Home | History | Annotate | Download | only in Scalar
      1 //===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Loop unrolling may create many similar GEPs for array accesses.
     11 // e.g., a 2-level loop
     12 //
     13 // float a[32][32]; // global variable
     14 //
     15 // for (int i = 0; i < 2; ++i) {
     16 //   for (int j = 0; j < 2; ++j) {
     17 //     ...
     18 //     ... = a[x + i][y + j];
     19 //     ...
     20 //   }
     21 // }
     22 //
     23 // will probably be unrolled to:
     24 //
     25 // gep %a, 0, %x, %y; load
     26 // gep %a, 0, %x, %y + 1; load
     27 // gep %a, 0, %x + 1, %y; load
     28 // gep %a, 0, %x + 1, %y + 1; load
     29 //
     30 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
     31 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
     32 // significant slowdown in targets with limited addressing modes. For instance,
     33 // because the PTX target does not support the reg+reg addressing mode, the
     34 // NVPTX backend emits PTX code that literally computes the pointer address of
     35 // each GEP, wasting tons of registers. It emits the following PTX for the
     36 // first load and similar PTX for other loads.
     37 //
     38 // mov.u32         %r1, %x;
     39 // mov.u32         %r2, %y;
     40 // mul.wide.u32    %rl2, %r1, 128;
     41 // mov.u64         %rl3, a;
     42 // add.s64         %rl4, %rl3, %rl2;
     43 // mul.wide.u32    %rl5, %r2, 4;
     44 // add.s64         %rl6, %rl4, %rl5;
     45 // ld.global.f32   %f1, [%rl6];
     46 //
     47 // To reduce the register pressure, the optimization implemented in this file
     48 // merges the common part of a group of GEPs, so we can compute each pointer
     49 // address by adding a simple offset to the common part, saving many registers.
     50 //
     51 // It works by splitting each GEP into a variadic base and a constant offset.
     52 // The variadic base can be computed once and reused by multiple GEPs, and the
     53 // constant offsets can be nicely folded into the reg+immediate addressing mode
     54 // (supported by most targets) without using any extra register.
     55 //
     56 // For instance, we transform the four GEPs and four loads in the above example
     57 // into:
     58 //
     59 // base = gep a, 0, x, y
     60 // load base
     61 // laod base + 1  * sizeof(float)
     62 // load base + 32 * sizeof(float)
     63 // load base + 33 * sizeof(float)
     64 //
     65 // Given the transformed IR, a backend that supports the reg+immediate
     66 // addressing mode can easily fold the pointer arithmetics into the loads. For
     67 // example, the NVPTX backend can easily fold the pointer arithmetics into the
     68 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
     69 //
     70 // mov.u32         %r1, %tid.x;
     71 // mov.u32         %r2, %tid.y;
     72 // mul.wide.u32    %rl2, %r1, 128;
     73 // mov.u64         %rl3, a;
     74 // add.s64         %rl4, %rl3, %rl2;
     75 // mul.wide.u32    %rl5, %r2, 4;
     76 // add.s64         %rl6, %rl4, %rl5;
     77 // ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
     78 // ld.global.f32   %f2, [%rl6+4]; // much better
     79 // ld.global.f32   %f3, [%rl6+128]; // much better
     80 // ld.global.f32   %f4, [%rl6+132]; // much better
     81 //
     82 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
     83 // multiple indices to either multiple GEPs with a single index or arithmetic
     84 // operations (depending on whether the target uses alias analysis in codegen).
     85 // Such transformation can have following benefits:
     86 // (1) It can always extract constants in the indices of structure type.
     87 // (2) After such Lowering, there are more optimization opportunities such as
     88 //     CSE, LICM and CGP.
     89 //
     90 // E.g. The following GEPs have multiple indices:
     91 //  BB1:
     92 //    %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
     93 //    load %p
     94 //    ...
     95 //  BB2:
     96 //    %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
     97 //    load %p2
     98 //    ...
     99 //
    100 // We can not do CSE for to the common part related to index "i64 %i". Lowering
    101 // GEPs can achieve such goals.
    102 // If the target does not use alias analysis in codegen, this pass will
    103 // lower a GEP with multiple indices into arithmetic operations:
    104 //  BB1:
    105 //    %1 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
    106 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
    107 //    %3 = add i64 %1, %2                          ; CSE opportunity
    108 //    %4 = mul i64 %j1, length_of_struct
    109 //    %5 = add i64 %3, %4
    110 //    %6 = add i64 %3, struct_field_3              ; Constant offset
    111 //    %p = inttoptr i64 %6 to i32*
    112 //    load %p
    113 //    ...
    114 //  BB2:
    115 //    %7 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
    116 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
    117 //    %9 = add i64 %7, %8                          ; CSE opportunity
    118 //    %10 = mul i64 %j2, length_of_struct
    119 //    %11 = add i64 %9, %10
    120 //    %12 = add i64 %11, struct_field_2            ; Constant offset
    121 //    %p = inttoptr i64 %12 to i32*
    122 //    load %p2
    123 //    ...
    124 //
    125 // If the target uses alias analysis in codegen, this pass will lower a GEP
    126 // with multiple indices into multiple GEPs with a single index:
    127 //  BB1:
    128 //    %1 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
    129 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
    130 //    %3 = getelementptr i8* %1, i64 %2            ; CSE opportunity
    131 //    %4 = mul i64 %j1, length_of_struct
    132 //    %5 = getelementptr i8* %3, i64 %4
    133 //    %6 = getelementptr i8* %5, struct_field_3    ; Constant offset
    134 //    %p = bitcast i8* %6 to i32*
    135 //    load %p
    136 //    ...
    137 //  BB2:
    138 //    %7 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
    139 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
    140 //    %9 = getelementptr i8* %7, i64 %8            ; CSE opportunity
    141 //    %10 = mul i64 %j2, length_of_struct
    142 //    %11 = getelementptr i8* %9, i64 %10
    143 //    %12 = getelementptr i8* %11, struct_field_2  ; Constant offset
    144 //    %p2 = bitcast i8* %12 to i32*
    145 //    load %p2
    146 //    ...
    147 //
    148 // Lowering GEPs can also benefit other passes such as LICM and CGP.
    149 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
    150 // indices if one of the index is variant. If we lower such GEP into invariant
    151 // parts and variant parts, LICM can hoist/sink those invariant parts.
    152 // CGP (CodeGen Prepare) tries to sink address calculations that match the
    153 // target's addressing modes. A GEP with multiple indices may not match and will
    154 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
    155 // them. So we end up with a better addressing mode.
    156 //
    157 //===----------------------------------------------------------------------===//
    158 
    159 #include "llvm/Analysis/ScalarEvolution.h"
    160 #include "llvm/Analysis/LoopInfo.h"
    161 #include "llvm/Analysis/MemoryBuiltins.h"
    162 #include "llvm/Analysis/TargetLibraryInfo.h"
    163 #include "llvm/Analysis/TargetTransformInfo.h"
    164 #include "llvm/Analysis/ValueTracking.h"
    165 #include "llvm/IR/Constants.h"
    166 #include "llvm/IR/DataLayout.h"
    167 #include "llvm/IR/Dominators.h"
    168 #include "llvm/IR/Instructions.h"
    169 #include "llvm/IR/LLVMContext.h"
    170 #include "llvm/IR/Module.h"
    171 #include "llvm/IR/PatternMatch.h"
    172 #include "llvm/IR/Operator.h"
    173 #include "llvm/Support/CommandLine.h"
    174 #include "llvm/Support/raw_ostream.h"
    175 #include "llvm/Transforms/Scalar.h"
    176 #include "llvm/Transforms/Utils/Local.h"
    177 #include "llvm/Target/TargetMachine.h"
    178 #include "llvm/Target/TargetSubtargetInfo.h"
    179 #include "llvm/IR/IRBuilder.h"
    180 
    181 using namespace llvm;
    182 using namespace llvm::PatternMatch;
    183 
    184 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
    185     "disable-separate-const-offset-from-gep", cl::init(false),
    186     cl::desc("Do not separate the constant offset from a GEP instruction"),
    187     cl::Hidden);
    188 // Setting this flag may emit false positives when the input module already
    189 // contains dead instructions. Therefore, we set it only in unit tests that are
    190 // free of dead code.
    191 static cl::opt<bool>
    192     VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
    193                      cl::desc("Verify this pass produces no dead code"),
    194                      cl::Hidden);
    195 
    196 namespace {
    197 
    198 /// \brief A helper class for separating a constant offset from a GEP index.
    199 ///
    200 /// In real programs, a GEP index may be more complicated than a simple addition
    201 /// of something and a constant integer which can be trivially splitted. For
    202 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
    203 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
    204 ///
    205 /// Therefore, this class looks into the expression that computes a given GEP
    206 /// index, and tries to find a constant integer that can be hoisted to the
    207 /// outermost level of the expression as an addition. Not every constant in an
    208 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
    209 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
    210 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
    211 class ConstantOffsetExtractor {
    212 public:
    213   /// Extracts a constant offset from the given GEP index. It returns the
    214   /// new index representing the remainder (equal to the original index minus
    215   /// the constant offset), or nullptr if we cannot extract a constant offset.
    216   /// \p Idx The given GEP index
    217   /// \p GEP The given GEP
    218   /// \p UserChainTail Outputs the tail of UserChain so that we can
    219   ///                  garbage-collect unused instructions in UserChain.
    220   static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
    221                         User *&UserChainTail, const DominatorTree *DT);
    222   /// Looks for a constant offset from the given GEP index without extracting
    223   /// it. It returns the numeric value of the extracted constant offset (0 if
    224   /// failed). The meaning of the arguments are the same as Extract.
    225   static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
    226                       const DominatorTree *DT);
    227 
    228 private:
    229   ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
    230       : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
    231   }
    232   /// Searches the expression that computes V for a non-zero constant C s.t.
    233   /// V can be reassociated into the form V' + C. If the searching is
    234   /// successful, returns C and update UserChain as a def-use chain from C to V;
    235   /// otherwise, UserChain is empty.
    236   ///
    237   /// \p V            The given expression
    238   /// \p SignExtended Whether V will be sign-extended in the computation of the
    239   ///                 GEP index
    240   /// \p ZeroExtended Whether V will be zero-extended in the computation of the
    241   ///                 GEP index
    242   /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
    243   ///                 an index of an inbounds GEP is guaranteed to be
    244   ///                 non-negative. Levaraging this, we can better split
    245   ///                 inbounds GEPs.
    246   APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
    247   /// A helper function to look into both operands of a binary operator.
    248   APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
    249                             bool ZeroExtended);
    250   /// After finding the constant offset C from the GEP index I, we build a new
    251   /// index I' s.t. I' + C = I. This function builds and returns the new
    252   /// index I' according to UserChain produced by function "find".
    253   ///
    254   /// The building conceptually takes two steps:
    255   /// 1) iteratively distribute s/zext towards the leaves of the expression tree
    256   /// that computes I
    257   /// 2) reassociate the expression tree to the form I' + C.
    258   ///
    259   /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
    260   /// sext to a, b and 5 so that we have
    261   ///   sext(a) + (sext(b) + 5).
    262   /// Then, we reassociate it to
    263   ///   (sext(a) + sext(b)) + 5.
    264   /// Given this form, we know I' is sext(a) + sext(b).
    265   Value *rebuildWithoutConstOffset();
    266   /// After the first step of rebuilding the GEP index without the constant
    267   /// offset, distribute s/zext to the operands of all operators in UserChain.
    268   /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
    269   /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
    270   ///
    271   /// The function also updates UserChain to point to new subexpressions after
    272   /// distributing s/zext. e.g., the old UserChain of the above example is
    273   /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
    274   /// and the new UserChain is
    275   /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
    276   ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
    277   ///
    278   /// \p ChainIndex The index to UserChain. ChainIndex is initially
    279   ///               UserChain.size() - 1, and is decremented during
    280   ///               the recursion.
    281   Value *distributeExtsAndCloneChain(unsigned ChainIndex);
    282   /// Reassociates the GEP index to the form I' + C and returns I'.
    283   Value *removeConstOffset(unsigned ChainIndex);
    284   /// A helper function to apply ExtInsts, a list of s/zext, to value V.
    285   /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
    286   /// returns "sext i32 (zext i16 V to i32) to i64".
    287   Value *applyExts(Value *V);
    288 
    289   /// A helper function that returns whether we can trace into the operands
    290   /// of binary operator BO for a constant offset.
    291   ///
    292   /// \p SignExtended Whether BO is surrounded by sext
    293   /// \p ZeroExtended Whether BO is surrounded by zext
    294   /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
    295   ///                array index.
    296   bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
    297                     bool NonNegative);
    298 
    299   /// The path from the constant offset to the old GEP index. e.g., if the GEP
    300   /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
    301   /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
    302   /// UserChain[2] will be the entire expression "a * b + (c + 5)".
    303   ///
    304   /// This path helps to rebuild the new GEP index.
    305   SmallVector<User *, 8> UserChain;
    306   /// A data structure used in rebuildWithoutConstOffset. Contains all
    307   /// sext/zext instructions along UserChain.
    308   SmallVector<CastInst *, 16> ExtInsts;
    309   Instruction *IP;  /// Insertion position of cloned instructions.
    310   const DataLayout &DL;
    311   const DominatorTree *DT;
    312 };
    313 
    314 /// \brief A pass that tries to split every GEP in the function into a variadic
    315 /// base and a constant offset. It is a FunctionPass because searching for the
    316 /// constant offset may inspect other basic blocks.
    317 class SeparateConstOffsetFromGEP : public FunctionPass {
    318 public:
    319   static char ID;
    320   SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
    321                              bool LowerGEP = false)
    322       : FunctionPass(ID), DL(nullptr), DT(nullptr), TM(TM), LowerGEP(LowerGEP) {
    323     initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
    324   }
    325 
    326   void getAnalysisUsage(AnalysisUsage &AU) const override {
    327     AU.addRequired<DominatorTreeWrapperPass>();
    328     AU.addRequired<ScalarEvolutionWrapperPass>();
    329     AU.addRequired<TargetTransformInfoWrapperPass>();
    330     AU.addRequired<LoopInfoWrapperPass>();
    331     AU.setPreservesCFG();
    332     AU.addRequired<TargetLibraryInfoWrapperPass>();
    333   }
    334 
    335   bool doInitialization(Module &M) override {
    336     DL = &M.getDataLayout();
    337     return false;
    338   }
    339   bool runOnFunction(Function &F) override;
    340 
    341 private:
    342   /// Tries to split the given GEP into a variadic base and a constant offset,
    343   /// and returns true if the splitting succeeds.
    344   bool splitGEP(GetElementPtrInst *GEP);
    345   /// Lower a GEP with multiple indices into multiple GEPs with a single index.
    346   /// Function splitGEP already split the original GEP into a variadic part and
    347   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
    348   /// variadic part into a set of GEPs with a single index and applies
    349   /// AccumulativeByteOffset to it.
    350   /// \p Variadic                  The variadic part of the original GEP.
    351   /// \p AccumulativeByteOffset    The constant offset.
    352   void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
    353                               int64_t AccumulativeByteOffset);
    354   /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
    355   /// Function splitGEP already split the original GEP into a variadic part and
    356   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
    357   /// variadic part into a set of arithmetic operations and applies
    358   /// AccumulativeByteOffset to it.
    359   /// \p Variadic                  The variadic part of the original GEP.
    360   /// \p AccumulativeByteOffset    The constant offset.
    361   void lowerToArithmetics(GetElementPtrInst *Variadic,
    362                           int64_t AccumulativeByteOffset);
    363   /// Finds the constant offset within each index and accumulates them. If
    364   /// LowerGEP is true, it finds in indices of both sequential and structure
    365   /// types, otherwise it only finds in sequential indices. The output
    366   /// NeedsExtraction indicates whether we successfully find a non-zero constant
    367   /// offset.
    368   int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
    369   /// Canonicalize array indices to pointer-size integers. This helps to
    370   /// simplify the logic of splitting a GEP. For example, if a + b is a
    371   /// pointer-size integer, we have
    372   ///   gep base, a + b = gep (gep base, a), b
    373   /// However, this equality may not hold if the size of a + b is smaller than
    374   /// the pointer size, because LLVM conceptually sign-extends GEP indices to
    375   /// pointer size before computing the address
    376   /// (http://llvm.org/docs/LangRef.html#id181).
    377   ///
    378   /// This canonicalization is very likely already done in clang and
    379   /// instcombine. Therefore, the program will probably remain the same.
    380   ///
    381   /// Returns true if the module changes.
    382   ///
    383   /// Verified in @i32_add in split-gep.ll
    384   bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
    385   /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
    386   /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
    387   /// the constant offset. After extraction, it becomes desirable to reunion the
    388   /// distributed sexts. For example,
    389   ///
    390   ///                              &a[sext(i +nsw (j +nsw 5)]
    391   ///   => distribute              &a[sext(i) +nsw (sext(j) +nsw 5)]
    392   ///   => constant extraction     &a[sext(i) + sext(j)] + 5
    393   ///   => reunion                 &a[sext(i +nsw j)] + 5
    394   bool reuniteExts(Function &F);
    395   /// A helper that reunites sexts in an instruction.
    396   bool reuniteExts(Instruction *I);
    397   /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
    398   Instruction *findClosestMatchingDominator(const SCEV *Key,
    399                                             Instruction *Dominatee);
    400   /// Verify F is free of dead code.
    401   void verifyNoDeadCode(Function &F);
    402 
    403   bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
    404   // Swap the index operand of two GEP.
    405   void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
    406   // Check if it is safe to swap operand of two GEP.
    407   bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
    408                             Loop *CurLoop);
    409 
    410   const DataLayout *DL;
    411   DominatorTree *DT;
    412   ScalarEvolution *SE;
    413   const TargetMachine *TM;
    414 
    415   LoopInfo *LI;
    416   TargetLibraryInfo *TLI;
    417   /// Whether to lower a GEP with multiple indices into arithmetic operations or
    418   /// multiple GEPs with a single index.
    419   bool LowerGEP;
    420   DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs;
    421 };
    422 }  // anonymous namespace
    423 
    424 char SeparateConstOffsetFromGEP::ID = 0;
    425 INITIALIZE_PASS_BEGIN(
    426     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
    427     "Split GEPs to a variadic base and a constant offset for better CSE", false,
    428     false)
    429 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    430 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
    431 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    432 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    433 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    434 INITIALIZE_PASS_END(
    435     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
    436     "Split GEPs to a variadic base and a constant offset for better CSE", false,
    437     false)
    438 
    439 FunctionPass *
    440 llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
    441                                            bool LowerGEP) {
    442   return new SeparateConstOffsetFromGEP(TM, LowerGEP);
    443 }
    444 
    445 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
    446                                             bool ZeroExtended,
    447                                             BinaryOperator *BO,
    448                                             bool NonNegative) {
    449   // We only consider ADD, SUB and OR, because a non-zero constant found in
    450   // expressions composed of these operations can be easily hoisted as a
    451   // constant offset by reassociation.
    452   if (BO->getOpcode() != Instruction::Add &&
    453       BO->getOpcode() != Instruction::Sub &&
    454       BO->getOpcode() != Instruction::Or) {
    455     return false;
    456   }
    457 
    458   Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
    459   // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
    460   // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
    461   if (BO->getOpcode() == Instruction::Or &&
    462       !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
    463     return false;
    464 
    465   // In addition, tracing into BO requires that its surrounding s/zext (if
    466   // any) is distributable to both operands.
    467   //
    468   // Suppose BO = A op B.
    469   //  SignExtended | ZeroExtended | Distributable?
    470   // --------------+--------------+----------------------------------
    471   //       0       |      0       | true because no s/zext exists
    472   //       0       |      1       | zext(BO) == zext(A) op zext(B)
    473   //       1       |      0       | sext(BO) == sext(A) op sext(B)
    474   //       1       |      1       | zext(sext(BO)) ==
    475   //               |              |     zext(sext(A)) op zext(sext(B))
    476   if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
    477     // If a + b >= 0 and (a >= 0 or b >= 0), then
    478     //   sext(a + b) = sext(a) + sext(b)
    479     // even if the addition is not marked nsw.
    480     //
    481     // Leveraging this invarient, we can trace into an sext'ed inbound GEP
    482     // index if the constant offset is non-negative.
    483     //
    484     // Verified in @sext_add in split-gep.ll.
    485     if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
    486       if (!ConstLHS->isNegative())
    487         return true;
    488     }
    489     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
    490       if (!ConstRHS->isNegative())
    491         return true;
    492     }
    493   }
    494 
    495   // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
    496   // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
    497   if (BO->getOpcode() == Instruction::Add ||
    498       BO->getOpcode() == Instruction::Sub) {
    499     if (SignExtended && !BO->hasNoSignedWrap())
    500       return false;
    501     if (ZeroExtended && !BO->hasNoUnsignedWrap())
    502       return false;
    503   }
    504 
    505   return true;
    506 }
    507 
    508 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
    509                                                    bool SignExtended,
    510                                                    bool ZeroExtended) {
    511   // BO being non-negative does not shed light on whether its operands are
    512   // non-negative. Clear the NonNegative flag here.
    513   APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
    514                               /* NonNegative */ false);
    515   // If we found a constant offset in the left operand, stop and return that.
    516   // This shortcut might cause us to miss opportunities of combining the
    517   // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
    518   // However, such cases are probably already handled by -instcombine,
    519   // given this pass runs after the standard optimizations.
    520   if (ConstantOffset != 0) return ConstantOffset;
    521   ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
    522                         /* NonNegative */ false);
    523   // If U is a sub operator, negate the constant offset found in the right
    524   // operand.
    525   if (BO->getOpcode() == Instruction::Sub)
    526     ConstantOffset = -ConstantOffset;
    527   return ConstantOffset;
    528 }
    529 
    530 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
    531                                     bool ZeroExtended, bool NonNegative) {
    532   // TODO(jingyue): We could trace into integer/pointer casts, such as
    533   // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
    534   // integers because it gives good enough results for our benchmarks.
    535   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
    536 
    537   // We cannot do much with Values that are not a User, such as an Argument.
    538   User *U = dyn_cast<User>(V);
    539   if (U == nullptr) return APInt(BitWidth, 0);
    540 
    541   APInt ConstantOffset(BitWidth, 0);
    542   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    543     // Hooray, we found it!
    544     ConstantOffset = CI->getValue();
    545   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
    546     // Trace into subexpressions for more hoisting opportunities.
    547     if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
    548       ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
    549   } else if (isa<SExtInst>(V)) {
    550     ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
    551                           ZeroExtended, NonNegative).sext(BitWidth);
    552   } else if (isa<ZExtInst>(V)) {
    553     // As an optimization, we can clear the SignExtended flag because
    554     // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
    555     //
    556     // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
    557     ConstantOffset =
    558         find(U->getOperand(0), /* SignExtended */ false,
    559              /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
    560   }
    561 
    562   // If we found a non-zero constant offset, add it to the path for
    563   // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
    564   // help this optimization.
    565   if (ConstantOffset != 0)
    566     UserChain.push_back(U);
    567   return ConstantOffset;
    568 }
    569 
    570 Value *ConstantOffsetExtractor::applyExts(Value *V) {
    571   Value *Current = V;
    572   // ExtInsts is built in the use-def order. Therefore, we apply them to V
    573   // in the reversed order.
    574   for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
    575     if (Constant *C = dyn_cast<Constant>(Current)) {
    576       // If Current is a constant, apply s/zext using ConstantExpr::getCast.
    577       // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
    578       Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
    579     } else {
    580       Instruction *Ext = (*I)->clone();
    581       Ext->setOperand(0, Current);
    582       Ext->insertBefore(IP);
    583       Current = Ext;
    584     }
    585   }
    586   return Current;
    587 }
    588 
    589 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
    590   distributeExtsAndCloneChain(UserChain.size() - 1);
    591   // Remove all nullptrs (used to be s/zext) from UserChain.
    592   unsigned NewSize = 0;
    593   for (User *I : UserChain) {
    594     if (I != nullptr) {
    595       UserChain[NewSize] = I;
    596       NewSize++;
    597     }
    598   }
    599   UserChain.resize(NewSize);
    600   return removeConstOffset(UserChain.size() - 1);
    601 }
    602 
    603 Value *
    604 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
    605   User *U = UserChain[ChainIndex];
    606   if (ChainIndex == 0) {
    607     assert(isa<ConstantInt>(U));
    608     // If U is a ConstantInt, applyExts will return a ConstantInt as well.
    609     return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
    610   }
    611 
    612   if (CastInst *Cast = dyn_cast<CastInst>(U)) {
    613     assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
    614            "We only traced into two types of CastInst: sext and zext");
    615     ExtInsts.push_back(Cast);
    616     UserChain[ChainIndex] = nullptr;
    617     return distributeExtsAndCloneChain(ChainIndex - 1);
    618   }
    619 
    620   // Function find only trace into BinaryOperator and CastInst.
    621   BinaryOperator *BO = cast<BinaryOperator>(U);
    622   // OpNo = which operand of BO is UserChain[ChainIndex - 1]
    623   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
    624   Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
    625   Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
    626 
    627   BinaryOperator *NewBO = nullptr;
    628   if (OpNo == 0) {
    629     NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
    630                                    BO->getName(), IP);
    631   } else {
    632     NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
    633                                    BO->getName(), IP);
    634   }
    635   return UserChain[ChainIndex] = NewBO;
    636 }
    637 
    638 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
    639   if (ChainIndex == 0) {
    640     assert(isa<ConstantInt>(UserChain[ChainIndex]));
    641     return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
    642   }
    643 
    644   BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
    645   assert(BO->getNumUses() <= 1 &&
    646          "distributeExtsAndCloneChain clones each BinaryOperator in "
    647          "UserChain, so no one should be used more than "
    648          "once");
    649 
    650   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
    651   assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
    652   Value *NextInChain = removeConstOffset(ChainIndex - 1);
    653   Value *TheOther = BO->getOperand(1 - OpNo);
    654 
    655   // If NextInChain is 0 and not the LHS of a sub, we can simplify the
    656   // sub-expression to be just TheOther.
    657   if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
    658     if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
    659       return TheOther;
    660   }
    661 
    662   BinaryOperator::BinaryOps NewOp = BO->getOpcode();
    663   if (BO->getOpcode() == Instruction::Or) {
    664     // Rebuild "or" as "add", because "or" may be invalid for the new
    665     // epxression.
    666     //
    667     // For instance, given
    668     //   a | (b + 5) where a and b + 5 have no common bits,
    669     // we can extract 5 as the constant offset.
    670     //
    671     // However, reusing the "or" in the new index would give us
    672     //   (a | b) + 5
    673     // which does not equal a | (b + 5).
    674     //
    675     // Replacing the "or" with "add" is fine, because
    676     //   a | (b + 5) = a + (b + 5) = (a + b) + 5
    677     NewOp = Instruction::Add;
    678   }
    679 
    680   BinaryOperator *NewBO;
    681   if (OpNo == 0) {
    682     NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
    683   } else {
    684     NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
    685   }
    686   NewBO->takeName(BO);
    687   return NewBO;
    688 }
    689 
    690 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
    691                                         User *&UserChainTail,
    692                                         const DominatorTree *DT) {
    693   ConstantOffsetExtractor Extractor(GEP, DT);
    694   // Find a non-zero constant offset first.
    695   APInt ConstantOffset =
    696       Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
    697                      GEP->isInBounds());
    698   if (ConstantOffset == 0) {
    699     UserChainTail = nullptr;
    700     return nullptr;
    701   }
    702   // Separates the constant offset from the GEP index.
    703   Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
    704   UserChainTail = Extractor.UserChain.back();
    705   return IdxWithoutConstOffset;
    706 }
    707 
    708 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
    709                                       const DominatorTree *DT) {
    710   // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
    711   return ConstantOffsetExtractor(GEP, DT)
    712       .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
    713             GEP->isInBounds())
    714       .getSExtValue();
    715 }
    716 
    717 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
    718     GetElementPtrInst *GEP) {
    719   bool Changed = false;
    720   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
    721   gep_type_iterator GTI = gep_type_begin(*GEP);
    722   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
    723        I != E; ++I, ++GTI) {
    724     // Skip struct member indices which must be i32.
    725     if (isa<SequentialType>(*GTI)) {
    726       if ((*I)->getType() != IntPtrTy) {
    727         *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
    728         Changed = true;
    729       }
    730     }
    731   }
    732   return Changed;
    733 }
    734 
    735 int64_t
    736 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
    737                                                  bool &NeedsExtraction) {
    738   NeedsExtraction = false;
    739   int64_t AccumulativeByteOffset = 0;
    740   gep_type_iterator GTI = gep_type_begin(*GEP);
    741   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
    742     if (isa<SequentialType>(*GTI)) {
    743       // Tries to extract a constant offset from this GEP index.
    744       int64_t ConstantOffset =
    745           ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
    746       if (ConstantOffset != 0) {
    747         NeedsExtraction = true;
    748         // A GEP may have multiple indices.  We accumulate the extracted
    749         // constant offset to a byte offset, and later offset the remainder of
    750         // the original GEP with this byte offset.
    751         AccumulativeByteOffset +=
    752             ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
    753       }
    754     } else if (LowerGEP) {
    755       StructType *StTy = cast<StructType>(*GTI);
    756       uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
    757       // Skip field 0 as the offset is always 0.
    758       if (Field != 0) {
    759         NeedsExtraction = true;
    760         AccumulativeByteOffset +=
    761             DL->getStructLayout(StTy)->getElementOffset(Field);
    762       }
    763     }
    764   }
    765   return AccumulativeByteOffset;
    766 }
    767 
    768 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
    769     GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
    770   IRBuilder<> Builder(Variadic);
    771   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
    772 
    773   Type *I8PtrTy =
    774       Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
    775   Value *ResultPtr = Variadic->getOperand(0);
    776   Loop *L = LI->getLoopFor(Variadic->getParent());
    777   // Check if the base is not loop invariant or used more than once.
    778   bool isSwapCandidate =
    779       L && L->isLoopInvariant(ResultPtr) &&
    780       !hasMoreThanOneUseInLoop(ResultPtr, L);
    781   Value *FirstResult = nullptr;
    782 
    783   if (ResultPtr->getType() != I8PtrTy)
    784     ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
    785 
    786   gep_type_iterator GTI = gep_type_begin(*Variadic);
    787   // Create an ugly GEP for each sequential index. We don't create GEPs for
    788   // structure indices, as they are accumulated in the constant offset index.
    789   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
    790     if (isa<SequentialType>(*GTI)) {
    791       Value *Idx = Variadic->getOperand(I);
    792       // Skip zero indices.
    793       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
    794         if (CI->isZero())
    795           continue;
    796 
    797       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
    798                                 DL->getTypeAllocSize(GTI.getIndexedType()));
    799       // Scale the index by element size.
    800       if (ElementSize != 1) {
    801         if (ElementSize.isPowerOf2()) {
    802           Idx = Builder.CreateShl(
    803               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
    804         } else {
    805           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
    806         }
    807       }
    808       // Create an ugly GEP with a single index for each index.
    809       ResultPtr =
    810           Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
    811       if (FirstResult == nullptr)
    812         FirstResult = ResultPtr;
    813     }
    814   }
    815 
    816   // Create a GEP with the constant offset index.
    817   if (AccumulativeByteOffset != 0) {
    818     Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
    819     ResultPtr =
    820         Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
    821   } else
    822     isSwapCandidate = false;
    823 
    824   // If we created a GEP with constant index, and the base is loop invariant,
    825   // then we swap the first one with it, so LICM can move constant GEP out
    826   // later.
    827   GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
    828   GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr);
    829   if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
    830     swapGEPOperand(FirstGEP, SecondGEP);
    831 
    832   if (ResultPtr->getType() != Variadic->getType())
    833     ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
    834 
    835   Variadic->replaceAllUsesWith(ResultPtr);
    836   Variadic->eraseFromParent();
    837 }
    838 
    839 void
    840 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
    841                                                int64_t AccumulativeByteOffset) {
    842   IRBuilder<> Builder(Variadic);
    843   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
    844 
    845   Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
    846   gep_type_iterator GTI = gep_type_begin(*Variadic);
    847   // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
    848   // don't create arithmetics for structure indices, as they are accumulated
    849   // in the constant offset index.
    850   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
    851     if (isa<SequentialType>(*GTI)) {
    852       Value *Idx = Variadic->getOperand(I);
    853       // Skip zero indices.
    854       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
    855         if (CI->isZero())
    856           continue;
    857 
    858       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
    859                                 DL->getTypeAllocSize(GTI.getIndexedType()));
    860       // Scale the index by element size.
    861       if (ElementSize != 1) {
    862         if (ElementSize.isPowerOf2()) {
    863           Idx = Builder.CreateShl(
    864               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
    865         } else {
    866           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
    867         }
    868       }
    869       // Create an ADD for each index.
    870       ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
    871     }
    872   }
    873 
    874   // Create an ADD for the constant offset index.
    875   if (AccumulativeByteOffset != 0) {
    876     ResultPtr = Builder.CreateAdd(
    877         ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
    878   }
    879 
    880   ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
    881   Variadic->replaceAllUsesWith(ResultPtr);
    882   Variadic->eraseFromParent();
    883 }
    884 
    885 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
    886   // Skip vector GEPs.
    887   if (GEP->getType()->isVectorTy())
    888     return false;
    889 
    890   // The backend can already nicely handle the case where all indices are
    891   // constant.
    892   if (GEP->hasAllConstantIndices())
    893     return false;
    894 
    895   bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
    896 
    897   bool NeedsExtraction;
    898   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
    899 
    900   if (!NeedsExtraction)
    901     return Changed;
    902   // If LowerGEP is disabled, before really splitting the GEP, check whether the
    903   // backend supports the addressing mode we are about to produce. If no, this
    904   // splitting probably won't be beneficial.
    905   // If LowerGEP is enabled, even the extracted constant offset can not match
    906   // the addressing mode, we can still do optimizations to other lowered parts
    907   // of variable indices. Therefore, we don't check for addressing modes in that
    908   // case.
    909   if (!LowerGEP) {
    910     TargetTransformInfo &TTI =
    911         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
    912             *GEP->getParent()->getParent());
    913     unsigned AddrSpace = GEP->getPointerAddressSpace();
    914     if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
    915                                    /*BaseGV=*/nullptr, AccumulativeByteOffset,
    916                                    /*HasBaseReg=*/true, /*Scale=*/0,
    917                                    AddrSpace)) {
    918       return Changed;
    919     }
    920   }
    921 
    922   // Remove the constant offset in each sequential index. The resultant GEP
    923   // computes the variadic base.
    924   // Notice that we don't remove struct field indices here. If LowerGEP is
    925   // disabled, a structure index is not accumulated and we still use the old
    926   // one. If LowerGEP is enabled, a structure index is accumulated in the
    927   // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
    928   // handle the constant offset and won't need a new structure index.
    929   gep_type_iterator GTI = gep_type_begin(*GEP);
    930   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
    931     if (isa<SequentialType>(*GTI)) {
    932       // Splits this GEP index into a variadic part and a constant offset, and
    933       // uses the variadic part as the new index.
    934       Value *OldIdx = GEP->getOperand(I);
    935       User *UserChainTail;
    936       Value *NewIdx =
    937           ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
    938       if (NewIdx != nullptr) {
    939         // Switches to the index with the constant offset removed.
    940         GEP->setOperand(I, NewIdx);
    941         // After switching to the new index, we can garbage-collect UserChain
    942         // and the old index if they are not used.
    943         RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
    944         RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
    945       }
    946     }
    947   }
    948 
    949   // Clear the inbounds attribute because the new index may be off-bound.
    950   // e.g.,
    951   //
    952   //   b     = add i64 a, 5
    953   //   addr  = gep inbounds float, float* p, i64 b
    954   //
    955   // is transformed to:
    956   //
    957   //   addr2 = gep float, float* p, i64 a ; inbounds removed
    958   //   addr  = gep inbounds float, float* addr2, i64 5
    959   //
    960   // If a is -4, although the old index b is in bounds, the new index a is
    961   // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
    962   // inbounds keyword is not present, the offsets are added to the base
    963   // address with silently-wrapping two's complement arithmetic".
    964   // Therefore, the final code will be a semantically equivalent.
    965   //
    966   // TODO(jingyue): do some range analysis to keep as many inbounds as
    967   // possible. GEPs with inbounds are more friendly to alias analysis.
    968   bool GEPWasInBounds = GEP->isInBounds();
    969   GEP->setIsInBounds(false);
    970 
    971   // Lowers a GEP to either GEPs with a single index or arithmetic operations.
    972   if (LowerGEP) {
    973     // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
    974     // arithmetic operations if the target uses alias analysis in codegen.
    975     if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
    976       lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
    977     else
    978       lowerToArithmetics(GEP, AccumulativeByteOffset);
    979     return true;
    980   }
    981 
    982   // No need to create another GEP if the accumulative byte offset is 0.
    983   if (AccumulativeByteOffset == 0)
    984     return true;
    985 
    986   // Offsets the base with the accumulative byte offset.
    987   //
    988   //   %gep                        ; the base
    989   //   ... %gep ...
    990   //
    991   // => add the offset
    992   //
    993   //   %gep2                       ; clone of %gep
    994   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
    995   //   %gep                        ; will be removed
    996   //   ... %gep ...
    997   //
    998   // => replace all uses of %gep with %new.gep and remove %gep
    999   //
   1000   //   %gep2                       ; clone of %gep
   1001   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
   1002   //   ... %new.gep ...
   1003   //
   1004   // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
   1005   // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
   1006   // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
   1007   // type of %gep.
   1008   //
   1009   //   %gep2                       ; clone of %gep
   1010   //   %0       = bitcast %gep2 to i8*
   1011   //   %uglygep = gep %0, <offset>
   1012   //   %new.gep = bitcast %uglygep to <type of %gep>
   1013   //   ... %new.gep ...
   1014   Instruction *NewGEP = GEP->clone();
   1015   NewGEP->insertBefore(GEP);
   1016 
   1017   // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
   1018   // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
   1019   // used with unsigned integers later.
   1020   int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
   1021       DL->getTypeAllocSize(GEP->getResultElementType()));
   1022   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
   1023   if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
   1024     // Very likely. As long as %gep is natually aligned, the byte offset we
   1025     // extracted should be a multiple of sizeof(*%gep).
   1026     int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
   1027     NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
   1028                                        ConstantInt::get(IntPtrTy, Index, true),
   1029                                        GEP->getName(), GEP);
   1030     // Inherit the inbounds attribute of the original GEP.
   1031     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
   1032   } else {
   1033     // Unlikely but possible. For example,
   1034     // #pragma pack(1)
   1035     // struct S {
   1036     //   int a[3];
   1037     //   int64 b[8];
   1038     // };
   1039     // #pragma pack()
   1040     //
   1041     // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
   1042     // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
   1043     // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
   1044     // sizeof(int64).
   1045     //
   1046     // Emit an uglygep in this case.
   1047     Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
   1048                                        GEP->getPointerAddressSpace());
   1049     NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
   1050     NewGEP = GetElementPtrInst::Create(
   1051         Type::getInt8Ty(GEP->getContext()), NewGEP,
   1052         ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
   1053         GEP);
   1054     // Inherit the inbounds attribute of the original GEP.
   1055     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
   1056     if (GEP->getType() != I8PtrTy)
   1057       NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
   1058   }
   1059 
   1060   GEP->replaceAllUsesWith(NewGEP);
   1061   GEP->eraseFromParent();
   1062 
   1063   return true;
   1064 }
   1065 
   1066 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
   1067   if (skipFunction(F))
   1068     return false;
   1069 
   1070   if (DisableSeparateConstOffsetFromGEP)
   1071     return false;
   1072 
   1073   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1074   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
   1075   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   1076   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1077   bool Changed = false;
   1078   for (BasicBlock &B : F) {
   1079     for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;)
   1080       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
   1081         Changed |= splitGEP(GEP);
   1082     // No need to split GEP ConstantExprs because all its indices are constant
   1083     // already.
   1084   }
   1085 
   1086   Changed |= reuniteExts(F);
   1087 
   1088   if (VerifyNoDeadCode)
   1089     verifyNoDeadCode(F);
   1090 
   1091   return Changed;
   1092 }
   1093 
   1094 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
   1095     const SCEV *Key, Instruction *Dominatee) {
   1096   auto Pos = DominatingExprs.find(Key);
   1097   if (Pos == DominatingExprs.end())
   1098     return nullptr;
   1099 
   1100   auto &Candidates = Pos->second;
   1101   // Because we process the basic blocks in pre-order of the dominator tree, a
   1102   // candidate that doesn't dominate the current instruction won't dominate any
   1103   // future instruction either. Therefore, we pop it out of the stack. This
   1104   // optimization makes the algorithm O(n).
   1105   while (!Candidates.empty()) {
   1106     Instruction *Candidate = Candidates.back();
   1107     if (DT->dominates(Candidate, Dominatee))
   1108       return Candidate;
   1109     Candidates.pop_back();
   1110   }
   1111   return nullptr;
   1112 }
   1113 
   1114 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
   1115   if (!SE->isSCEVable(I->getType()))
   1116     return false;
   1117 
   1118   //   Dom: LHS+RHS
   1119   //   I: sext(LHS)+sext(RHS)
   1120   // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
   1121   // TODO: handle zext
   1122   Value *LHS = nullptr, *RHS = nullptr;
   1123   if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) ||
   1124       match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
   1125     if (LHS->getType() == RHS->getType()) {
   1126       const SCEV *Key =
   1127           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
   1128       if (auto *Dom = findClosestMatchingDominator(Key, I)) {
   1129         Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
   1130         NewSExt->takeName(I);
   1131         I->replaceAllUsesWith(NewSExt);
   1132         RecursivelyDeleteTriviallyDeadInstructions(I);
   1133         return true;
   1134       }
   1135     }
   1136   }
   1137 
   1138   // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
   1139   if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) ||
   1140       match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
   1141     if (isKnownNotFullPoison(I)) {
   1142       const SCEV *Key =
   1143           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
   1144       DominatingExprs[Key].push_back(I);
   1145     }
   1146   }
   1147   return false;
   1148 }
   1149 
   1150 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
   1151   bool Changed = false;
   1152   DominatingExprs.clear();
   1153   for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
   1154        Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
   1155     BasicBlock *BB = Node->getBlock();
   1156     for (auto I = BB->begin(); I != BB->end(); ) {
   1157       Instruction *Cur = &*I++;
   1158       Changed |= reuniteExts(Cur);
   1159     }
   1160   }
   1161   return Changed;
   1162 }
   1163 
   1164 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
   1165   for (BasicBlock &B : F) {
   1166     for (Instruction &I : B) {
   1167       if (isInstructionTriviallyDead(&I)) {
   1168         std::string ErrMessage;
   1169         raw_string_ostream RSO(ErrMessage);
   1170         RSO << "Dead instruction detected!\n" << I << "\n";
   1171         llvm_unreachable(RSO.str().c_str());
   1172       }
   1173     }
   1174   }
   1175 }
   1176 
   1177 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
   1178     GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
   1179   if (!FirstGEP || !FirstGEP->hasOneUse())
   1180     return false;
   1181 
   1182   if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
   1183     return false;
   1184 
   1185   if (FirstGEP == SecondGEP)
   1186     return false;
   1187 
   1188   unsigned FirstNum = FirstGEP->getNumOperands();
   1189   unsigned SecondNum = SecondGEP->getNumOperands();
   1190   // Give up if the number of operands are not 2.
   1191   if (FirstNum != SecondNum || FirstNum != 2)
   1192     return false;
   1193 
   1194   Value *FirstBase = FirstGEP->getOperand(0);
   1195   Value *SecondBase = SecondGEP->getOperand(0);
   1196   Value *FirstOffset = FirstGEP->getOperand(1);
   1197   // Give up if the index of the first GEP is loop invariant.
   1198   if (CurLoop->isLoopInvariant(FirstOffset))
   1199     return false;
   1200 
   1201   // Give up if base doesn't have same type.
   1202   if (FirstBase->getType() != SecondBase->getType())
   1203     return false;
   1204 
   1205   Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
   1206 
   1207   // Check if the second operand of first GEP has constant coefficient.
   1208   // For an example, for the following code,  we won't gain anything by
   1209   // hoisting the second GEP out because the second GEP can be folded away.
   1210   //   %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
   1211   //   %67 = shl i64 %scevgep.sum.ur159, 2
   1212   //   %uglygep160 = getelementptr i8* %65, i64 %67
   1213   //   %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
   1214 
   1215   // Skip constant shift instruction which may be generated by Splitting GEPs.
   1216   if (FirstOffsetDef && FirstOffsetDef->isShift() &&
   1217       isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
   1218     FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
   1219 
   1220   // Give up if FirstOffsetDef is an Add or Sub with constant.
   1221   // Because it may not profitable at all due to constant folding.
   1222   if (FirstOffsetDef)
   1223     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
   1224       unsigned opc = BO->getOpcode();
   1225       if ((opc == Instruction::Add || opc == Instruction::Sub) &&
   1226           (isa<ConstantInt>(BO->getOperand(0)) ||
   1227            isa<ConstantInt>(BO->getOperand(1))))
   1228         return false;
   1229     }
   1230   return true;
   1231 }
   1232 
   1233 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
   1234   int UsesInLoop = 0;
   1235   for (User *U : V->users()) {
   1236     if (Instruction *User = dyn_cast<Instruction>(U))
   1237       if (L->contains(User))
   1238         if (++UsesInLoop > 1)
   1239           return true;
   1240   }
   1241   return false;
   1242 }
   1243 
   1244 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
   1245                                                 GetElementPtrInst *Second) {
   1246   Value *Offset1 = First->getOperand(1);
   1247   Value *Offset2 = Second->getOperand(1);
   1248   First->setOperand(1, Offset2);
   1249   Second->setOperand(1, Offset1);
   1250 
   1251   // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
   1252   const DataLayout &DAL = First->getModule()->getDataLayout();
   1253   APInt Offset(DAL.getPointerSizeInBits(
   1254                    cast<PointerType>(First->getType())->getAddressSpace()),
   1255                0);
   1256   Value *NewBase =
   1257       First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
   1258   uint64_t ObjectSize;
   1259   if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
   1260      Offset.ugt(ObjectSize)) {
   1261     First->setIsInBounds(false);
   1262     Second->setIsInBounds(false);
   1263   } else
   1264     First->setIsInBounds(true);
   1265 }
   1266