Home | History | Annotate | Download | only in mDNSCore
      1 /* -*- Mode: C; tab-width: 4 -*-
      2  *
      3  * Copyright (c) 2002-2003 Apple Computer, Inc. All rights reserved.
      4  *
      5  * Licensed under the Apache License, Version 2.0 (the "License");
      6  * you may not use this file except in compliance with the License.
      7  * You may obtain a copy of the License at
      8  *
      9  *     http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 
     18 
     19 #ifdef __cplusplus
     20 extern "C" {
     21 #endif
     22 
     23 #include "mDNSEmbeddedAPI.h"
     24 #include "DNSCommon.h"
     25 
     26 // Disable certain benign warnings with Microsoft compilers
     27 #if(defined(_MSC_VER))
     28 	// Disable "conditional expression is constant" warning for debug macros.
     29 	// Otherwise, this generates warnings for the perfectly natural construct "while(1)"
     30 	// If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
     31 	#pragma warning(disable:4127)
     32 #endif
     33 
     34 
     35  // ***************************************************************************
     36 #if COMPILER_LIKES_PRAGMA_MARK
     37 #pragma mark - Byte Swapping Functions
     38 #endif
     39 
     40 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes)
     41 	{
     42 	return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]);
     43 	}
     44 
     45 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes)
     46 	{
     47 	return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]);
     48 	}
     49 
     50  // ***************************************************************************
     51 #if COMPILER_LIKES_PRAGMA_MARK
     52 #pragma mark - MD5 Hash Functions
     53 #endif
     54 
     55 
     56 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h.
     57  * The following changes have been made to the original sources:
     58  *    replaced CC_LONG w/ mDNSu32
     59  *    replaced CC_MD5* with MD5*
     60  *    replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h
     61  *    removed extern decls for MD5_Init/Update/Final from CommonDigest.h
     62  *    removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h
     63  *
     64  * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code
     65  * to aid in platform-specific optimizations and debugging.
     66  * Sources originally distributed under the following license headers:
     67  * CommonDigest.h - APSL
     68  *
     69  * md32_Common.h
     70  * ====================================================================
     71  * Copyright (c) 1999-2002 The OpenSSL Project.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  *
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  *
     80  * 2. Redistributions in binary form must reproduce the above copyright
     81  *    notice, this list of conditions and the following disclaimer in
     82  *    the documentation and/or other materials provided with the
     83  *    distribution.
     84  *
     85  * 3. All advertising materials mentioning features or use of this
     86  *    software must display the following acknowledgment:
     87  *    "This product includes software developed by the OpenSSL Project
     88  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
     89  *
     90  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     91  *    endorse or promote products derived from this software without
     92  *    prior written permission. For written permission, please contact
     93  *    licensing (at) OpenSSL.org.
     94  *
     95  * 5. Products derived from this software may not be called "OpenSSL"
     96  *    nor may "OpenSSL" appear in their names without prior written
     97  *    permission of the OpenSSL Project.
     98  *
     99  * 6. Redistributions of any form whatsoever must retain the following
    100  *    acknowledgment:
    101  *    "This product includes software developed by the OpenSSL Project
    102  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
    103  *
    104  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
    105  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    106  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    107  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
    108  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    109  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    110  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    111  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    112  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    113  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    114  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    115  * OF THE POSSIBILITY OF SUCH DAMAGE.
    116  *
    117  *
    118  * md5_dgst.c, md5_locl.h
    119  * ====================================================================
    120  *
    121  * This product includes cryptographic software written by Eric Young
    122  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    123  * Hudson (tjh (at) cryptsoft.com).
    124  *
    125  * Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
    126  * All rights reserved.
    127  *
    128  * This package is an SSL implementation written
    129  * by Eric Young (eay (at) cryptsoft.com).
    130  * The implementation was written so as to conform with Netscapes SSL.
    131  *
    132  * This library is free for commercial and non-commercial use as long as
    133  * the following conditions are aheared to.  The following conditions
    134  * apply to all code found in this distribution, be it the RC4, RSA,
    135  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
    136  * included with this distribution is covered by the same copyright terms
    137  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
    138  *
    139  * Copyright remains Eric Young's, and as such any Copyright notices in
    140  * the code are not to be removed.
    141  * If this package is used in a product, Eric Young should be given attribution
    142  * as the author of the parts of the library used.
    143  * This can be in the form of a textual message at program startup or
    144  * in documentation (online or textual) provided with the package.
    145  *
    146  * Redistribution and use in source and binary forms, with or without
    147  * modification, are permitted provided that the following conditions
    148  * are met:
    149  * 1. Redistributions of source code must retain the copyright
    150  *    notice, this list of conditions and the following disclaimer.
    151  * 2. Redistributions in binary form must reproduce the above copyright
    152  *    notice, this list of conditions and the following disclaimer in the
    153  *    documentation and/or other materials provided with the distribution.
    154  * 3. All advertising materials mentioning features or use of this software
    155  *    must display the following acknowledgement:
    156  *    "This product includes cryptographic software written by
    157  *     Eric Young (eay (at) cryptsoft.com)"
    158  *    The word 'cryptographic' can be left out if the rouines from the library
    159  *    being used are not cryptographic related :-).
    160  * 4. If you include any Windows specific code (or a derivative thereof) from
    161  *    the apps directory (application code) you must include an acknowledgement:
    162  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
    163  *
    164  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
    165  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    166  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    167  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
    168  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    169  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    170  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    171  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    172  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    173  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    174  * SUCH DAMAGE.
    175  *
    176  * The licence and distribution terms for any publically available version or
    177  * derivative of this code cannot be changed.  i.e. this code cannot simply be
    178  * copied and put under another distribution licence
    179  * [including the GNU Public Licence.]
    180  *
    181  */
    182 
    183 //from CommonDigest.h
    184 
    185 #define MD5_DIGEST_LENGTH	16			/* digest length in bytes */
    186 #define MD5_BLOCK_BYTES		64			/* block size in bytes */
    187 #define MD5_BLOCK_LONG       (MD5_BLOCK_BYTES / sizeof(mDNSu32))
    188 
    189 typedef struct MD5state_st
    190 {
    191 	mDNSu32 A,B,C,D;
    192 	mDNSu32 Nl,Nh;
    193 	mDNSu32 data[MD5_BLOCK_LONG];
    194 	int num;
    195 } MD5_CTX;
    196 
    197 #ifndef HAVE_MD5
    198 
    199 // from openssl/md5.h
    200 
    201 #define MD5_CBLOCK	64
    202 #define MD5_LBLOCK	(MD5_CBLOCK/4)
    203 #define MD5_DIGEST_LENGTH 16
    204 
    205 int MD5_Init(MD5_CTX *c);
    206 int MD5_Update(MD5_CTX *c, const void *data, unsigned long len);
    207 int MD5_Final(unsigned char *md, MD5_CTX *c);
    208 void MD5_Transform(MD5_CTX *c, const unsigned char *b);
    209 
    210 // From md5_locl.h
    211 
    212 #ifndef MD5_LONG_LOG2
    213 #define MD5_LONG_LOG2 2 /* default to 32 bits */
    214 #endif
    215 
    216 #ifdef MD5_ASM
    217 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
    218 #  define md5_block_host_order md5_block_asm_host_order
    219 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
    220    void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num);
    221 #  define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned
    222 # endif
    223 #endif
    224 
    225 void md5_block_host_order (MD5_CTX *c, const void *p,int num);
    226 void md5_block_data_order (MD5_CTX *c, const void *p,int num);
    227 
    228 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
    229 /*
    230  * *_block_host_order is expected to handle aligned data while
    231  * *_block_data_order - unaligned. As algorithm and host (x86)
    232  * are in this case of the same "endianness" these two are
    233  * otherwise indistinguishable. But normally you don't want to
    234  * call the same function because unaligned access in places
    235  * where alignment is expected is usually a "Bad Thing". Indeed,
    236  * on RISCs you get punished with BUS ERROR signal or *severe*
    237  * performance degradation. Intel CPUs are in turn perfectly
    238  * capable of loading unaligned data without such drastic side
    239  * effect. Yes, they say it's slower than aligned load, but no
    240  * exception is generated and therefore performance degradation
    241  * is *incomparable* with RISCs. What we should weight here is
    242  * costs of unaligned access against costs of aligning data.
    243  * According to my measurements allowing unaligned access results
    244  * in ~9% performance improvement on Pentium II operating at
    245  * 266MHz. I won't be surprised if the difference will be higher
    246  * on faster systems:-)
    247  *
    248  *				<appro (at) fy.chalmers.se>
    249  */
    250 #define md5_block_data_order md5_block_host_order
    251 #endif
    252 
    253 #define DATA_ORDER_IS_LITTLE_ENDIAN
    254 
    255 #define HASH_LONG		mDNSu32
    256 #define HASH_LONG_LOG2	MD5_LONG_LOG2
    257 #define HASH_CTX		MD5_CTX
    258 #define HASH_CBLOCK		MD5_CBLOCK
    259 #define HASH_LBLOCK		MD5_LBLOCK
    260 
    261 #define HASH_UPDATE		MD5_Update
    262 #define HASH_TRANSFORM	MD5_Transform
    263 #define HASH_FINAL		MD5_Final
    264 
    265 #define	HASH_MAKE_STRING(c,s)	do {	\
    266 	unsigned long ll;		\
    267 	ll=(c)->A; HOST_l2c(ll,(s));	\
    268 	ll=(c)->B; HOST_l2c(ll,(s));	\
    269 	ll=(c)->C; HOST_l2c(ll,(s));	\
    270 	ll=(c)->D; HOST_l2c(ll,(s));	\
    271 	} while (0)
    272 #define HASH_BLOCK_HOST_ORDER	md5_block_host_order
    273 #if !defined(L_ENDIAN) || defined(md5_block_data_order)
    274 #define	HASH_BLOCK_DATA_ORDER	md5_block_data_order
    275 /*
    276  * Little-endians (Intel and Alpha) feel better without this.
    277  * It looks like memcpy does better job than generic
    278  * md5_block_data_order on copying-n-aligning input data.
    279  * But frankly speaking I didn't expect such result on Alpha.
    280  * On the other hand I've got this with egcs-1.0.2 and if
    281  * program is compiled with another (better?) compiler it
    282  * might turn out other way around.
    283  *
    284  *				<appro (at) fy.chalmers.se>
    285  */
    286 #endif
    287 
    288 
    289 // from md32_common.h
    290 
    291 /*
    292  * This is a generic 32 bit "collector" for message digest algorithms.
    293  * Whenever needed it collects input character stream into chunks of
    294  * 32 bit values and invokes a block function that performs actual hash
    295  * calculations.
    296  *
    297  * Porting guide.
    298  *
    299  * Obligatory macros:
    300  *
    301  * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
    302  *	this macro defines byte order of input stream.
    303  * HASH_CBLOCK
    304  *	size of a unit chunk HASH_BLOCK operates on.
    305  * HASH_LONG
    306  *	has to be at lest 32 bit wide, if it's wider, then
    307  *	HASH_LONG_LOG2 *has to* be defined along
    308  * HASH_CTX
    309  *	context structure that at least contains following
    310  *	members:
    311  *		typedef struct {
    312  *			...
    313  *			HASH_LONG	Nl,Nh;
    314  *			HASH_LONG	data[HASH_LBLOCK];
    315  *			int		num;
    316  *			...
    317  *			} HASH_CTX;
    318  * HASH_UPDATE
    319  *	name of "Update" function, implemented here.
    320  * HASH_TRANSFORM
    321  *	name of "Transform" function, implemented here.
    322  * HASH_FINAL
    323  *	name of "Final" function, implemented here.
    324  * HASH_BLOCK_HOST_ORDER
    325  *	name of "block" function treating *aligned* input message
    326  *	in host byte order, implemented externally.
    327  * HASH_BLOCK_DATA_ORDER
    328  *	name of "block" function treating *unaligned* input message
    329  *	in original (data) byte order, implemented externally (it
    330  *	actually is optional if data and host are of the same
    331  *	"endianess").
    332  * HASH_MAKE_STRING
    333  *	macro convering context variables to an ASCII hash string.
    334  *
    335  * Optional macros:
    336  *
    337  * B_ENDIAN or L_ENDIAN
    338  *	defines host byte-order.
    339  * HASH_LONG_LOG2
    340  *	defaults to 2 if not states otherwise.
    341  * HASH_LBLOCK
    342  *	assumed to be HASH_CBLOCK/4 if not stated otherwise.
    343  * HASH_BLOCK_DATA_ORDER_ALIGNED
    344  *	alternative "block" function capable of treating
    345  *	aligned input message in original (data) order,
    346  *	implemented externally.
    347  *
    348  * MD5 example:
    349  *
    350  *	#define DATA_ORDER_IS_LITTLE_ENDIAN
    351  *
    352  *	#define HASH_LONG		mDNSu32
    353  *	#define HASH_LONG_LOG2	mDNSu32_LOG2
    354  *	#define HASH_CTX		MD5_CTX
    355  *	#define HASH_CBLOCK		MD5_CBLOCK
    356  *	#define HASH_LBLOCK		MD5_LBLOCK
    357  *	#define HASH_UPDATE		MD5_Update
    358  *	#define HASH_TRANSFORM		MD5_Transform
    359  *	#define HASH_FINAL		MD5_Final
    360  *	#define HASH_BLOCK_HOST_ORDER	md5_block_host_order
    361  *	#define HASH_BLOCK_DATA_ORDER	md5_block_data_order
    362  *
    363  *					<appro (at) fy.chalmers.se>
    364  */
    365 
    366 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    367 #error "DATA_ORDER must be defined!"
    368 #endif
    369 
    370 #ifndef HASH_CBLOCK
    371 #error "HASH_CBLOCK must be defined!"
    372 #endif
    373 #ifndef HASH_LONG
    374 #error "HASH_LONG must be defined!"
    375 #endif
    376 #ifndef HASH_CTX
    377 #error "HASH_CTX must be defined!"
    378 #endif
    379 
    380 #ifndef HASH_UPDATE
    381 #error "HASH_UPDATE must be defined!"
    382 #endif
    383 #ifndef HASH_TRANSFORM
    384 #error "HASH_TRANSFORM must be defined!"
    385 #endif
    386 #ifndef HASH_FINAL
    387 #error "HASH_FINAL must be defined!"
    388 #endif
    389 
    390 #ifndef HASH_BLOCK_HOST_ORDER
    391 #error "HASH_BLOCK_HOST_ORDER must be defined!"
    392 #endif
    393 
    394 #if 0
    395 /*
    396  * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
    397  * isn't defined.
    398  */
    399 #ifndef HASH_BLOCK_DATA_ORDER
    400 #error "HASH_BLOCK_DATA_ORDER must be defined!"
    401 #endif
    402 #endif
    403 
    404 #ifndef HASH_LBLOCK
    405 #define HASH_LBLOCK	(HASH_CBLOCK/4)
    406 #endif
    407 
    408 #ifndef HASH_LONG_LOG2
    409 #define HASH_LONG_LOG2	2
    410 #endif
    411 
    412 /*
    413  * Engage compiler specific rotate intrinsic function if available.
    414  */
    415 #undef ROTATE
    416 #ifndef PEDANTIC
    417 # if 0 /* defined(_MSC_VER) */
    418 #  define ROTATE(a,n)	_lrotl(a,n)
    419 # elif defined(__MWERKS__)
    420 #  if defined(__POWERPC__)
    421 #   define ROTATE(a,n)	(unsigned MD32_REG_T)__rlwinm((int)a,n,0,31)
    422 #  elif defined(__MC68K__)
    423     /* Motorola specific tweak. <appro (at) fy.chalmers.se> */
    424 #   define ROTATE(a,n)	(n<24 ? __rol(a,n) : __ror(a,32-n))
    425 #  else
    426 #   define ROTATE(a,n)	__rol(a,n)
    427 #  endif
    428 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
    429   /*
    430    * Some GNU C inline assembler templates. Note that these are
    431    * rotates by *constant* number of bits! But that's exactly
    432    * what we need here...
    433    *
    434    * 					<appro (at) fy.chalmers.se>
    435    */
    436   /*
    437    * LLVM is more strict about compatibility of types between input & output constraints,
    438    * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the
    439    * most significant bytes by casting to an unsigned int.
    440    */
    441 #  if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
    442 #   define ROTATE(a,n)	({ register unsigned int ret;	\
    443 				asm (			\
    444 				"roll %1,%0"		\
    445 				: "=r"(ret)		\
    446 				: "I"(n), "0"((unsigned int)a)	\
    447 				: "cc");		\
    448 			   ret;				\
    449 			})
    450 #  elif defined(__powerpc) || defined(__ppc)
    451 #   define ROTATE(a,n)	({ register unsigned int ret;	\
    452 				asm (			\
    453 				"rlwinm %0,%1,%2,0,31"	\
    454 				: "=r"(ret)		\
    455 				: "r"(a), "I"(n));	\
    456 			   ret;				\
    457 			})
    458 #  endif
    459 # endif
    460 
    461 /*
    462  * Engage compiler specific "fetch in reverse byte order"
    463  * intrinsic function if available.
    464  */
    465 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
    466   /* some GNU C inline assembler templates by <appro (at) fy.chalmers.se> */
    467 #  if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY)
    468 #   define BE_FETCH32(a)	({ register unsigned int l=(a);\
    469 				asm (			\
    470 				"bswapl %0"		\
    471 				: "=r"(l) : "0"(l));	\
    472 			  l;				\
    473 			})
    474 #  elif defined(__powerpc)
    475 #   define LE_FETCH32(a)	({ register unsigned int l;	\
    476 				asm (			\
    477 				"lwbrx %0,0,%1"		\
    478 				: "=r"(l)		\
    479 				: "r"(a));		\
    480 			   l;				\
    481 			})
    482 
    483 #  elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
    484 #  define LE_FETCH32(a)	({ register unsigned int l;		\
    485 				asm (				\
    486 				"lda [%1]#ASI_PRIMARY_LITTLE,%0"\
    487 				: "=r"(l)			\
    488 				: "r"(a));			\
    489 			   l;					\
    490 			})
    491 #  endif
    492 # endif
    493 #endif /* PEDANTIC */
    494 
    495 #if HASH_LONG_LOG2==2	/* Engage only if sizeof(HASH_LONG)== 4 */
    496 /* A nice byte order reversal from Wei Dai <weidai (at) eskimo.com> */
    497 #ifdef ROTATE
    498 /* 5 instructions with rotate instruction, else 9 */
    499 #define REVERSE_FETCH32(a,l)	(					\
    500 		l=*(const HASH_LONG *)(a),				\
    501 		((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24)))	\
    502 				)
    503 #else
    504 /* 6 instructions with rotate instruction, else 8 */
    505 #define REVERSE_FETCH32(a,l)	(				\
    506 		l=*(const HASH_LONG *)(a),			\
    507 		l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)),	\
    508 		ROTATE(l,16)					\
    509 				)
    510 /*
    511  * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
    512  * It's rewritten as above for two reasons:
    513  *	- RISCs aren't good at long constants and have to explicitely
    514  *	  compose 'em with several (well, usually 2) instructions in a
    515  *	  register before performing the actual operation and (as you
    516  *	  already realized:-) having same constant should inspire the
    517  *	  compiler to permanently allocate the only register for it;
    518  *	- most modern CPUs have two ALUs, but usually only one has
    519  *	  circuitry for shifts:-( this minor tweak inspires compiler
    520  *	  to schedule shift instructions in a better way...
    521  *
    522  *				<appro (at) fy.chalmers.se>
    523  */
    524 #endif
    525 #endif
    526 
    527 #ifndef ROTATE
    528 #define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
    529 #endif
    530 
    531 /*
    532  * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
    533  * and HASH_BLOCK_HOST_ORDER ought to be the same if input data
    534  * and host are of the same "endianess". It's possible to mask
    535  * this with blank #define HASH_BLOCK_DATA_ORDER though...
    536  *
    537  *				<appro (at) fy.chalmers.se>
    538  */
    539 #if defined(B_ENDIAN)
    540 #  if defined(DATA_ORDER_IS_BIG_ENDIAN)
    541 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
    542 #      define HASH_BLOCK_DATA_ORDER_ALIGNED	HASH_BLOCK_HOST_ORDER
    543 #    endif
    544 #  elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    545 #    ifndef HOST_FETCH32
    546 #      ifdef LE_FETCH32
    547 #        define HOST_FETCH32(p,l)	LE_FETCH32(p)
    548 #      elif defined(REVERSE_FETCH32)
    549 #        define HOST_FETCH32(p,l)	REVERSE_FETCH32(p,l)
    550 #      endif
    551 #    endif
    552 #  endif
    553 #elif defined(L_ENDIAN)
    554 #  if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    555 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
    556 #      define HASH_BLOCK_DATA_ORDER_ALIGNED	HASH_BLOCK_HOST_ORDER
    557 #    endif
    558 #  elif defined(DATA_ORDER_IS_BIG_ENDIAN)
    559 #    ifndef HOST_FETCH32
    560 #      ifdef BE_FETCH32
    561 #        define HOST_FETCH32(p,l)	BE_FETCH32(p)
    562 #      elif defined(REVERSE_FETCH32)
    563 #        define HOST_FETCH32(p,l)	REVERSE_FETCH32(p,l)
    564 #      endif
    565 #    endif
    566 #  endif
    567 #endif
    568 
    569 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
    570 #ifndef HASH_BLOCK_DATA_ORDER
    571 #error "HASH_BLOCK_DATA_ORDER must be defined!"
    572 #endif
    573 #endif
    574 
    575 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
    576 
    577 #define HOST_c2l(c,l)	(l =(((unsigned long)(*((c)++)))<<24),		\
    578 			 l|=(((unsigned long)(*((c)++)))<<16),		\
    579 			 l|=(((unsigned long)(*((c)++)))<< 8),		\
    580 			 l|=(((unsigned long)(*((c)++)))    ),		\
    581 			 l)
    582 #define HOST_p_c2l(c,l,n)	{					\
    583 			switch (n) {					\
    584 			case 0: l =((unsigned long)(*((c)++)))<<24;	\
    585 			case 1: l|=((unsigned long)(*((c)++)))<<16;	\
    586 			case 2: l|=((unsigned long)(*((c)++)))<< 8;	\
    587 			case 3: l|=((unsigned long)(*((c)++)));		\
    588 				} }
    589 #define HOST_p_c2l_p(c,l,sc,len) {					\
    590 			switch (sc) {					\
    591 			case 0: l =((unsigned long)(*((c)++)))<<24;	\
    592 				if (--len == 0) break;			\
    593 			case 1: l|=((unsigned long)(*((c)++)))<<16;	\
    594 				if (--len == 0) break;			\
    595 			case 2: l|=((unsigned long)(*((c)++)))<< 8;	\
    596 				} }
    597 /* NOTE the pointer is not incremented at the end of this */
    598 #define HOST_c2l_p(c,l,n)	{					\
    599 			l=0; (c)+=n;					\
    600 			switch (n) {					\
    601 			case 3: l =((unsigned long)(*(--(c))))<< 8;	\
    602 			case 2: l|=((unsigned long)(*(--(c))))<<16;	\
    603 			case 1: l|=((unsigned long)(*(--(c))))<<24;	\
    604 				} }
    605 #define HOST_l2c(l,c)	(*((c)++)=(unsigned char)(((l)>>24)&0xff),	\
    606 			 *((c)++)=(unsigned char)(((l)>>16)&0xff),	\
    607 			 *((c)++)=(unsigned char)(((l)>> 8)&0xff),	\
    608 			 *((c)++)=(unsigned char)(((l)    )&0xff),	\
    609 			 l)
    610 
    611 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    612 
    613 #define HOST_c2l(c,l)	(l =(((unsigned long)(*((c)++)))    ),		\
    614 			 l|=(((unsigned long)(*((c)++)))<< 8),		\
    615 			 l|=(((unsigned long)(*((c)++)))<<16),		\
    616 			 l|=(((unsigned long)(*((c)++)))<<24),		\
    617 			 l)
    618 #define HOST_p_c2l(c,l,n)	{					\
    619 			switch (n) {					\
    620 			case 0: l =((unsigned long)(*((c)++)));		\
    621 			case 1: l|=((unsigned long)(*((c)++)))<< 8;	\
    622 			case 2: l|=((unsigned long)(*((c)++)))<<16;	\
    623 			case 3: l|=((unsigned long)(*((c)++)))<<24;	\
    624 				} }
    625 #define HOST_p_c2l_p(c,l,sc,len) {					\
    626 			switch (sc) {					\
    627 			case 0: l =((unsigned long)(*((c)++)));		\
    628 				if (--len == 0) break;			\
    629 			case 1: l|=((unsigned long)(*((c)++)))<< 8;	\
    630 				if (--len == 0) break;			\
    631 			case 2: l|=((unsigned long)(*((c)++)))<<16;	\
    632 				} }
    633 /* NOTE the pointer is not incremented at the end of this */
    634 #define HOST_c2l_p(c,l,n)	{					\
    635 			l=0; (c)+=n;					\
    636 			switch (n) {					\
    637 			case 3: l =((unsigned long)(*(--(c))))<<16;	\
    638 			case 2: l|=((unsigned long)(*(--(c))))<< 8;	\
    639 			case 1: l|=((unsigned long)(*(--(c))));		\
    640 				} }
    641 #define HOST_l2c(l,c)	(*((c)++)=(unsigned char)(((l)    )&0xff),	\
    642 			 *((c)++)=(unsigned char)(((l)>> 8)&0xff),	\
    643 			 *((c)++)=(unsigned char)(((l)>>16)&0xff),	\
    644 			 *((c)++)=(unsigned char)(((l)>>24)&0xff),	\
    645 			 l)
    646 
    647 #endif
    648 
    649 /*
    650  * Time for some action:-)
    651  */
    652 
    653 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len)
    654 	{
    655 	const unsigned char *data=(const unsigned char *)data_;
    656 	register HASH_LONG * p;
    657 	register unsigned long l;
    658 	int sw,sc,ew,ec;
    659 
    660 	if (len==0) return 1;
    661 
    662 	l=(c->Nl+(len<<3))&0xffffffffL;
    663 	/* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
    664 	 * Wei Dai <weidai (at) eskimo.com> for pointing it out. */
    665 	if (l < c->Nl) /* overflow */
    666 		c->Nh++;
    667 	c->Nh+=(len>>29);
    668 	c->Nl=l;
    669 
    670 	if (c->num != 0)
    671 		{
    672 		p=c->data;
    673 		sw=c->num>>2;
    674 		sc=c->num&0x03;
    675 
    676 		if ((c->num+len) >= HASH_CBLOCK)
    677 			{
    678 			l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
    679 			for (; sw<HASH_LBLOCK; sw++)
    680 				{
    681 				HOST_c2l(data,l); p[sw]=l;
    682 				}
    683 			HASH_BLOCK_HOST_ORDER (c,p,1);
    684 			len-=(HASH_CBLOCK-c->num);
    685 			c->num=0;
    686 			/* drop through and do the rest */
    687 			}
    688 		else
    689 			{
    690 			c->num+=len;
    691 			if ((sc+len) < 4) /* ugly, add char's to a word */
    692 				{
    693 				l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
    694 				}
    695 			else
    696 				{
    697 				ew=(c->num>>2);
    698 				ec=(c->num&0x03);
    699 				if (sc)
    700 					l=p[sw];
    701 				HOST_p_c2l(data,l,sc);
    702 				p[sw++]=l;
    703 				for (; sw < ew; sw++)
    704 					{
    705 					HOST_c2l(data,l); p[sw]=l;
    706 					}
    707 				if (ec)
    708 					{
    709 					HOST_c2l_p(data,l,ec); p[sw]=l;
    710 					}
    711 				}
    712 			return 1;
    713 			}
    714 		}
    715 
    716 	sw=(int)(len/HASH_CBLOCK);
    717 	if (sw > 0)
    718 		{
    719 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
    720 		/*
    721 		 * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
    722 		 * only if sizeof(HASH_LONG)==4.
    723 		 */
    724 		if ((((unsigned long)data)%4) == 0)
    725 			{
    726 			/* data is properly aligned so that we can cast it: */
    727 			HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw);
    728 			sw*=HASH_CBLOCK;
    729 			data+=sw;
    730 			len-=sw;
    731 			}
    732 		else
    733 #if !defined(HASH_BLOCK_DATA_ORDER)
    734 			while (sw--)
    735 				{
    736 				mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK);
    737 				HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
    738 				data+=HASH_CBLOCK;
    739 				len-=HASH_CBLOCK;
    740 				}
    741 #endif
    742 #endif
    743 #if defined(HASH_BLOCK_DATA_ORDER)
    744 			{
    745 			HASH_BLOCK_DATA_ORDER(c,data,sw);
    746 			sw*=HASH_CBLOCK;
    747 			data+=sw;
    748 			len-=sw;
    749 			}
    750 #endif
    751 		}
    752 
    753 	if (len!=0)
    754 		{
    755 		p = c->data;
    756 		c->num = (int)len;
    757 		ew=(int)(len>>2);	/* words to copy */
    758 		ec=(int)(len&0x03);
    759 		for (; ew; ew--,p++)
    760 			{
    761 			HOST_c2l(data,l); *p=l;
    762 			}
    763 		HOST_c2l_p(data,l,ec);
    764 		*p=l;
    765 		}
    766 	return 1;
    767 	}
    768 
    769 
    770 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
    771 	{
    772 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
    773 	if ((((unsigned long)data)%4) == 0)
    774 		/* data is properly aligned so that we can cast it: */
    775 		HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1);
    776 	else
    777 #if !defined(HASH_BLOCK_DATA_ORDER)
    778 		{
    779 		mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK);
    780 		HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
    781 		}
    782 #endif
    783 #endif
    784 #if defined(HASH_BLOCK_DATA_ORDER)
    785 	HASH_BLOCK_DATA_ORDER (c,data,1);
    786 #endif
    787 	}
    788 
    789 
    790 int HASH_FINAL (unsigned char *md, HASH_CTX *c)
    791 	{
    792 	register HASH_LONG *p;
    793 	register unsigned long l;
    794 	register int i,j;
    795 	static const unsigned char end[4]={0x80,0x00,0x00,0x00};
    796 	const unsigned char *cp=end;
    797 
    798 	/* c->num should definitly have room for at least one more byte. */
    799 	p=c->data;
    800 	i=c->num>>2;
    801 	j=c->num&0x03;
    802 
    803 #if 0
    804 	/* purify often complains about the following line as an
    805 	 * Uninitialized Memory Read.  While this can be true, the
    806 	 * following p_c2l macro will reset l when that case is true.
    807 	 * This is because j&0x03 contains the number of 'valid' bytes
    808 	 * already in p[i].  If and only if j&0x03 == 0, the UMR will
    809 	 * occur but this is also the only time p_c2l will do
    810 	 * l= *(cp++) instead of l|= *(cp++)
    811 	 * Many thanks to Alex Tang <altitude (at) cic.net> for pickup this
    812 	 * 'potential bug' */
    813 #ifdef PURIFY
    814 	if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
    815 #endif
    816 	l=p[i];
    817 #else
    818 	l = (j==0) ? 0 : p[i];
    819 #endif
    820 	HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
    821 
    822 	if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
    823 		{
    824 		if (i<HASH_LBLOCK) p[i]=0;
    825 		HASH_BLOCK_HOST_ORDER (c,p,1);
    826 		i=0;
    827 		}
    828 	for (; i<(HASH_LBLOCK-2); i++)
    829 		p[i]=0;
    830 
    831 #if   defined(DATA_ORDER_IS_BIG_ENDIAN)
    832 	p[HASH_LBLOCK-2]=c->Nh;
    833 	p[HASH_LBLOCK-1]=c->Nl;
    834 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    835 	p[HASH_LBLOCK-2]=c->Nl;
    836 	p[HASH_LBLOCK-1]=c->Nh;
    837 #endif
    838 	HASH_BLOCK_HOST_ORDER (c,p,1);
    839 
    840 #ifndef HASH_MAKE_STRING
    841 #error "HASH_MAKE_STRING must be defined!"
    842 #else
    843 	HASH_MAKE_STRING(c,md);
    844 #endif
    845 
    846 	c->num=0;
    847 	/* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
    848 	 * but I'm not worried :-)
    849 	OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
    850 	 */
    851 	return 1;
    852 	}
    853 
    854 #ifndef MD32_REG_T
    855 #define MD32_REG_T long
    856 /*
    857  * This comment was originaly written for MD5, which is why it
    858  * discusses A-D. But it basically applies to all 32-bit digests,
    859  * which is why it was moved to common header file.
    860  *
    861  * In case you wonder why A-D are declared as long and not
    862  * as mDNSu32. Doing so results in slight performance
    863  * boost on LP64 architectures. The catch is we don't
    864  * really care if 32 MSBs of a 64-bit register get polluted
    865  * with eventual overflows as we *save* only 32 LSBs in
    866  * *either* case. Now declaring 'em long excuses the compiler
    867  * from keeping 32 MSBs zeroed resulting in 13% performance
    868  * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
    869  * Well, to be honest it should say that this *prevents*
    870  * performance degradation.
    871  *				<appro (at) fy.chalmers.se>
    872  * Apparently there're LP64 compilers that generate better
    873  * code if A-D are declared int. Most notably GCC-x86_64
    874  * generates better code.
    875  *				<appro (at) fy.chalmers.se>
    876  */
    877 #endif
    878 
    879 
    880 // from md5_locl.h (continued)
    881 
    882 /*
    883 #define	F(x,y,z)	(((x) & (y))  |  ((~(x)) & (z)))
    884 #define	G(x,y,z)	(((x) & (z))  |  ((y) & (~(z))))
    885 */
    886 
    887 /* As pointed out by Wei Dai <weidai (at) eskimo.com>, the above can be
    888  * simplified to the code below.  Wei attributes these optimizations
    889  * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
    890  */
    891 #define	F(b,c,d)	((((c) ^ (d)) & (b)) ^ (d))
    892 #define	G(b,c,d)	((((b) ^ (c)) & (d)) ^ (c))
    893 #define	H(b,c,d)	((b) ^ (c) ^ (d))
    894 #define	I(b,c,d)	(((~(d)) | (b)) ^ (c))
    895 
    896 #define R0(a,b,c,d,k,s,t) { \
    897 	a+=((k)+(t)+F((b),(c),(d))); \
    898 	a=ROTATE(a,s); \
    899 	a+=b; };\
    900 
    901 #define R1(a,b,c,d,k,s,t) { \
    902 	a+=((k)+(t)+G((b),(c),(d))); \
    903 	a=ROTATE(a,s); \
    904 	a+=b; };
    905 
    906 #define R2(a,b,c,d,k,s,t) { \
    907 	a+=((k)+(t)+H((b),(c),(d))); \
    908 	a=ROTATE(a,s); \
    909 	a+=b; };
    910 
    911 #define R3(a,b,c,d,k,s,t) { \
    912 	a+=((k)+(t)+I((b),(c),(d))); \
    913 	a=ROTATE(a,s); \
    914 	a+=b; };
    915 
    916 // from md5_dgst.c
    917 
    918 
    919 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm
    920  */
    921 
    922 #define INIT_DATA_A (unsigned long)0x67452301L
    923 #define INIT_DATA_B (unsigned long)0xefcdab89L
    924 #define INIT_DATA_C (unsigned long)0x98badcfeL
    925 #define INIT_DATA_D (unsigned long)0x10325476L
    926 
    927 int MD5_Init(MD5_CTX *c)
    928 	{
    929 	c->A=INIT_DATA_A;
    930 	c->B=INIT_DATA_B;
    931 	c->C=INIT_DATA_C;
    932 	c->D=INIT_DATA_D;
    933 	c->Nl=0;
    934 	c->Nh=0;
    935 	c->num=0;
    936 	return 1;
    937 	}
    938 
    939 #ifndef md5_block_host_order
    940 void md5_block_host_order (MD5_CTX *c, const void *data, int num)
    941 	{
    942 	const mDNSu32 *X=(const mDNSu32 *)data;
    943 	register unsigned MD32_REG_T A,B,C,D;
    944 
    945 	A=c->A;
    946 	B=c->B;
    947 	C=c->C;
    948 	D=c->D;
    949 
    950 	for (;num--;X+=HASH_LBLOCK)
    951 		{
    952 	/* Round 0 */
    953 	R0(A,B,C,D,X[ 0], 7,0xd76aa478L);
    954 	R0(D,A,B,C,X[ 1],12,0xe8c7b756L);
    955 	R0(C,D,A,B,X[ 2],17,0x242070dbL);
    956 	R0(B,C,D,A,X[ 3],22,0xc1bdceeeL);
    957 	R0(A,B,C,D,X[ 4], 7,0xf57c0fafL);
    958 	R0(D,A,B,C,X[ 5],12,0x4787c62aL);
    959 	R0(C,D,A,B,X[ 6],17,0xa8304613L);
    960 	R0(B,C,D,A,X[ 7],22,0xfd469501L);
    961 	R0(A,B,C,D,X[ 8], 7,0x698098d8L);
    962 	R0(D,A,B,C,X[ 9],12,0x8b44f7afL);
    963 	R0(C,D,A,B,X[10],17,0xffff5bb1L);
    964 	R0(B,C,D,A,X[11],22,0x895cd7beL);
    965 	R0(A,B,C,D,X[12], 7,0x6b901122L);
    966 	R0(D,A,B,C,X[13],12,0xfd987193L);
    967 	R0(C,D,A,B,X[14],17,0xa679438eL);
    968 	R0(B,C,D,A,X[15],22,0x49b40821L);
    969 	/* Round 1 */
    970 	R1(A,B,C,D,X[ 1], 5,0xf61e2562L);
    971 	R1(D,A,B,C,X[ 6], 9,0xc040b340L);
    972 	R1(C,D,A,B,X[11],14,0x265e5a51L);
    973 	R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL);
    974 	R1(A,B,C,D,X[ 5], 5,0xd62f105dL);
    975 	R1(D,A,B,C,X[10], 9,0x02441453L);
    976 	R1(C,D,A,B,X[15],14,0xd8a1e681L);
    977 	R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L);
    978 	R1(A,B,C,D,X[ 9], 5,0x21e1cde6L);
    979 	R1(D,A,B,C,X[14], 9,0xc33707d6L);
    980 	R1(C,D,A,B,X[ 3],14,0xf4d50d87L);
    981 	R1(B,C,D,A,X[ 8],20,0x455a14edL);
    982 	R1(A,B,C,D,X[13], 5,0xa9e3e905L);
    983 	R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L);
    984 	R1(C,D,A,B,X[ 7],14,0x676f02d9L);
    985 	R1(B,C,D,A,X[12],20,0x8d2a4c8aL);
    986 	/* Round 2 */
    987 	R2(A,B,C,D,X[ 5], 4,0xfffa3942L);
    988 	R2(D,A,B,C,X[ 8],11,0x8771f681L);
    989 	R2(C,D,A,B,X[11],16,0x6d9d6122L);
    990 	R2(B,C,D,A,X[14],23,0xfde5380cL);
    991 	R2(A,B,C,D,X[ 1], 4,0xa4beea44L);
    992 	R2(D,A,B,C,X[ 4],11,0x4bdecfa9L);
    993 	R2(C,D,A,B,X[ 7],16,0xf6bb4b60L);
    994 	R2(B,C,D,A,X[10],23,0xbebfbc70L);
    995 	R2(A,B,C,D,X[13], 4,0x289b7ec6L);
    996 	R2(D,A,B,C,X[ 0],11,0xeaa127faL);
    997 	R2(C,D,A,B,X[ 3],16,0xd4ef3085L);
    998 	R2(B,C,D,A,X[ 6],23,0x04881d05L);
    999 	R2(A,B,C,D,X[ 9], 4,0xd9d4d039L);
   1000 	R2(D,A,B,C,X[12],11,0xe6db99e5L);
   1001 	R2(C,D,A,B,X[15],16,0x1fa27cf8L);
   1002 	R2(B,C,D,A,X[ 2],23,0xc4ac5665L);
   1003 	/* Round 3 */
   1004 	R3(A,B,C,D,X[ 0], 6,0xf4292244L);
   1005 	R3(D,A,B,C,X[ 7],10,0x432aff97L);
   1006 	R3(C,D,A,B,X[14],15,0xab9423a7L);
   1007 	R3(B,C,D,A,X[ 5],21,0xfc93a039L);
   1008 	R3(A,B,C,D,X[12], 6,0x655b59c3L);
   1009 	R3(D,A,B,C,X[ 3],10,0x8f0ccc92L);
   1010 	R3(C,D,A,B,X[10],15,0xffeff47dL);
   1011 	R3(B,C,D,A,X[ 1],21,0x85845dd1L);
   1012 	R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL);
   1013 	R3(D,A,B,C,X[15],10,0xfe2ce6e0L);
   1014 	R3(C,D,A,B,X[ 6],15,0xa3014314L);
   1015 	R3(B,C,D,A,X[13],21,0x4e0811a1L);
   1016 	R3(A,B,C,D,X[ 4], 6,0xf7537e82L);
   1017 	R3(D,A,B,C,X[11],10,0xbd3af235L);
   1018 	R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL);
   1019 	R3(B,C,D,A,X[ 9],21,0xeb86d391L);
   1020 
   1021 	A = c->A += A;
   1022 	B = c->B += B;
   1023 	C = c->C += C;
   1024 	D = c->D += D;
   1025 		}
   1026 	}
   1027 #endif
   1028 
   1029 #ifndef md5_block_data_order
   1030 #ifdef X
   1031 #undef X
   1032 #endif
   1033 void md5_block_data_order (MD5_CTX *c, const void *data_, int num)
   1034 	{
   1035 	const unsigned char *data=data_;
   1036 	register unsigned MD32_REG_T A,B,C,D,l;
   1037 #ifndef MD32_XARRAY
   1038 	/* See comment in crypto/sha/sha_locl.h for details. */
   1039 	unsigned MD32_REG_T	XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
   1040 				XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
   1041 # define X(i)	XX##i
   1042 #else
   1043 	mDNSu32 XX[MD5_LBLOCK];
   1044 # define X(i)	XX[i]
   1045 #endif
   1046 
   1047 	A=c->A;
   1048 	B=c->B;
   1049 	C=c->C;
   1050 	D=c->D;
   1051 
   1052 	for (;num--;)
   1053 		{
   1054 	HOST_c2l(data,l); X( 0)=l;		HOST_c2l(data,l); X( 1)=l;
   1055 	/* Round 0 */
   1056 	R0(A,B,C,D,X( 0), 7,0xd76aa478L);	HOST_c2l(data,l); X( 2)=l;
   1057 	R0(D,A,B,C,X( 1),12,0xe8c7b756L);	HOST_c2l(data,l); X( 3)=l;
   1058 	R0(C,D,A,B,X( 2),17,0x242070dbL);	HOST_c2l(data,l); X( 4)=l;
   1059 	R0(B,C,D,A,X( 3),22,0xc1bdceeeL);	HOST_c2l(data,l); X( 5)=l;
   1060 	R0(A,B,C,D,X( 4), 7,0xf57c0fafL);	HOST_c2l(data,l); X( 6)=l;
   1061 	R0(D,A,B,C,X( 5),12,0x4787c62aL);	HOST_c2l(data,l); X( 7)=l;
   1062 	R0(C,D,A,B,X( 6),17,0xa8304613L);	HOST_c2l(data,l); X( 8)=l;
   1063 	R0(B,C,D,A,X( 7),22,0xfd469501L);	HOST_c2l(data,l); X( 9)=l;
   1064 	R0(A,B,C,D,X( 8), 7,0x698098d8L);	HOST_c2l(data,l); X(10)=l;
   1065 	R0(D,A,B,C,X( 9),12,0x8b44f7afL);	HOST_c2l(data,l); X(11)=l;
   1066 	R0(C,D,A,B,X(10),17,0xffff5bb1L);	HOST_c2l(data,l); X(12)=l;
   1067 	R0(B,C,D,A,X(11),22,0x895cd7beL);	HOST_c2l(data,l); X(13)=l;
   1068 	R0(A,B,C,D,X(12), 7,0x6b901122L);	HOST_c2l(data,l); X(14)=l;
   1069 	R0(D,A,B,C,X(13),12,0xfd987193L);	HOST_c2l(data,l); X(15)=l;
   1070 	R0(C,D,A,B,X(14),17,0xa679438eL);
   1071 	R0(B,C,D,A,X(15),22,0x49b40821L);
   1072 	/* Round 1 */
   1073 	R1(A,B,C,D,X( 1), 5,0xf61e2562L);
   1074 	R1(D,A,B,C,X( 6), 9,0xc040b340L);
   1075 	R1(C,D,A,B,X(11),14,0x265e5a51L);
   1076 	R1(B,C,D,A,X( 0),20,0xe9b6c7aaL);
   1077 	R1(A,B,C,D,X( 5), 5,0xd62f105dL);
   1078 	R1(D,A,B,C,X(10), 9,0x02441453L);
   1079 	R1(C,D,A,B,X(15),14,0xd8a1e681L);
   1080 	R1(B,C,D,A,X( 4),20,0xe7d3fbc8L);
   1081 	R1(A,B,C,D,X( 9), 5,0x21e1cde6L);
   1082 	R1(D,A,B,C,X(14), 9,0xc33707d6L);
   1083 	R1(C,D,A,B,X( 3),14,0xf4d50d87L);
   1084 	R1(B,C,D,A,X( 8),20,0x455a14edL);
   1085 	R1(A,B,C,D,X(13), 5,0xa9e3e905L);
   1086 	R1(D,A,B,C,X( 2), 9,0xfcefa3f8L);
   1087 	R1(C,D,A,B,X( 7),14,0x676f02d9L);
   1088 	R1(B,C,D,A,X(12),20,0x8d2a4c8aL);
   1089 	/* Round 2 */
   1090 	R2(A,B,C,D,X( 5), 4,0xfffa3942L);
   1091 	R2(D,A,B,C,X( 8),11,0x8771f681L);
   1092 	R2(C,D,A,B,X(11),16,0x6d9d6122L);
   1093 	R2(B,C,D,A,X(14),23,0xfde5380cL);
   1094 	R2(A,B,C,D,X( 1), 4,0xa4beea44L);
   1095 	R2(D,A,B,C,X( 4),11,0x4bdecfa9L);
   1096 	R2(C,D,A,B,X( 7),16,0xf6bb4b60L);
   1097 	R2(B,C,D,A,X(10),23,0xbebfbc70L);
   1098 	R2(A,B,C,D,X(13), 4,0x289b7ec6L);
   1099 	R2(D,A,B,C,X( 0),11,0xeaa127faL);
   1100 	R2(C,D,A,B,X( 3),16,0xd4ef3085L);
   1101 	R2(B,C,D,A,X( 6),23,0x04881d05L);
   1102 	R2(A,B,C,D,X( 9), 4,0xd9d4d039L);
   1103 	R2(D,A,B,C,X(12),11,0xe6db99e5L);
   1104 	R2(C,D,A,B,X(15),16,0x1fa27cf8L);
   1105 	R2(B,C,D,A,X( 2),23,0xc4ac5665L);
   1106 	/* Round 3 */
   1107 	R3(A,B,C,D,X( 0), 6,0xf4292244L);
   1108 	R3(D,A,B,C,X( 7),10,0x432aff97L);
   1109 	R3(C,D,A,B,X(14),15,0xab9423a7L);
   1110 	R3(B,C,D,A,X( 5),21,0xfc93a039L);
   1111 	R3(A,B,C,D,X(12), 6,0x655b59c3L);
   1112 	R3(D,A,B,C,X( 3),10,0x8f0ccc92L);
   1113 	R3(C,D,A,B,X(10),15,0xffeff47dL);
   1114 	R3(B,C,D,A,X( 1),21,0x85845dd1L);
   1115 	R3(A,B,C,D,X( 8), 6,0x6fa87e4fL);
   1116 	R3(D,A,B,C,X(15),10,0xfe2ce6e0L);
   1117 	R3(C,D,A,B,X( 6),15,0xa3014314L);
   1118 	R3(B,C,D,A,X(13),21,0x4e0811a1L);
   1119 	R3(A,B,C,D,X( 4), 6,0xf7537e82L);
   1120 	R3(D,A,B,C,X(11),10,0xbd3af235L);
   1121 	R3(C,D,A,B,X( 2),15,0x2ad7d2bbL);
   1122 	R3(B,C,D,A,X( 9),21,0xeb86d391L);
   1123 
   1124 	A = c->A += A;
   1125 	B = c->B += B;
   1126 	C = c->C += C;
   1127 	D = c->D += D;
   1128 		}
   1129 	}
   1130 #endif
   1131 
   1132 #endif  // !HAVE_MD5
   1133 
   1134  // ***************************************************************************
   1135 #if COMPILER_LIKES_PRAGMA_MARK
   1136 #pragma mark - base64 -> binary conversion
   1137 #endif
   1138 
   1139 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
   1140 static const char Pad64 = '=';
   1141 
   1142 
   1143 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ')
   1144 
   1145 mDNSlocal const char *mDNSstrchr(const char *s, int c)
   1146 	{
   1147 	while (1)
   1148 		{
   1149 		if (c == *s) return s;
   1150 		if (!*s) return mDNSNULL;
   1151 		s++;
   1152 		}
   1153 	}
   1154 
   1155 // skips all whitespace anywhere.
   1156 // converts characters, four at a time, starting at (or after)
   1157 // src from base - 64 numbers into three 8 bit bytes in the target area.
   1158 // it returns the number of data bytes stored at the target, or -1 on error.
   1159 // adapted from BIND sources
   1160 
   1161 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize)
   1162 	{
   1163 	int tarindex, state, ch;
   1164 	const char *pos;
   1165 
   1166 	state = 0;
   1167 	tarindex = 0;
   1168 
   1169 	while ((ch = *src++) != '\0') {
   1170 		if (mDNSisspace(ch))	/* Skip whitespace anywhere. */
   1171 			continue;
   1172 
   1173 		if (ch == Pad64)
   1174 			break;
   1175 
   1176 		pos = mDNSstrchr(Base64, ch);
   1177 		if (pos == 0) 		/* A non-base64 character. */
   1178 			return (-1);
   1179 
   1180 		switch (state) {
   1181 		case 0:
   1182 			if (target) {
   1183 				if ((mDNSu32)tarindex >= targsize)
   1184 					return (-1);
   1185 				target[tarindex] = (mDNSu8)((pos - Base64) << 2);
   1186 			}
   1187 			state = 1;
   1188 			break;
   1189 		case 1:
   1190 			if (target) {
   1191 				if ((mDNSu32)tarindex + 1 >= targsize)
   1192 					return (-1);
   1193 				target[tarindex]   |=  (pos - Base64) >> 4;
   1194 				target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x0f) << 4);
   1195 			}
   1196 			tarindex++;
   1197 			state = 2;
   1198 			break;
   1199 		case 2:
   1200 			if (target) {
   1201 				if ((mDNSu32)tarindex + 1 >= targsize)
   1202 					return (-1);
   1203 				target[tarindex]   |=  (pos - Base64) >> 2;
   1204 				target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x03) << 6);
   1205 			}
   1206 			tarindex++;
   1207 			state = 3;
   1208 			break;
   1209 		case 3:
   1210 			if (target) {
   1211 				if ((mDNSu32)tarindex >= targsize)
   1212 					return (-1);
   1213 				target[tarindex] |= (pos - Base64);
   1214 			}
   1215 			tarindex++;
   1216 			state = 0;
   1217 			break;
   1218 		default:
   1219 			return -1;
   1220 		}
   1221 	}
   1222 
   1223 	/*
   1224 	 * We are done decoding Base-64 chars.  Let's see if we ended
   1225 	 * on a byte boundary, and/or with erroneous trailing characters.
   1226 	 */
   1227 
   1228 	if (ch == Pad64) {		/* We got a pad char. */
   1229 		ch = *src++;		/* Skip it, get next. */
   1230 		switch (state) {
   1231 		case 0:		/* Invalid = in first position */
   1232 		case 1:		/* Invalid = in second position */
   1233 			return (-1);
   1234 
   1235 		case 2:		/* Valid, means one byte of info */
   1236 			/* Skip any number of spaces. */
   1237 			for ((void)mDNSNULL; ch != '\0'; ch = *src++)
   1238 				if (!mDNSisspace(ch))
   1239 					break;
   1240 			/* Make sure there is another trailing = sign. */
   1241 			if (ch != Pad64)
   1242 				return (-1);
   1243 			ch = *src++;		/* Skip the = */
   1244 			/* Fall through to "single trailing =" case. */
   1245 			/* FALLTHROUGH */
   1246 
   1247 		case 3:		/* Valid, means two bytes of info */
   1248 			/*
   1249 			 * We know this char is an =.  Is there anything but
   1250 			 * whitespace after it?
   1251 			 */
   1252 			for ((void)mDNSNULL; ch != '\0'; ch = *src++)
   1253 				if (!mDNSisspace(ch))
   1254 					return (-1);
   1255 
   1256 			/*
   1257 			 * Now make sure for cases 2 and 3 that the "extra"
   1258 			 * bits that slopped past the last full byte were
   1259 			 * zeros.  If we don't check them, they become a
   1260 			 * subliminal channel.
   1261 			 */
   1262 			if (target && target[tarindex] != 0)
   1263 				return (-1);
   1264 		}
   1265 	} else {
   1266 		/*
   1267 		 * We ended by seeing the end of the string.  Make sure we
   1268 		 * have no partial bytes lying around.
   1269 		 */
   1270 		if (state != 0)
   1271 			return (-1);
   1272 		}
   1273 
   1274 	return (tarindex);
   1275 	}
   1276 
   1277 
   1278  // ***************************************************************************
   1279 #if COMPILER_LIKES_PRAGMA_MARK
   1280 #pragma mark - API exported to mDNS Core
   1281 #endif
   1282 
   1283 // Constants
   1284 #define HMAC_IPAD   0x36
   1285 #define HMAC_OPAD   0x5c
   1286 #define MD5_LEN     16
   1287 
   1288 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int")
   1289 
   1290 // Adapted from Appendix, RFC 2104
   1291 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len)
   1292 	{
   1293 	MD5_CTX k;
   1294 	mDNSu8 buf[MD5_LEN];
   1295 	int i;
   1296 
   1297 	// If key is longer than HMAC_LEN reset it to MD5(key)
   1298 	if (len > HMAC_LEN)
   1299 		{
   1300 		MD5_Init(&k);
   1301 		MD5_Update(&k, key, len);
   1302 		MD5_Final(buf, &k);
   1303 		key = buf;
   1304 		len = MD5_LEN;
   1305 		}
   1306 
   1307 	// store key in pads
   1308 	mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN);
   1309 	mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN);
   1310 	mDNSPlatformMemCopy(info->keydata_ipad, key, len);
   1311 	mDNSPlatformMemCopy(info->keydata_opad, key, len);
   1312 
   1313 	// XOR key with ipad and opad values
   1314 	for (i = 0; i < HMAC_LEN; i++)
   1315 		{
   1316 		info->keydata_ipad[i] ^= HMAC_IPAD;
   1317 		info->keydata_opad[i] ^= HMAC_OPAD;
   1318 		}
   1319 
   1320 	}
   1321 
   1322 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key)
   1323 	{
   1324 	mDNSu8 keybuf[1024];
   1325 	mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf));
   1326 	if (keylen < 0) return(keylen);
   1327 	DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen);
   1328 	return(keylen);
   1329 	}
   1330 
   1331 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode)
   1332 	{
   1333 	AuthRecord tsig;
   1334 	mDNSu8  *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals;	// Get existing numAdditionals value
   1335 	mDNSu32 utc32;
   1336 	mDNSu8 utc48[6];
   1337 	mDNSu8 digest[MD5_LEN];
   1338 	mDNSu8 *ptr = *end;
   1339 	mDNSu32 len;
   1340 	mDNSOpaque16 buf;
   1341 	MD5_CTX c;
   1342 	mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]);
   1343 
   1344 	// Init MD5 context, digest inner key pad and message
   1345     MD5_Init(&c);
   1346     MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
   1347 	MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg));
   1348 
   1349 	// Construct TSIG RR, digesting variables as apporpriate
   1350 	mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
   1351 
   1352 	// key name
   1353 	AssignDomainName(&tsig.namestorage, &info->keyname);
   1354 	MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname));
   1355 
   1356 	// class
   1357 	tsig.resrec.rrclass = kDNSQClass_ANY;
   1358 	buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY);
   1359 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
   1360 
   1361 	// ttl
   1362 	tsig.resrec.rroriginalttl = 0;
   1363 	MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl));
   1364 
   1365 	// alg name
   1366 	AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName);
   1367 	len = DomainNameLength(&HMAC_MD5_AlgName);
   1368 	rdata = tsig.resrec.rdata->u.data + len;
   1369 	MD5_Update(&c, HMAC_MD5_AlgName.c, len);
   1370 
   1371 	// time
   1372 	// get UTC (universal time), convert to 48-bit unsigned in network byte order
   1373 	utc32 = (mDNSu32)mDNSPlatformUTC();
   1374 	if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; }
   1375 	utc48[0] = 0;
   1376 	utc48[1] = 0;
   1377 	utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff);
   1378 	utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff);
   1379 	utc48[4] = (mDNSu8)((utc32 >>  8) & 0xff);
   1380 	utc48[5] = (mDNSu8)( utc32        & 0xff);
   1381 
   1382 	mDNSPlatformMemCopy(rdata, utc48, 6);
   1383 	rdata += 6;
   1384 	MD5_Update(&c, utc48, 6);
   1385 
   1386 	// 300 sec is fudge recommended in RFC 2485
   1387 	rdata[0] = (mDNSu8)((300 >> 8)  & 0xff);
   1388 	rdata[1] = (mDNSu8)( 300        & 0xff);
   1389 	MD5_Update(&c, rdata, sizeof(mDNSOpaque16));
   1390 	rdata += sizeof(mDNSOpaque16);
   1391 
   1392 	// digest error (tcode) and other data len (zero) - we'll add them to the rdata later
   1393 	buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff);
   1394 	buf.b[1] = (mDNSu8)( tcode       & 0xff);
   1395 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
   1396 	buf.NotAnInteger = 0;
   1397 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
   1398 
   1399 	// finish the message & tsig var hash
   1400     MD5_Final(digest, &c);
   1401 
   1402 	// perform outer MD5 (outer key pad, inner digest)
   1403 	MD5_Init(&c);
   1404 	MD5_Update(&c, info->keydata_opad, HMAC_LEN);
   1405 	MD5_Update(&c, digest, MD5_LEN);
   1406 	MD5_Final(digest, &c);
   1407 
   1408 	// set remaining rdata fields
   1409 	rdata[0] = (mDNSu8)((MD5_LEN >> 8)  & 0xff);
   1410 	rdata[1] = (mDNSu8)( MD5_LEN        & 0xff);
   1411 	rdata += sizeof(mDNSOpaque16);
   1412 	mDNSPlatformMemCopy(rdata, digest, MD5_LEN);                          // MAC
   1413 	rdata += MD5_LEN;
   1414 	rdata[0] = msg->h.id.b[0];                                            // original ID
   1415 	rdata[1] = msg->h.id.b[1];
   1416 	rdata[2] = (mDNSu8)((tcode >> 8) & 0xff);
   1417 	rdata[3] = (mDNSu8)( tcode       & 0xff);
   1418 	rdata[4] = 0;                                                         // other data len
   1419 	rdata[5] = 0;
   1420 	rdata += 6;
   1421 
   1422 	tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data);
   1423 	*end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0);
   1424 	if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; }
   1425 
   1426 	// Write back updated numAdditionals value
   1427 	countPtr[0] = (mDNSu8)(numAdditionals >> 8);
   1428 	countPtr[1] = (mDNSu8)(numAdditionals &  0xFF);
   1429 	}
   1430 
   1431 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode)
   1432 	{
   1433 	mDNSu8			*	ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data;
   1434 	mDNSs32				now;
   1435 	mDNSs32				then;
   1436 	mDNSu8				thisDigest[MD5_LEN];
   1437 	mDNSu8				thatDigest[MD5_LEN];
   1438 	mDNSu32				macsize;
   1439 	mDNSOpaque16 		buf;
   1440 	mDNSu8				utc48[6];
   1441 	mDNSs32				delta;
   1442 	mDNSu16				fudge;
   1443 	domainname		*	algo;
   1444 	MD5_CTX				c;
   1445 	mDNSBool			ok = mDNSfalse;
   1446 
   1447 	// We only support HMAC-MD5 for now
   1448 
   1449 	algo = (domainname*) ptr;
   1450 
   1451 	if (!SameDomainName(algo, &HMAC_MD5_AlgName))
   1452 		{
   1453 		LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c);
   1454 		*rcode = kDNSFlag1_RC_NotAuth;
   1455 		*tcode = TSIG_ErrBadKey;
   1456 		ok = mDNSfalse;
   1457 		goto exit;
   1458 		}
   1459 
   1460 	ptr += DomainNameLength(algo);
   1461 
   1462 	// Check the times
   1463 
   1464 	now = mDNSPlatformUTC();
   1465 	if (now == -1)
   1466 		{
   1467 		LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1");
   1468 		*rcode = kDNSFlag1_RC_NotAuth;
   1469 		*tcode = TSIG_ErrBadTime;
   1470 		ok = mDNSfalse;
   1471 		goto exit;
   1472 		}
   1473 
   1474 	// Get the 48 bit time field, skipping over the first word
   1475 
   1476 	utc48[0] = *ptr++;
   1477 	utc48[1] = *ptr++;
   1478 	utc48[2] = *ptr++;
   1479 	utc48[3] = *ptr++;
   1480 	utc48[4] = *ptr++;
   1481 	utc48[5] = *ptr++;
   1482 
   1483 	then  = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16));
   1484 
   1485 	fudge = NToH16(ptr);
   1486 
   1487 	ptr += sizeof(mDNSu16);
   1488 
   1489 	delta = (now > then) ? now - then : then - now;
   1490 
   1491 	if (delta > fudge)
   1492 		{
   1493 		LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge);
   1494 		*rcode = kDNSFlag1_RC_NotAuth;
   1495 		*tcode = TSIG_ErrBadTime;
   1496 		ok = mDNSfalse;
   1497 		goto exit;
   1498 		}
   1499 
   1500 	// MAC size
   1501 
   1502 	macsize = (mDNSu32) NToH16(ptr);
   1503 
   1504 	ptr += sizeof(mDNSu16);
   1505 
   1506 	// MAC
   1507 
   1508 	mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN);
   1509 
   1510 	// Init MD5 context, digest inner key pad and message
   1511 
   1512 	MD5_Init(&c);
   1513 	MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
   1514 	MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg));
   1515 
   1516 	// Key name
   1517 
   1518 	MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name));
   1519 
   1520 	// Class name
   1521 
   1522 	buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass);
   1523 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
   1524 
   1525 	// TTL
   1526 
   1527 	MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl));
   1528 
   1529 	// Algorithm
   1530 
   1531 	MD5_Update(&c, algo->c, DomainNameLength(algo));
   1532 
   1533 	// Time
   1534 
   1535 	MD5_Update(&c, utc48, 6);
   1536 
   1537 	// Fudge
   1538 
   1539 	buf = mDNSOpaque16fromIntVal(fudge);
   1540 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
   1541 
   1542 	// Digest error and other data len (both zero) - we'll add them to the rdata later
   1543 
   1544 	buf.NotAnInteger = 0;
   1545 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
   1546 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
   1547 
   1548 	// Finish the message & tsig var hash
   1549 
   1550     MD5_Final(thisDigest, &c);
   1551 
   1552 	// perform outer MD5 (outer key pad, inner digest)
   1553 
   1554 	MD5_Init(&c);
   1555 	MD5_Update(&c, info->keydata_opad, HMAC_LEN);
   1556 	MD5_Update(&c, thisDigest, MD5_LEN);
   1557 	MD5_Final(thisDigest, &c);
   1558 
   1559 	if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN))
   1560 		{
   1561 		LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature");
   1562 		*rcode = kDNSFlag1_RC_NotAuth;
   1563 		*tcode = TSIG_ErrBadSig;
   1564 		ok = mDNSfalse;
   1565 		goto exit;
   1566 		}
   1567 
   1568 	// set remaining rdata fields
   1569 	ok = mDNStrue;
   1570 
   1571 exit:
   1572 
   1573 	return ok;
   1574 	}
   1575 
   1576 
   1577 #ifdef __cplusplus
   1578 }
   1579 #endif
   1580