Home | History | Annotate | Download | only in ir3
      1 /* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
      2 
      3 /*
      4  * Copyright (C) 2014 Rob Clark <robclark (at) freedesktop.org>
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     23  * SOFTWARE.
     24  *
     25  * Authors:
     26  *    Rob Clark <robclark (at) freedesktop.org>
     27  */
     28 
     29 #include "util/u_math.h"
     30 
     31 #include "freedreno_util.h"
     32 
     33 #include "ir3.h"
     34 
     35 /*
     36  * Legalize:
     37  *
     38  * We currently require that scheduling ensures that we have enough nop's
     39  * in all the right places.  The legalize step mostly handles fixing up
     40  * instruction flags ((ss)/(sy)/(ei)), and collapses sequences of nop's
     41  * into fewer nop's w/ rpt flag.
     42  */
     43 
     44 struct ir3_legalize_ctx {
     45 	bool has_samp;
     46 	int max_bary;
     47 };
     48 
     49 /* We want to evaluate each block from the position of any other
     50  * predecessor block, in order that the flags set are the union
     51  * of all possible program paths.  For stopping condition, we
     52  * want to stop when the pair of <pred-block, current-block> has
     53  * been visited already.
     54  *
     55  * XXX is that completely true?  We could have different needs_xyz
     56  * flags set depending on path leading to pred-block.. we could
     57  * do *most* of this based on chasing src instructions ptrs (and
     58  * following all phi srcs).. except the write-after-read hazzard.
     59  *
     60  * For now we just set ss/sy flag on first instruction on block,
     61  * and handle everything within the block as before.
     62  */
     63 
     64 static void
     65 legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
     66 {
     67 	struct ir3_instruction *last_input = NULL;
     68 	struct ir3_instruction *last_rel = NULL;
     69 	struct list_head instr_list;
     70 	regmask_t needs_ss_war;       /* write after read */
     71 	regmask_t needs_ss;
     72 	regmask_t needs_sy;
     73 
     74 	regmask_init(&needs_ss_war);
     75 	regmask_init(&needs_ss);
     76 	regmask_init(&needs_sy);
     77 
     78 	/* remove all the instructions from the list, we'll be adding
     79 	 * them back in as we go
     80 	 */
     81 	list_replace(&block->instr_list, &instr_list);
     82 	list_inithead(&block->instr_list);
     83 
     84 	list_for_each_entry_safe (struct ir3_instruction, n, &instr_list, node) {
     85 		struct ir3_register *reg;
     86 		unsigned i;
     87 
     88 		if (is_meta(n))
     89 			continue;
     90 
     91 		if (is_input(n)) {
     92 			struct ir3_register *inloc = n->regs[1];
     93 			assert(inloc->flags & IR3_REG_IMMED);
     94 			ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
     95 		}
     96 
     97 		/* NOTE: consider dst register too.. it could happen that
     98 		 * texture sample instruction (for example) writes some
     99 		 * components which are unused.  A subsequent instruction
    100 		 * that writes the same register can race w/ the sam instr
    101 		 * resulting in undefined results:
    102 		 */
    103 		for (i = 0; i < n->regs_count; i++) {
    104 			reg = n->regs[i];
    105 
    106 			if (reg_gpr(reg)) {
    107 
    108 				/* TODO: we probably only need (ss) for alu
    109 				 * instr consuming sfu result.. need to make
    110 				 * some tests for both this and (sy)..
    111 				 */
    112 				if (regmask_get(&needs_ss, reg)) {
    113 					n->flags |= IR3_INSTR_SS;
    114 					regmask_init(&needs_ss);
    115 				}
    116 
    117 				if (regmask_get(&needs_sy, reg)) {
    118 					n->flags |= IR3_INSTR_SY;
    119 					regmask_init(&needs_sy);
    120 				}
    121 			}
    122 
    123 			/* TODO: is it valid to have address reg loaded from a
    124 			 * relative src (ie. mova a0, c<a0.x+4>)?  If so, the
    125 			 * last_rel check below should be moved ahead of this:
    126 			 */
    127 			if (reg->flags & IR3_REG_RELATIV)
    128 				last_rel = n;
    129 		}
    130 
    131 		if (n->regs_count > 0) {
    132 			reg = n->regs[0];
    133 			if (regmask_get(&needs_ss_war, reg)) {
    134 				n->flags |= IR3_INSTR_SS;
    135 				regmask_init(&needs_ss_war); // ??? I assume?
    136 			}
    137 
    138 			if (last_rel && (reg->num == regid(REG_A0, 0))) {
    139 				last_rel->flags |= IR3_INSTR_UL;
    140 				last_rel = NULL;
    141 			}
    142 		}
    143 
    144 		/* cat5+ does not have an (ss) bit, if needed we need to
    145 		 * insert a nop to carry the sync flag.  Would be kinda
    146 		 * clever if we were aware of this during scheduling, but
    147 		 * this should be a pretty rare case:
    148 		 */
    149 		if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) {
    150 			struct ir3_instruction *nop;
    151 			nop = ir3_NOP(block);
    152 			nop->flags |= IR3_INSTR_SS;
    153 			n->flags &= ~IR3_INSTR_SS;
    154 		}
    155 
    156 		/* need to be able to set (ss) on first instruction: */
    157 		if (list_empty(&block->instr_list) && (opc_cat(n->opc) >= 5))
    158 			ir3_NOP(block);
    159 
    160 		if (is_nop(n) && !list_empty(&block->instr_list)) {
    161 			struct ir3_instruction *last = list_last_entry(&block->instr_list,
    162 					struct ir3_instruction, node);
    163 			if (is_nop(last) && (last->repeat < 5)) {
    164 				last->repeat++;
    165 				last->flags |= n->flags;
    166 				continue;
    167 			}
    168 		}
    169 
    170 		list_addtail(&n->node, &block->instr_list);
    171 
    172 		if (is_sfu(n))
    173 			regmask_set(&needs_ss, n->regs[0]);
    174 
    175 		if (is_tex(n)) {
    176 			/* this ends up being the # of samp instructions.. but that
    177 			 * is ok, everything else only cares whether it is zero or
    178 			 * not.  We do this here, rather than when we encounter a
    179 			 * SAMP decl, because (especially in binning pass shader)
    180 			 * the samp instruction(s) could get eliminated if the
    181 			 * result is not used.
    182 			 */
    183 			ctx->has_samp = true;
    184 			regmask_set(&needs_sy, n->regs[0]);
    185 		} else if (is_load(n)) {
    186 			/* seems like ldlv needs (ss) bit instead??  which is odd but
    187 			 * makes a bunch of flat-varying tests start working on a4xx.
    188 			 */
    189 			if (n->opc == OPC_LDLV)
    190 				regmask_set(&needs_ss, n->regs[0]);
    191 			else
    192 				regmask_set(&needs_sy, n->regs[0]);
    193 		}
    194 
    195 		/* both tex/sfu appear to not always immediately consume
    196 		 * their src register(s):
    197 		 */
    198 		if (is_tex(n) || is_sfu(n) || is_load(n)) {
    199 			foreach_src(reg, n) {
    200 				if (reg_gpr(reg))
    201 					regmask_set(&needs_ss_war, reg);
    202 			}
    203 		}
    204 
    205 		if (is_input(n))
    206 			last_input = n;
    207 	}
    208 
    209 	if (last_input) {
    210 		/* special hack.. if using ldlv to bypass interpolation,
    211 		 * we need to insert a dummy bary.f on which we can set
    212 		 * the (ei) flag:
    213 		 */
    214 		if (is_mem(last_input) && (last_input->opc == OPC_LDLV)) {
    215 			struct ir3_instruction *baryf;
    216 
    217 			/* (ss)bary.f (ei)r63.x, 0, r0.x */
    218 			baryf = ir3_instr_create(block, OPC_BARY_F);
    219 			baryf->flags |= IR3_INSTR_SS;
    220 			ir3_reg_create(baryf, regid(63, 0), 0);
    221 			ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
    222 			ir3_reg_create(baryf, regid(0, 0), 0);
    223 
    224 			/* insert the dummy bary.f after last_input: */
    225 			list_delinit(&baryf->node);
    226 			list_add(&baryf->node, &last_input->node);
    227 
    228 			last_input = baryf;
    229 		}
    230 		last_input->regs[0]->flags |= IR3_REG_EI;
    231 	}
    232 
    233 	if (last_rel)
    234 		last_rel->flags |= IR3_INSTR_UL;
    235 
    236 	list_first_entry(&block->instr_list, struct ir3_instruction, node)
    237 		->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
    238 }
    239 
    240 /* NOTE: branch instructions are always the last instruction(s)
    241  * in the block.  We take advantage of this as we resolve the
    242  * branches, since "if (foo) break;" constructs turn into
    243  * something like:
    244  *
    245  *   block3 {
    246  *   	...
    247  *   	0029:021: mov.s32s32 r62.x, r1.y
    248  *   	0082:022: br !p0.x, target=block5
    249  *   	0083:023: br p0.x, target=block4
    250  *   	// succs: if _[0029:021: mov.s32s32] block4; else block5;
    251  *   }
    252  *   block4 {
    253  *   	0084:024: jump, target=block6
    254  *   	// succs: block6;
    255  *   }
    256  *   block5 {
    257  *   	0085:025: jump, target=block7
    258  *   	// succs: block7;
    259  *   }
    260  *
    261  * ie. only instruction in block4/block5 is a jump, so when
    262  * resolving branches we can easily detect this by checking
    263  * that the first instruction in the target block is itself
    264  * a jump, and setup the br directly to the jump's target
    265  * (and strip back out the now unreached jump)
    266  *
    267  * TODO sometimes we end up with things like:
    268  *
    269  *    br !p0.x, #2
    270  *    br p0.x, #12
    271  *    add.u r0.y, r0.y, 1
    272  *
    273  * If we swapped the order of the branches, we could drop one.
    274  */
    275 static struct ir3_block *
    276 resolve_dest_block(struct ir3_block *block)
    277 {
    278 	/* special case for last block: */
    279 	if (!block->successors[0])
    280 		return block;
    281 
    282 	/* NOTE that we may or may not have inserted the jump
    283 	 * in the target block yet, so conditions to resolve
    284 	 * the dest to the dest block's successor are:
    285 	 *
    286 	 *   (1) successor[1] == NULL &&
    287 	 *   (2) (block-is-empty || only-instr-is-jump)
    288 	 */
    289 	if (block->successors[1] == NULL) {
    290 		if (list_empty(&block->instr_list)) {
    291 			return block->successors[0];
    292 		} else if (list_length(&block->instr_list) == 1) {
    293 			struct ir3_instruction *instr = list_first_entry(
    294 					&block->instr_list, struct ir3_instruction, node);
    295 			if (instr->opc == OPC_JUMP)
    296 				return block->successors[0];
    297 		}
    298 	}
    299 	return block;
    300 }
    301 
    302 static bool
    303 resolve_jump(struct ir3_instruction *instr)
    304 {
    305 	struct ir3_block *tblock =
    306 		resolve_dest_block(instr->cat0.target);
    307 	struct ir3_instruction *target;
    308 
    309 	if (tblock != instr->cat0.target) {
    310 		list_delinit(&instr->cat0.target->node);
    311 		instr->cat0.target = tblock;
    312 		return true;
    313 	}
    314 
    315 	target = list_first_entry(&tblock->instr_list,
    316 				struct ir3_instruction, node);
    317 
    318 	if ((!target) || (target->ip == (instr->ip + 1))) {
    319 		list_delinit(&instr->node);
    320 		return true;
    321 	} else {
    322 		instr->cat0.immed =
    323 			(int)target->ip - (int)instr->ip;
    324 	}
    325 	return false;
    326 }
    327 
    328 /* resolve jumps, removing jumps/branches to immediately following
    329  * instruction which we end up with from earlier stages.  Since
    330  * removing an instruction can invalidate earlier instruction's
    331  * branch offsets, we need to do this iteratively until no more
    332  * branches are removed.
    333  */
    334 static bool
    335 resolve_jumps(struct ir3 *ir)
    336 {
    337 	list_for_each_entry (struct ir3_block, block, &ir->block_list, node)
    338 		list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node)
    339 			if (is_flow(instr) && instr->cat0.target)
    340 				if (resolve_jump(instr))
    341 					return true;
    342 
    343 	return false;
    344 }
    345 
    346 /* we want to mark points where divergent flow control re-converges
    347  * with (jp) flags.  For now, since we don't do any optimization for
    348  * things that start out as a 'do {} while()', re-convergence points
    349  * will always be a branch or jump target.  Note that this is overly
    350  * conservative, since unconditional jump targets are not convergence
    351  * points, we are just assuming that the other path to reach the jump
    352  * target was divergent.  If we were clever enough to optimize the
    353  * jump at end of a loop back to a conditional branch into a single
    354  * conditional branch, ie. like:
    355  *
    356  *    add.f r1.w, r0.x, (neg)(r)c2.x   <= loop start
    357  *    mul.f r1.z, r1.z, r0.x
    358  *    mul.f r1.y, r1.y, r0.x
    359  *    mul.f r0.z, r1.x, r0.x
    360  *    mul.f r0.w, r0.y, r0.x
    361  *    cmps.f.ge r0.x, (r)c2.y, (r)r1.w
    362  *    add.s r0.x, (r)r0.x, (r)-1
    363  *    sel.f32 r0.x, (r)c3.y, (r)r0.x, c3.x
    364  *    cmps.f.eq p0.x, r0.x, c3.y
    365  *    mov.f32f32 r0.x, r1.w
    366  *    mov.f32f32 r0.y, r0.w
    367  *    mov.f32f32 r1.x, r0.z
    368  *    (rpt2)nop
    369  *    br !p0.x, #-13
    370  *    (jp)mul.f r0.x, c263.y, r1.y
    371  *
    372  * Then we'd have to be more clever, as the convergence point is no
    373  * longer a branch or jump target.
    374  */
    375 static void
    376 mark_convergence_points(struct ir3 *ir)
    377 {
    378 	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
    379 		list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
    380 			if (is_flow(instr) && instr->cat0.target) {
    381 				struct ir3_instruction *target =
    382 					list_first_entry(&instr->cat0.target->instr_list,
    383 							struct ir3_instruction, node);
    384 				target->flags |= IR3_INSTR_JP;
    385 			}
    386 		}
    387 	}
    388 }
    389 
    390 void
    391 ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary)
    392 {
    393 	struct ir3_legalize_ctx ctx = {
    394 			.max_bary = -1,
    395 	};
    396 
    397 	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
    398 		legalize_block(&ctx, block);
    399 	}
    400 
    401 	*has_samp = ctx.has_samp;
    402 	*max_bary = ctx.max_bary;
    403 
    404 	do {
    405 		ir3_count_instructions(ir);
    406 	} while(resolve_jumps(ir));
    407 
    408 	mark_convergence_points(ir);
    409 }
    410