Home | History | Annotate | Download | only in Utils
      1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CloneFunctionInto interface, which is used as the
     11 // low-level function cloner.  This is used by the CloneFunction and function
     12 // inliner to do the dirty work of copying the body of a function around.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/Cloning.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Analysis/ConstantFolding.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/IR/CFG.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/IR/DebugInfo.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/Function.h"
     26 #include "llvm/IR/GlobalVariable.h"
     27 #include "llvm/IR/Instructions.h"
     28 #include "llvm/IR/IntrinsicInst.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/IR/Metadata.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     33 #include "llvm/Transforms/Utils/Local.h"
     34 #include "llvm/Transforms/Utils/ValueMapper.h"
     35 #include <map>
     36 using namespace llvm;
     37 
     38 /// See comments in Cloning.h.
     39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
     40                                   ValueToValueMapTy &VMap,
     41                                   const Twine &NameSuffix, Function *F,
     42                                   ClonedCodeInfo *CodeInfo) {
     43   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
     44   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
     45 
     46   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
     47 
     48   // Loop over all instructions, and copy them over.
     49   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
     50        II != IE; ++II) {
     51     Instruction *NewInst = II->clone();
     52     if (II->hasName())
     53       NewInst->setName(II->getName()+NameSuffix);
     54     NewBB->getInstList().push_back(NewInst);
     55     VMap[&*II] = NewInst; // Add instruction map to value.
     56 
     57     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
     58     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
     59       if (isa<ConstantInt>(AI->getArraySize()))
     60         hasStaticAllocas = true;
     61       else
     62         hasDynamicAllocas = true;
     63     }
     64   }
     65 
     66   if (CodeInfo) {
     67     CodeInfo->ContainsCalls          |= hasCalls;
     68     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
     69     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
     70                                         BB != &BB->getParent()->getEntryBlock();
     71   }
     72   return NewBB;
     73 }
     74 
     75 // Clone OldFunc into NewFunc, transforming the old arguments into references to
     76 // VMap values.
     77 //
     78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
     79                              ValueToValueMapTy &VMap,
     80                              bool ModuleLevelChanges,
     81                              SmallVectorImpl<ReturnInst*> &Returns,
     82                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
     83                              ValueMapTypeRemapper *TypeMapper,
     84                              ValueMaterializer *Materializer) {
     85   assert(NameSuffix && "NameSuffix cannot be null!");
     86 
     87 #ifndef NDEBUG
     88   for (const Argument &I : OldFunc->args())
     89     assert(VMap.count(&I) && "No mapping from source argument specified!");
     90 #endif
     91 
     92   // Copy all attributes other than those stored in the AttributeSet.  We need
     93   // to remap the parameter indices of the AttributeSet.
     94   AttributeSet NewAttrs = NewFunc->getAttributes();
     95   NewFunc->copyAttributesFrom(OldFunc);
     96   NewFunc->setAttributes(NewAttrs);
     97 
     98   // Fix up the personality function that got copied over.
     99   if (OldFunc->hasPersonalityFn())
    100     NewFunc->setPersonalityFn(
    101         MapValue(OldFunc->getPersonalityFn(), VMap,
    102                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    103                  TypeMapper, Materializer));
    104 
    105   AttributeSet OldAttrs = OldFunc->getAttributes();
    106   // Clone any argument attributes that are present in the VMap.
    107   for (const Argument &OldArg : OldFunc->args())
    108     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
    109       AttributeSet attrs =
    110           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
    111       if (attrs.getNumSlots() > 0)
    112         NewArg->addAttr(attrs);
    113     }
    114 
    115   NewFunc->setAttributes(
    116       NewFunc->getAttributes()
    117           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
    118                          OldAttrs.getRetAttributes())
    119           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
    120                          OldAttrs.getFnAttributes()));
    121 
    122   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
    123   OldFunc->getAllMetadata(MDs);
    124   for (auto MD : MDs)
    125     NewFunc->addMetadata(
    126         MD.first,
    127         *MapMetadata(MD.second, VMap,
    128                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    129                      TypeMapper, Materializer));
    130 
    131   // Loop over all of the basic blocks in the function, cloning them as
    132   // appropriate.  Note that we save BE this way in order to handle cloning of
    133   // recursive functions into themselves.
    134   //
    135   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    136        BI != BE; ++BI) {
    137     const BasicBlock &BB = *BI;
    138 
    139     // Create a new basic block and copy instructions into it!
    140     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
    141 
    142     // Add basic block mapping.
    143     VMap[&BB] = CBB;
    144 
    145     // It is only legal to clone a function if a block address within that
    146     // function is never referenced outside of the function.  Given that, we
    147     // want to map block addresses from the old function to block addresses in
    148     // the clone. (This is different from the generic ValueMapper
    149     // implementation, which generates an invalid blockaddress when
    150     // cloning a function.)
    151     if (BB.hasAddressTaken()) {
    152       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    153                                               const_cast<BasicBlock*>(&BB));
    154       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
    155     }
    156 
    157     // Note return instructions for the caller.
    158     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
    159       Returns.push_back(RI);
    160   }
    161 
    162   // Loop over all of the instructions in the function, fixing up operand
    163   // references as we go.  This uses VMap to do all the hard work.
    164   for (Function::iterator BB =
    165            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
    166                           BE = NewFunc->end();
    167        BB != BE; ++BB)
    168     // Loop over all instructions, fixing each one as we find it...
    169     for (Instruction &II : *BB)
    170       RemapInstruction(&II, VMap,
    171                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    172                        TypeMapper, Materializer);
    173 }
    174 
    175 /// Return a copy of the specified function and add it to that function's
    176 /// module.  Also, any references specified in the VMap are changed to refer to
    177 /// their mapped value instead of the original one.  If any of the arguments to
    178 /// the function are in the VMap, the arguments are deleted from the resultant
    179 /// function.  The VMap is updated to include mappings from all of the
    180 /// instructions and basicblocks in the function from their old to new values.
    181 ///
    182 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
    183                               ClonedCodeInfo *CodeInfo) {
    184   std::vector<Type*> ArgTypes;
    185 
    186   // The user might be deleting arguments to the function by specifying them in
    187   // the VMap.  If so, we need to not add the arguments to the arg ty vector
    188   //
    189   for (const Argument &I : F->args())
    190     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
    191       ArgTypes.push_back(I.getType());
    192 
    193   // Create a new function type...
    194   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
    195                                     ArgTypes, F->getFunctionType()->isVarArg());
    196 
    197   // Create the new function...
    198   Function *NewF =
    199       Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
    200 
    201   // Loop over the arguments, copying the names of the mapped arguments over...
    202   Function::arg_iterator DestI = NewF->arg_begin();
    203   for (const Argument & I : F->args())
    204     if (VMap.count(&I) == 0) {     // Is this argument preserved?
    205       DestI->setName(I.getName()); // Copy the name over...
    206       VMap[&I] = &*DestI++;        // Add mapping to VMap
    207     }
    208 
    209   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
    210   CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "",
    211                     CodeInfo);
    212 
    213   return NewF;
    214 }
    215 
    216 
    217 
    218 namespace {
    219   /// This is a private class used to implement CloneAndPruneFunctionInto.
    220   struct PruningFunctionCloner {
    221     Function *NewFunc;
    222     const Function *OldFunc;
    223     ValueToValueMapTy &VMap;
    224     bool ModuleLevelChanges;
    225     const char *NameSuffix;
    226     ClonedCodeInfo *CodeInfo;
    227 
    228   public:
    229     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
    230                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
    231                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
    232         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
    233           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
    234           CodeInfo(codeInfo) {}
    235 
    236     /// The specified block is found to be reachable, clone it and
    237     /// anything that it can reach.
    238     void CloneBlock(const BasicBlock *BB,
    239                     BasicBlock::const_iterator StartingInst,
    240                     std::vector<const BasicBlock*> &ToClone);
    241   };
    242 }
    243 
    244 /// The specified block is found to be reachable, clone it and
    245 /// anything that it can reach.
    246 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
    247                                        BasicBlock::const_iterator StartingInst,
    248                                        std::vector<const BasicBlock*> &ToClone){
    249   WeakVH &BBEntry = VMap[BB];
    250 
    251   // Have we already cloned this block?
    252   if (BBEntry) return;
    253 
    254   // Nope, clone it now.
    255   BasicBlock *NewBB;
    256   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
    257   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
    258 
    259   // It is only legal to clone a function if a block address within that
    260   // function is never referenced outside of the function.  Given that, we
    261   // want to map block addresses from the old function to block addresses in
    262   // the clone. (This is different from the generic ValueMapper
    263   // implementation, which generates an invalid blockaddress when
    264   // cloning a function.)
    265   //
    266   // Note that we don't need to fix the mapping for unreachable blocks;
    267   // the default mapping there is safe.
    268   if (BB->hasAddressTaken()) {
    269     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    270                                             const_cast<BasicBlock*>(BB));
    271     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
    272   }
    273 
    274   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
    275 
    276   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
    277   // loop doesn't include the terminator.
    278   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
    279        II != IE; ++II) {
    280 
    281     Instruction *NewInst = II->clone();
    282 
    283     // Eagerly remap operands to the newly cloned instruction, except for PHI
    284     // nodes for which we defer processing until we update the CFG.
    285     if (!isa<PHINode>(NewInst)) {
    286       RemapInstruction(NewInst, VMap,
    287                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    288 
    289       // If we can simplify this instruction to some other value, simply add
    290       // a mapping to that value rather than inserting a new instruction into
    291       // the basic block.
    292       if (Value *V =
    293               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
    294         // On the off-chance that this simplifies to an instruction in the old
    295         // function, map it back into the new function.
    296         if (Value *MappedV = VMap.lookup(V))
    297           V = MappedV;
    298 
    299         if (!NewInst->mayHaveSideEffects()) {
    300           VMap[&*II] = V;
    301           delete NewInst;
    302           continue;
    303         }
    304       }
    305     }
    306 
    307     if (II->hasName())
    308       NewInst->setName(II->getName()+NameSuffix);
    309     VMap[&*II] = NewInst; // Add instruction map to value.
    310     NewBB->getInstList().push_back(NewInst);
    311     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
    312 
    313     if (CodeInfo)
    314       if (auto CS = ImmutableCallSite(&*II))
    315         if (CS.hasOperandBundles())
    316           CodeInfo->OperandBundleCallSites.push_back(NewInst);
    317 
    318     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
    319       if (isa<ConstantInt>(AI->getArraySize()))
    320         hasStaticAllocas = true;
    321       else
    322         hasDynamicAllocas = true;
    323     }
    324   }
    325 
    326   // Finally, clone over the terminator.
    327   const TerminatorInst *OldTI = BB->getTerminator();
    328   bool TerminatorDone = false;
    329   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
    330     if (BI->isConditional()) {
    331       // If the condition was a known constant in the callee...
    332       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
    333       // Or is a known constant in the caller...
    334       if (!Cond) {
    335         Value *V = VMap.lookup(BI->getCondition());
    336         Cond = dyn_cast_or_null<ConstantInt>(V);
    337       }
    338 
    339       // Constant fold to uncond branch!
    340       if (Cond) {
    341         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
    342         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    343         ToClone.push_back(Dest);
    344         TerminatorDone = true;
    345       }
    346     }
    347   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
    348     // If switching on a value known constant in the caller.
    349     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
    350     if (!Cond) { // Or known constant after constant prop in the callee...
    351       Value *V = VMap.lookup(SI->getCondition());
    352       Cond = dyn_cast_or_null<ConstantInt>(V);
    353     }
    354     if (Cond) {     // Constant fold to uncond branch!
    355       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
    356       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
    357       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    358       ToClone.push_back(Dest);
    359       TerminatorDone = true;
    360     }
    361   }
    362 
    363   if (!TerminatorDone) {
    364     Instruction *NewInst = OldTI->clone();
    365     if (OldTI->hasName())
    366       NewInst->setName(OldTI->getName()+NameSuffix);
    367     NewBB->getInstList().push_back(NewInst);
    368     VMap[OldTI] = NewInst;             // Add instruction map to value.
    369 
    370     if (CodeInfo)
    371       if (auto CS = ImmutableCallSite(OldTI))
    372         if (CS.hasOperandBundles())
    373           CodeInfo->OperandBundleCallSites.push_back(NewInst);
    374 
    375     // Recursively clone any reachable successor blocks.
    376     const TerminatorInst *TI = BB->getTerminator();
    377     for (const BasicBlock *Succ : TI->successors())
    378       ToClone.push_back(Succ);
    379   }
    380 
    381   if (CodeInfo) {
    382     CodeInfo->ContainsCalls          |= hasCalls;
    383     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
    384     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
    385       BB != &BB->getParent()->front();
    386   }
    387 }
    388 
    389 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
    390 /// entire function. Instead it starts at an instruction provided by the caller
    391 /// and copies (and prunes) only the code reachable from that instruction.
    392 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
    393                                      const Instruction *StartingInst,
    394                                      ValueToValueMapTy &VMap,
    395                                      bool ModuleLevelChanges,
    396                                      SmallVectorImpl<ReturnInst *> &Returns,
    397                                      const char *NameSuffix,
    398                                      ClonedCodeInfo *CodeInfo) {
    399   assert(NameSuffix && "NameSuffix cannot be null!");
    400 
    401   ValueMapTypeRemapper *TypeMapper = nullptr;
    402   ValueMaterializer *Materializer = nullptr;
    403 
    404 #ifndef NDEBUG
    405   // If the cloning starts at the beginning of the function, verify that
    406   // the function arguments are mapped.
    407   if (!StartingInst)
    408     for (const Argument &II : OldFunc->args())
    409       assert(VMap.count(&II) && "No mapping from source argument specified!");
    410 #endif
    411 
    412   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
    413                             NameSuffix, CodeInfo);
    414   const BasicBlock *StartingBB;
    415   if (StartingInst)
    416     StartingBB = StartingInst->getParent();
    417   else {
    418     StartingBB = &OldFunc->getEntryBlock();
    419     StartingInst = &StartingBB->front();
    420   }
    421 
    422   // Clone the entry block, and anything recursively reachable from it.
    423   std::vector<const BasicBlock*> CloneWorklist;
    424   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
    425   while (!CloneWorklist.empty()) {
    426     const BasicBlock *BB = CloneWorklist.back();
    427     CloneWorklist.pop_back();
    428     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
    429   }
    430 
    431   // Loop over all of the basic blocks in the old function.  If the block was
    432   // reachable, we have cloned it and the old block is now in the value map:
    433   // insert it into the new function in the right order.  If not, ignore it.
    434   //
    435   // Defer PHI resolution until rest of function is resolved.
    436   SmallVector<const PHINode*, 16> PHIToResolve;
    437   for (const BasicBlock &BI : *OldFunc) {
    438     Value *V = VMap.lookup(&BI);
    439     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
    440     if (!NewBB) continue;  // Dead block.
    441 
    442     // Add the new block to the new function.
    443     NewFunc->getBasicBlockList().push_back(NewBB);
    444 
    445     // Handle PHI nodes specially, as we have to remove references to dead
    446     // blocks.
    447     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
    448       // PHI nodes may have been remapped to non-PHI nodes by the caller or
    449       // during the cloning process.
    450       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
    451         if (isa<PHINode>(VMap[PN]))
    452           PHIToResolve.push_back(PN);
    453         else
    454           break;
    455       } else {
    456         break;
    457       }
    458     }
    459 
    460     // Finally, remap the terminator instructions, as those can't be remapped
    461     // until all BBs are mapped.
    462     RemapInstruction(NewBB->getTerminator(), VMap,
    463                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    464                      TypeMapper, Materializer);
    465   }
    466 
    467   // Defer PHI resolution until rest of function is resolved, PHI resolution
    468   // requires the CFG to be up-to-date.
    469   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
    470     const PHINode *OPN = PHIToResolve[phino];
    471     unsigned NumPreds = OPN->getNumIncomingValues();
    472     const BasicBlock *OldBB = OPN->getParent();
    473     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
    474 
    475     // Map operands for blocks that are live and remove operands for blocks
    476     // that are dead.
    477     for (; phino != PHIToResolve.size() &&
    478          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
    479       OPN = PHIToResolve[phino];
    480       PHINode *PN = cast<PHINode>(VMap[OPN]);
    481       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
    482         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
    483         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
    484           Value *InVal = MapValue(PN->getIncomingValue(pred),
    485                                   VMap,
    486                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    487           assert(InVal && "Unknown input value?");
    488           PN->setIncomingValue(pred, InVal);
    489           PN->setIncomingBlock(pred, MappedBlock);
    490         } else {
    491           PN->removeIncomingValue(pred, false);
    492           --pred;  // Revisit the next entry.
    493           --e;
    494         }
    495       }
    496     }
    497 
    498     // The loop above has removed PHI entries for those blocks that are dead
    499     // and has updated others.  However, if a block is live (i.e. copied over)
    500     // but its terminator has been changed to not go to this block, then our
    501     // phi nodes will have invalid entries.  Update the PHI nodes in this
    502     // case.
    503     PHINode *PN = cast<PHINode>(NewBB->begin());
    504     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
    505     if (NumPreds != PN->getNumIncomingValues()) {
    506       assert(NumPreds < PN->getNumIncomingValues());
    507       // Count how many times each predecessor comes to this block.
    508       std::map<BasicBlock*, unsigned> PredCount;
    509       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
    510            PI != E; ++PI)
    511         --PredCount[*PI];
    512 
    513       // Figure out how many entries to remove from each PHI.
    514       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    515         ++PredCount[PN->getIncomingBlock(i)];
    516 
    517       // At this point, the excess predecessor entries are positive in the
    518       // map.  Loop over all of the PHIs and remove excess predecessor
    519       // entries.
    520       BasicBlock::iterator I = NewBB->begin();
    521       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
    522         for (const auto &PCI : PredCount) {
    523           BasicBlock *Pred = PCI.first;
    524           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
    525             PN->removeIncomingValue(Pred, false);
    526         }
    527       }
    528     }
    529 
    530     // If the loops above have made these phi nodes have 0 or 1 operand,
    531     // replace them with undef or the input value.  We must do this for
    532     // correctness, because 0-operand phis are not valid.
    533     PN = cast<PHINode>(NewBB->begin());
    534     if (PN->getNumIncomingValues() == 0) {
    535       BasicBlock::iterator I = NewBB->begin();
    536       BasicBlock::const_iterator OldI = OldBB->begin();
    537       while ((PN = dyn_cast<PHINode>(I++))) {
    538         Value *NV = UndefValue::get(PN->getType());
    539         PN->replaceAllUsesWith(NV);
    540         assert(VMap[&*OldI] == PN && "VMap mismatch");
    541         VMap[&*OldI] = NV;
    542         PN->eraseFromParent();
    543         ++OldI;
    544       }
    545     }
    546   }
    547 
    548   // Make a second pass over the PHINodes now that all of them have been
    549   // remapped into the new function, simplifying the PHINode and performing any
    550   // recursive simplifications exposed. This will transparently update the
    551   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
    552   // two PHINodes, the iteration over the old PHIs remains valid, and the
    553   // mapping will just map us to the new node (which may not even be a PHI
    554   // node).
    555   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
    556     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
    557       recursivelySimplifyInstruction(PN);
    558 
    559   // Now that the inlined function body has been fully constructed, go through
    560   // and zap unconditional fall-through branches. This happens all the time when
    561   // specializing code: code specialization turns conditional branches into
    562   // uncond branches, and this code folds them.
    563   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
    564   Function::iterator I = Begin;
    565   while (I != NewFunc->end()) {
    566     // Check if this block has become dead during inlining or other
    567     // simplifications. Note that the first block will appear dead, as it has
    568     // not yet been wired up properly.
    569     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
    570                        I->getSinglePredecessor() == &*I)) {
    571       BasicBlock *DeadBB = &*I++;
    572       DeleteDeadBlock(DeadBB);
    573       continue;
    574     }
    575 
    576     // We need to simplify conditional branches and switches with a constant
    577     // operand. We try to prune these out when cloning, but if the
    578     // simplification required looking through PHI nodes, those are only
    579     // available after forming the full basic block. That may leave some here,
    580     // and we still want to prune the dead code as early as possible.
    581     ConstantFoldTerminator(&*I);
    582 
    583     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
    584     if (!BI || BI->isConditional()) { ++I; continue; }
    585 
    586     BasicBlock *Dest = BI->getSuccessor(0);
    587     if (!Dest->getSinglePredecessor()) {
    588       ++I; continue;
    589     }
    590 
    591     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
    592     // above should have zapped all of them..
    593     assert(!isa<PHINode>(Dest->begin()));
    594 
    595     // We know all single-entry PHI nodes in the inlined function have been
    596     // removed, so we just need to splice the blocks.
    597     BI->eraseFromParent();
    598 
    599     // Make all PHI nodes that referred to Dest now refer to I as their source.
    600     Dest->replaceAllUsesWith(&*I);
    601 
    602     // Move all the instructions in the succ to the pred.
    603     I->getInstList().splice(I->end(), Dest->getInstList());
    604 
    605     // Remove the dest block.
    606     Dest->eraseFromParent();
    607 
    608     // Do not increment I, iteratively merge all things this block branches to.
    609   }
    610 
    611   // Make a final pass over the basic blocks from the old function to gather
    612   // any return instructions which survived folding. We have to do this here
    613   // because we can iteratively remove and merge returns above.
    614   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
    615                           E = NewFunc->end();
    616        I != E; ++I)
    617     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
    618       Returns.push_back(RI);
    619 }
    620 
    621 
    622 /// This works exactly like CloneFunctionInto,
    623 /// except that it does some simple constant prop and DCE on the fly.  The
    624 /// effect of this is to copy significantly less code in cases where (for
    625 /// example) a function call with constant arguments is inlined, and those
    626 /// constant arguments cause a significant amount of code in the callee to be
    627 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
    628 /// used for things like CloneFunction or CloneModule.
    629 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    630                                      ValueToValueMapTy &VMap,
    631                                      bool ModuleLevelChanges,
    632                                      SmallVectorImpl<ReturnInst*> &Returns,
    633                                      const char *NameSuffix,
    634                                      ClonedCodeInfo *CodeInfo,
    635                                      Instruction *TheCall) {
    636   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
    637                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
    638 }
    639 
    640 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
    641 void llvm::remapInstructionsInBlocks(
    642     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
    643   // Rewrite the code to refer to itself.
    644   for (auto *BB : Blocks)
    645     for (auto &Inst : *BB)
    646       RemapInstruction(&Inst, VMap,
    647                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
    648 }
    649 
    650 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
    651 /// Blocks.
    652 ///
    653 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
    654 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
    655 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
    656                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
    657                                    const Twine &NameSuffix, LoopInfo *LI,
    658                                    DominatorTree *DT,
    659                                    SmallVectorImpl<BasicBlock *> &Blocks) {
    660   assert(OrigLoop->getSubLoops().empty() &&
    661          "Loop to be cloned cannot have inner loop");
    662   Function *F = OrigLoop->getHeader()->getParent();
    663   Loop *ParentLoop = OrigLoop->getParentLoop();
    664 
    665   Loop *NewLoop = new Loop();
    666   if (ParentLoop)
    667     ParentLoop->addChildLoop(NewLoop);
    668   else
    669     LI->addTopLevelLoop(NewLoop);
    670 
    671   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
    672   assert(OrigPH && "No preheader");
    673   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
    674   // To rename the loop PHIs.
    675   VMap[OrigPH] = NewPH;
    676   Blocks.push_back(NewPH);
    677 
    678   // Update LoopInfo.
    679   if (ParentLoop)
    680     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
    681 
    682   // Update DominatorTree.
    683   DT->addNewBlock(NewPH, LoopDomBB);
    684 
    685   for (BasicBlock *BB : OrigLoop->getBlocks()) {
    686     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
    687     VMap[BB] = NewBB;
    688 
    689     // Update LoopInfo.
    690     NewLoop->addBasicBlockToLoop(NewBB, *LI);
    691 
    692     // Add DominatorTree node. After seeing all blocks, update to correct IDom.
    693     DT->addNewBlock(NewBB, NewPH);
    694 
    695     Blocks.push_back(NewBB);
    696   }
    697 
    698   for (BasicBlock *BB : OrigLoop->getBlocks()) {
    699     // Update DominatorTree.
    700     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
    701     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
    702                                  cast<BasicBlock>(VMap[IDomBB]));
    703   }
    704 
    705   // Move them physically from the end of the block list.
    706   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
    707                                 NewPH);
    708   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
    709                                 NewLoop->getHeader()->getIterator(), F->end());
    710 
    711   return NewLoop;
    712 }
    713