_iterator begin() const { return Slices.begin(); } 217 const_iterator end() const { return Slices.end(); } 218 /// @} 219 220 /// \brief Erase a range of slices. 221 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 222 223 /// \brief Insert new slices for this alloca. 224 /// 225 /// This moves the slices into the alloca's slices collection, and re-sorts 226 /// everything so that the usual ordering properties of the alloca's slices 227 /// hold. 228 void insert(ArrayRef<Slice> NewSlices) { 229 int OldSize = Slices.size(); 230 Slices.append(NewSlices.begin(), NewSlices.end()); 231 auto SliceI = Slices.begin() + OldSize; 232 std::sort(SliceI, Slices.end()); 233 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 234 } 235 236 // Forward declare the iterator and range accessor for walking the 237 // partitions. 238 class partition_iterator; 239 iterator_range<partition_iterator> partitions(); 240 241 /// \brief Access the dead users for this alloca. 242 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 243 244 /// \brief Access the dead operands referring to this alloca. 245 /// 246 /// These are operands which have cannot actually be used to refer to the 247 /// alloca as they are outside its range and the user doesn't correct for 248 /// that. These mostly consist of PHI node inputs and the like which we just 249 /// need to replace with undef. 250 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 251 252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 253 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 254 void printSlice(raw_ostream &OS, const_iterator I, 255 StringRef Indent = " ") const; 256 void printUse(raw_ostream &OS, const_iterator I, 257 StringRef Indent = " ") const; 258 void print(raw_ostream &OS) const; 259 void dump(const_iterator I) const; 260 void dump() const; 261 #endif 262 263 private: 264 template <typename DerivedT, typename RetT = void> class BuilderBase; 265 class SliceBuilder; 266 friend class AllocaSlices::SliceBuilder; 267 268 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 269 /// \brief Handle to alloca instruction to simplify method interfaces. 270 AllocaInst &AI; 271 #endif 272 273 /// \brief The instruction responsible for this alloca not having a known set 274 /// of slices. 275 /// 276 /// When an instruction (potentially) escapes the pointer to the alloca, we 277 /// store a pointer to that here and abort trying to form slices of the 278 /// alloca. This will be null if the alloca slices are analyzed successfully. 279 Instruction *PointerEscapingInstr; 280 281 /// \brief The slices of the alloca. 282 /// 283 /// We store a vector of the slices formed by uses of the alloca here. This 284 /// vector is sorted by increasing begin offset, and then the unsplittable 285 /// slices before the splittable ones. See the Slice inner class for more 286 /// details. 287 SmallVector<Slice, 8> Slices; 288 289 /// \brief Instructions which will become dead if we rewrite the alloca. 290 /// 291 /// Note that these are not separated by slice. This is because we expect an 292 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 293 /// all these instructions can simply be removed and replaced with undef as 294 /// they come from outside of the allocated space. 295 SmallVector<Instruction *, 8> DeadUsers; 296 297 /// \brief Operands which will become dead if we rewrite the alloca. 298 /// 299 /// These are operands that in their particular use can be replaced with 300 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs 301 /// to PHI nodes and the like. They aren't entirely dead (there might be 302 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 303 /// want to swap this particular input for undef to simplify the use lists of 304 /// the alloca. 305 SmallVector<Use *, 8> DeadOperands; 306 }; 307 308 /// \brief A partition of the slices. 309 /// 310 /// An ephemeral representation for a range of slices which can be viewed as 311 /// a partition of the alloca. This range represents a span of the alloca's 312 /// memory which cannot be split, and provides access to all of the slices 313 /// overlapping some part of the partition. 314 /// 315 /// Objects of this type are produced by traversing the alloca's slices, but 316 /// are only ephemeral and not persistent. 317 class llvm::sroa::Partition { 318 private: 319 friend class AllocaSlices; 320 friend class AllocaSlices::partition_iterator; 321 322 typedef AllocaSlices::iterator iterator; 323 324 /// \brief The beginning and ending offsets of the alloca for this 325 /// partition. 326 uint64_t BeginOffset, EndOffset; 327 328 /// \brief The start end end iterators of this partition. 329 iterator SI, SJ; 330 331 /// \brief A collection of split slice tails overlapping the partition. 332 SmallVector<Slice *, 4> SplitTails; 333 334 /// \brief Raw constructor builds an empty partition starting and ending at 335 /// the given iterator. 336 Partition(iterator SI) : SI(SI), SJ(SI) {} 337 338 public: 339 /// \brief The start offset of this partition. 340 /// 341 /// All of the contained slices start at or after this offset. 342 uint64_t beginOffset() const { return BeginOffset; } 343 344 /// \brief The end offset of this partition. 345 /// 346 /// All of the contained slices end at or before this offset. 347 uint64_t endOffset() const { return EndOffset; } 348 349 /// \brief The size of the partition. 350 /// 351 /// Note that this can never be zero. 352 uint64_t size() const { 353 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 354 return EndOffset - BeginOffset; 355 } 356 357 /// \brief Test whether this partition contains no slices, and merely spans 358 /// a region occupied by split slices. 359 bool empty() const { return SI == SJ; } 360 361 /// \name Iterate slices that start within the partition. 362 /// These may be splittable or unsplittable. They have a begin offset >= the 363 /// partition begin offset. 364 /// @{ 365 // FIXME: We should probably define a "concat_iterator" helper and use that 366 // to stitch together pointee_iterators over the split tails and the 367 // contiguous iterators of the partition. That would give a much nicer 368 // interface here. We could then additionally expose filtered iterators for 369 // split, unsplit, and unsplittable splices based on the usage patterns. 370 iterator begin() const { return SI; } 371 iterator end() const { return SJ; } 372 /// @} 373 374 /// \brief Get the sequence of split slice tails. 375 /// 376 /// These tails are of slices which start before this partition but are 377 /// split and overlap into the partition. We accumulate these while forming 378 /// partitions. 379 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 380 }; 381 382 /// \brief An iterator over partitions of the alloca's slices. 383 /// 384 /// This iterator implements the core algorithm for partitioning the alloca's 385 /// slices. It is a forward iterator as we don't support backtracking for 386 /// efficiency reasons, and re-use a single storage area to maintain the 387 /// current set of split slices. 388 /// 389 /// It is templated on the slice iterator type to use so that it can operate 390 /// with either const or non-const slice iterators. 391 class AllocaSlices::partition_iterator 392 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 393 Partition> { 394 friend class AllocaSlices; 395 396 /// \brief Most of the state for walking the partitions is held in a class 397 /// with a nice interface for examining them. 398 Partition P; 399 400 /// \brief We need to keep the end of the slices to know when to stop. 401 AllocaSlices::iterator SE; 402 403 /// \brief We also need to keep track of the maximum split end offset seen. 404 /// FIXME: Do we really? 405 uint64_t MaxSplitSliceEndOffset; 406 407 /// \brief Sets the partition to be empty at given iterator, and sets the 408 /// end iterator. 409 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 410 : P(SI), SE(SE), MaxSplitSliceEndOffset(0) { 411 // If not already at the end, advance our state to form the initial 412 // partition. 413 if (SI != SE) 414 advance(); 415 } 416 417 /// \brief Advance the iterator to the next partition. 418 /// 419 /// Requires that the iterator not be at the end of the slices. 420 void advance() { 421 assert((P.SI != SE || !P.SplitTails.empty()) && 422 "Cannot advance past the end of the slices!"); 423 424 // Clear out any split uses which have ended. 425 if (!P.SplitTails.empty()) { 426 if (P.EndOffset >= MaxSplitSliceEndOffset) { 427 // If we've finished all splits, this is easy. 428 P.SplitTails.clear(); 429 MaxSplitSliceEndOffset = 0; 430 } else { 431 // Remove the uses which have ended in the prior partition. This 432 // cannot change the max split slice end because we just checked that 433 // the prior partition ended prior to that max. 434 P.SplitTails.erase( 435 std::remove_if( 436 P.SplitTails.begin(), P.SplitTails.end(), 437 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }), 438 P.SplitTails.end()); 439 assert(std::any_of(P.SplitTails.begin(), P.SplitTails.end(), 440 [&](Slice *S) { 441 return S->endOffset() == MaxSplitSliceEndOffset; 442 }) && 443 "Could not find the current max split slice offset!"); 444 assert(std::all_of(P.SplitTails.begin(), P.SplitTails.end(), 445 [&](Slice *S) { 446 return S->endOffset() <= MaxSplitSliceEndOffset; 447 }) && 448 "Max split slice end offset is not actually the max!"); 449 } 450 } 451 452 // If P.SI is already at the end, then we've cleared the split tail and 453 // now have an end iterator. 454 if (P.SI == SE) { 455 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 456 return; 457 } 458 459 // If we had a non-empty partition previously, set up the state for 460 // subsequent partitions. 461 if (P.SI != P.SJ) { 462 // Accumulate all the splittable slices which started in the old 463 // partition into the split list. 464 for (Slice &S : P) 465 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 466 P.SplitTails.push_back(&S); 467 MaxSplitSliceEndOffset = 468 std::max(S.endOffset(), MaxSplitSliceEndOffset); 469 } 470 471 // Start from the end of the previous partition. 472 P.SI = P.SJ; 473 474 // If P.SI is now at the end, we at most have a tail of split slices. 475 if (P.SI == SE) { 476 P.BeginOffset = P.EndOffset; 477 P.EndOffset = MaxSplitSliceEndOffset; 478 return; 479 } 480 481 // If the we have split slices and the next slice is after a gap and is 482 // not splittable immediately form an empty partition for the split 483 // slices up until the next slice begins. 484 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 485 !P.SI->isSplittable()) { 486 P.BeginOffset = P.EndOffset; 487 P.EndOffset = P.SI->beginOffset(); 488 return; 489 } 490 } 491 492 // OK, we need to consume new slices. Set the end offset based on the 493 // current slice, and step SJ past it. The beginning offset of the 494 // partition is the beginning offset of the next slice unless we have 495 // pre-existing split slices that are continuing, in which case we begin 496 // at the prior end offset. 497 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 498 P.EndOffset = P.SI->endOffset(); 499 ++P.SJ; 500 501 // There are two strategies to form a partition based on whether the 502 // partition starts with an unsplittable slice or a splittable slice. 503 if (!P.SI->isSplittable()) { 504 // When we're forming an unsplittable region, it must always start at 505 // the first slice and will extend through its end. 506 assert(P.BeginOffset == P.SI->beginOffset()); 507 508 // Form a partition including all of the overlapping slices with this 509 // unsplittable slice. 510 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 511 if (!P.SJ->isSplittable()) 512 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 513 ++P.SJ; 514 } 515 516 // We have a partition across a set of overlapping unsplittable 517 // partitions. 518 return; 519 } 520 521 // If we're starting with a splittable slice, then we need to form 522 // a synthetic partition spanning it and any other overlapping splittable 523 // splices. 524 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 525 526 // Collect all of the overlapping splittable slices. 527 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 528 P.SJ->isSplittable()) { 529 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 530 ++P.SJ; 531 } 532 533 // Back upiP.EndOffset if we ended the span early when encountering an 534 // unsplittable slice. This synthesizes the early end offset of 535 // a partition spanning only splittable slices. 536 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 537 assert(!P.SJ->isSplittable()); 538 P.EndOffset = P.SJ->beginOffset(); 539 } 540 } 541 542 public: 543 bool operator==(const partition_iterator &RHS) const { 544 assert(SE == RHS.SE && 545 "End iterators don't match between compared partition iterators!"); 546 547 // The observed positions of partitions is marked by the P.SI iterator and 548 // the emptiness of the split slices. The latter is only relevant when 549 // P.SI == SE, as the end iterator will additionally have an empty split 550 // slices list, but the prior may have the same P.SI and a tail of split 551 // slices. 552 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 553 assert(P.SJ == RHS.P.SJ && 554 "Same set of slices formed two different sized partitions!"); 555 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 556 "Same slice position with differently sized non-empty split " 557 "slice tails!"); 558 return true; 559 } 560 return false; 561 } 562 563 partition_iterator &operator++() { 564 advance(); 565 return *this; 566 } 567 568 Partition &operator*() { return P; } 569 }; 570 571 /// \brief A forward range over the partitions of the alloca's slices. 572 /// 573 /// This accesses an iterator range over the partitions of the alloca's 574 /// slices. It computes these partitions on the fly based on the overlapping 575 /// offsets of the slices and the ability to split them. It will visit "empty" 576 /// partitions to cover regions of the alloca only accessed via split 577 /// slices. 578 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 579 return make_range(partition_iterator(begin(), end()), 580 partition_iterator(end(), end())); 581 } 582 583 static Value *foldSelectInst(SelectInst &SI) { 584 // If the condition being selected on is a constant or the same value is 585 // being selected between, fold the select. Yes this does (rarely) happen 586 // early on. 587 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 588 return SI.getOperand(1 + CI->isZero()); 589 if (SI.getOperand(1) == SI.getOperand(2)) 590 return SI.getOperand(1); 591 592 return nullptr; 593 } 594 595 /// \brief A helper that folds a PHI node or a select. 596 static Value *foldPHINodeOrSelectInst(Instruction &I) { 597 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 598 // If PN merges together the same value, return that value. 599 return PN->hasConstantValue(); 600 } 601 return foldSelectInst(cast<SelectInst>(I)); 602 } 603 604 /// \brief Builder for the alloca slices. 605 /// 606 /// This class builds a set of alloca slices by recursively visiting the uses 607 /// of an alloca and making a slice for each load and store at each offset. 608 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 609 friend class PtrUseVisitor<SliceBuilder>; 610 friend class InstVisitor<SliceBuilder>; 611 typedef PtrUseVisitor<SliceBuilder> Base; 612 613 const uint64_t AllocSize; 614 AllocaSlices &AS; 615 616 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 617 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 618 619 /// \brief Set to de-duplicate dead instructions found in the use walk. 620 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 621 622 public: 623 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 624 : PtrUseVisitor<SliceBuilder>(DL), 625 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {} 626 627 private: 628 void markAsDead(Instruction &I) { 629 if (VisitedDeadInsts.insert(&I).second) 630 AS.DeadUsers.push_back(&I); 631 } 632 633 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 634 bool IsSplittable = false) { 635 // Completely skip uses which have a zero size or start either before or 636 // past the end of the allocation. 637 if (Size == 0 || Offset.uge(AllocSize)) { 638 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset 639 << " which has zero size or starts outside of the " 640 << AllocSize << " byte alloca:\n" 641 << " alloca: " << AS.AI << "\n" 642 << " use: " << I << "\n"); 643 return markAsDead(I); 644 } 645 646 uint64_t BeginOffset = Offset.getZExtValue(); 647 uint64_t EndOffset = BeginOffset + Size; 648 649 // Clamp the end offset to the end of the allocation. Note that this is 650 // formulated to handle even the case where "BeginOffset + Size" overflows. 651 // This may appear superficially to be something we could ignore entirely, 652 // but that is not so! There may be widened loads or PHI-node uses where 653 // some instructions are dead but not others. We can't completely ignore 654 // them, and so have to record at least the information here. 655 assert(AllocSize >= BeginOffset); // Established above. 656 if (Size > AllocSize - BeginOffset) { 657 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset 658 << " to remain within the " << AllocSize << " byte alloca:\n" 659 << " alloca: " << AS.AI << "\n" 660 << " use: " << I << "\n"); 661 EndOffset = AllocSize; 662 } 663 664 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 665 } 666 667 void visitBitCastInst(BitCastInst &BC) { 668 if (BC.use_empty()) 669 return markAsDead(BC); 670 671 return Base::visitBitCastInst(BC); 672 } 673 674 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 675 if (GEPI.use_empty()) 676 return markAsDead(GEPI); 677 678 if (SROAStrictInbounds && GEPI.isInBounds()) { 679 // FIXME: This is a manually un-factored variant of the basic code inside 680 // of GEPs with checking of the inbounds invariant specified in the 681 // langref in a very strict sense. If we ever want to enable 682 // SROAStrictInbounds, this code should be factored cleanly into 683 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 684 // by writing out the code here where we have the underlying allocation 685 // size readily available. 686 APInt GEPOffset = Offset; 687 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 688 for (gep_type_iterator GTI = gep_type_begin(GEPI), 689 GTE = gep_type_end(GEPI); 690 GTI != GTE; ++GTI) { 691 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 692 if (!OpC) 693 break; 694 695 // Handle a struct index, which adds its field offset to the pointer. 696 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 697 unsigned ElementIdx = OpC->getZExtValue(); 698 const StructLayout *SL = DL.getStructLayout(STy); 699 GEPOffset += 700 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 701 } else { 702 // For array or vector indices, scale the index by the size of the 703 // type. 704 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 705 GEPOffset += Index * APInt(Offset.getBitWidth(), 706 DL.getTypeAllocSize(GTI.getIndexedType())); 707 } 708 709 // If this index has computed an intermediate pointer which is not 710 // inbounds, then the result of the GEP is a poison value and we can 711 // delete it and all uses. 712 if (GEPOffset.ugt(AllocSize)) 713 return markAsDead(GEPI); 714 } 715 } 716 717 return Base::visitGetElementPtrInst(GEPI); 718 } 719 720 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 721 uint64_t Size, bool IsVolatile) { 722 // We allow splitting of non-volatile loads and stores where the type is an 723 // integer type. These may be used to implement 'memcpy' or other "transfer 724 // of bits" patterns. 725 bool IsSplittable = Ty->isIntegerTy() && !IsVolatile; 726 727 insertUse(I, Offset, Size, IsSplittable); 728 } 729 730 void visitLoadInst(LoadInst &LI) { 731 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 732 "All simple FCA loads should have been pre-split"); 733 734 if (!IsOffsetKnown) 735 return PI.setAborted(&LI); 736 737 const DataLayout &DL = LI.getModule()->getDataLayout(); 738 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 739 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 740 } 741 742 void visitStoreInst(StoreInst &SI) { 743 Value *ValOp = SI.getValueOperand(); 744 if (ValOp == *U) 745 return PI.setEscapedAndAborted(&SI); 746 if (!IsOffsetKnown) 747 return PI.setAborted(&SI); 748 749 const DataLayout &DL = SI.getModule()->getDataLayout(); 750 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); 751 752 // If this memory access can be shown to *statically* extend outside the 753 // bounds of of the allocation, it's behavior is undefined, so simply 754 // ignore it. Note that this is more strict than the generic clamping 755 // behavior of insertUse. We also try to handle cases which might run the 756 // risk of overflow. 757 // FIXME: We should instead consider the pointer to have escaped if this 758 // function is being instrumented for addressing bugs or race conditions. 759 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 760 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset 761 << " which extends past the end of the " << AllocSize 762 << " byte alloca:\n" 763 << " alloca: " << AS.AI << "\n" 764 << " use: " << SI << "\n"); 765 return markAsDead(SI); 766 } 767 768 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 769 "All simple FCA stores should have been pre-split"); 770 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 771 } 772 773 void visitMemSetInst(MemSetInst &II) { 774 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 775 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 776 if ((Length && Length->getValue() == 0) || 777 (IsOffsetKnown && Offset.uge(AllocSize))) 778 // Zero-length mem transfer intrinsics can be ignored entirely. 779 return markAsDead(II); 780 781 if (!IsOffsetKnown) 782 return PI.setAborted(&II); 783 784 insertUse(II, Offset, Length ? Length->getLimitedValue() 785 : AllocSize - Offset.getLimitedValue(), 786 (bool)Length); 787 } 788 789 void visitMemTransferInst(MemTransferInst &II) { 790 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 791 if (Length && Length->getValue() == 0) 792 // Zero-length mem transfer intrinsics can be ignored entirely. 793 return markAsDead(II); 794 795 // Because we can visit these intrinsics twice, also check to see if the 796 // first time marked this instruction as dead. If so, skip it. 797 if (VisitedDeadInsts.count(&II)) 798 return; 799 800 if (!IsOffsetKnown) 801 return PI.setAborted(&II); 802 803 // This side of the transfer is completely out-of-bounds, and so we can 804 // nuke the entire transfer. However, we also need to nuke the other side 805 // if already added to our partitions. 806 // FIXME: Yet another place we really should bypass this when 807 // instrumenting for ASan. 808 if (Offset.uge(AllocSize)) { 809 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 810 MemTransferSliceMap.find(&II); 811 if (MTPI != MemTransferSliceMap.end()) 812 AS.Slices[MTPI->second].kill(); 813 return markAsDead(II); 814 } 815 816 uint64_t RawOffset = Offset.getLimitedValue(); 817 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 818 819 // Check for the special case where the same exact value is used for both 820 // source and dest. 821 if (*U == II.getRawDest() && *U == II.getRawSource()) { 822 // For non-volatile transfers this is a no-op. 823 if (!II.isVolatile()) 824 return markAsDead(II); 825 826 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 827 } 828 829 // If we have seen both source and destination for a mem transfer, then 830 // they both point to the same alloca. 831 bool Inserted; 832 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 833 std::tie(MTPI, Inserted) = 834 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 835 unsigned PrevIdx = MTPI->second; 836 if (!Inserted) { 837 Slice &PrevP = AS.Slices[PrevIdx]; 838 839 // Check if the begin offsets match and this is a non-volatile transfer. 840 // In that case, we can completely elide the transfer. 841 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 842 PrevP.kill(); 843 return markAsDead(II); 844 } 845 846 // Otherwise we have an offset transfer within the same alloca. We can't 847 // split those. 848 PrevP.makeUnsplittable(); 849 } 850 851 // Insert the use now that we've fixed up the splittable nature. 852 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 853 854 // Check that we ended up with a valid index in the map. 855 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 856 "Map index doesn't point back to a slice with this user."); 857 } 858 859 // Disable SRoA for any intrinsics except for lifetime invariants. 860 // FIXME: What about debug intrinsics? This matches old behavior, but 861 // doesn't make sense. 862 void visitIntrinsicInst(IntrinsicInst &II) { 863 if (!IsOffsetKnown) 864 return PI.setAborted(&II); 865 866 if (II.getIntrinsicID() == Intrinsic::lifetime_start || 867 II.getIntrinsicID() == Intrinsic::lifetime_end) { 868 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 869 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 870 Length->getLimitedValue()); 871 insertUse(II, Offset, Size, true); 872 return; 873 } 874 875 Base::visitIntrinsicInst(II); 876 } 877 878 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 879 // We consider any PHI or select that results in a direct load or store of 880 // the same offset to be a viable use for slicing purposes. These uses 881 // are considered unsplittable and the size is the maximum loaded or stored 882 // size. 883 SmallPtrSet<Instruction *, 4> Visited; 884 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 885 Visited.insert(Root); 886 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 887 const DataLayout &DL = Root->getModule()->getDataLayout(); 888 // If there are no loads or stores, the access is dead. We mark that as 889 // a size zero access. 890 Size = 0; 891 do { 892 Instruction *I, *UsedI; 893 std::tie(UsedI, I) = Uses.pop_back_val(); 894 895 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 896 Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); 897 continue; 898 } 899 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 900 Value *Op = SI->getOperand(0); 901 if (Op == UsedI) 902 return SI; 903 Size = std::max(Size, DL.getTypeStoreSize(Op->getType())); 904 continue; 905 } 906 907 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 908 if (!GEP->hasAllZeroIndices()) 909 return GEP; 910 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 911 !isa<SelectInst>(I)) { 912 return I; 913 } 914 915 for (User *U : I->users()) 916 if (Visited.insert(cast<Instruction>(U)).second) 917 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 918 } while (!Uses.empty()); 919 920 return nullptr; 921 } 922 923 void visitPHINodeOrSelectInst(Instruction &I) { 924 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 925 if (I.use_empty()) 926 return markAsDead(I); 927 928 // TODO: We could use SimplifyInstruction here to fold PHINodes and 929 // SelectInsts. However, doing so requires to change the current 930 // dead-operand-tracking mechanism. For instance, suppose neither loading 931 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 932 // trap either. However, if we simply replace %U with undef using the 933 // current dead-operand-tracking mechanism, "load (select undef, undef, 934 // %other)" may trap because the select may return the first operand 935 // "undef". 936 if (Value *Result = foldPHINodeOrSelectInst(I)) { 937 if (Result == *U) 938 // If the result of the constant fold will be the pointer, recurse 939 // through the PHI/select as if we had RAUW'ed it. 940 enqueueUsers(I); 941 else 942 // Otherwise the operand to the PHI/select is dead, and we can replace 943 // it with undef. 944 AS.DeadOperands.push_back(U); 945 946 return; 947 } 948 949 if (!IsOffsetKnown) 950 return PI.setAborted(&I); 951 952 // See if we already have computed info on this node. 953 uint64_t &Size = PHIOrSelectSizes[&I]; 954 if (!Size) { 955 // This is a new PHI/Select, check for an unsafe use of it. 956 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 957 return PI.setAborted(UnsafeI); 958 } 959 960 // For PHI and select operands outside the alloca, we can't nuke the entire 961 // phi or select -- the other side might still be relevant, so we special 962 // case them here and use a separate structure to track the operands 963 // themselves which should be replaced with undef. 964 // FIXME: This should instead be escaped in the event we're instrumenting 965 // for address sanitization. 966 if (Offset.uge(AllocSize)) { 967 AS.DeadOperands.push_back(U); 968 return; 969 } 970 971 insertUse(I, Offset, Size); 972 } 973 974 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 975 976 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 977 978 /// \brief Disable SROA entirely if there are unhandled users of the alloca. 979 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 980 }; 981 982 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 983 : 984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 985 AI(AI), 986 #endif 987 PointerEscapingInstr(nullptr) { 988 SliceBuilder PB(DL, AI, *this); 989 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 990 if (PtrI.isEscaped() || PtrI.isAborted()) { 991 // FIXME: We should sink the escape vs. abort info into the caller nicely, 992 // possibly by just storing the PtrInfo in the AllocaSlices. 993 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 994 : PtrI.getAbortingInst(); 995 assert(PointerEscapingInstr && "Did not track a bad instruction"); 996 return; 997 } 998 999 Slices.erase(std::remove_if(Slices.begin(), Slices.end(), 1000 [](const Slice &S) { 1001 return S.isDead(); 1002 }), 1003 Slices.end()); 1004 1005 #ifndef NDEBUG 1006 if (SROARandomShuffleSlices) { 1007 std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec())); 1008 std::shuffle(Slices.begin(), Slices.end(), MT); 1009 } 1010 #endif 1011 1012 // Sort the uses. This arranges for the offsets to be in ascending order, 1013 // and the sizes to be in descending order. 1014 std::sort(Slices.begin(), Slices.end()); 1015 } 1016 1017 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1018 1019 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1020 StringRef Indent) const { 1021 printSlice(OS, I, Indent); 1022 OS << "\n"; 1023 printUse(OS, I, Indent); 1024 } 1025 1026 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1027 StringRef Indent) const { 1028 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1029 << " slice #" << (I - begin()) 1030 << (I->isSplittable() ? " (splittable)" : ""); 1031 } 1032 1033 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1034 StringRef Indent) const { 1035 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1036 } 1037 1038 void AllocaSlices::print(raw_ostream &OS) const { 1039 if (PointerEscapingInstr) { 1040 OS << "Can't analyze slices for alloca: " << AI << "\n" 1041 << " A pointer to this alloca escaped by:\n" 1042 << " " << *PointerEscapingInstr << "\n"; 1043 return; 1044 } 1045 1046 OS << "Slices of alloca: " << AI << "\n"; 1047 for (const_iterator I = begin(), E = end(); I != E; ++I) 1048 print(OS, I); 1049 } 1050 1051 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1052 print(dbgs(), I); 1053 } 1054 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1055 1056 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1057 1058 /// Walk the range of a partitioning looking for a common type to cover this 1059 /// sequence of slices. 1060 static Type *findCommonType(AllocaSlices::const_iterator B, 1061 AllocaSlices::const_iterator E, 1062 uint64_t EndOffset) { 1063 Type *Ty = nullptr; 1064 bool TyIsCommon = true; 1065 IntegerType *ITy = nullptr; 1066 1067 // Note that we need to look at *every* alloca slice's Use to ensure we 1068 // always get consistent results regardless of the order of slices. 1069 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1070 Use *U = I->getUse(); 1071 if (isa<IntrinsicInst>(*U->getUser())) 1072 continue; 1073 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1074 continue; 1075 1076 Type *UserTy = nullptr; 1077 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1078 UserTy = LI->getType(); 1079 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1080 UserTy = SI->getValueOperand()->getType(); 1081 } 1082 1083 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1084 // If the type is larger than the partition, skip it. We only encounter 1085 // this for split integer operations where we want to use the type of the 1086 // entity causing the split. Also skip if the type is not a byte width 1087 // multiple. 1088 if (UserITy->getBitWidth() % 8 != 0 || 1089 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1090 continue; 1091 1092 // Track the largest bitwidth integer type used in this way in case there 1093 // is no common type. 1094 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1095 ITy = UserITy; 1096 } 1097 1098 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1099 // depend on types skipped above. 1100 if (!UserTy || (Ty && Ty != UserTy)) 1101 TyIsCommon = false; // Give up on anything but an iN type. 1102 else 1103 Ty = UserTy; 1104 } 1105 1106 return TyIsCommon ? Ty : ITy; 1107 } 1108 1109 /// PHI instructions that use an alloca and are subsequently loaded can be 1110 /// rewritten to load both input pointers in the pred blocks and then PHI the 1111 /// results, allowing the load of the alloca to be promoted. 1112 /// From this: 1113 /// %P2 = phi [i32* %Alloca, i32* %Other] 1114 /// %V = load i32* %P2 1115 /// to: 1116 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1117 /// ... 1118 /// %V2 = load i32* %Other 1119 /// ... 1120 /// %V = phi [i32 %V1, i32 %V2] 1121 /// 1122 /// We can do this to a select if its only uses are loads and if the operands 1123 /// to the select can be loaded unconditionally. 1124 /// 1125 /// FIXME: This should be hoisted into a generic utility, likely in 1126 /// Transforms/Util/Local.h 1127 static bool isSafePHIToSpeculate(PHINode &PN) { 1128 // For now, we can only do this promotion if the load is in the same block 1129 // as the PHI, and if there are no stores between the phi and load. 1130 // TODO: Allow recursive phi users. 1131 // TODO: Allow stores. 1132 BasicBlock *BB = PN.getParent(); 1133 unsigned MaxAlign = 0; 1134 bool HaveLoad = false; 1135 for (User *U : PN.users()) { 1136 LoadInst *LI = dyn_cast<LoadInst>(U); 1137 if (!LI || !LI->isSimple()) 1138 return false; 1139 1140 // For now we only allow loads in the same block as the PHI. This is 1141 // a common case that happens when instcombine merges two loads through 1142 // a PHI. 1143 if (LI->getParent() != BB) 1144 return false; 1145 1146 // Ensure that there are no instructions between the PHI and the load that 1147 // could store. 1148 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1149 if (BBI->mayWriteToMemory()) 1150 return false; 1151 1152 MaxAlign = std::max(MaxAlign, LI->getAlignment()); 1153 HaveLoad = true; 1154 } 1155 1156 if (!HaveLoad) 1157 return false; 1158 1159 const DataLayout &DL = PN.getModule()->getDataLayout(); 1160 1161 // We can only transform this if it is safe to push the loads into the 1162 // predecessor blocks. The only thing to watch out for is that we can't put 1163 // a possibly trapping load in the predecessor if it is a critical edge. 1164 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1165 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1166 Value *InVal = PN.getIncomingValue(Idx); 1167 1168 // If the value is produced by the terminator of the predecessor (an 1169 // invoke) or it has side-effects, there is no valid place to put a load 1170 // in the predecessor. 1171 if (TI == InVal || TI->mayHaveSideEffects()) 1172 return false; 1173 1174 // If the predecessor has a single successor, then the edge isn't 1175 // critical. 1176 if (TI->getNumSuccessors() == 1) 1177 continue; 1178 1179 // If this pointer is always safe to load, or if we can prove that there 1180 // is already a load in the block, then we can move the load to the pred 1181 // block. 1182 if (isSafeToLoadUnconditionally(InVal, MaxAlign, DL, TI)) 1183 continue; 1184 1185 return false; 1186 } 1187 1188 return true; 1189 } 1190 1191 static void speculatePHINodeLoads(PHINode &PN) { 1192 DEBUG(dbgs() << " original: " << PN << "\n"); 1193 1194 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); 1195 IRBuilderTy PHIBuilder(&PN); 1196 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1197 PN.getName() + ".sroa.speculated"); 1198 1199 // Get the AA tags and alignment to use from one of the loads. It doesn't 1200 // matter which one we get and if any differ. 1201 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1202 1203 AAMDNodes AATags; 1204 SomeLoad->getAAMetadata(AATags); 1205 unsigned Align = SomeLoad->getAlignment(); 1206 1207 // Rewrite all loads of the PN to use the new PHI. 1208 while (!PN.use_empty()) { 1209 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1210 LI->replaceAllUsesWith(NewPN); 1211 LI->eraseFromParent(); 1212 } 1213 1214 // Inject loads into all of the pred blocks. 1215 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1216 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1217 TerminatorInst *TI = Pred->getTerminator(); 1218 Value *InVal = PN.getIncomingValue(Idx); 1219 IRBuilderTy PredBuilder(TI); 1220 1221 LoadInst *Load = PredBuilder.CreateLoad( 1222 InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1223 ++NumLoadsSpeculated; 1224 Load->setAlignment(Align); 1225 if (AATags) 1226 Load->setAAMetadata(AATags); 1227 NewPN->addIncoming(Load, Pred); 1228 } 1229 1230 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1231 PN.eraseFromParent(); 1232 } 1233 1234 /// Select instructions that use an alloca and are subsequently loaded can be 1235 /// rewritten to load both input pointers and then select between the result, 1236 /// allowing the load of the alloca to be promoted. 1237 /// From this: 1238 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1239 /// %V = load i32* %P2 1240 /// to: 1241 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1242 /// %V2 = load i32* %Other 1243 /// %V = select i1 %cond, i32 %V1, i32 %V2 1244 /// 1245 /// We can do this to a select if its only uses are loads and if the operand 1246 /// to the select can be loaded unconditionally. 1247 static bool isSafeSelectToSpeculate(SelectInst &SI) { 1248 Value *TValue = SI.getTrueValue(); 1249 Value *FValue = SI.getFalseValue(); 1250 const DataLayout &DL = SI.getModule()->getDataLayout(); 1251 1252 for (User *U : SI.users()) { 1253 LoadInst *LI = dyn_cast<LoadInst>(U); 1254 if (!LI || !LI->isSimple()) 1255 return false; 1256 1257 // Both operands to the select need to be dereferencable, either 1258 // absolutely (e.g. allocas) or at this point because we can see other 1259 // accesses to it. 1260 if (!isSafeToLoadUnconditionally(TValue, LI->getAlignment(), DL, LI)) 1261 return false; 1262 if (!isSafeToLoadUnconditionally(FValue, LI->getAlignment(), DL, LI)) 1263 return false; 1264 } 1265 1266 return true; 1267 } 1268 1269 static void speculateSelectInstLoads(SelectInst &SI) { 1270 DEBUG(dbgs() << " original: " << SI << "\n"); 1271 1272 IRBuilderTy IRB(&SI); 1273 Value *TV = SI.getTrueValue(); 1274 Value *FV = SI.getFalseValue(); 1275 // Replace the loads of the select with a select of two loads. 1276 while (!SI.use_empty()) { 1277 LoadInst *LI = cast<LoadInst>(SI.user_back()); 1278 assert(LI->isSimple() && "We only speculate simple loads"); 1279 1280 IRB.SetInsertPoint(LI); 1281 LoadInst *TL = 1282 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); 1283 LoadInst *FL = 1284 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); 1285 NumLoadsSpeculated += 2; 1286 1287 // Transfer alignment and AA info if present. 1288 TL->setAlignment(LI->getAlignment()); 1289 FL->setAlignment(LI->getAlignment()); 1290 1291 AAMDNodes Tags; 1292 LI->getAAMetadata(Tags); 1293 if (Tags) { 1294 TL->setAAMetadata(Tags); 1295 FL->setAAMetadata(Tags); 1296 } 1297 1298 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1299 LI->getName() + ".sroa.speculated"); 1300 1301 DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1302 LI->replaceAllUsesWith(V); 1303 LI->eraseFromParent(); 1304 } 1305 SI.eraseFromParent(); 1306 } 1307 1308 /// \brief Build a GEP out of a base pointer and indices. 1309 /// 1310 /// This will return the BasePtr if that is valid, or build a new GEP 1311 /// instruction using the IRBuilder if GEP-ing is needed. 1312 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1313 SmallVectorImpl<Value *> &Indices, Twine NamePrefix) { 1314 if (Indices.empty()) 1315 return BasePtr; 1316 1317 // A single zero index is a no-op, so check for this and avoid building a GEP 1318 // in that case. 1319 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1320 return BasePtr; 1321 1322 return IRB.CreateInBoundsGEP(nullptr, BasePtr, Indices, 1323 NamePrefix + "sroa_idx"); 1324 } 1325 1326 /// \brief Get a natural GEP off of the BasePtr walking through Ty toward 1327 /// TargetTy without changing the offset of the pointer. 1328 /// 1329 /// This routine assumes we've already established a properly offset GEP with 1330 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1331 /// zero-indices down through type layers until we find one the same as 1332 /// TargetTy. If we can't find one with the same type, we at least try to use 1333 /// one with the same size. If none of that works, we just produce the GEP as 1334 /// indicated by Indices to have the correct offset. 1335 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1336 Value *BasePtr, Type *Ty, Type *TargetTy, 1337 SmallVectorImpl<Value *> &Indices, 1338 Twine NamePrefix) { 1339 if (Ty == TargetTy) 1340 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1341 1342 // Pointer size to use for the indices. 1343 unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType()); 1344 1345 // See if we can descend into a struct and locate a field with the correct 1346 // type. 1347 unsigned NumLayers = 0; 1348 Type *ElementTy = Ty; 1349 do { 1350 if (ElementTy->isPointerTy()) 1351 break; 1352 1353 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1354 ElementTy = ArrayTy->getElementType(); 1355 Indices.push_back(IRB.getIntN(PtrSize, 0)); 1356 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1357 ElementTy = VectorTy->getElementType(); 1358 Indices.push_back(IRB.getInt32(0)); 1359 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1360 if (STy->element_begin() == STy->element_end()) 1361 break; // Nothing left to descend into. 1362 ElementTy = *STy->element_begin(); 1363 Indices.push_back(IRB.getInt32(0)); 1364 } else { 1365 break; 1366 } 1367 ++NumLayers; 1368 } while (ElementTy != TargetTy); 1369 if (ElementTy != TargetTy) 1370 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1371 1372 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1373 } 1374 1375 /// \brief Recursively compute indices for a natural GEP. 1376 /// 1377 /// This is the recursive step for getNaturalGEPWithOffset that walks down the 1378 /// element types adding appropriate indices for the GEP. 1379 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, 1380 Value *Ptr, Type *Ty, APInt &Offset, 1381 Type *TargetTy, 1382 SmallVectorImpl<Value *> &Indices, 1383 Twine NamePrefix) { 1384 if (Offset == 0) 1385 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, 1386 NamePrefix); 1387 1388 // We can't recurse through pointer types. 1389 if (Ty->isPointerTy()) 1390 return nullptr; 1391 1392 // We try to analyze GEPs over vectors here, but note that these GEPs are 1393 // extremely poorly defined currently. The long-term goal is to remove GEPing 1394 // over a vector from the IR completely. 1395 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { 1396 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); 1397 if (ElementSizeInBits % 8 != 0) { 1398 // GEPs over non-multiple of 8 size vector elements are invalid. 1399 return nullptr; 1400 } 1401 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); 1402 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1403 if (NumSkippedElements.ugt(VecTy->getNumElements())) 1404 return nullptr; 1405 Offset -= NumSkippedElements * ElementSize; 1406 Indices.push_back(IRB.getInt(NumSkippedElements)); 1407 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), 1408 Offset, TargetTy, Indices, NamePrefix); 1409 } 1410 1411 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 1412 Type *ElementTy = ArrTy->getElementType(); 1413 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1414 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1415 if (NumSkippedElements.ugt(ArrTy->getNumElements())) 1416 return nullptr; 1417 1418 Offset -= NumSkippedElements * ElementSize; 1419 Indices.push_back(IRB.getInt(NumSkippedElements)); 1420 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1421 Indices, NamePrefix); 1422 } 1423 1424 StructType *STy = dyn_cast<StructType>(Ty); 1425 if (!STy) 1426 return nullptr; 1427 1428 const StructLayout *SL = DL.getStructLayout(STy); 1429 uint64_t StructOffset = Offset.getZExtValue(); 1430 if (StructOffset >= SL->getSizeInBytes()) 1431 return nullptr; 1432 unsigned Index = SL->getElementContainingOffset(StructOffset); 1433 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); 1434 Type *ElementTy = STy->getElementType(Index); 1435 if (Offset.uge(DL.getTypeAllocSize(ElementTy))) 1436 return nullptr; // The offset points into alignment padding. 1437 1438 Indices.push_back(IRB.getInt32(Index)); 1439 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1440 Indices, NamePrefix); 1441 } 1442 1443 /// \brief Get a natural GEP from a base pointer to a particular offset and 1444 /// resulting in a particular type. 1445 /// 1446 /// The goal is to produce a "natural" looking GEP that works with the existing 1447 /// composite types to arrive at the appropriate offset and element type for 1448 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1449 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1450 /// Indices, and setting Ty to the result subtype. 1451 /// 1452 /// If no natural GEP can be constructed, this function returns null. 1453 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1454 Value *Ptr, APInt Offset, Type *TargetTy, 1455 SmallVectorImpl<Value *> &Indices, 1456 Twine NamePrefix) { 1457 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1458 1459 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1460 // an i8. 1461 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1462 return nullptr; 1463 1464 Type *ElementTy = Ty->getElementType(); 1465 if (!ElementTy->isSized()) 1466 return nullptr; // We can't GEP through an unsized element. 1467 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1468 if (ElementSize == 0) 1469 return nullptr; // Zero-length arrays can't help us build a natural GEP. 1470 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1471 1472 Offset -= NumSkippedElements * ElementSize; 1473 Indices.push_back(IRB.getInt(NumSkippedElements)); 1474 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1475 Indices, NamePrefix); 1476 } 1477 1478 /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the 1479 /// resulting pointer has PointerTy. 1480 /// 1481 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1482 /// and produces the pointer type desired. Where it cannot, it will try to use 1483 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1484 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1485 /// bitcast to the type. 1486 /// 1487 /// The strategy for finding the more natural GEPs is to peel off layers of the 1488 /// pointer, walking back through bit casts and GEPs, searching for a base 1489 /// pointer from which we can compute a natural GEP with the desired 1490 /// properties. The algorithm tries to fold as many constant indices into 1491 /// a single GEP as possible, thus making each GEP more independent of the 1492 /// surrounding code. 1493 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1494 APInt Offset, Type *PointerTy, Twine NamePrefix) { 1495 // Even though we don't look through PHI nodes, we could be called on an 1496 // instruction in an unreachable block, which may be on a cycle. 1497 SmallPtrSet<Value *, 4> Visited; 1498 Visited.insert(Ptr); 1499 SmallVector<Value *, 4> Indices; 1500 1501 // We may end up computing an offset pointer that has the wrong type. If we 1502 // never are able to compute one directly that has the correct type, we'll 1503 // fall back to it, so keep it and the base it was computed from around here. 1504 Value *OffsetPtr = nullptr; 1505 Value *OffsetBasePtr; 1506 1507 // Remember any i8 pointer we come across to re-use if we need to do a raw 1508 // byte offset. 1509 Value *Int8Ptr = nullptr; 1510 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1511 1512 Type *TargetTy = PointerTy->getPointerElementType(); 1513 1514 do { 1515 // First fold any existing GEPs into the offset. 1516 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1517 APInt GEPOffset(Offset.getBitWidth(), 0); 1518 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1519 break; 1520 Offset += GEPOffset; 1521 Ptr = GEP->getPointerOperand(); 1522 if (!Visited.insert(Ptr).second) 1523 break; 1524 } 1525 1526 // See if we can perform a natural GEP here. 1527 Indices.clear(); 1528 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1529 Indices, NamePrefix)) { 1530 // If we have a new natural pointer at the offset, clear out any old 1531 // offset pointer we computed. Unless it is the base pointer or 1532 // a non-instruction, we built a GEP we don't need. Zap it. 1533 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1534 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1535 assert(I->use_empty() && "Built a GEP with uses some how!"); 1536 I->eraseFromParent(); 1537 } 1538 OffsetPtr = P; 1539 OffsetBasePtr = Ptr; 1540 // If we also found a pointer of the right type, we're done. 1541 if (P->getType() == PointerTy) 1542 return P; 1543 } 1544 1545 // Stash this pointer if we've found an i8*. 1546 if (Ptr->getType()->isIntegerTy(8)) { 1547 Int8Ptr = Ptr; 1548 Int8PtrOffset = Offset; 1549 } 1550 1551 // Peel off a layer of the pointer and update the offset appropriately. 1552 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1553 Ptr = cast<Operator>(Ptr)->getOperand(0); 1554 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1555 if (GA->isInterposable()) 1556 break; 1557 Ptr = GA->getAliasee(); 1558 } else { 1559 break; 1560 } 1561 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1562 } while (Visited.insert(Ptr).second); 1563 1564 if (!OffsetPtr) { 1565 if (!Int8Ptr) { 1566 Int8Ptr = IRB.CreateBitCast( 1567 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1568 NamePrefix + "sroa_raw_cast"); 1569 Int8PtrOffset = Offset; 1570 } 1571 1572 OffsetPtr = Int8PtrOffset == 0 1573 ? Int8Ptr 1574 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1575 IRB.getInt(Int8PtrOffset), 1576 NamePrefix + "sroa_raw_idx"); 1577 } 1578 Ptr = OffsetPtr; 1579 1580 // On the off chance we were targeting i8*, guard the bitcast here. 1581 if (Ptr->getType() != PointerTy) 1582 Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast"); 1583 1584 return Ptr; 1585 } 1586 1587 /// \brief Compute the adjusted alignment for a load or store from an offset. 1588 static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset, 1589 const DataLayout &DL) { 1590 unsigned Alignment; 1591 Type *Ty; 1592 if (auto *LI = dyn_cast<LoadInst>(I)) { 1593 Alignment = LI->getAlignment(); 1594 Ty = LI->getType(); 1595 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 1596 Alignment = SI->getAlignment(); 1597 Ty = SI->getValueOperand()->getType(); 1598 } else { 1599 llvm_unreachable("Only loads and stores are allowed!"); 1600 } 1601 1602 if (!Alignment) 1603 Alignment = DL.getABITypeAlignment(Ty); 1604 1605 return MinAlign(Alignment, Offset); 1606 } 1607 1608 /// \brief Test whether we can convert a value from the old to the new type. 1609 /// 1610 /// This predicate should be used to guard calls to convertValue in order to 1611 /// ensure that we only try to convert viable values. The strategy is that we 1612 /// will peel off single element struct and array wrappings to get to an 1613 /// underlying value, and convert that value. 1614 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1615 if (OldTy == NewTy) 1616 return true; 1617 1618 // For integer types, we can't handle any bit-width differences. This would 1619 // break both vector conversions with extension and introduce endianness 1620 // issues when in conjunction with loads and stores. 1621 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1622 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1623 cast<IntegerType>(NewTy)->getBitWidth() && 1624 "We can't have the same bitwidth for different int types"); 1625 return false; 1626 } 1627 1628 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) 1629 return false; 1630 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1631 return false; 1632 1633 // We can convert pointers to integers and vice-versa. Same for vectors 1634 // of pointers and integers. 1635 OldTy = OldTy->getScalarType(); 1636 NewTy = NewTy->getScalarType(); 1637 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1638 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1639 return cast<PointerType>(NewTy)->getPointerAddressSpace() == 1640 cast<PointerType>(OldTy)->getPointerAddressSpace(); 1641 } 1642 if (NewTy->isIntegerTy() || OldTy->isIntegerTy()) 1643 return true; 1644 return false; 1645 } 1646 1647 return true; 1648 } 1649 1650 /// \brief Generic routine to convert an SSA value to a value of a different 1651 /// type. 1652 /// 1653 /// This will try various different casting techniques, such as bitcasts, 1654 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1655 /// two types for viability with this routine. 1656 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1657 Type *NewTy) { 1658 Type *OldTy = V->getType(); 1659 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1660 1661 if (OldTy == NewTy) 1662 return V; 1663 1664 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1665 "Integer types must be the exact same to convert."); 1666 1667 // See if we need inttoptr for this type pair. A cast involving both scalars 1668 // and vectors requires and additional bitcast. 1669 if (OldTy->getScalarType()->isIntegerTy() && 1670 NewTy->getScalarType()->isPointerTy()) { 1671 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1672 if (OldTy->isVectorTy() && !NewTy->isVectorTy()) 1673 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1674 NewTy); 1675 1676 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1677 if (!OldTy->isVectorTy() && NewTy->isVectorTy()) 1678 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1679 NewTy); 1680 1681 return IRB.CreateIntToPtr(V, NewTy); 1682 } 1683 1684 // See if we need ptrtoint for this type pair. A cast involving both scalars 1685 // and vectors requires and additional bitcast. 1686 if (OldTy->getScalarType()->isPointerTy() && 1687 NewTy->getScalarType()->isIntegerTy()) { 1688 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1689 if (OldTy->isVectorTy() && !NewTy->isVectorTy()) 1690 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1691 NewTy); 1692 1693 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1694 if (!OldTy->isVectorTy() && NewTy->isVectorTy()) 1695 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1696 NewTy); 1697 1698 return IRB.CreatePtrToInt(V, NewTy); 1699 } 1700 1701 return IRB.CreateBitCast(V, NewTy); 1702 } 1703 1704 /// \brief Test whether the given slice use can be promoted to a vector. 1705 /// 1706 /// This function is called to test each entry in a partition which is slated 1707 /// for a single slice. 1708 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1709 VectorType *Ty, 1710 uint64_t ElementSize, 1711 const DataLayout &DL) { 1712 // First validate the slice offsets. 1713 uint64_t BeginOffset = 1714 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1715 uint64_t BeginIndex = BeginOffset / ElementSize; 1716 if (BeginIndex * ElementSize != BeginOffset || 1717 BeginIndex >= Ty->getNumElements()) 1718 return false; 1719 uint64_t EndOffset = 1720 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1721 uint64_t EndIndex = EndOffset / ElementSize; 1722 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) 1723 return false; 1724 1725 assert(EndIndex > BeginIndex && "Empty vector!"); 1726 uint64_t NumElements = EndIndex - BeginIndex; 1727 Type *SliceTy = (NumElements == 1) 1728 ? Ty->getElementType() 1729 : VectorType::get(Ty->getElementType(), NumElements); 1730 1731 Type *SplitIntTy = 1732 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1733 1734 Use *U = S.getUse(); 1735 1736 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1737 if (MI->isVolatile()) 1738 return false; 1739 if (!S.isSplittable()) 1740 return false; // Skip any unsplittable intrinsics. 1741 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1742 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1743 II->getIntrinsicID() != Intrinsic::lifetime_end) 1744 return false; 1745 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { 1746 // Disable vector promotion when there are loads or stores of an FCA. 1747 return false; 1748 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1749 if (LI->isVolatile()) 1750 return false; 1751 Type *LTy = LI->getType(); 1752 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1753 assert(LTy->isIntegerTy()); 1754 LTy = SplitIntTy; 1755 } 1756 if (!canConvertValue(DL, SliceTy, LTy)) 1757 return false; 1758 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1759 if (SI->isVolatile()) 1760 return false; 1761 Type *STy = SI->getValueOperand()->getType(); 1762 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1763 assert(STy->isIntegerTy()); 1764 STy = SplitIntTy; 1765 } 1766 if (!canConvertValue(DL, STy, SliceTy)) 1767 return false; 1768 } else { 1769 return false; 1770 } 1771 1772 return true; 1773 } 1774 1775 /// \brief Test whether the given alloca partitioning and range of slices can be 1776 /// promoted to a vector. 1777 /// 1778 /// This is a quick test to check whether we can rewrite a particular alloca 1779 /// partition (and its newly formed alloca) into a vector alloca with only 1780 /// whole-vector loads and stores such that it could be promoted to a vector 1781 /// SSA value. We only can ensure this for a limited set of operations, and we 1782 /// don't want to do the rewrites unless we are confident that the result will 1783 /// be promotable, so we have an early test here. 1784 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 1785 // Collect the candidate types for vector-based promotion. Also track whether 1786 // we have different element types. 1787 SmallVector<VectorType *, 4> CandidateTys; 1788 Type *CommonEltTy = nullptr; 1789 bool HaveCommonEltTy = true; 1790 auto CheckCandidateType = [&](Type *Ty) { 1791 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1792 CandidateTys.push_back(VTy); 1793 if (!CommonEltTy) 1794 CommonEltTy = VTy->getElementType(); 1795 else if (CommonEltTy != VTy->getElementType()) 1796 HaveCommonEltTy = false; 1797 } 1798 }; 1799 // Consider any loads or stores that are the exact size of the slice. 1800 for (const Slice &S : P) 1801 if (S.beginOffset() == P.beginOffset() && 1802 S.endOffset() == P.endOffset()) { 1803 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 1804 CheckCandidateType(LI->getType()); 1805 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 1806 CheckCandidateType(SI->getValueOperand()->getType()); 1807 } 1808 1809 // If we didn't find a vector type, nothing to do here. 1810 if (CandidateTys.empty()) 1811 return nullptr; 1812 1813 // Remove non-integer vector types if we had multiple common element types. 1814 // FIXME: It'd be nice to replace them with integer vector types, but we can't 1815 // do that until all the backends are known to produce good code for all 1816 // integer vector types. 1817 if (!HaveCommonEltTy) { 1818 CandidateTys.erase(std::remove_if(CandidateTys.begin(), CandidateTys.end(), 1819 [](VectorType *VTy) { 1820 return !VTy->getElementType()->isIntegerTy(); 1821 }), 1822 CandidateTys.end()); 1823 1824 // If there were no integer vector types, give up. 1825 if (CandidateTys.empty()) 1826 return nullptr; 1827 1828 // Rank the remaining candidate vector types. This is easy because we know 1829 // they're all integer vectors. We sort by ascending number of elements. 1830 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 1831 assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) && 1832 "Cannot have vector types of different sizes!"); 1833 assert(RHSTy->getElementType()->isIntegerTy() && 1834 "All non-integer types eliminated!"); 1835 assert(LHSTy->getElementType()->isIntegerTy() && 1836 "All non-integer types eliminated!"); 1837 return RHSTy->getNumElements() < LHSTy->getNumElements(); 1838 }; 1839 std::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes); 1840 CandidateTys.erase( 1841 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 1842 CandidateTys.end()); 1843 } else { 1844 // The only way to have the same element type in every vector type is to 1845 // have the same vector type. Check that and remove all but one. 1846 #ifndef NDEBUG 1847 for (VectorType *VTy : CandidateTys) { 1848 assert(VTy->getElementType() == CommonEltTy && 1849 "Unaccounted for element type!"); 1850 assert(VTy == CandidateTys[0] && 1851 "Different vector types with the same element type!"); 1852 } 1853 #endif 1854 CandidateTys.resize(1); 1855 } 1856 1857 // Try each vector type, and return the one which works. 1858 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { 1859 uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType()); 1860 1861 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1862 // that aren't byte sized. 1863 if (ElementSize % 8) 1864 return false; 1865 assert((DL.getTypeSizeInBits(VTy) % 8) == 0 && 1866 "vector size not a multiple of element size?"); 1867 ElementSize /= 8; 1868 1869 for (const Slice &S : P) 1870 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1871 return false; 1872 1873 for (const Slice *S : P.splitSliceTails()) 1874 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1875 return false; 1876 1877 return true; 1878 }; 1879 for (VectorType *VTy : CandidateTys) 1880 if (CheckVectorTypeForPromotion(VTy)) 1881 return VTy; 1882 1883 return nullptr; 1884 } 1885 1886 /// \brief Test whether a slice of an alloca is valid for integer widening. 1887 /// 1888 /// This implements the necessary checking for the \c isIntegerWideningViable 1889 /// test below on a single slice of the alloca. 1890 static bool isIntegerWideningViableForSlice(const Slice &S, 1891 uint64_t AllocBeginOffset, 1892 Type *AllocaTy, 1893 const DataLayout &DL, 1894 bool &WholeAllocaOp) { 1895 uint64_t Size = DL.getTypeStoreSize(AllocaTy); 1896 1897 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 1898 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 1899 1900 // We can't reasonably handle cases where the load or store extends past 1901 // the end of the alloca's type and into its padding. 1902 if (RelEnd > Size) 1903 return false; 1904 1905 Use *U = S.getUse(); 1906 1907 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1908 if (LI->isVolatile()) 1909 return false; 1910 // We can't handle loads that extend past the allocated memory. 1911 if (DL.getTypeStoreSize(LI->getType()) > Size) 1912 return false; 1913 // Note that we don't count vector loads or stores as whole-alloca 1914 // operations which enable integer widening because we would prefer to use 1915 // vector widening instead. 1916 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 1917 WholeAllocaOp = true; 1918 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 1919 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 1920 return false; 1921 } else if (RelBegin != 0 || RelEnd != Size || 1922 !canConvertValue(DL, AllocaTy, LI->getType())) { 1923 // Non-integer loads need to be convertible from the alloca type so that 1924 // they are promotable. 1925 return false; 1926 } 1927 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1928 Type *ValueTy = SI->getValueOperand()->getType(); 1929 if (SI->isVolatile()) 1930 return false; 1931 // We can't handle stores that extend past the allocated memory. 1932 if (DL.getTypeStoreSize(ValueTy) > Size) 1933 return false; 1934 // Note that we don't count vector loads or stores as whole-alloca 1935 // operations which enable integer widening because we would prefer to use 1936 // vector widening instead. 1937 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 1938 WholeAllocaOp = true; 1939 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 1940 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 1941 return false; 1942 } else if (RelBegin != 0 || RelEnd != Size || 1943 !canConvertValue(DL, ValueTy, AllocaTy)) { 1944 // Non-integer stores need to be convertible to the alloca type so that 1945 // they are promotable. 1946 return false; 1947 } 1948 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1949 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 1950 return false; 1951 if (!S.isSplittable()) 1952 return false; // Skip any unsplittable intrinsics. 1953 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1954 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1955 II->getIntrinsicID() != Intrinsic::lifetime_end) 1956 return false; 1957 } else { 1958 return false; 1959 } 1960 1961 return true; 1962 } 1963 1964 /// \brief Test whether the given alloca partition's integer operations can be 1965 /// widened to promotable ones. 1966 /// 1967 /// This is a quick test to check whether we can rewrite the integer loads and 1968 /// stores to a particular alloca into wider loads and stores and be able to 1969 /// promote the resulting alloca. 1970 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 1971 const DataLayout &DL) { 1972 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); 1973 // Don't create integer types larger than the maximum bitwidth. 1974 if (SizeInBits > IntegerType::MAX_INT_BITS) 1975 return false; 1976 1977 // Don't try to handle allocas with bit-padding. 1978 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) 1979 return false; 1980 1981 // We need to ensure that an integer type with the appropriate bitwidth can 1982 // be converted to the alloca type, whatever that is. We don't want to force 1983 // the alloca itself to have an integer type if there is a more suitable one. 1984 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 1985 if (!canConvertValue(DL, AllocaTy, IntTy) || 1986 !canConvertValue(DL, IntTy, AllocaTy)) 1987 return false; 1988 1989 // While examining uses, we ensure that the alloca has a covering load or 1990 // store. We don't want to widen the integer operations only to fail to 1991 // promote due to some other unsplittable entry (which we may make splittable 1992 // later). However, if there are only splittable uses, go ahead and assume 1993 // that we cover the alloca. 1994 // FIXME: We shouldn't consider split slices that happen to start in the 1995 // partition here... 1996 bool WholeAllocaOp = 1997 P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits); 1998 1999 for (const Slice &S : P) 2000 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2001 WholeAllocaOp)) 2002 return false; 2003 2004 for (const Slice *S : P.splitSliceTails()) 2005 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2006 WholeAllocaOp)) 2007 return false; 2008 2009 return WholeAllocaOp; 2010 } 2011 2012 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2013 IntegerType *Ty, uint64_t Offset, 2014 const Twine &Name) { 2015 DEBUG(dbgs() << " start: " << *V << "\n"); 2016 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2017 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 2018 "Element extends past full value"); 2019 uint64_t ShAmt = 8 * Offset; 2020 if (DL.isBigEndian()) 2021 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 2022 if (ShAmt) { 2023 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2024 DEBUG(dbgs() << " shifted: " << *V << "\n"); 2025 } 2026 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2027 "Cannot extract to a larger integer!"); 2028 if (Ty != IntTy) { 2029 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2030 DEBUG(dbgs() << " trunced: " << *V << "\n"); 2031 } 2032 return V; 2033 } 2034 2035 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2036 Value *V, uint64_t Offset, const Twine &Name) { 2037 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2038 IntegerType *Ty = cast<IntegerType>(V->getType()); 2039 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2040 "Cannot insert a larger integer!"); 2041 DEBUG(dbgs() << " start: " << *V << "\n"); 2042 if (Ty != IntTy) { 2043 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2044 DEBUG(dbgs() << " extended: " << *V << "\n"); 2045 } 2046 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 2047 "Element store outside of alloca store"); 2048 uint64_t ShAmt = 8 * Offset; 2049 if (DL.isBigEndian()) 2050 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 2051 if (ShAmt) { 2052 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2053 DEBUG(dbgs() << " shifted: " << *V << "\n"); 2054 } 2055 2056 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2057 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2058 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2059 DEBUG(dbgs() << " masked: " << *Old << "\n"); 2060 V = IRB.CreateOr(Old, V, Name + ".insert"); 2061 DEBUG(dbgs() << " inserted: " << *V << "\n"); 2062 } 2063 return V; 2064 } 2065 2066 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2067 unsigned EndIndex, const Twine &Name) { 2068 VectorType *VecTy = cast<VectorType>(V->getType()); 2069 unsigned NumElements = EndIndex - BeginIndex; 2070 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2071 2072 if (NumElements == VecTy->getNumElements()) 2073 return V; 2074 2075 if (NumElements == 1) { 2076 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2077 Name + ".extract"); 2078 DEBUG(dbgs() << " extract: " << *V << "\n"); 2079 return V; 2080 } 2081 2082 SmallVector<Constant *, 8> Mask; 2083 Mask.reserve(NumElements); 2084 for (unsigned i = BeginIndex; i != EndIndex; ++i) 2085 Mask.push_back(IRB.getInt32(i)); 2086 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 2087 ConstantVector::get(Mask), Name + ".extract"); 2088 DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2089 return V; 2090 } 2091 2092 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2093 unsigned BeginIndex, const Twine &Name) { 2094 VectorType *VecTy = cast<VectorType>(Old->getType()); 2095 assert(VecTy && "Can only insert a vector into a vector"); 2096 2097 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2098 if (!Ty) { 2099 // Single element to insert. 2100 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2101 Name + ".insert"); 2102 DEBUG(dbgs() << " insert: " << *V << "\n"); 2103 return V; 2104 } 2105 2106 assert(Ty->getNumElements() <= VecTy->getNumElements() && 2107 "Too many elements!"); 2108 if (Ty->getNumElements() == VecTy->getNumElements()) { 2109 assert(V->getType() == VecTy && "Vector type mismatch"); 2110 return V; 2111 } 2112 unsigned EndIndex = BeginIndex + Ty->getNumElements(); 2113 2114 // When inserting a smaller vector into the larger to store, we first 2115 // use a shuffle vector to widen it with undef elements, and then 2116 // a second shuffle vector to select between the loaded vector and the 2117 // incoming vector. 2118 SmallVector<Constant *, 8> Mask; 2119 Mask.reserve(VecTy->getNumElements()); 2120 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 2121 if (i >= BeginIndex && i < EndIndex) 2122 Mask.push_back(IRB.getInt32(i - BeginIndex)); 2123 else 2124 Mask.push_back(UndefValue::get(IRB.getInt32Ty())); 2125 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 2126 ConstantVector::get(Mask), Name + ".expand"); 2127 DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2128 2129 Mask.clear(); 2130 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 2131 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2132 2133 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); 2134 2135 DEBUG(dbgs() << " blend: " << *V << "\n"); 2136 return V; 2137 } 2138 2139 /// \brief Visitor to rewrite instructions using p particular slice of an alloca 2140 /// to use a new alloca. 2141 /// 2142 /// Also implements the rewriting to vector-based accesses when the partition 2143 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2144 /// lives here. 2145 class llvm::sroa::AllocaSliceRewriter 2146 : public InstVisitor<AllocaSliceRewriter, bool> { 2147 // Befriend the base class so it can delegate to private visit methods. 2148 friend class llvm::InstVisitor<AllocaSliceRewriter, bool>; 2149 typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base; 2150 2151 const DataLayout &DL; 2152 AllocaSlices &AS; 2153 SROA &Pass; 2154 AllocaInst &OldAI, &NewAI; 2155 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2156 Type *NewAllocaTy; 2157 2158 // This is a convenience and flag variable that will be null unless the new 2159 // alloca's integer operations should be widened to this integer type due to 2160 // passing isIntegerWideningViable above. If it is non-null, the desired 2161 // integer type will be stored here for easy access during rewriting. 2162 IntegerType *IntTy; 2163 2164 // If we are rewriting an alloca partition which can be written as pure 2165 // vector operations, we stash extra information here. When VecTy is 2166 // non-null, we have some strict guarantees about the rewritten alloca: 2167 // - The new alloca is exactly the size of the vector type here. 2168 // - The accesses all either map to the entire vector or to a single 2169 // element. 2170 // - The set of accessing instructions is only one of those handled above 2171 // in isVectorPromotionViable. Generally these are the same access kinds 2172 // which are promotable via mem2reg. 2173 VectorType *VecTy; 2174 Type *ElementTy; 2175 uint64_t ElementSize; 2176 2177 // The original offset of the slice currently being rewritten relative to 2178 // the original alloca. 2179 uint64_t BeginOffset, EndOffset; 2180 // The new offsets of the slice currently being rewritten relative to the 2181 // original alloca. 2182 uint64_t NewBeginOffset, NewEndOffset; 2183 2184 uint64_t SliceSize; 2185 bool IsSplittable; 2186 bool IsSplit; 2187 Use *OldUse; 2188 Instruction *OldPtr; 2189 2190 // Track post-rewrite users which are PHI nodes and Selects. 2191 SmallPtrSetImpl<PHINode *> &PHIUsers; 2192 SmallPtrSetImpl<SelectInst *> &SelectUsers; 2193 2194 // Utility IR builder, whose name prefix is setup for each visited use, and 2195 // the insertion point is set to point to the user. 2196 IRBuilderTy IRB; 2197 2198 public: 2199 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, 2200 AllocaInst &OldAI, AllocaInst &NewAI, 2201 uint64_t NewAllocaBeginOffset, 2202 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2203 VectorType *PromotableVecTy, 2204 SmallPtrSetImpl<PHINode *> &PHIUsers, 2205 SmallPtrSetImpl<SelectInst *> &SelectUsers) 2206 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2207 NewAllocaBeginOffset(NewAllocaBeginOffset), 2208 NewAllocaEndOffset(NewAllocaEndOffset), 2209 NewAllocaTy(NewAI.getAllocatedType()), 2210 IntTy(IsIntegerPromotable 2211 ? Type::getIntNTy( 2212 NewAI.getContext(), 2213 DL.getTypeSizeInBits(NewAI.getAllocatedType())) 2214 : nullptr), 2215 VecTy(PromotableVecTy), 2216 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2217 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), 2218 BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(), 2219 OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2220 IRB(NewAI.getContext(), ConstantFolder()) { 2221 if (VecTy) { 2222 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && 2223 "Only multiple-of-8 sized vector elements are viable"); 2224 ++NumVectorized; 2225 } 2226 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2227 } 2228 2229 bool visit(AllocaSlices::const_iterator I) { 2230 bool CanSROA = true; 2231 BeginOffset = I->beginOffset(); 2232 EndOffset = I->endOffset(); 2233 IsSplittable = I->isSplittable(); 2234 IsSplit = 2235 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2236 DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2237 DEBUG(AS.printSlice(dbgs(), I, "")); 2238 DEBUG(dbgs() << "\n"); 2239 2240 // Compute the intersecting offset range. 2241 assert(BeginOffset < NewAllocaEndOffset); 2242 assert(EndOffset > NewAllocaBeginOffset); 2243 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2244 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2245 2246 SliceSize = NewEndOffset - NewBeginOffset; 2247 2248 OldUse = I->getUse(); 2249 OldPtr = cast<Instruction>(OldUse->get()); 2250 2251 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2252 IRB.SetInsertPoint(OldUserI); 2253 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2254 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2255 2256 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2257 if (VecTy || IntTy) 2258 assert(CanSROA); 2259 return CanSROA; 2260 } 2261 2262 private: 2263 // Make sure the other visit overloads are visible. 2264 using Base::visit; 2265 2266 // Every instruction which can end up as a user must have a rewrite rule. 2267 bool visitInstruction(Instruction &I) { 2268 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2269 llvm_unreachable("No rewrite rule for this instruction!"); 2270 } 2271 2272 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2273 // Note that the offset computation can use BeginOffset or NewBeginOffset 2274 // interchangeably for unsplit slices. 2275 assert(IsSplit || BeginOffset == NewBeginOffset); 2276 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2277 2278 #ifndef NDEBUG 2279 StringRef OldName = OldPtr->getName(); 2280 // Skip through the last '.sroa.' component of the name. 2281 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2282 if (LastSROAPrefix != StringRef::npos) { 2283 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2284 // Look for an SROA slice index. 2285 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2286 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2287 // Strip the index and look for the offset. 2288 OldName = OldName.substr(IndexEnd + 1); 2289 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2290 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2291 // Strip the offset. 2292 OldName = OldName.substr(OffsetEnd + 1); 2293 } 2294 } 2295 // Strip any SROA suffixes as well. 2296 OldName = OldName.substr(0, OldName.find(".sroa_")); 2297 #endif 2298 2299 return getAdjustedPtr(IRB, DL, &NewAI, 2300 APInt(DL.getPointerSizeInBits(), Offset), PointerTy, 2301 #ifndef NDEBUG 2302 Twine(OldName) + "." 2303 #else 2304 Twine() 2305 #endif 2306 ); 2307 } 2308 2309 /// \brief Compute suitable alignment to access this slice of the *new* 2310 /// alloca. 2311 /// 2312 /// You can optionally pass a type to this routine and if that type's ABI 2313 /// alignment is itself suitable, this will return zero. 2314 unsigned getSliceAlign(Type *Ty = nullptr) { 2315 unsigned NewAIAlign = NewAI.getAlignment(); 2316 if (!NewAIAlign) 2317 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); 2318 unsigned Align = 2319 MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset); 2320 return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align; 2321 } 2322 2323 unsigned getIndex(uint64_t Offset) { 2324 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2325 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2326 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2327 uint32_t Index = RelOffset / ElementSize; 2328 assert(Index * ElementSize == RelOffset); 2329 return Index; 2330 } 2331 2332 void deleteIfTriviallyDead(Value *V) { 2333 Instruction *I = cast<Instruction>(V); 2334 if (isInstructionTriviallyDead(I)) 2335 Pass.DeadInsts.insert(I); 2336 } 2337 2338 Value *rewriteVectorizedLoadInst() { 2339 unsigned BeginIndex = getIndex(NewBeginOffset); 2340 unsigned EndIndex = getIndex(NewEndOffset); 2341 assert(EndIndex > BeginIndex && "Empty vector!"); 2342 2343 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2344 return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); 2345 } 2346 2347 Value *rewriteIntegerLoad(LoadInst &LI) { 2348 assert(IntTy && "We cannot insert an integer to the alloca"); 2349 assert(!LI.isVolatile()); 2350 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2351 V = convertValue(DL, IRB, V, IntTy); 2352 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2353 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2354 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2355 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2356 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2357 } 2358 // It is possible that the extracted type is not the load type. This 2359 // happens if there is a load past the end of the alloca, and as 2360 // a consequence the slice is narrower but still a candidate for integer 2361 // lowering. To handle this case, we just zero extend the extracted 2362 // integer. 2363 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2364 "Can only handle an extract for an overly wide load"); 2365 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2366 V = IRB.CreateZExt(V, LI.getType()); 2367 return V; 2368 } 2369 2370 bool visitLoadInst(LoadInst &LI) { 2371 DEBUG(dbgs() << " original: " << LI << "\n"); 2372 Value *OldOp = LI.getOperand(0); 2373 assert(OldOp == OldPtr); 2374 2375 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2376 : LI.getType(); 2377 const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize; 2378 bool IsPtrAdjusted = false; 2379 Value *V; 2380 if (VecTy) { 2381 V = rewriteVectorizedLoadInst(); 2382 } else if (IntTy && LI.getType()->isIntegerTy()) { 2383 V = rewriteIntegerLoad(LI); 2384 } else if (NewBeginOffset == NewAllocaBeginOffset && 2385 NewEndOffset == NewAllocaEndOffset && 2386 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2387 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2388 TargetTy->isIntegerTy()))) { 2389 LoadInst *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2390 LI.isVolatile(), LI.getName()); 2391 if (LI.isVolatile()) 2392 NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope()); 2393 V = NewLI; 2394 2395 // If this is an integer load past the end of the slice (which means the 2396 // bytes outside the slice are undef or this load is dead) just forcibly 2397 // fix the integer size with correct handling of endianness. 2398 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2399 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2400 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2401 V = IRB.CreateZExt(V, TITy, "load.ext"); 2402 if (DL.isBigEndian()) 2403 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2404 "endian_shift"); 2405 } 2406 } else { 2407 Type *LTy = TargetTy->getPointerTo(); 2408 LoadInst *NewLI = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy), 2409 getSliceAlign(TargetTy), 2410 LI.isVolatile(), LI.getName()); 2411 if (LI.isVolatile()) 2412 NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope()); 2413 2414 V = NewLI; 2415 IsPtrAdjusted = true; 2416 } 2417 V = convertValue(DL, IRB, V, TargetTy); 2418 2419 if (IsSplit) { 2420 assert(!LI.isVolatile()); 2421 assert(LI.getType()->isIntegerTy() && 2422 "Only integer type loads and stores are split"); 2423 assert(SliceSize < DL.getTypeStoreSize(LI.getType()) && 2424 "Split load isn't smaller than original load"); 2425 assert(LI.getType()->getIntegerBitWidth() == 2426 DL.getTypeStoreSizeInBits(LI.getType()) && 2427 "Non-byte-multiple bit width"); 2428 // Move the insertion point just past the load so that we can refer to it. 2429 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2430 // Create a placeholder value with the same type as LI to use as the 2431 // basis for the new value. This allows us to replace the uses of LI with 2432 // the computed value, and then replace the placeholder with LI, leaving 2433 // LI only used for this computation. 2434 Value *Placeholder = 2435 new LoadInst(UndefValue::get(LI.getType()->getPointerTo())); 2436 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2437 "insert"); 2438 LI.replaceAllUsesWith(V); 2439 Placeholder->replaceAllUsesWith(&LI); 2440 delete Placeholder; 2441 } else { 2442 LI.replaceAllUsesWith(V); 2443 } 2444 2445 Pass.DeadInsts.insert(&LI); 2446 deleteIfTriviallyDead(OldOp); 2447 DEBUG(dbgs() << " to: " << *V << "\n"); 2448 return !LI.isVolatile() && !IsPtrAdjusted; 2449 } 2450 2451 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) { 2452 if (V->getType() != VecTy) { 2453 unsigned BeginIndex = getIndex(NewBeginOffset); 2454 unsigned EndIndex = getIndex(NewEndOffset); 2455 assert(EndIndex > BeginIndex && "Empty vector!"); 2456 unsigned NumElements = EndIndex - BeginIndex; 2457 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2458 Type *SliceTy = (NumElements == 1) 2459 ? ElementTy 2460 : VectorType::get(ElementTy, NumElements); 2461 if (V->getType() != SliceTy) 2462 V = convertValue(DL, IRB, V, SliceTy); 2463 2464 // Mix in the existing elements. 2465 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2466 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2467 } 2468 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2469 Pass.DeadInsts.insert(&SI); 2470 2471 (void)Store; 2472 DEBUG(dbgs() << " to: " << *Store << "\n"); 2473 return true; 2474 } 2475 2476 bool rewriteIntegerStore(Value *V, StoreInst &SI) { 2477 assert(IntTy && "We cannot extract an integer from the alloca"); 2478 assert(!SI.isVolatile()); 2479 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { 2480 Value *Old = 2481 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2482 Old = convertValue(DL, IRB, Old, IntTy); 2483 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2484 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2485 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2486 } 2487 V = convertValue(DL, IRB, V, NewAllocaTy); 2488 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2489 Pass.DeadInsts.insert(&SI); 2490 (void)Store; 2491 DEBUG(dbgs() << " to: " << *Store << "\n"); 2492 return true; 2493 } 2494 2495 bool visitStoreInst(StoreInst &SI) { 2496 DEBUG(dbgs() << " original: " << SI << "\n"); 2497 Value *OldOp = SI.getOperand(1); 2498 assert(OldOp == OldPtr); 2499 2500 Value *V = SI.getValueOperand(); 2501 2502 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2503 // alloca that should be re-examined after promoting this alloca. 2504 if (V->getType()->isPointerTy()) 2505 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2506 Pass.PostPromotionWorklist.insert(AI); 2507 2508 if (SliceSize < DL.getTypeStoreSize(V->getType())) { 2509 assert(!SI.isVolatile()); 2510 assert(V->getType()->isIntegerTy() && 2511 "Only integer type loads and stores are split"); 2512 assert(V->getType()->getIntegerBitWidth() == 2513 DL.getTypeStoreSizeInBits(V->getType()) && 2514 "Non-byte-multiple bit width"); 2515 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2516 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2517 "extract"); 2518 } 2519 2520 if (VecTy) 2521 return rewriteVectorizedStoreInst(V, SI, OldOp); 2522 if (IntTy && V->getType()->isIntegerTy()) 2523 return rewriteIntegerStore(V, SI); 2524 2525 const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize; 2526 StoreInst *NewSI; 2527 if (NewBeginOffset == NewAllocaBeginOffset && 2528 NewEndOffset == NewAllocaEndOffset && 2529 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2530 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2531 V->getType()->isIntegerTy()))) { 2532 // If this is an integer store past the end of slice (and thus the bytes 2533 // past that point are irrelevant or this is unreachable), truncate the 2534 // value prior to storing. 2535 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2536 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2537 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2538 if (DL.isBigEndian()) 2539 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2540 "endian_shift"); 2541 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2542 } 2543 2544 V = convertValue(DL, IRB, V, NewAllocaTy); 2545 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2546 SI.isVolatile()); 2547 } else { 2548 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo()); 2549 NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()), 2550 SI.isVolatile()); 2551 } 2552 if (SI.isVolatile()) 2553 NewSI->setAtomic(SI.getOrdering(), SI.getSynchScope()); 2554 Pass.DeadInsts.insert(&SI); 2555 deleteIfTriviallyDead(OldOp); 2556 2557 DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2558 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); 2559 } 2560 2561 /// \brief Compute an integer value from splatting an i8 across the given 2562 /// number of bytes. 2563 /// 2564 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2565 /// call this routine. 2566 /// FIXME: Heed the advice above. 2567 /// 2568 /// \param V The i8 value to splat. 2569 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2570 Value *getIntegerSplat(Value *V, unsigned Size) { 2571 assert(Size > 0 && "Expected a positive number of bytes."); 2572 IntegerType *VTy = cast<IntegerType>(V->getType()); 2573 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2574 if (Size == 1) 2575 return V; 2576 2577 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2578 V = IRB.CreateMul( 2579 IRB.CreateZExt(V, SplatIntTy, "zext"), 2580 ConstantExpr::getUDiv( 2581 Constant::getAllOnesValue(SplatIntTy), 2582 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), 2583 SplatIntTy)), 2584 "isplat"); 2585 return V; 2586 } 2587 2588 /// \brief Compute a vector splat for a given element value. 2589 Value *getVectorSplat(Value *V, unsigned NumElements) { 2590 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2591 DEBUG(dbgs() << " splat: " << *V << "\n"); 2592 return V; 2593 } 2594 2595 bool visitMemSetInst(MemSetInst &II) { 2596 DEBUG(dbgs() << " original: " << II << "\n"); 2597 assert(II.getRawDest() == OldPtr); 2598 2599 // If the memset has a variable size, it cannot be split, just adjust the 2600 // pointer to the new alloca. 2601 if (!isa<Constant>(II.getLength())) { 2602 assert(!IsSplit); 2603 assert(NewBeginOffset == BeginOffset); 2604 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2605 Type *CstTy = II.getAlignmentCst()->getType(); 2606 II.setAlignment(ConstantInt::get(CstTy, getSliceAlign())); 2607 2608 deleteIfTriviallyDead(OldPtr); 2609 return false; 2610 } 2611 2612 // Record this instruction for deletion. 2613 Pass.DeadInsts.insert(&II); 2614 2615 Type *AllocaTy = NewAI.getAllocatedType(); 2616 Type *ScalarTy = AllocaTy->getScalarType(); 2617 2618 // If this doesn't map cleanly onto the alloca type, and that type isn't 2619 // a single value type, just emit a memset. 2620 if (!VecTy && !IntTy && 2621 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2622 SliceSize != DL.getTypeStoreSize(AllocaTy) || 2623 !AllocaTy->isSingleValueType() || 2624 !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) || 2625 DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) { 2626 Type *SizeTy = II.getLength()->getType(); 2627 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2628 CallInst *New = IRB.CreateMemSet( 2629 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2630 getSliceAlign(), II.isVolatile()); 2631 (void)New; 2632 DEBUG(dbgs() << " to: " << *New << "\n"); 2633 return false; 2634 } 2635 2636 // If we can represent this as a simple value, we have to build the actual 2637 // value to store, which requires expanding the byte present in memset to 2638 // a sensible representation for the alloca type. This is essentially 2639 // splatting the byte to a sufficiently wide integer, splatting it across 2640 // any desired vector width, and bitcasting to the final type. 2641 Value *V; 2642 2643 if (VecTy) { 2644 // If this is a memset of a vectorized alloca, insert it. 2645 assert(ElementTy == ScalarTy); 2646 2647 unsigned BeginIndex = getIndex(NewBeginOffset); 2648 unsigned EndIndex = getIndex(NewEndOffset); 2649 assert(EndIndex > BeginIndex && "Empty vector!"); 2650 unsigned NumElements = EndIndex - BeginIndex; 2651 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2652 2653 Value *Splat = 2654 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); 2655 Splat = convertValue(DL, IRB, Splat, ElementTy); 2656 if (NumElements > 1) 2657 Splat = getVectorSplat(Splat, NumElements); 2658 2659 Value *Old = 2660 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2661 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2662 } else if (IntTy) { 2663 // If this is a memset on an alloca where we can widen stores, insert the 2664 // set integer. 2665 assert(!II.isVolatile()); 2666 2667 uint64_t Size = NewEndOffset - NewBeginOffset; 2668 V = getIntegerSplat(II.getValue(), Size); 2669 2670 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2671 EndOffset != NewAllocaBeginOffset)) { 2672 Value *Old = 2673 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2674 Old = convertValue(DL, IRB, Old, IntTy); 2675 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2676 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2677 } else { 2678 assert(V->getType() == IntTy && 2679 "Wrong type for an alloca wide integer!"); 2680 } 2681 V = convertValue(DL, IRB, V, AllocaTy); 2682 } else { 2683 // Established these invariants above. 2684 assert(NewBeginOffset == NewAllocaBeginOffset); 2685 assert(NewEndOffset == NewAllocaEndOffset); 2686 2687 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); 2688 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2689 V = getVectorSplat(V, AllocaVecTy->getNumElements()); 2690 2691 V = convertValue(DL, IRB, V, AllocaTy); 2692 } 2693 2694 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2695 II.isVolatile()); 2696 (void)New; 2697 DEBUG(dbgs() << " to: " << *New << "\n"); 2698 return !II.isVolatile(); 2699 } 2700 2701 bool visitMemTransferInst(MemTransferInst &II) { 2702 // Rewriting of memory transfer instructions can be a bit tricky. We break 2703 // them into two categories: split intrinsics and unsplit intrinsics. 2704 2705 DEBUG(dbgs() << " original: " << II << "\n"); 2706 2707 bool IsDest = &II.getRawDestUse() == OldUse; 2708 assert((IsDest && II.getRawDest() == OldPtr) || 2709 (!IsDest && II.getRawSource() == OldPtr)); 2710 2711 unsigned SliceAlign = getSliceAlign(); 2712 2713 // For unsplit intrinsics, we simply modify the source and destination 2714 // pointers in place. This isn't just an optimization, it is a matter of 2715 // correctness. With unsplit intrinsics we may be dealing with transfers 2716 // within a single alloca before SROA ran, or with transfers that have 2717 // a variable length. We may also be dealing with memmove instead of 2718 // memcpy, and so simply updating the pointers is the necessary for us to 2719 // update both source and dest of a single call. 2720 if (!IsSplittable) { 2721 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2722 if (IsDest) 2723 II.setDest(AdjustedPtr); 2724 else 2725 II.setSource(AdjustedPtr); 2726 2727 if (II.getAlignment() > SliceAlign) { 2728 Type *CstTy = II.getAlignmentCst()->getType(); 2729 II.setAlignment( 2730 ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign))); 2731 } 2732 2733 DEBUG(dbgs() << " to: " << II << "\n"); 2734 deleteIfTriviallyDead(OldPtr); 2735 return false; 2736 } 2737 // For split transfer intrinsics we have an incredibly useful assurance: 2738 // the source and destination do not reside within the same alloca, and at 2739 // least one of them does not escape. This means that we can replace 2740 // memmove with memcpy, and we don't need to worry about all manner of 2741 // downsides to splitting and transforming the operations. 2742 2743 // If this doesn't map cleanly onto the alloca type, and that type isn't 2744 // a single value type, just emit a memcpy. 2745 bool EmitMemCpy = 2746 !VecTy && !IntTy && 2747 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2748 SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) || 2749 !NewAI.getAllocatedType()->isSingleValueType()); 2750 2751 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2752 // size hasn't been shrunk based on analysis of the viable range, this is 2753 // a no-op. 2754 if (EmitMemCpy && &OldAI == &NewAI) { 2755 // Ensure the start lines up. 2756 assert(NewBeginOffset == BeginOffset); 2757 2758 // Rewrite the size as needed. 2759 if (NewEndOffset != EndOffset) 2760 II.setLength(ConstantInt::get(II.getLength()->getType(), 2761 NewEndOffset - NewBeginOffset)); 2762 return false; 2763 } 2764 // Record this instruction for deletion. 2765 Pass.DeadInsts.insert(&II); 2766 2767 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2768 // alloca that should be re-examined after rewriting this instruction. 2769 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2770 if (AllocaInst *AI = 2771 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2772 assert(AI != &OldAI && AI != &NewAI && 2773 "Splittable transfers cannot reach the same alloca on both ends."); 2774 Pass.Worklist.insert(AI); 2775 } 2776 2777 Type *OtherPtrTy = OtherPtr->getType(); 2778 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2779 2780 // Compute the relative offset for the other pointer within the transfer. 2781 unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS); 2782 APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset); 2783 unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1, 2784 OtherOffset.zextOrTrunc(64).getZExtValue()); 2785 2786 if (EmitMemCpy) { 2787 // Compute the other pointer, folding as much as possible to produce 2788 // a single, simple GEP in most cases. 2789 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2790 OtherPtr->getName() + "."); 2791 2792 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2793 Type *SizeTy = II.getLength()->getType(); 2794 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2795 2796 CallInst *New = IRB.CreateMemCpy( 2797 IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size, 2798 MinAlign(SliceAlign, OtherAlign), II.isVolatile()); 2799 (void)New; 2800 DEBUG(dbgs() << " to: " << *New << "\n"); 2801 return false; 2802 } 2803 2804 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 2805 NewEndOffset == NewAllocaEndOffset; 2806 uint64_t Size = NewEndOffset - NewBeginOffset; 2807 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 2808 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 2809 unsigned NumElements = EndIndex - BeginIndex; 2810 IntegerType *SubIntTy = 2811 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 2812 2813 // Reset the other pointer type to match the register type we're going to 2814 // use, but using the address space of the original other pointer. 2815 if (VecTy && !IsWholeAlloca) { 2816 if (NumElements == 1) 2817 OtherPtrTy = VecTy->getElementType(); 2818 else 2819 OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements); 2820 2821 OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS); 2822 } else if (IntTy && !IsWholeAlloca) { 2823 OtherPtrTy = SubIntTy->getPointerTo(OtherAS); 2824 } else { 2825 OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS); 2826 } 2827 2828 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2829 OtherPtr->getName() + "."); 2830 unsigned SrcAlign = OtherAlign; 2831 Value *DstPtr = &NewAI; 2832 unsigned DstAlign = SliceAlign; 2833 if (!IsDest) { 2834 std::swap(SrcPtr, DstPtr); 2835 std::swap(SrcAlign, DstAlign); 2836 } 2837 2838 Value *Src; 2839 if (VecTy && !IsWholeAlloca && !IsDest) { 2840 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2841 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 2842 } else if (IntTy && !IsWholeAlloca && !IsDest) { 2843 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2844 Src = convertValue(DL, IRB, Src, IntTy); 2845 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2846 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 2847 } else { 2848 Src = 2849 IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), "copyload"); 2850 } 2851 2852 if (VecTy && !IsWholeAlloca && IsDest) { 2853 Value *Old = 2854 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2855 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 2856 } else if (IntTy && !IsWholeAlloca && IsDest) { 2857 Value *Old = 2858 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2859 Old = convertValue(DL, IRB, Old, IntTy); 2860 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2861 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 2862 Src = convertValue(DL, IRB, Src, NewAllocaTy); 2863 } 2864 2865 StoreInst *Store = cast<StoreInst>( 2866 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 2867 (void)Store; 2868 DEBUG(dbgs() << " to: " << *Store << "\n"); 2869 return !II.isVolatile(); 2870 } 2871 2872 bool visitIntrinsicInst(IntrinsicInst &II) { 2873 assert(II.getIntrinsicID() == Intrinsic::lifetime_start || 2874 II.getIntrinsicID() == Intrinsic::lifetime_end); 2875 DEBUG(dbgs() << " original: " << II << "\n"); 2876 assert(II.getArgOperand(1) == OldPtr); 2877 2878 // Record this instruction for deletion. 2879 Pass.DeadInsts.insert(&II); 2880 2881 ConstantInt *Size = 2882 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 2883 NewEndOffset - NewBeginOffset); 2884 Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2885 Value *New; 2886 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 2887 New = IRB.CreateLifetimeStart(Ptr, Size); 2888 else 2889 New = IRB.CreateLifetimeEnd(Ptr, Size); 2890 2891 (void)New; 2892 DEBUG(dbgs() << " to: " << *New << "\n"); 2893 return true; 2894 } 2895 2896 bool visitPHINode(PHINode &PN) { 2897 DEBUG(dbgs() << " original: " << PN << "\n"); 2898 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 2899 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 2900 2901 // We would like to compute a new pointer in only one place, but have it be 2902 // as local as possible to the PHI. To do that, we re-use the location of 2903 // the old pointer, which necessarily must be in the right position to 2904 // dominate the PHI. 2905 IRBuilderTy PtrBuilder(IRB); 2906 if (isa<PHINode>(OldPtr)) 2907 PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 2908 else 2909 PtrBuilder.SetInsertPoint(OldPtr); 2910 PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 2911 2912 Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType()); 2913 // Replace the operands which were using the old pointer. 2914 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 2915 2916 DEBUG(dbgs() << " to: " << PN << "\n"); 2917 deleteIfTriviallyDead(OldPtr); 2918 2919 // PHIs can't be promoted on their own, but often can be speculated. We 2920 // check the speculation outside of the rewriter so that we see the 2921 // fully-rewritten alloca. 2922 PHIUsers.insert(&PN); 2923 return true; 2924 } 2925 2926 bool visitSelectInst(SelectInst &SI) { 2927 DEBUG(dbgs() << " original: " << SI << "\n"); 2928 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 2929 "Pointer isn't an operand!"); 2930 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 2931 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 2932 2933 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2934 // Replace the operands which were using the old pointer. 2935 if (SI.getOperand(1) == OldPtr) 2936 SI.setOperand(1, NewPtr); 2937 if (SI.getOperand(2) == OldPtr) 2938 SI.setOperand(2, NewPtr); 2939 2940 DEBUG(dbgs() << " to: " << SI << "\n"); 2941 deleteIfTriviallyDead(OldPtr); 2942 2943 // Selects can't be promoted on their own, but often can be speculated. We 2944 // check the speculation outside of the rewriter so that we see the 2945 // fully-rewritten alloca. 2946 SelectUsers.insert(&SI); 2947 return true; 2948 } 2949 }; 2950 2951 namespace { 2952 /// \brief Visitor to rewrite aggregate loads and stores as scalar. 2953 /// 2954 /// This pass aggressively rewrites all aggregate loads and stores on 2955 /// a particular pointer (or any pointer derived from it which we can identify) 2956 /// with scalar loads and stores. 2957 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 2958 // Befriend the base class so it can delegate to private visit methods. 2959 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; 2960 2961 /// Queue of pointer uses to analyze and potentially rewrite. 2962 SmallVector<Use *, 8> Queue; 2963 2964 /// Set to prevent us from cycling with phi nodes and loops. 2965 SmallPtrSet<User *, 8> Visited; 2966 2967 /// The current pointer use being rewritten. This is used to dig up the used 2968 /// value (as opposed to the user). 2969 Use *U; 2970 2971 public: 2972 /// Rewrite loads and stores through a pointer and all pointers derived from 2973 /// it. 2974 bool rewrite(Instruction &I) { 2975 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 2976 enqueueUsers(I); 2977 bool Changed = false; 2978 while (!Queue.empty()) { 2979 U = Queue.pop_back_val(); 2980 Changed |= visit(cast<Instruction>(U->getUser())); 2981 } 2982 return Changed; 2983 } 2984 2985 private: 2986 /// Enqueue all the users of the given instruction for further processing. 2987 /// This uses a set to de-duplicate users. 2988 void enqueueUsers(Instruction &I) { 2989 for (Use &U : I.uses()) 2990 if (Visited.insert(U.getUser()).second) 2991 Queue.push_back(&U); 2992 } 2993 2994 // Conservative default is to not rewrite anything. 2995 bool visitInstruction(Instruction &I) { return false; } 2996 2997 /// \brief Generic recursive split emission class. 2998 template <typename Derived> class OpSplitter { 2999 protected: 3000 /// The builder used to form new instructions. 3001 IRBuilderTy IRB; 3002 /// The indices which to be used with insert- or extractvalue to select the 3003 /// appropriate value within the aggregate. 3004 SmallVector<unsigned, 4> Indices; 3005 /// The indices to a GEP instruction which will move Ptr to the correct slot 3006 /// within the aggregate. 3007 SmallVector<Value *, 4> GEPIndices; 3008 /// The base pointer of the original op, used as a base for GEPing the 3009 /// split operations. 3010 Value *Ptr; 3011 3012 /// Initialize the splitter with an insertion point, Ptr and start with a 3013 /// single zero GEP index. 3014 OpSplitter(Instruction *InsertionPoint, Value *Ptr) 3015 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} 3016 3017 public: 3018 /// \brief Generic recursive split emission routine. 3019 /// 3020 /// This method recursively splits an aggregate op (load or store) into 3021 /// scalar or vector ops. It splits recursively until it hits a single value 3022 /// and emits that single value operation via the template argument. 3023 /// 3024 /// The logic of this routine relies on GEPs and insertvalue and 3025 /// extractvalue all operating with the same fundamental index list, merely 3026 /// formatted differently (GEPs need actual values). 3027 /// 3028 /// \param Ty The type being split recursively into smaller ops. 3029 /// \param Agg The aggregate value being built up or stored, depending on 3030 /// whether this is splitting a load or a store respectively. 3031 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3032 if (Ty->isSingleValueType()) 3033 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name); 3034 3035 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3036 unsigned OldSize = Indices.size(); 3037 (void)OldSize; 3038 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3039 ++Idx) { 3040 assert(Indices.size() == OldSize && "Did not return to the old size"); 3041 Indices.push_back(Idx); 3042 GEPIndices.push_back(IRB.getInt32(Idx)); 3043 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3044 GEPIndices.pop_back(); 3045 Indices.pop_back(); 3046 } 3047 return; 3048 } 3049 3050 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3051 unsigned OldSize = Indices.size(); 3052 (void)OldSize; 3053 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3054 ++Idx) { 3055 assert(Indices.size() == OldSize && "Did not return to the old size"); 3056 Indices.push_back(Idx); 3057 GEPIndices.push_back(IRB.getInt32(Idx)); 3058 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3059 GEPIndices.pop_back(); 3060 Indices.pop_back(); 3061 } 3062 return; 3063 } 3064 3065 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3066 } 3067 }; 3068 3069 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3070 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) 3071 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {} 3072 3073 /// Emit a leaf load of a single value. This is called at the leaves of the 3074 /// recursive emission to actually load values. 3075 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { 3076 assert(Ty->isSingleValueType()); 3077 // Load the single value and insert it using the indices. 3078 Value *GEP = 3079 IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep"); 3080 Value *Load = IRB.CreateLoad(GEP, Name + ".load"); 3081 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3082 DEBUG(dbgs() << " to: " << *Load << "\n"); 3083 } 3084 }; 3085 3086 bool visitLoadInst(LoadInst &LI) { 3087 assert(LI.getPointerOperand() == *U); 3088 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3089 return false; 3090 3091 // We have an aggregate being loaded, split it apart. 3092 DEBUG(dbgs() << " original: " << LI << "\n"); 3093 LoadOpSplitter Splitter(&LI, *U); 3094 Value *V = UndefValue::get(LI.getType()); 3095 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3096 LI.replaceAllUsesWith(V); 3097 LI.eraseFromParent(); 3098 return true; 3099 } 3100 3101 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3102 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) 3103 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {} 3104 3105 /// Emit a leaf store of a single value. This is called at the leaves of the 3106 /// recursive emission to actually produce stores. 3107 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { 3108 assert(Ty->isSingleValueType()); 3109 // Extract the single value and store it using the indices. 3110 // 3111 // The gep and extractvalue values are factored out of the CreateStore 3112 // call to make the output independent of the argument evaluation order. 3113 Value *ExtractValue = 3114 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3115 Value *InBoundsGEP = 3116 IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep"); 3117 Value *Store = IRB.CreateStore(ExtractValue, InBoundsGEP); 3118 (void)Store; 3119 DEBUG(dbgs() << " to: " << *Store << "\n"); 3120 } 3121 }; 3122 3123 bool visitStoreInst(StoreInst &SI) { 3124 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3125 return false; 3126 Value *V = SI.getValueOperand(); 3127 if (V->getType()->isSingleValueType()) 3128 return false; 3129 3130 // We have an aggregate being stored, split it apart. 3131 DEBUG(dbgs() << " original: " << SI << "\n"); 3132 StoreOpSplitter Splitter(&SI, *U); 3133 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3134 SI.eraseFromParent(); 3135 return true; 3136 } 3137 3138 bool visitBitCastInst(BitCastInst &BC) { 3139 enqueueUsers(BC); 3140 return false; 3141 } 3142 3143 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3144 enqueueUsers(GEPI); 3145 return false; 3146 } 3147 3148 bool visitPHINode(PHINode &PN) { 3149 enqueueUsers(PN); 3150 return false; 3151 } 3152 3153 bool visitSelectInst(SelectInst &SI) { 3154 enqueueUsers(SI); 3155 return false; 3156 } 3157 }; 3158 } 3159 3160 /// \brief Strip aggregate type wrapping. 3161 /// 3162 /// This removes no-op aggregate types wrapping an underlying type. It will 3163 /// strip as many layers of types as it can without changing either the type 3164 /// size or the allocated size. 3165 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3166 if (Ty->isSingleValueType()) 3167 return Ty; 3168 3169 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3170 uint64_t TypeSize = DL.getTypeSizeInBits(Ty); 3171 3172 Type *InnerTy; 3173 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3174 InnerTy = ArrTy->getElementType(); 3175 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3176 const StructLayout *SL = DL.getStructLayout(STy); 3177 unsigned Index = SL->getElementContainingOffset(0); 3178 InnerTy = STy->getElementType(Index); 3179 } else { 3180 return Ty; 3181 } 3182 3183 if (AllocSize > DL.getTypeAllocSize(InnerTy) || 3184 TypeSize > DL.getTypeSizeInBits(InnerTy)) 3185 return Ty; 3186 3187 return stripAggregateTypeWrapping(DL, InnerTy); 3188 } 3189 3190 /// \brief Try to find a partition of the aggregate type passed in for a given 3191 /// offset and size. 3192 /// 3193 /// This recurses through the aggregate type and tries to compute a subtype 3194 /// based on the offset and size. When the offset and size span a sub-section 3195 /// of an array, it will even compute a new array type for that sub-section, 3196 /// and the same for structs. 3197 /// 3198 /// Note that this routine is very strict and tries to find a partition of the 3199 /// type which produces the *exact* right offset and size. It is not forgiving 3200 /// when the size or offset cause either end of type-based partition to be off. 3201 /// Also, this is a best-effort routine. It is reasonable to give up and not 3202 /// return a type if necessary. 3203 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3204 uint64_t Size) { 3205 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) 3206 return stripAggregateTypeWrapping(DL, Ty); 3207 if (Offset > DL.getTypeAllocSize(Ty) || 3208 (DL.getTypeAllocSize(Ty) - Offset) < Size) 3209 return nullptr; 3210 3211 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { 3212 // We can't partition pointers... 3213 if (SeqTy->isPointerTy()) 3214 return nullptr; 3215 3216 Type *ElementTy = SeqTy->getElementType(); 3217 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 3218 uint64_t NumSkippedElements = Offset / ElementSize; 3219 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) { 3220 if (NumSkippedElements >= ArrTy->getNumElements()) 3221 return nullptr; 3222 } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) { 3223 if (NumSkippedElements >= VecTy->getNumElements()) 3224 return nullptr; 3225 } 3226 Offset -= NumSkippedElements * ElementSize; 3227 3228 // First check if we need to recurse. 3229 if (Offset > 0 || Size < ElementSize) { 3230 // Bail if the partition ends in a different array element. 3231 if ((Offset + Size) > ElementSize) 3232 return nullptr; 3233 // Recurse through the element type trying to peel off offset bytes. 3234 return getTypePartition(DL, ElementTy, Offset, Size); 3235 } 3236 assert(Offset == 0); 3237 3238 if (Size == ElementSize) 3239 return stripAggregateTypeWrapping(DL, ElementTy); 3240 assert(Size > ElementSize); 3241 uint64_t NumElements = Size / ElementSize; 3242 if (NumElements * ElementSize != Size) 3243 return nullptr; 3244 return ArrayType::get(ElementTy, NumElements); 3245 } 3246 3247 StructType *STy = dyn_cast<StructType>(Ty); 3248 if (!STy) 3249 return nullptr; 3250 3251 const StructLayout *SL = DL.getStructLayout(STy); 3252 if (Offset >= SL->getSizeInBytes()) 3253 return nullptr; 3254 uint64_t EndOffset = Offset + Size; 3255 if (EndOffset > SL->getSizeInBytes()) 3256 return nullptr; 3257 3258 unsigned Index = SL->getElementContainingOffset(Offset); 3259 Offset -= SL->getElementOffset(Index); 3260 3261 Type *ElementTy = STy->getElementType(Index); 3262 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 3263 if (Offset >= ElementSize) 3264 return nullptr; // The offset points into alignment padding. 3265 3266 // See if any partition must be contained by the element. 3267 if (Offset > 0 || Size < ElementSize) { 3268 if ((Offset + Size) > ElementSize) 3269 return nullptr; 3270 return getTypePartition(DL, ElementTy, Offset, Size); 3271 } 3272 assert(Offset == 0); 3273 3274 if (Size == ElementSize) 3275 return stripAggregateTypeWrapping(DL, ElementTy); 3276 3277 StructType::element_iterator EI = STy->element_begin() + Index, 3278 EE = STy->element_end(); 3279 if (EndOffset < SL->getSizeInBytes()) { 3280 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3281 if (Index == EndIndex) 3282 return nullptr; // Within a single element and its padding. 3283 3284 // Don't try to form "natural" types if the elements don't line up with the 3285 // expected size. 3286 // FIXME: We could potentially recurse down through the last element in the 3287 // sub-struct to find a natural end point. 3288 if (SL->getElementOffset(EndIndex) != EndOffset) 3289 return nullptr; 3290 3291 assert(Index < EndIndex); 3292 EE = STy->element_begin() + EndIndex; 3293 } 3294 3295 // Try to build up a sub-structure. 3296 StructType *SubTy = 3297 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); 3298 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3299 if (Size != SubSL->getSizeInBytes()) 3300 return nullptr; // The sub-struct doesn't have quite the size needed. 3301 3302 return SubTy; 3303 } 3304 3305 /// \brief Pre-split loads and stores to simplify rewriting. 3306 /// 3307 /// We want to break up the splittable load+store pairs as much as 3308 /// possible. This is important to do as a preprocessing step, as once we 3309 /// start rewriting the accesses to partitions of the alloca we lose the 3310 /// necessary information to correctly split apart paired loads and stores 3311 /// which both point into this alloca. The case to consider is something like 3312 /// the following: 3313 /// 3314 /// %a = alloca [12 x i8] 3315 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 3316 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 3317 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 3318 /// %iptr1 = bitcast i8* %gep1 to i64* 3319 /// %iptr2 = bitcast i8* %gep2 to i64* 3320 /// %fptr1 = bitcast i8* %gep1 to float* 3321 /// %fptr2 = bitcast i8* %gep2 to float* 3322 /// %fptr3 = bitcast i8* %gep3 to float* 3323 /// store float 0.0, float* %fptr1 3324 /// store float 1.0, float* %fptr2 3325 /// %v = load i64* %iptr1 3326 /// store i64 %v, i64* %iptr2 3327 /// %f1 = load float* %fptr2 3328 /// %f2 = load float* %fptr3 3329 /// 3330 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 3331 /// promote everything so we recover the 2 SSA values that should have been 3332 /// there all along. 3333 /// 3334 /// \returns true if any changes are made. 3335 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 3336 DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 3337 3338 // Track the loads and stores which are candidates for pre-splitting here, in 3339 // the order they first appear during the partition scan. These give stable 3340 // iteration order and a basis for tracking which loads and stores we 3341 // actually split. 3342 SmallVector<LoadInst *, 4> Loads; 3343 SmallVector<StoreInst *, 4> Stores; 3344 3345 // We need to accumulate the splits required of each load or store where we 3346 // can find them via a direct lookup. This is important to cross-check loads 3347 // and stores against each other. We also track the slice so that we can kill 3348 // all the slices that end up split. 3349 struct SplitOffsets { 3350 Slice *S; 3351 std::vector<uint64_t> Splits; 3352 }; 3353 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 3354 3355 // Track loads out of this alloca which cannot, for any reason, be pre-split. 3356 // This is important as we also cannot pre-split stores of those loads! 3357 // FIXME: This is all pretty gross. It means that we can be more aggressive 3358 // in pre-splitting when the load feeding the store happens to come from 3359 // a separate alloca. Put another way, the effectiveness of SROA would be 3360 // decreased by a frontend which just concatenated all of its local allocas 3361 // into one big flat alloca. But defeating such patterns is exactly the job 3362 // SROA is tasked with! Sadly, to not have this discrepancy we would have 3363 // change store pre-splitting to actually force pre-splitting of the load 3364 // that feeds it *and all stores*. That makes pre-splitting much harder, but 3365 // maybe it would make it more principled? 3366 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 3367 3368 DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 3369 for (auto &P : AS.partitions()) { 3370 for (Slice &S : P) { 3371 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 3372 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 3373 // If this is a load we have to track that it can't participate in any 3374 // pre-splitting. If this is a store of a load we have to track that 3375 // that load also can't participate in any pre-splitting. 3376 if (auto *LI = dyn_cast<LoadInst>(I)) 3377 UnsplittableLoads.insert(LI); 3378 else if (auto *SI = dyn_cast<StoreInst>(I)) 3379 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 3380 UnsplittableLoads.insert(LI); 3381 continue; 3382 } 3383 assert(P.endOffset() > S.beginOffset() && 3384 "Empty or backwards partition!"); 3385 3386 // Determine if this is a pre-splittable slice. 3387 if (auto *LI = dyn_cast<LoadInst>(I)) { 3388 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 3389 3390 // The load must be used exclusively to store into other pointers for 3391 // us to be able to arbitrarily pre-split it. The stores must also be 3392 // simple to avoid changing semantics. 3393 auto IsLoadSimplyStored = [](LoadInst *LI) { 3394 for (User *LU : LI->users()) { 3395 auto *SI = dyn_cast<StoreInst>(LU); 3396 if (!SI || !SI->isSimple()) 3397 return false; 3398 } 3399 return true; 3400 }; 3401 if (!IsLoadSimplyStored(LI)) { 3402 UnsplittableLoads.insert(LI); 3403 continue; 3404 } 3405 3406 Loads.push_back(LI); 3407 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3408 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 3409 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 3410 continue; 3411 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 3412 if (!StoredLoad || !StoredLoad->isSimple()) 3413 continue; 3414 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 3415 3416 Stores.push_back(SI); 3417 } else { 3418 // Other uses cannot be pre-split. 3419 continue; 3420 } 3421 3422 // Record the initial split. 3423 DEBUG(dbgs() << " Candidate: " << *I << "\n"); 3424 auto &Offsets = SplitOffsetsMap[I]; 3425 assert(Offsets.Splits.empty() && 3426 "Should not have splits the first time we see an instruction!"); 3427 Offsets.S = &S; 3428 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 3429 } 3430 3431 // Now scan the already split slices, and add a split for any of them which 3432 // we're going to pre-split. 3433 for (Slice *S : P.splitSliceTails()) { 3434 auto SplitOffsetsMapI = 3435 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 3436 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 3437 continue; 3438 auto &Offsets = SplitOffsetsMapI->second; 3439 3440 assert(Offsets.S == S && "Found a mismatched slice!"); 3441 assert(!Offsets.Splits.empty() && 3442 "Cannot have an empty set of splits on the second partition!"); 3443 assert(Offsets.Splits.back() == 3444 P.beginOffset() - Offsets.S->beginOffset() && 3445 "Previous split does not end where this one begins!"); 3446 3447 // Record each split. The last partition's end isn't needed as the size 3448 // of the slice dictates that. 3449 if (S->endOffset() > P.endOffset()) 3450 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 3451 } 3452 } 3453 3454 // We may have split loads where some of their stores are split stores. For 3455 // such loads and stores, we can only pre-split them if their splits exactly 3456 // match relative to their starting offset. We have to verify this prior to 3457 // any rewriting. 3458 Stores.erase( 3459 std::remove_if(Stores.begin(), Stores.end(), 3460 [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 3461 // Lookup the load we are storing in our map of split 3462 // offsets. 3463 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3464 // If it was completely unsplittable, then we're done, 3465 // and this store can't be pre-split. 3466 if (UnsplittableLoads.count(LI)) 3467 return true; 3468 3469 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 3470 if (LoadOffsetsI == SplitOffsetsMap.end()) 3471 return false; // Unrelated loads are definitely safe. 3472 auto &LoadOffsets = LoadOffsetsI->second; 3473 3474 // Now lookup the store's offsets. 3475 auto &StoreOffsets = SplitOffsetsMap[SI]; 3476 3477 // If the relative offsets of each split in the load and 3478 // store match exactly, then we can split them and we 3479 // don't need to remove them here. 3480 if (LoadOffsets.Splits == StoreOffsets.Splits) 3481 return false; 3482 3483 DEBUG(dbgs() 3484 << " Mismatched splits for load and store:\n" 3485 << " " << *LI << "\n" 3486 << " " << *SI << "\n"); 3487 3488 // We've found a store and load that we need to split 3489 // with mismatched relative splits. Just give up on them 3490 // and remove both instructions from our list of 3491 // candidates. 3492 UnsplittableLoads.insert(LI); 3493 return true; 3494 }), 3495 Stores.end()); 3496 // Now we have to go *back* through all the stores, because a later store may 3497 // have caused an earlier store's load to become unsplittable and if it is 3498 // unsplittable for the later store, then we can't rely on it being split in 3499 // the earlier store either. 3500 Stores.erase(std::remove_if(Stores.begin(), Stores.end(), 3501 [&UnsplittableLoads](StoreInst *SI) { 3502 auto *LI = 3503 cast<LoadInst>(SI->getValueOperand()); 3504 return UnsplittableLoads.count(LI); 3505 }), 3506 Stores.end()); 3507 // Once we've established all the loads that can't be split for some reason, 3508 // filter any that made it into our list out. 3509 Loads.erase(std::remove_if(Loads.begin(), Loads.end(), 3510 [&UnsplittableLoads](LoadInst *LI) { 3511 return UnsplittableLoads.count(LI); 3512 }), 3513 Loads.end()); 3514 3515 3516 // If no loads or stores are left, there is no pre-splitting to be done for 3517 // this alloca. 3518 if (Loads.empty() && Stores.empty()) 3519 return false; 3520 3521 // From here on, we can't fail and will be building new accesses, so rig up 3522 // an IR builder. 3523 IRBuilderTy IRB(&AI); 3524 3525 // Collect the new slices which we will merge into the alloca slices. 3526 SmallVector<Slice, 4> NewSlices; 3527 3528 // Track any allocas we end up splitting loads and stores for so we iterate 3529 // on them. 3530 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 3531 3532 // At this point, we have collected all of the loads and stores we can 3533 // pre-split, and the specific splits needed for them. We actually do the 3534 // splitting in a specific order in order to handle when one of the loads in 3535 // the value operand to one of the stores. 3536 // 3537 // First, we rewrite all of the split loads, and just accumulate each split 3538 // load in a parallel structure. We also build the slices for them and append 3539 // them to the alloca slices. 3540 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 3541 std::vector<LoadInst *> SplitLoads; 3542 const DataLayout &DL = AI.getModule()->getDataLayout(); 3543 for (LoadInst *LI : Loads) { 3544 SplitLoads.clear(); 3545 3546 IntegerType *Ty = cast<IntegerType>(LI->getType()); 3547 uint64_t LoadSize = Ty->getBitWidth() / 8; 3548 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); 3549 3550 auto &Offsets = SplitOffsetsMap[LI]; 3551 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 3552 "Slice size should always match load size exactly!"); 3553 uint64_t BaseOffset = Offsets.S->beginOffset(); 3554 assert(BaseOffset + LoadSize > BaseOffset && 3555 "Cannot represent alloca access size using 64-bit integers!"); 3556 3557 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 3558 IRB.SetInsertPoint(LI); 3559 3560 DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 3561 3562 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3563 int Idx = 0, Size = Offsets.Splits.size(); 3564 for (;;) { 3565 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 3566 auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 3567 LoadInst *PLoad = IRB.CreateAlignedLoad( 3568 getAdjustedPtr(IRB, DL, BasePtr, 3569 APInt(DL.getPointerSizeInBits(), PartOffset), 3570 PartPtrTy, BasePtr->getName() + "."), 3571 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false, 3572 LI->getName()); 3573 3574 // Append this load onto the list of split loads so we can find it later 3575 // to rewrite the stores. 3576 SplitLoads.push_back(PLoad); 3577 3578 // Now build a new slice for the alloca. 3579 NewSlices.push_back( 3580 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 3581 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 3582 /*IsSplittable*/ false)); 3583 DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 3584 << ", " << NewSlices.back().endOffset() << "): " << *PLoad 3585 << "\n"); 3586 3587 // See if we've handled all the splits. 3588 if (Idx >= Size) 3589 break; 3590 3591 // Setup the next partition. 3592 PartOffset = Offsets.Splits[Idx]; 3593 ++Idx; 3594 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; 3595 } 3596 3597 // Now that we have the split loads, do the slow walk over all uses of the 3598 // load and rewrite them as split stores, or save the split loads to use 3599 // below if the store is going to be split there anyways. 3600 bool DeferredStores = false; 3601 for (User *LU : LI->users()) { 3602 StoreInst *SI = cast<StoreInst>(LU); 3603 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 3604 DeferredStores = true; 3605 DEBUG(dbgs() << " Deferred splitting of store: " << *SI << "\n"); 3606 continue; 3607 } 3608 3609 Value *StoreBasePtr = SI->getPointerOperand(); 3610 IRB.SetInsertPoint(SI); 3611 3612 DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 3613 3614 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 3615 LoadInst *PLoad = SplitLoads[Idx]; 3616 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 3617 auto *PartPtrTy = 3618 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 3619 3620 StoreInst *PStore = IRB.CreateAlignedStore( 3621 PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr, 3622 APInt(DL.getPointerSizeInBits(), PartOffset), 3623 PartPtrTy, StoreBasePtr->getName() + "."), 3624 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false); 3625 (void)PStore; 3626 DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 3627 } 3628 3629 // We want to immediately iterate on any allocas impacted by splitting 3630 // this store, and we have to track any promotable alloca (indicated by 3631 // a direct store) as needing to be resplit because it is no longer 3632 // promotable. 3633 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 3634 ResplitPromotableAllocas.insert(OtherAI); 3635 Worklist.insert(OtherAI); 3636 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 3637 StoreBasePtr->stripInBoundsOffsets())) { 3638 Worklist.insert(OtherAI); 3639 } 3640 3641 // Mark the original store as dead. 3642 DeadInsts.insert(SI); 3643 } 3644 3645 // Save the split loads if there are deferred stores among the users. 3646 if (DeferredStores) 3647 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 3648 3649 // Mark the original load as dead and kill the original slice. 3650 DeadInsts.insert(LI); 3651 Offsets.S->kill(); 3652 } 3653 3654 // Second, we rewrite all of the split stores. At this point, we know that 3655 // all loads from this alloca have been split already. For stores of such 3656 // loads, we can simply look up the pre-existing split loads. For stores of 3657 // other loads, we split those loads first and then write split stores of 3658 // them. 3659 for (StoreInst *SI : Stores) { 3660 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3661 IntegerType *Ty = cast<IntegerType>(LI->getType()); 3662 uint64_t StoreSize = Ty->getBitWidth() / 8; 3663 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 3664 3665 auto &Offsets = SplitOffsetsMap[SI]; 3666 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 3667 "Slice size should always match load size exactly!"); 3668 uint64_t BaseOffset = Offsets.S->beginOffset(); 3669 assert(BaseOffset + StoreSize > BaseOffset && 3670 "Cannot represent alloca access size using 64-bit integers!"); 3671 3672 Value *LoadBasePtr = LI->getPointerOperand(); 3673 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 3674 3675 DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 3676 3677 // Check whether we have an already split load. 3678 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 3679 std::vector<LoadInst *> *SplitLoads = nullptr; 3680 if (SplitLoadsMapI != SplitLoadsMap.end()) { 3681 SplitLoads = &SplitLoadsMapI->second; 3682 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 3683 "Too few split loads for the number of splits in the store!"); 3684 } else { 3685 DEBUG(dbgs() << " of load: " << *LI << "\n"); 3686 } 3687 3688 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3689 int Idx = 0, Size = Offsets.Splits.size(); 3690 for (;;) { 3691 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 3692 auto *PartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 3693 3694 // Either lookup a split load or create one. 3695 LoadInst *PLoad; 3696 if (SplitLoads) { 3697 PLoad = (*SplitLoads)[Idx]; 3698 } else { 3699 IRB.SetInsertPoint(LI); 3700 PLoad = IRB.CreateAlignedLoad( 3701 getAdjustedPtr(IRB, DL, LoadBasePtr, 3702 APInt(DL.getPointerSizeInBits(), PartOffset), 3703 PartPtrTy, LoadBasePtr->getName() + "."), 3704 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false, 3705 LI->getName()); 3706 } 3707 3708 // And store this partition. 3709 IRB.SetInsertPoint(SI); 3710 StoreInst *PStore = IRB.CreateAlignedStore( 3711 PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr, 3712 APInt(DL.getPointerSizeInBits(), PartOffset), 3713 PartPtrTy, StoreBasePtr->getName() + "."), 3714 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false); 3715 3716 // Now build a new slice for the alloca. 3717 NewSlices.push_back( 3718 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 3719 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 3720 /*IsSplittable*/ false)); 3721 DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 3722 << ", " << NewSlices.back().endOffset() << "): " << *PStore 3723 << "\n"); 3724 if (!SplitLoads) { 3725 DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 3726 } 3727 3728 // See if we've finished all the splits. 3729 if (Idx >= Size) 3730 break; 3731 3732 // Setup the next partition. 3733 PartOffset = Offsets.Splits[Idx]; 3734 ++Idx; 3735 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 3736 } 3737 3738 // We want to immediately iterate on any allocas impacted by splitting 3739 // this load, which is only relevant if it isn't a load of this alloca and 3740 // thus we didn't already split the loads above. We also have to keep track 3741 // of any promotable allocas we split loads on as they can no longer be 3742 // promoted. 3743 if (!SplitLoads) { 3744 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 3745 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 3746 ResplitPromotableAllocas.insert(OtherAI); 3747 Worklist.insert(OtherAI); 3748 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 3749 LoadBasePtr->stripInBoundsOffsets())) { 3750 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 3751 Worklist.insert(OtherAI); 3752 } 3753 } 3754 3755 // Mark the original store as dead now that we've split it up and kill its 3756 // slice. Note that we leave the original load in place unless this store 3757 // was its only use. It may in turn be split up if it is an alloca load 3758 // for some other alloca, but it may be a normal load. This may introduce 3759 // redundant loads, but where those can be merged the rest of the optimizer 3760 // should handle the merging, and this uncovers SSA splits which is more 3761 // important. In practice, the original loads will almost always be fully 3762 // split and removed eventually, and the splits will be merged by any 3763 // trivial CSE, including instcombine. 3764 if (LI->hasOneUse()) { 3765 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 3766 DeadInsts.insert(LI); 3767 } 3768 DeadInsts.insert(SI); 3769 Offsets.S->kill(); 3770 } 3771 3772 // Remove the killed slices that have ben pre-split. 3773 AS.erase(std::remove_if(AS.begin(), AS.end(), [](const Slice &S) { 3774 return S.isDead(); 3775 }), AS.end()); 3776 3777 // Insert our new slices. This will sort and merge them into the sorted 3778 // sequence. 3779 AS.insert(NewSlices); 3780 3781 DEBUG(dbgs() << " Pre-split slices:\n"); 3782 #ifndef NDEBUG 3783 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 3784 DEBUG(AS.print(dbgs(), I, " ")); 3785 #endif 3786 3787 // Finally, don't try to promote any allocas that new require re-splitting. 3788 // They have already been added to the worklist above. 3789 PromotableAllocas.erase( 3790 std::remove_if( 3791 PromotableAllocas.begin(), PromotableAllocas.end(), 3792 [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }), 3793 PromotableAllocas.end()); 3794 3795 return true; 3796 } 3797 3798 /// \brief Rewrite an alloca partition's users. 3799 /// 3800 /// This routine drives both of the rewriting goals of the SROA pass. It tries 3801 /// to rewrite uses of an alloca partition to be conducive for SSA value 3802 /// promotion. If the partition needs a new, more refined alloca, this will 3803 /// build that new alloca, preserving as much type information as possible, and 3804 /// rewrite the uses of the old alloca to point at the new one and have the 3805 /// appropriate new offsets. It also evaluates how successful the rewrite was 3806 /// at enabling promotion and if it was successful queues the alloca to be 3807 /// promoted. 3808 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 3809 Partition &P) { 3810 // Try to compute a friendly type for this partition of the alloca. This 3811 // won't always succeed, in which case we fall back to a legal integer type 3812 // or an i8 array of an appropriate size. 3813 Type *SliceTy = nullptr; 3814 const DataLayout &DL = AI.getModule()->getDataLayout(); 3815 if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset())) 3816 if (DL.getTypeAllocSize(CommonUseTy) >= P.size()) 3817 SliceTy = CommonUseTy; 3818 if (!SliceTy) 3819 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 3820 P.beginOffset(), P.size())) 3821 SliceTy = TypePartitionTy; 3822 if ((!SliceTy || (SliceTy->isArrayTy() && 3823 SliceTy->getArrayElementType()->isIntegerTy())) && 3824 DL.isLegalInteger(P.size() * 8)) 3825 SliceTy = Type::getIntNTy(*C, P.size() * 8); 3826 if (!SliceTy) 3827 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 3828 assert(DL.getTypeAllocSize(SliceTy) >= P.size()); 3829 3830 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 3831 3832 VectorType *VecTy = 3833 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 3834 if (VecTy) 3835 SliceTy = VecTy; 3836 3837 // Check for the case where we're going to rewrite to a new alloca of the 3838 // exact same type as the original, and with the same access offsets. In that 3839 // case, re-use the existing alloca, but still run through the rewriter to 3840 // perform phi and select speculation. 3841 AllocaInst *NewAI; 3842 if (SliceTy == AI.getAllocatedType()) { 3843 assert(P.beginOffset() == 0 && 3844 "Non-zero begin offset but same alloca type"); 3845 NewAI = &AI; 3846 // FIXME: We should be able to bail at this point with "nothing changed". 3847 // FIXME: We might want to defer PHI speculation until after here. 3848 // FIXME: return nullptr; 3849 } else { 3850 unsigned Alignment = AI.getAlignment(); 3851 if (!Alignment) { 3852 // The minimum alignment which users can rely on when the explicit 3853 // alignment is omitted or zero is that required by the ABI for this 3854 // type. 3855 Alignment = DL.getABITypeAlignment(AI.getAllocatedType()); 3856 } 3857 Alignment = MinAlign(Alignment, P.beginOffset()); 3858 // If we will get at least this much alignment from the type alone, leave 3859 // the alloca's alignment unconstrained. 3860 if (Alignment <= DL.getABITypeAlignment(SliceTy)) 3861 Alignment = 0; 3862 NewAI = new AllocaInst( 3863 SliceTy, nullptr, Alignment, 3864 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 3865 ++NumNewAllocas; 3866 } 3867 3868 DEBUG(dbgs() << "Rewriting alloca partition " 3869 << "[" << P.beginOffset() << "," << P.endOffset() 3870 << ") to: " << *NewAI << "\n"); 3871 3872 // Track the high watermark on the worklist as it is only relevant for 3873 // promoted allocas. We will reset it to this point if the alloca is not in 3874 // fact scheduled for promotion. 3875 unsigned PPWOldSize = PostPromotionWorklist.size(); 3876 unsigned NumUses = 0; 3877 SmallPtrSet<PHINode *, 8> PHIUsers; 3878 SmallPtrSet<SelectInst *, 8> SelectUsers; 3879 3880 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 3881 P.endOffset(), IsIntegerPromotable, VecTy, 3882 PHIUsers, SelectUsers); 3883 bool Promotable = true; 3884 for (Slice *S : P.splitSliceTails()) { 3885 Promotable &= Rewriter.visit(S); 3886 ++NumUses; 3887 } 3888 for (Slice &S : P) { 3889 Promotable &= Rewriter.visit(&S); 3890 ++NumUses; 3891 } 3892 3893 NumAllocaPartitionUses += NumUses; 3894 MaxUsesPerAllocaPartition = 3895 std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition); 3896 3897 // Now that we've processed all the slices in the new partition, check if any 3898 // PHIs or Selects would block promotion. 3899 for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(), 3900 E = PHIUsers.end(); 3901 I != E; ++I) 3902 if (!isSafePHIToSpeculate(**I)) { 3903 Promotable = false; 3904 PHIUsers.clear(); 3905 SelectUsers.clear(); 3906 break; 3907 } 3908 for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(), 3909 E = SelectUsers.end(); 3910 I != E; ++I) 3911 if (!isSafeSelectToSpeculate(**I)) { 3912 Promotable = false; 3913 PHIUsers.clear(); 3914 SelectUsers.clear(); 3915 break; 3916 } 3917 3918 if (Promotable) { 3919 if (PHIUsers.empty() && SelectUsers.empty()) { 3920 // Promote the alloca. 3921 PromotableAllocas.push_back(NewAI); 3922 } else { 3923 // If we have either PHIs or Selects to speculate, add them to those 3924 // worklists and re-queue the new alloca so that we promote in on the 3925 // next iteration. 3926 for (PHINode *PHIUser : PHIUsers) 3927 SpeculatablePHIs.insert(PHIUser); 3928 for (SelectInst *SelectUser : SelectUsers) 3929 SpeculatableSelects.insert(SelectUser); 3930 Worklist.insert(NewAI); 3931 } 3932 } else { 3933 // Drop any post-promotion work items if promotion didn't happen. 3934 while (PostPromotionWorklist.size() > PPWOldSize) 3935 PostPromotionWorklist.pop_back(); 3936 3937 // We couldn't promote and we didn't create a new partition, nothing 3938 // happened. 3939 if (NewAI == &AI) 3940 return nullptr; 3941 3942 // If we can't promote the alloca, iterate on it to check for new 3943 // refinements exposed by splitting the current alloca. Don't iterate on an 3944 // alloca which didn't actually change and didn't get promoted. 3945 Worklist.insert(NewAI); 3946 } 3947 3948 return NewAI; 3949 } 3950 3951 /// \brief Walks the slices of an alloca and form partitions based on them, 3952 /// rewriting each of their uses. 3953 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 3954 if (AS.begin() == AS.end()) 3955 return false; 3956 3957 unsigned NumPartitions = 0; 3958 bool Changed = false; 3959 const DataLayout &DL = AI.getModule()->getDataLayout(); 3960 3961 // First try to pre-split loads and stores. 3962 Changed |= presplitLoadsAndStores(AI, AS); 3963 3964 // Now that we have identified any pre-splitting opportunities, mark any 3965 // splittable (non-whole-alloca) loads and stores as unsplittable. If we fail 3966 // to split these during pre-splitting, we want to force them to be 3967 // rewritten into a partition. 3968 bool IsSorted = true; 3969 for (Slice &S : AS) { 3970 if (!S.isSplittable()) 3971 continue; 3972 // FIXME: We currently leave whole-alloca splittable loads and stores. This 3973 // used to be the only splittable loads and stores and we need to be 3974 // confident that the above handling of splittable loads and stores is 3975 // completely sufficient before we forcibly disable the remaining handling. 3976 if (S.beginOffset() == 0 && 3977 S.endOffset() >= DL.getTypeAllocSize(AI.getAllocatedType())) 3978 continue; 3979 if (isa<LoadInst>(S.getUse()->getUser()) || 3980 isa<StoreInst>(S.getUse()->getUser())) { 3981 S.makeUnsplittable(); 3982 IsSorted = false; 3983 } 3984 } 3985 if (!IsSorted) 3986 std::sort(AS.begin(), AS.end()); 3987 3988 /// \brief Describes the allocas introduced by rewritePartition 3989 /// in order to migrate the debug info. 3990 struct Piece { 3991 AllocaInst *Alloca; 3992 uint64_t Offset; 3993 uint64_t Size; 3994 Piece(AllocaInst *AI, uint64_t O, uint64_t S) 3995 : Alloca(AI), Offset(O), Size(S) {} 3996 }; 3997 SmallVector<Piece, 4> Pieces; 3998 3999 // Rewrite each partition. 4000 for (auto &P : AS.partitions()) { 4001 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4002 Changed = true; 4003 if (NewAI != &AI) { 4004 uint64_t SizeOfByte = 8; 4005 uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType()); 4006 // Don't include any padding. 4007 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4008 Pieces.push_back(Piece(NewAI, P.beginOffset() * SizeOfByte, Size)); 4009 } 4010 } 4011 ++NumPartitions; 4012 } 4013 4014 NumAllocaPartitions += NumPartitions; 4015 MaxPartitionsPerAlloca = 4016 std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca); 4017 4018 // Migrate debug information from the old alloca to the new alloca(s) 4019 // and the individual partitions. 4020 if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(&AI)) { 4021 auto *Var = DbgDecl->getVariable(); 4022 auto *Expr = DbgDecl->getExpression(); 4023 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4024 uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType()); 4025 for (auto Piece : Pieces) { 4026 // Create a piece expression describing the new partition or reuse AI's 4027 // expression if there is only one partition. 4028 auto *PieceExpr = Expr; 4029 if (Piece.Size < AllocaSize || Expr->isBitPiece()) { 4030 // If this alloca is already a scalar replacement of a larger aggregate, 4031 // Piece.Offset describes the offset inside the scalar. 4032 uint64_t Offset = Expr->isBitPiece() ? Expr->getBitPieceOffset() : 0; 4033 uint64_t Start = Offset + Piece.Offset; 4034 uint64_t Size = Piece.Size; 4035 if (Expr->isBitPiece()) { 4036 uint64_t AbsEnd = Expr->getBitPieceOffset() + Expr->getBitPieceSize(); 4037 if (Start >= AbsEnd) 4038 // No need to describe a SROAed padding. 4039 continue; 4040 Size = std::min(Size, AbsEnd - Start); 4041 } 4042 PieceExpr = DIB.createBitPieceExpression(Start, Size); 4043 } else { 4044 assert(Pieces.size() == 1 && 4045 "partition is as large as original alloca"); 4046 } 4047 4048 // Remove any existing dbg.declare intrinsic describing the same alloca. 4049 if (DbgDeclareInst *OldDDI = FindAllocaDbgDeclare(Piece.Alloca)) 4050 OldDDI->eraseFromParent(); 4051 4052 DIB.insertDeclare(Piece.Alloca, Var, PieceExpr, DbgDecl->getDebugLoc(), 4053 &AI); 4054 } 4055 } 4056 return Changed; 4057 } 4058 4059 /// \brief Clobber a use with undef, deleting the used value if it becomes dead. 4060 void SROA::clobberUse(Use &U) { 4061 Value *OldV = U; 4062 // Replace the use with an undef value. 4063 U = UndefValue::get(OldV->getType()); 4064 4065 // Check for this making an instruction dead. We have to garbage collect 4066 // all the dead instructions to ensure the uses of any alloca end up being 4067 // minimal. 4068 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4069 if (isInstructionTriviallyDead(OldI)) { 4070 DeadInsts.insert(OldI); 4071 } 4072 } 4073 4074 /// \brief Analyze an alloca for SROA. 4075 /// 4076 /// This analyzes the alloca to ensure we can reason about it, builds 4077 /// the slices of the alloca, and then hands it off to be split and 4078 /// rewritten as needed. 4079 bool SROA::runOnAlloca(AllocaInst &AI) { 4080 DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4081 ++NumAllocasAnalyzed; 4082 4083 // Special case dead allocas, as they're trivial. 4084 if (AI.use_empty()) { 4085 AI.eraseFromParent(); 4086 return true; 4087 } 4088 const DataLayout &DL = AI.getModule()->getDataLayout(); 4089 4090 // Skip alloca forms that this analysis can't handle. 4091 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || 4092 DL.getTypeAllocSize(AI.getAllocatedType()) == 0) 4093 return false; 4094 4095 bool Changed = false; 4096 4097 // First, split any FCA loads and stores touching this alloca to promote 4098 // better splitting and promotion opportunities. 4099 AggLoadStoreRewriter AggRewriter; 4100 Changed |= AggRewriter.rewrite(AI); 4101 4102 // Build the slices using a recursive instruction-visiting builder. 4103 AllocaSlices AS(DL, AI); 4104 DEBUG(AS.print(dbgs())); 4105 if (AS.isEscaped()) 4106 return Changed; 4107 4108 // Delete all the dead users of this alloca before splitting and rewriting it. 4109 for (Instruction *DeadUser : AS.getDeadUsers()) { 4110 // Free up everything used by this instruction. 4111 for (Use &DeadOp : DeadUser->operands()) 4112 clobberUse(DeadOp); 4113 4114 // Now replace the uses of this instruction. 4115 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType())); 4116 4117 // And mark it for deletion. 4118 DeadInsts.insert(DeadUser); 4119 Changed = true; 4120 } 4121 for (Use *DeadOp : AS.getDeadOperands()) { 4122 clobberUse(*DeadOp); 4123 Changed = true; 4124 } 4125 4126 // No slices to split. Leave the dead alloca for a later pass to clean up. 4127 if (AS.begin() == AS.end()) 4128 return Changed; 4129 4130 Changed |= splitAlloca(AI, AS); 4131 4132 DEBUG(dbgs() << " Speculating PHIs\n"); 4133 while (!SpeculatablePHIs.empty()) 4134 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); 4135 4136 DEBUG(dbgs() << " Speculating Selects\n"); 4137 while (!SpeculatableSelects.empty()) 4138 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); 4139 4140 return Changed; 4141 } 4142 4143 /// \brief Delete the dead instructions accumulated in this run. 4144 /// 4145 /// Recursively deletes the dead instructions we've accumulated. This is done 4146 /// at the very end to maximize locality of the recursive delete and to 4147 /// minimize the problems of invalidated instruction pointers as such pointers 4148 /// are used heavily in the intermediate stages of the algorithm. 4149 /// 4150 /// We also record the alloca instructions deleted here so that they aren't 4151 /// subsequently handed to mem2reg to promote. 4152 void SROA::deleteDeadInstructions( 4153 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 4154 while (!DeadInsts.empty()) { 4155 Instruction *I = DeadInsts.pop_back_val(); 4156 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 4157 4158 I->replaceAllUsesWith(UndefValue::get(I->getType())); 4159 4160 for (Use &Operand : I->operands()) 4161 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 4162 // Zero out the operand and see if it becomes trivially dead. 4163 Operand = nullptr; 4164 if (isInstructionTriviallyDead(U)) 4165 DeadInsts.insert(U); 4166 } 4167 4168 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4169 DeletedAllocas.insert(AI); 4170 if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(AI)) 4171 DbgDecl->eraseFromParent(); 4172 } 4173 4174 ++NumDeleted; 4175 I->eraseFromParent(); 4176 } 4177 } 4178 4179 /// \brief Promote the allocas, using the best available technique. 4180 /// 4181 /// This attempts to promote whatever allocas have been identified as viable in 4182 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 4183 /// This function returns whether any promotion occurred. 4184 bool SROA::promoteAllocas(Function &F) { 4185 if (PromotableAllocas.empty()) 4186 return false; 4187 4188 NumPromoted += PromotableAllocas.size(); 4189 4190 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 4191 PromoteMemToReg(PromotableAllocas, *DT, nullptr, AC); 4192 PromotableAllocas.clear(); 4193 return true; 4194 } 4195 4196 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT, 4197 AssumptionCache &RunAC) { 4198 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 4199 C = &F.getContext(); 4200 DT = &RunDT; 4201 AC = &RunAC; 4202 4203 BasicBlock &EntryBB = F.getEntryBlock(); 4204 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 4205 I != E; ++I) { 4206 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 4207 Worklist.insert(AI); 4208 } 4209 4210 bool Changed = false; 4211 // A set of deleted alloca instruction pointers which should be removed from 4212 // the list of promotable allocas. 4213 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 4214 4215 do { 4216 while (!Worklist.empty()) { 4217 Changed |= runOnAlloca(*Worklist.pop_back_val()); 4218 deleteDeadInstructions(DeletedAllocas); 4219 4220 // Remove the deleted allocas from various lists so that we don't try to 4221 // continue processing them. 4222 if (!DeletedAllocas.empty()) { 4223 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 4224 Worklist.remove_if(IsInSet); 4225 PostPromotionWorklist.remove_if(IsInSet); 4226 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), 4227 PromotableAllocas.end(), 4228 IsInSet), 4229 PromotableAllocas.end()); 4230 DeletedAllocas.clear(); 4231 } 4232 } 4233 4234 Changed |= promoteAllocas(F); 4235 4236 Worklist = PostPromotionWorklist; 4237 PostPromotionWorklist.clear(); 4238 } while (!Worklist.empty()); 4239 4240 if (!Changed) 4241 return PreservedAnalyses::all(); 4242 4243 // FIXME: Even when promoting allocas we should preserve some abstract set of 4244 // CFG-specific analyses. 4245 PreservedAnalyses PA; 4246 PA.preserve<GlobalsAA>(); 4247 return PA; 4248 } 4249 4250 PreservedAnalyses SROA::run(Function &F, AnalysisManager<Function> &AM) { 4251 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 4252 AM.getResult<AssumptionAnalysis>(F)); 4253 } 4254 4255 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 4256 /// 4257 /// This is in the llvm namespace purely to allow it to be a friend of the \c 4258 /// SROA pass. 4259 class llvm::sroa::SROALegacyPass : public FunctionPass { 4260 /// The SROA implementation. 4261 SROA Impl; 4262 4263 public: 4264 SROALegacyPass() : FunctionPass(ID) { 4265 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 4266 } 4267 bool runOnFunction(Function &F) override { 4268 if (skipFunction(F)) 4269 return false; 4270 4271 auto PA = Impl.runImpl( 4272 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4273 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 4274 return !PA.areAllPreserved(); 4275 } 4276 void getAnalysisUsage(AnalysisUsage &AU) const override { 4277 AU.addRequired<AssumptionCacheTracker>(); 4278 AU.addRequired<DominatorTreeWrapperPass>(); 4279 AU.addPreserved<GlobalsAAWrapperPass>(); 4280 AU.setPreservesCFG(); 4281 } 4282 4283 const char *getPassName() const override { return "SROA"; } 4284 static char ID; 4285 }; 4286 4287 char SROALegacyPass::ID = 0; 4288 4289 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } 4290 4291 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 4292 "Scalar Replacement Of Aggregates", false, false) 4293 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4294 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4295 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 4296 false, false) 4297