Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #include <ctype.h>
     50 #include <string.h>
     51 #include <iomanip>
     52 #include <limits>
     53 #include <set>
     54 
     55 #include "gtest/internal/gtest-string.h"
     56 #include "gtest/internal/gtest-filepath.h"
     57 #include "gtest/internal/gtest-type-util.h"
     58 
     59 #if !GTEST_NO_LLVM_RAW_OSTREAM
     60 #include "llvm/Support/raw_os_ostream.h"
     61 #endif
     62 
     63 // Due to C++ preprocessor weirdness, we need double indirection to
     64 // concatenate two tokens when one of them is __LINE__.  Writing
     65 //
     66 //   foo ## __LINE__
     67 //
     68 // will result in the token foo__LINE__, instead of foo followed by
     69 // the current line number.  For more details, see
     70 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     71 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     72 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     73 
     74 // Google Test defines the testing::Message class to allow construction of
     75 // test messages via the << operator.  The idea is that anything
     76 // streamable to std::ostream can be streamed to a testing::Message.
     77 // This allows a user to use his own types in Google Test assertions by
     78 // overloading the << operator.
     79 //
     80 // util/gtl/stl_logging-inl.h overloads << for STL containers.  These
     81 // overloads cannot be defined in the std namespace, as that will be
     82 // undefined behavior.  Therefore, they are defined in the global
     83 // namespace instead.
     84 //
     85 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
     86 // overloads are visible in either the std namespace or the global
     87 // namespace, but not other namespaces, including the testing
     88 // namespace which Google Test's Message class is in.
     89 //
     90 // To allow STL containers (and other types that has a << operator
     91 // defined in the global namespace) to be used in Google Test assertions,
     92 // testing::Message must access the custom << operator from the global
     93 // namespace.  Hence this helper function.
     94 //
     95 // Note: Jeffrey Yasskin suggested an alternative fix by "using
     96 // ::operator<<;" in the definition of Message's operator<<.  That fix
     97 // doesn't require a helper function, but unfortunately doesn't
     98 // compile with MSVC.
     99 
    100 // LLVM INTERNAL CHANGE: To allow operator<< to work with both
    101 // std::ostreams and LLVM's raw_ostreams, we define a special
    102 // std::ostream with an implicit conversion to raw_ostream& and stream
    103 // to that.  This causes the compiler to prefer std::ostream overloads
    104 // but still find raw_ostream& overloads.
    105 #if !GTEST_NO_LLVM_RAW_OSTREAM
    106 namespace llvm {
    107 class convertible_fwd_ostream : public std::ostream {
    108   virtual void anchor();
    109   raw_os_ostream ros_;
    110 
    111 public:
    112   convertible_fwd_ostream(std::ostream& os)
    113     : std::ostream(os.rdbuf()), ros_(*this) {}
    114   operator raw_ostream&() { return ros_; }
    115 };
    116 }
    117 template <typename T>
    118 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
    119   llvm::convertible_fwd_ostream cos(*os);
    120   cos << val;
    121 }
    122 #else
    123 template <typename T>
    124 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
    125   *os << val;
    126 }
    127 #endif
    128 
    129 class ProtocolMessage;
    130 namespace proto2 { class Message; }
    131 
    132 namespace testing {
    133 
    134 // Forward declarations.
    135 
    136 class AssertionResult;                 // Result of an assertion.
    137 class Message;                         // Represents a failure message.
    138 class Test;                            // Represents a test.
    139 class TestInfo;                        // Information about a test.
    140 class TestPartResult;                  // Result of a test part.
    141 class UnitTest;                        // A collection of test cases.
    142 
    143 template <typename T>
    144 ::std::string PrintToString(const T& value);
    145 
    146 namespace internal {
    147 
    148 struct TraceInfo;                      // Information about a trace point.
    149 class ScopedTrace;                     // Implements scoped trace.
    150 class TestInfoImpl;                    // Opaque implementation of TestInfo
    151 class UnitTestImpl;                    // Opaque implementation of UnitTest
    152 
    153 // How many times InitGoogleTest() has been called.
    154 extern int g_init_gtest_count;
    155 
    156 // The text used in failure messages to indicate the start of the
    157 // stack trace.
    158 GTEST_API_ extern const char kStackTraceMarker[];
    159 
    160 // A secret type that Google Test users don't know about.  It has no
    161 // definition on purpose.  Therefore it's impossible to create a
    162 // Secret object, which is what we want.
    163 class Secret;
    164 
    165 // Two overloaded helpers for checking at compile time whether an
    166 // expression is a null pointer literal (i.e. NULL or any 0-valued
    167 // compile-time integral constant).  Their return values have
    168 // different sizes, so we can use sizeof() to test which version is
    169 // picked by the compiler.  These helpers have no implementations, as
    170 // we only need their signatures.
    171 //
    172 // Given IsNullLiteralHelper(x), the compiler will pick the first
    173 // version if x can be implicitly converted to Secret*, and pick the
    174 // second version otherwise.  Since Secret is a secret and incomplete
    175 // type, the only expression a user can write that has type Secret* is
    176 // a null pointer literal.  Therefore, we know that x is a null
    177 // pointer literal if and only if the first version is picked by the
    178 // compiler.
    179 char IsNullLiteralHelper(Secret* p);
    180 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    181 
    182 // A compile-time bool constant that is true if and only if x is a
    183 // null pointer literal (i.e. NULL or any 0-valued compile-time
    184 // integral constant).
    185 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    186 // We lose support for NULL detection where the compiler doesn't like
    187 // passing non-POD classes through ellipsis (...).
    188 # define GTEST_IS_NULL_LITERAL_(x) false
    189 #else
    190 # define GTEST_IS_NULL_LITERAL_(x) \
    191     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    192 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    193 
    194 // Appends the user-supplied message to the Google-Test-generated message.
    195 GTEST_API_ String AppendUserMessage(const String& gtest_msg,
    196                                     const Message& user_msg);
    197 
    198 // A helper class for creating scoped traces in user programs.
    199 class GTEST_API_ ScopedTrace {
    200  public:
    201   // The c'tor pushes the given source file location and message onto
    202   // a trace stack maintained by Google Test.
    203   ScopedTrace(const char* file, int line, const Message& message);
    204 
    205   // The d'tor pops the info pushed by the c'tor.
    206   //
    207   // Note that the d'tor is not virtual in order to be efficient.
    208   // Don't inherit from ScopedTrace!
    209   ~ScopedTrace();
    210 
    211  private:
    212   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    213 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    214                             // c'tor and d'tor.  Therefore it doesn't
    215                             // need to be used otherwise.
    216 
    217 // Converts a streamable value to a String.  A NULL pointer is
    218 // converted to "(null)".  When the input value is a ::string,
    219 // ::std::string, ::wstring, or ::std::wstring object, each NUL
    220 // character in it is replaced with "\\0".
    221 // Declared here but defined in gtest.h, so that it has access
    222 // to the definition of the Message class, required by the ARM
    223 // compiler.
    224 template <typename T>
    225 String StreamableToString(const T& streamable);
    226 
    227 // The Symbian compiler has a bug that prevents it from selecting the
    228 // correct overload of FormatForComparisonFailureMessage (see below)
    229 // unless we pass the first argument by reference.  If we do that,
    230 // however, Visual Age C++ 10.1 generates a compiler error.  Therefore
    231 // we only apply the work-around for Symbian.
    232 #if defined(__SYMBIAN32__)
    233 # define GTEST_CREF_WORKAROUND_ const&
    234 #else
    235 # define GTEST_CREF_WORKAROUND_
    236 #endif
    237 
    238 // When this operand is a const char* or char*, if the other operand
    239 // is a ::std::string or ::string, we print this operand as a C string
    240 // rather than a pointer (we do the same for wide strings); otherwise
    241 // we print it as a pointer to be safe.
    242 
    243 // This internal macro is used to avoid duplicated code.
    244 #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
    245 inline String FormatForComparisonFailureMessage(\
    246     operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
    247     const operand2_type& /*operand2*/) {\
    248   return operand1_printer(str);\
    249 }\
    250 inline String FormatForComparisonFailureMessage(\
    251     const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
    252     const operand2_type& /*operand2*/) {\
    253   return operand1_printer(str);\
    254 }
    255 
    256 GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
    257 #if GTEST_HAS_STD_WSTRING
    258 GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
    259 #endif  // GTEST_HAS_STD_WSTRING
    260 
    261 #if GTEST_HAS_GLOBAL_STRING
    262 GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
    263 #endif  // GTEST_HAS_GLOBAL_STRING
    264 #if GTEST_HAS_GLOBAL_WSTRING
    265 GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
    266 #endif  // GTEST_HAS_GLOBAL_WSTRING
    267 
    268 #undef GTEST_FORMAT_IMPL_
    269 
    270 // The next four overloads handle the case where the operand being
    271 // printed is a char/wchar_t pointer and the other operand is not a
    272 // string/wstring object.  In such cases, we just print the operand as
    273 // a pointer to be safe.
    274 #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
    275   template <typename T>                                             \
    276   String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
    277                                            const T&) { \
    278     return PrintToString(static_cast<const void*>(p));              \
    279   }
    280 
    281 GTEST_FORMAT_CHAR_PTR_IMPL_(char)
    282 GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
    283 GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
    284 GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
    285 
    286 #undef GTEST_FORMAT_CHAR_PTR_IMPL_
    287 
    288 // Constructs and returns the message for an equality assertion
    289 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    290 //
    291 // The first four parameters are the expressions used in the assertion
    292 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    293 // where foo is 5 and bar is 6, we have:
    294 //
    295 //   expected_expression: "foo"
    296 //   actual_expression:   "bar"
    297 //   expected_value:      "5"
    298 //   actual_value:        "6"
    299 //
    300 // The ignoring_case parameter is true iff the assertion is a
    301 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    302 // be inserted into the message.
    303 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    304                                      const char* actual_expression,
    305                                      const String& expected_value,
    306                                      const String& actual_value,
    307                                      bool ignoring_case);
    308 
    309 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    310 GTEST_API_ String GetBoolAssertionFailureMessage(
    311     const AssertionResult& assertion_result,
    312     const char* expression_text,
    313     const char* actual_predicate_value,
    314     const char* expected_predicate_value);
    315 
    316 // This template class represents an IEEE floating-point number
    317 // (either single-precision or double-precision, depending on the
    318 // template parameters).
    319 //
    320 // The purpose of this class is to do more sophisticated number
    321 // comparison.  (Due to round-off error, etc, it's very unlikely that
    322 // two floating-points will be equal exactly.  Hence a naive
    323 // comparison by the == operation often doesn't work.)
    324 //
    325 // Format of IEEE floating-point:
    326 //
    327 //   The most-significant bit being the leftmost, an IEEE
    328 //   floating-point looks like
    329 //
    330 //     sign_bit exponent_bits fraction_bits
    331 //
    332 //   Here, sign_bit is a single bit that designates the sign of the
    333 //   number.
    334 //
    335 //   For float, there are 8 exponent bits and 23 fraction bits.
    336 //
    337 //   For double, there are 11 exponent bits and 52 fraction bits.
    338 //
    339 //   More details can be found at
    340 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    341 //
    342 // Template parameter:
    343 //
    344 //   RawType: the raw floating-point type (either float or double)
    345 template <typename RawType>
    346 class FloatingPoint {
    347  public:
    348   // Defines the unsigned integer type that has the same size as the
    349   // floating point number.
    350   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    351 
    352   // Constants.
    353 
    354   // # of bits in a number.
    355   static const size_t kBitCount = 8*sizeof(RawType);
    356 
    357   // # of fraction bits in a number.
    358   static const size_t kFractionBitCount =
    359     std::numeric_limits<RawType>::digits - 1;
    360 
    361   // # of exponent bits in a number.
    362   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    363 
    364   // The mask for the sign bit.
    365   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    366 
    367   // The mask for the fraction bits.
    368   static const Bits kFractionBitMask =
    369     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    370 
    371   // The mask for the exponent bits.
    372   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    373 
    374   // How many ULP's (Units in the Last Place) we want to tolerate when
    375   // comparing two numbers.  The larger the value, the more error we
    376   // allow.  A 0 value means that two numbers must be exactly the same
    377   // to be considered equal.
    378   //
    379   // The maximum error of a single floating-point operation is 0.5
    380   // units in the last place.  On Intel CPU's, all floating-point
    381   // calculations are done with 80-bit precision, while double has 64
    382   // bits.  Therefore, 4 should be enough for ordinary use.
    383   //
    384   // See the following article for more details on ULP:
    385   // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
    386   static const size_t kMaxUlps = 4;
    387 
    388   // Constructs a FloatingPoint from a raw floating-point number.
    389   //
    390   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    391   // around may change its bits, although the new value is guaranteed
    392   // to be also a NAN.  Therefore, don't expect this constructor to
    393   // preserve the bits in x when x is a NAN.
    394   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    395 
    396   // Static methods
    397 
    398   // Reinterprets a bit pattern as a floating-point number.
    399   //
    400   // This function is needed to test the AlmostEquals() method.
    401   static RawType ReinterpretBits(const Bits bits) {
    402     FloatingPoint fp(0);
    403     fp.u_.bits_ = bits;
    404     return fp.u_.value_;
    405   }
    406 
    407   // Returns the floating-point number that represent positive infinity.
    408   static RawType Infinity() {
    409     return ReinterpretBits(kExponentBitMask);
    410   }
    411 
    412   // Non-static methods
    413 
    414   // Returns the bits that represents this number.
    415   const Bits &bits() const { return u_.bits_; }
    416 
    417   // Returns the exponent bits of this number.
    418   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    419 
    420   // Returns the fraction bits of this number.
    421   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    422 
    423   // Returns the sign bit of this number.
    424   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    425 
    426   // Returns true iff this is NAN (not a number).
    427   bool is_nan() const {
    428     // It's a NAN if the exponent bits are all ones and the fraction
    429     // bits are not entirely zeros.
    430     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    431   }
    432 
    433   // Returns true iff this number is at most kMaxUlps ULP's away from
    434   // rhs.  In particular, this function:
    435   //
    436   //   - returns false if either number is (or both are) NAN.
    437   //   - treats really large numbers as almost equal to infinity.
    438   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    439   bool AlmostEquals(const FloatingPoint& rhs) const {
    440     // The IEEE standard says that any comparison operation involving
    441     // a NAN must return false.
    442     if (is_nan() || rhs.is_nan()) return false;
    443 
    444     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    445         <= kMaxUlps;
    446   }
    447 
    448  private:
    449   // The data type used to store the actual floating-point number.
    450   union FloatingPointUnion {
    451     RawType value_;  // The raw floating-point number.
    452     Bits bits_;      // The bits that represent the number.
    453   };
    454 
    455   // Converts an integer from the sign-and-magnitude representation to
    456   // the biased representation.  More precisely, let N be 2 to the
    457   // power of (kBitCount - 1), an integer x is represented by the
    458   // unsigned number x + N.
    459   //
    460   // For instance,
    461   //
    462   //   -N + 1 (the most negative number representable using
    463   //          sign-and-magnitude) is represented by 1;
    464   //   0      is represented by N; and
    465   //   N - 1  (the biggest number representable using
    466   //          sign-and-magnitude) is represented by 2N - 1.
    467   //
    468   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    469   // for more details on signed number representations.
    470   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    471     if (kSignBitMask & sam) {
    472       // sam represents a negative number.
    473       return ~sam + 1;
    474     } else {
    475       // sam represents a positive number.
    476       return kSignBitMask | sam;
    477     }
    478   }
    479 
    480   // Given two numbers in the sign-and-magnitude representation,
    481   // returns the distance between them as an unsigned number.
    482   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    483                                                      const Bits &sam2) {
    484     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    485     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    486     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    487   }
    488 
    489   FloatingPointUnion u_;
    490 };
    491 
    492 // Typedefs the instances of the FloatingPoint template class that we
    493 // care to use.
    494 typedef FloatingPoint<float> Float;
    495 typedef FloatingPoint<double> Double;
    496 
    497 // In order to catch the mistake of putting tests that use different
    498 // test fixture classes in the same test case, we need to assign
    499 // unique IDs to fixture classes and compare them.  The TypeId type is
    500 // used to hold such IDs.  The user should treat TypeId as an opaque
    501 // type: the only operation allowed on TypeId values is to compare
    502 // them for equality using the == operator.
    503 typedef const void* TypeId;
    504 
    505 template <typename T>
    506 class TypeIdHelper {
    507  public:
    508   // dummy_ must not have a const type.  Otherwise an overly eager
    509   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    510   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    511   static bool dummy_;
    512 };
    513 
    514 template <typename T>
    515 bool TypeIdHelper<T>::dummy_ = false;
    516 
    517 // GetTypeId<T>() returns the ID of type T.  Different values will be
    518 // returned for different types.  Calling the function twice with the
    519 // same type argument is guaranteed to return the same ID.
    520 template <typename T>
    521 TypeId GetTypeId() {
    522   // The compiler is required to allocate a different
    523   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    524   // the template.  Therefore, the address of dummy_ is guaranteed to
    525   // be unique.
    526   return &(TypeIdHelper<T>::dummy_);
    527 }
    528 
    529 // Returns the type ID of ::testing::Test.  Always call this instead
    530 // of GetTypeId< ::testing::Test>() to get the type ID of
    531 // ::testing::Test, as the latter may give the wrong result due to a
    532 // suspected linker bug when compiling Google Test as a Mac OS X
    533 // framework.
    534 GTEST_API_ TypeId GetTestTypeId();
    535 
    536 // Defines the abstract factory interface that creates instances
    537 // of a Test object.
    538 class TestFactoryBase {
    539  public:
    540   virtual ~TestFactoryBase();
    541 
    542   // Creates a test instance to run. The instance is both created and destroyed
    543   // within TestInfoImpl::Run()
    544   virtual Test* CreateTest() = 0;
    545 
    546  protected:
    547   TestFactoryBase() {}
    548 
    549  private:
    550   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    551 };
    552 
    553 // This class provides implementation of TeastFactoryBase interface.
    554 // It is used in TEST and TEST_F macros.
    555 template <class TestClass>
    556 class TestFactoryImpl : public TestFactoryBase {
    557  public:
    558    Test *CreateTest() override { return new TestClass; }
    559 };
    560 
    561 #if GTEST_OS_WINDOWS
    562 
    563 // Predicate-formatters for implementing the HRESULT checking macros
    564 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    565 // We pass a long instead of HRESULT to avoid causing an
    566 // include dependency for the HRESULT type.
    567 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    568                                             long hr);  // NOLINT
    569 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    570                                             long hr);  // NOLINT
    571 
    572 #endif  // GTEST_OS_WINDOWS
    573 
    574 // Types of SetUpTestCase() and TearDownTestCase() functions.
    575 typedef void (*SetUpTestCaseFunc)();
    576 typedef void (*TearDownTestCaseFunc)();
    577 
    578 // Creates a new TestInfo object and registers it with Google Test;
    579 // returns the created object.
    580 //
    581 // Arguments:
    582 //
    583 //   test_case_name:   name of the test case
    584 //   name:             name of the test
    585 //   type_param        the name of the test's type parameter, or NULL if
    586 //                     this is not  a typed or a type-parameterized test.
    587 //   value_param       text representation of the test's value parameter,
    588 //                     or NULL if this is not a type-parameterized test.
    589 //   fixture_class_id: ID of the test fixture class
    590 //   set_up_tc:        pointer to the function that sets up the test case
    591 //   tear_down_tc:     pointer to the function that tears down the test case
    592 //   factory:          pointer to the factory that creates a test object.
    593 //                     The newly created TestInfo instance will assume
    594 //                     ownership of the factory object.
    595 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    596     const char* test_case_name, const char* name,
    597     const char* type_param,
    598     const char* value_param,
    599     TypeId fixture_class_id,
    600     SetUpTestCaseFunc set_up_tc,
    601     TearDownTestCaseFunc tear_down_tc,
    602     TestFactoryBase* factory);
    603 
    604 // If *pstr starts with the given prefix, modifies *pstr to be right
    605 // past the prefix and returns true; otherwise leaves *pstr unchanged
    606 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    607 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    608 
    609 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    610 
    611 // State of the definition of a type-parameterized test case.
    612 class GTEST_API_ TypedTestCasePState {
    613  public:
    614   TypedTestCasePState() : registered_(false) {}
    615 
    616   // Adds the given test name to defined_test_names_ and return true
    617   // if the test case hasn't been registered; otherwise aborts the
    618   // program.
    619   bool AddTestName(const char* file, int line, const char* case_name,
    620                    const char* test_name) {
    621     if (registered_) {
    622       fprintf(stderr, "%s Test %s must be defined before "
    623               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    624               FormatFileLocation(file, line).c_str(), test_name, case_name);
    625       fflush(stderr);
    626       posix::Abort();
    627     }
    628     defined_test_names_.insert(test_name);
    629     return true;
    630   }
    631 
    632   // Verifies that registered_tests match the test names in
    633   // defined_test_names_; returns registered_tests if successful, or
    634   // aborts the program otherwise.
    635   const char* VerifyRegisteredTestNames(
    636       const char* file, int line, const char* registered_tests);
    637 
    638  private:
    639   bool registered_;
    640   ::std::set<const char*> defined_test_names_;
    641 };
    642 
    643 // Skips to the first non-space char after the first comma in 'str';
    644 // returns NULL if no comma is found in 'str'.
    645 inline const char* SkipComma(const char* str) {
    646   const char* comma = strchr(str, ',');
    647   if (comma == NULL) {
    648     return NULL;
    649   }
    650   while (IsSpace(*(++comma))) {}
    651   return comma;
    652 }
    653 
    654 // Returns the prefix of 'str' before the first comma in it; returns
    655 // the entire string if it contains no comma.
    656 inline String GetPrefixUntilComma(const char* str) {
    657   const char* comma = strchr(str, ',');
    658   return comma == NULL ? String(str) : String(str, comma - str);
    659 }
    660 
    661 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    662 // registers a list of type-parameterized tests with Google Test.  The
    663 // return value is insignificant - we just need to return something
    664 // such that we can call this function in a namespace scope.
    665 //
    666 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    667 // template parameter.  It's defined in gtest-type-util.h.
    668 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    669 class TypeParameterizedTest {
    670  public:
    671   // 'index' is the index of the test in the type list 'Types'
    672   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    673   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    674   // length of Types.
    675   static bool Register(const char* prefix, const char* case_name,
    676                        const char* test_names, int index) {
    677     typedef typename Types::Head Type;
    678     typedef Fixture<Type> FixtureClass;
    679     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    680 
    681     // First, registers the first type-parameterized test in the type
    682     // list.
    683     MakeAndRegisterTestInfo(
    684         String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
    685                        case_name, index).c_str(),
    686         GetPrefixUntilComma(test_names).c_str(),
    687         GetTypeName<Type>().c_str(),
    688         NULL,  // No value parameter.
    689         GetTypeId<FixtureClass>(),
    690         TestClass::SetUpTestCase,
    691         TestClass::TearDownTestCase,
    692         new TestFactoryImpl<TestClass>);
    693 
    694     // Next, recurses (at compile time) with the tail of the type list.
    695     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    696         ::Register(prefix, case_name, test_names, index + 1);
    697   }
    698 };
    699 
    700 // The base case for the compile time recursion.
    701 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    702 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    703  public:
    704   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    705                        const char* /*test_names*/, int /*index*/) {
    706     return true;
    707   }
    708 };
    709 
    710 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    711 // registers *all combinations* of 'Tests' and 'Types' with Google
    712 // Test.  The return value is insignificant - we just need to return
    713 // something such that we can call this function in a namespace scope.
    714 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    715 class TypeParameterizedTestCase {
    716  public:
    717   static bool Register(const char* prefix, const char* case_name,
    718                        const char* test_names) {
    719     typedef typename Tests::Head Head;
    720 
    721     // First, register the first test in 'Test' for each type in 'Types'.
    722     TypeParameterizedTest<Fixture, Head, Types>::Register(
    723         prefix, case_name, test_names, 0);
    724 
    725     // Next, recurses (at compile time) with the tail of the test list.
    726     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    727         ::Register(prefix, case_name, SkipComma(test_names));
    728   }
    729 };
    730 
    731 // The base case for the compile time recursion.
    732 template <GTEST_TEMPLATE_ Fixture, typename Types>
    733 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    734  public:
    735   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    736                        const char* /*test_names*/) {
    737     return true;
    738   }
    739 };
    740 
    741 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    742 
    743 // Returns the current OS stack trace as a String.
    744 //
    745 // The maximum number of stack frames to be included is specified by
    746 // the gtest_stack_trace_depth flag.  The skip_count parameter
    747 // specifies the number of top frames to be skipped, which doesn't
    748 // count against the number of frames to be included.
    749 //
    750 // For example, if Foo() calls Bar(), which in turn calls
    751 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    752 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    753 GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
    754                                                   int skip_count);
    755 
    756 // Helpers for suppressing warnings on unreachable code or constant
    757 // condition.
    758 
    759 // Always returns true.
    760 GTEST_API_ bool AlwaysTrue();
    761 
    762 // Always returns false.
    763 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    764 
    765 // Helper for suppressing false warning from Clang on a const char*
    766 // variable declared in a conditional expression always being NULL in
    767 // the else branch.
    768 struct GTEST_API_ ConstCharPtr {
    769   ConstCharPtr(const char* str) : value(str) {}
    770   operator bool() const { return true; }
    771   const char* value;
    772 };
    773 
    774 // A simple Linear Congruential Generator for generating random
    775 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    776 // doesn't use global state (and therefore can't interfere with user
    777 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    778 // but it's good enough for our purposes.
    779 class GTEST_API_ Random {
    780  public:
    781   static const UInt32 kMaxRange = 1u << 31;
    782 
    783   explicit Random(UInt32 seed) : state_(seed) {}
    784 
    785   void Reseed(UInt32 seed) { state_ = seed; }
    786 
    787   // Generates a random number from [0, range).  Crashes if 'range' is
    788   // 0 or greater than kMaxRange.
    789   UInt32 Generate(UInt32 range);
    790 
    791  private:
    792   UInt32 state_;
    793   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    794 };
    795 
    796 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    797 // compiler error iff T1 and T2 are different types.
    798 template <typename T1, typename T2>
    799 struct CompileAssertTypesEqual;
    800 
    801 template <typename T>
    802 struct CompileAssertTypesEqual<T, T> {
    803 };
    804 
    805 // Removes the reference from a type if it is a reference type,
    806 // otherwise leaves it unchanged.  This is the same as
    807 // tr1::remove_reference, which is not widely available yet.
    808 template <typename T>
    809 struct RemoveReference { typedef T type; };  // NOLINT
    810 template <typename T>
    811 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    812 
    813 // A handy wrapper around RemoveReference that works when the argument
    814 // T depends on template parameters.
    815 #define GTEST_REMOVE_REFERENCE_(T) \
    816     typename ::testing::internal::RemoveReference<T>::type
    817 
    818 // Removes const from a type if it is a const type, otherwise leaves
    819 // it unchanged.  This is the same as tr1::remove_const, which is not
    820 // widely available yet.
    821 template <typename T>
    822 struct RemoveConst { typedef T type; };  // NOLINT
    823 template <typename T>
    824 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    825 
    826 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
    827 // definition to fail to remove the const in 'const int[3]' and 'const
    828 // char[3][4]'.  The following specialization works around the bug.
    829 // However, it causes trouble with GCC and thus needs to be
    830 // conditionally compiled.
    831 #if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
    832 template <typename T, size_t N>
    833 struct RemoveConst<const T[N]> {
    834   typedef typename RemoveConst<T>::type type[N];
    835 };
    836 #endif
    837 
    838 // A handy wrapper around RemoveConst that works when the argument
    839 // T depends on template parameters.
    840 #define GTEST_REMOVE_CONST_(T) \
    841     typename ::testing::internal::RemoveConst<T>::type
    842 
    843 // Turns const U&, U&, const U, and U all into U.
    844 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    845     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    846 
    847 // Adds reference to a type if it is not a reference type,
    848 // otherwise leaves it unchanged.  This is the same as
    849 // tr1::add_reference, which is not widely available yet.
    850 template <typename T>
    851 struct AddReference { typedef T& type; };  // NOLINT
    852 template <typename T>
    853 struct AddReference<T&> { typedef T& type; };  // NOLINT
    854 
    855 // A handy wrapper around AddReference that works when the argument T
    856 // depends on template parameters.
    857 #define GTEST_ADD_REFERENCE_(T) \
    858     typename ::testing::internal::AddReference<T>::type
    859 
    860 // Adds a reference to const on top of T as necessary.  For example,
    861 // it transforms
    862 //
    863 //   char         ==> const char&
    864 //   const char   ==> const char&
    865 //   char&        ==> const char&
    866 //   const char&  ==> const char&
    867 //
    868 // The argument T must depend on some template parameters.
    869 #define GTEST_REFERENCE_TO_CONST_(T) \
    870     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    871 
    872 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    873 // constant that's true iff type From can be implicitly converted to
    874 // type To.
    875 template <typename From, typename To>
    876 class ImplicitlyConvertible {
    877  private:
    878   // We need the following helper functions only for their types.
    879   // They have no implementations.
    880 
    881   // MakeFrom() is an expression whose type is From.  We cannot simply
    882   // use From(), as the type From may not have a public default
    883   // constructor.
    884   static From MakeFrom();
    885 
    886   // These two functions are overloaded.  Given an expression
    887   // Helper(x), the compiler will pick the first version if x can be
    888   // implicitly converted to type To; otherwise it will pick the
    889   // second version.
    890   //
    891   // The first version returns a value of size 1, and the second
    892   // version returns a value of size 2.  Therefore, by checking the
    893   // size of Helper(x), which can be done at compile time, we can tell
    894   // which version of Helper() is used, and hence whether x can be
    895   // implicitly converted to type To.
    896   static char Helper(To);
    897   static char (&Helper(...))[2];  // NOLINT
    898 
    899   // We have to put the 'public' section after the 'private' section,
    900   // or MSVC refuses to compile the code.
    901  public:
    902   // MSVC warns about implicitly converting from double to int for
    903   // possible loss of data, so we need to temporarily disable the
    904   // warning.
    905 #ifdef _MSC_VER
    906 # pragma warning(push)          // Saves the current warning state.
    907 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
    908 
    909   static const bool value =
    910       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    911 # pragma warning(pop)           // Restores the warning state.
    912 #elif defined(__BORLANDC__)
    913   // C++Builder cannot use member overload resolution during template
    914   // instantiation.  The simplest workaround is to use its C++0x type traits
    915   // functions (C++Builder 2009 and above only).
    916   static const bool value = __is_convertible(From, To);
    917 #else
    918   static const bool value =
    919       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    920 #endif  // _MSV_VER
    921 };
    922 template <typename From, typename To>
    923 const bool ImplicitlyConvertible<From, To>::value;
    924 
    925 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    926 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    927 // of those.
    928 template <typename T>
    929 struct IsAProtocolMessage
    930     : public bool_constant<
    931   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    932   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    933 };
    934 
    935 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    936 // STL-style container class, the first overload of IsContainerTest
    937 // will be viable (since both C::iterator* and C::const_iterator* are
    938 // valid types and NULL can be implicitly converted to them).  It will
    939 // be picked over the second overload as 'int' is a perfect match for
    940 // the type of argument 0.  If C::iterator or C::const_iterator is not
    941 // a valid type, the first overload is not viable, and the second
    942 // overload will be picked.  Therefore, we can determine whether C is
    943 // a container class by checking the type of IsContainerTest<C>(0).
    944 // The value of the expression is insignificant.
    945 //
    946 // Note that we look for both C::iterator and C::const_iterator.  The
    947 // reason is that C++ injects the name of a class as a member of the
    948 // class itself (e.g. you can refer to class iterator as either
    949 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    950 // only, for example, we would mistakenly think that a class named
    951 // iterator is an STL container.
    952 //
    953 // Also note that the simpler approach of overloading
    954 // IsContainerTest(typename C::const_iterator*) and
    955 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    956 typedef int IsContainer;
    957 template <class C>
    958 IsContainer IsContainerTest(int /* dummy */,
    959                             typename C::iterator* /* it */ = NULL,
    960                             typename C::const_iterator* /* const_it */ = NULL) {
    961   return 0;
    962 }
    963 
    964 typedef char IsNotContainer;
    965 template <class C>
    966 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    967 
    968 // EnableIf<condition>::type is void when 'Cond' is true, and
    969 // undefined when 'Cond' is false.  To use SFINAE to make a function
    970 // overload only apply when a particular expression is true, add
    971 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    972 template<bool> struct EnableIf;
    973 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    974 
    975 // Utilities for native arrays.
    976 
    977 // ArrayEq() compares two k-dimensional native arrays using the
    978 // elements' operator==, where k can be any integer >= 0.  When k is
    979 // 0, ArrayEq() degenerates into comparing a single pair of values.
    980 
    981 template <typename T, typename U>
    982 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    983 
    984 // This generic version is used when k is 0.
    985 template <typename T, typename U>
    986 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    987 
    988 // This overload is used when k >= 1.
    989 template <typename T, typename U, size_t N>
    990 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    991   return internal::ArrayEq(lhs, N, rhs);
    992 }
    993 
    994 // This helper reduces code bloat.  If we instead put its logic inside
    995 // the previous ArrayEq() function, arrays with different sizes would
    996 // lead to different copies of the template code.
    997 template <typename T, typename U>
    998 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    999   for (size_t i = 0; i != size; i++) {
   1000     if (!internal::ArrayEq(lhs[i], rhs[i]))
   1001       return false;
   1002   }
   1003   return true;
   1004 }
   1005 
   1006 // Finds the first element in the iterator range [begin, end) that
   1007 // equals elem.  Element may be a native array type itself.
   1008 template <typename Iter, typename Element>
   1009 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
   1010   for (Iter it = begin; it != end; ++it) {
   1011     if (internal::ArrayEq(*it, elem))
   1012       return it;
   1013   }
   1014   return end;
   1015 }
   1016 
   1017 // CopyArray() copies a k-dimensional native array using the elements'
   1018 // operator=, where k can be any integer >= 0.  When k is 0,
   1019 // CopyArray() degenerates into copying a single value.
   1020 
   1021 template <typename T, typename U>
   1022 void CopyArray(const T* from, size_t size, U* to);
   1023 
   1024 // This generic version is used when k is 0.
   1025 template <typename T, typename U>
   1026 inline void CopyArray(const T& from, U* to) { *to = from; }
   1027 
   1028 // This overload is used when k >= 1.
   1029 template <typename T, typename U, size_t N>
   1030 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
   1031   internal::CopyArray(from, N, *to);
   1032 }
   1033 
   1034 // This helper reduces code bloat.  If we instead put its logic inside
   1035 // the previous CopyArray() function, arrays with different sizes
   1036 // would lead to different copies of the template code.
   1037 template <typename T, typename U>
   1038 void CopyArray(const T* from, size_t size, U* to) {
   1039   for (size_t i = 0; i != size; i++) {
   1040     internal::CopyArray(from[i], to + i);
   1041   }
   1042 }
   1043 
   1044 // The relation between an NativeArray object (see below) and the
   1045 // native array it represents.
   1046 enum RelationToSource {
   1047   kReference,  // The NativeArray references the native array.
   1048   kCopy        // The NativeArray makes a copy of the native array and
   1049                // owns the copy.
   1050 };
   1051 
   1052 // Adapts a native array to a read-only STL-style container.  Instead
   1053 // of the complete STL container concept, this adaptor only implements
   1054 // members useful for Google Mock's container matchers.  New members
   1055 // should be added as needed.  To simplify the implementation, we only
   1056 // support Element being a raw type (i.e. having no top-level const or
   1057 // reference modifier).  It's the client's responsibility to satisfy
   1058 // this requirement.  Element can be an array type itself (hence
   1059 // multi-dimensional arrays are supported).
   1060 template <typename Element>
   1061 class NativeArray {
   1062  public:
   1063   // STL-style container typedefs.
   1064   typedef Element value_type;
   1065   typedef Element* iterator;
   1066   typedef const Element* const_iterator;
   1067 
   1068   // Constructs from a native array.
   1069   NativeArray(const Element* array, size_t count, RelationToSource relation) {
   1070     Init(array, count, relation);
   1071   }
   1072 
   1073   // Copy constructor.
   1074   NativeArray(const NativeArray& rhs) {
   1075     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
   1076   }
   1077 
   1078   ~NativeArray() {
   1079     // Ensures that the user doesn't instantiate NativeArray with a
   1080     // const or reference type.
   1081     static_cast<void>(StaticAssertTypeEqHelper<Element,
   1082         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
   1083     if (relation_to_source_ == kCopy)
   1084       delete[] array_;
   1085   }
   1086 
   1087   // STL-style container methods.
   1088   size_t size() const { return size_; }
   1089   const_iterator begin() const { return array_; }
   1090   const_iterator end() const { return array_ + size_; }
   1091   bool operator==(const NativeArray& rhs) const {
   1092     return size() == rhs.size() &&
   1093         ArrayEq(begin(), size(), rhs.begin());
   1094   }
   1095 
   1096  private:
   1097   // Initializes this object; makes a copy of the input array if
   1098   // 'relation' is kCopy.
   1099   void Init(const Element* array, size_t a_size, RelationToSource relation) {
   1100     if (relation == kReference) {
   1101       array_ = array;
   1102     } else {
   1103       Element* const copy = new Element[a_size];
   1104       CopyArray(array, a_size, copy);
   1105       array_ = copy;
   1106     }
   1107     size_ = a_size;
   1108     relation_to_source_ = relation;
   1109   }
   1110 
   1111   const Element* array_;
   1112   size_t size_;
   1113   RelationToSource relation_to_source_;
   1114 
   1115   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1116 };
   1117 
   1118 }  // namespace internal
   1119 }  // namespace testing
   1120 
   1121 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1122   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1123     = ::testing::Message()
   1124 
   1125 #define GTEST_MESSAGE_(message, result_type) \
   1126   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1127 
   1128 #define GTEST_FATAL_FAILURE_(message) \
   1129   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1130 
   1131 #define GTEST_NONFATAL_FAILURE_(message) \
   1132   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1133 
   1134 #define GTEST_SUCCESS_(message) \
   1135   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1136 
   1137 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1138 // statement if it returns or throws (or doesn't return or throw in some
   1139 // situations).
   1140 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1141   if (::testing::internal::AlwaysTrue()) { statement; }
   1142 
   1143 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1144   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1145   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1146     bool gtest_caught_expected = false; \
   1147     try { \
   1148       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1149     } \
   1150     catch (expected_exception const&) { \
   1151       gtest_caught_expected = true; \
   1152     } \
   1153     catch (...) { \
   1154       gtest_msg.value = \
   1155           "Expected: " #statement " throws an exception of type " \
   1156           #expected_exception ".\n  Actual: it throws a different type."; \
   1157       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1158     } \
   1159     if (!gtest_caught_expected) { \
   1160       gtest_msg.value = \
   1161           "Expected: " #statement " throws an exception of type " \
   1162           #expected_exception ".\n  Actual: it throws nothing."; \
   1163       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1164     } \
   1165   } else \
   1166     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1167       fail(gtest_msg.value)
   1168 
   1169 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1170   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1171   if (::testing::internal::AlwaysTrue()) { \
   1172     try { \
   1173       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1174     } \
   1175     catch (...) { \
   1176       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1177     } \
   1178   } else \
   1179     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1180       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1181            "  Actual: it throws.")
   1182 
   1183 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1184   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1185   if (::testing::internal::AlwaysTrue()) { \
   1186     bool gtest_caught_any = false; \
   1187     try { \
   1188       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1189     } \
   1190     catch (...) { \
   1191       gtest_caught_any = true; \
   1192     } \
   1193     if (!gtest_caught_any) { \
   1194       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1195     } \
   1196   } else \
   1197     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1198       fail("Expected: " #statement " throws an exception.\n" \
   1199            "  Actual: it doesn't.")
   1200 
   1201 
   1202 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1203 // either a boolean expression or an AssertionResult. text is a textual
   1204 // represenation of expression as it was passed into the EXPECT_TRUE.
   1205 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1206   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1207   if (const ::testing::AssertionResult gtest_ar_ = \
   1208       ::testing::AssertionResult(expression)) \
   1209     ; \
   1210   else \
   1211     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1212         gtest_ar_, text, #actual, #expected).c_str())
   1213 
   1214 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1215   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1216   if (::testing::internal::AlwaysTrue()) { \
   1217     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1218     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1219     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1220       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1221     } \
   1222   } else \
   1223     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1224       fail("Expected: " #statement " doesn't generate new fatal " \
   1225            "failures in the current thread.\n" \
   1226            "  Actual: it does.")
   1227 
   1228 // Expands to the name of the class that implements the given test.
   1229 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1230   test_case_name##_##test_name##_Test
   1231 
   1232 // Helper macro for defining tests.
   1233 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1234 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1235  public:\
   1236   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1237  private:\
   1238   virtual void TestBody();\
   1239   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1240   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1241       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1242 };\
   1243 \
   1244 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1245   ::test_info_ =\
   1246     ::testing::internal::MakeAndRegisterTestInfo(\
   1247         #test_case_name, #test_name, NULL, NULL, \
   1248         (parent_id), \
   1249         parent_class::SetUpTestCase, \
   1250         parent_class::TearDownTestCase, \
   1251         new ::testing::internal::TestFactoryImpl<\
   1252             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1253 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1254 
   1255 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1256