Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #include "brw_cfg.h"
     29 #include "brw_vec4_live_variables.h"
     30 
     31 using namespace brw;
     32 
     33 /** @file brw_vec4_live_variables.cpp
     34  *
     35  * Support for computing at the basic block level which variables
     36  * (virtual GRFs in our case) are live at entry and exit.
     37  *
     38  * See Muchnick's Advanced Compiler Design and Implementation, section
     39  * 14.1 (p444).
     40  */
     41 
     42 /**
     43  * Sets up the use[] and def[] arrays.
     44  *
     45  * The basic-block-level live variable analysis needs to know which
     46  * variables get used before they're completely defined, and which
     47  * variables are completely defined before they're used.
     48  *
     49  * We independently track each channel of a vec4.  This is because we need to
     50  * be able to recognize a sequence like:
     51  *
     52  * ...
     53  * DP4 tmp.x a b;
     54  * DP4 tmp.y c d;
     55  * MUL result.xy tmp.xy e.xy
     56  * ...
     57  *
     58  * as having tmp live only across that sequence (assuming it's used nowhere
     59  * else), because it's a common pattern.  A more conservative approach that
     60  * doesn't get tmp marked a deffed in this block will tend to result in
     61  * spilling.
     62  */
     63 void
     64 vec4_live_variables::setup_def_use()
     65 {
     66    int ip = 0;
     67 
     68    foreach_block (block, cfg) {
     69       assert(ip == block->start_ip);
     70       if (block->num > 0)
     71 	 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
     72 
     73       foreach_inst_in_block(vec4_instruction, inst, block) {
     74          struct block_data *bd = &block_data[block->num];
     75 
     76 	 /* Set use[] for this instruction */
     77 	 for (unsigned int i = 0; i < 3; i++) {
     78 	    if (inst->src[i].file == VGRF) {
     79                for (unsigned j = 0; j < DIV_ROUND_UP(inst->size_read(i), 16); j++) {
     80                   for (int c = 0; c < 4; c++) {
     81                      const unsigned v = var_from_reg(alloc, inst->src[i], c, j);
     82                      if (!BITSET_TEST(bd->def, v))
     83                         BITSET_SET(bd->use, v);
     84                   }
     85                }
     86 	    }
     87 	 }
     88          for (unsigned c = 0; c < 4; c++) {
     89             if (inst->reads_flag(c) &&
     90                 !BITSET_TEST(bd->flag_def, c)) {
     91                BITSET_SET(bd->flag_use, c);
     92             }
     93          }
     94 
     95 	 /* Check for unconditional writes to whole registers. These
     96 	  * are the things that screen off preceding definitions of a
     97 	  * variable, and thus qualify for being in def[].
     98 	  */
     99 	 if (inst->dst.file == VGRF &&
    100 	     (!inst->predicate || inst->opcode == BRW_OPCODE_SEL)) {
    101             for (unsigned i = 0; i < DIV_ROUND_UP(inst->size_written, 16); i++) {
    102                for (int c = 0; c < 4; c++) {
    103                   if (inst->dst.writemask & (1 << c)) {
    104                      const unsigned v = var_from_reg(alloc, inst->dst, c, i);
    105                      if (!BITSET_TEST(bd->use, v))
    106                         BITSET_SET(bd->def, v);
    107                   }
    108                }
    109             }
    110          }
    111          if (inst->writes_flag()) {
    112             for (unsigned c = 0; c < 4; c++) {
    113                if ((inst->dst.writemask & (1 << c)) &&
    114                    !BITSET_TEST(bd->flag_use, c)) {
    115                   BITSET_SET(bd->flag_def, c);
    116                }
    117             }
    118          }
    119 
    120 	 ip++;
    121       }
    122    }
    123 }
    124 
    125 /**
    126  * The algorithm incrementally sets bits in liveout and livein,
    127  * propagating it through control flow.  It will eventually terminate
    128  * because it only ever adds bits, and stops when no bits are added in
    129  * a pass.
    130  */
    131 void
    132 vec4_live_variables::compute_live_variables()
    133 {
    134    bool cont = true;
    135 
    136    while (cont) {
    137       cont = false;
    138 
    139       foreach_block_reverse (block, cfg) {
    140          struct block_data *bd = &block_data[block->num];
    141 
    142 	 /* Update liveout */
    143 	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
    144             struct block_data *child_bd = &block_data[child_link->block->num];
    145 
    146 	    for (int i = 0; i < bitset_words; i++) {
    147                BITSET_WORD new_liveout = (child_bd->livein[i] &
    148                                           ~bd->liveout[i]);
    149                if (new_liveout) {
    150                   bd->liveout[i] |= new_liveout;
    151 		  cont = true;
    152 	       }
    153 	    }
    154             BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
    155                                        ~bd->flag_liveout[0]);
    156             if (new_liveout) {
    157                bd->flag_liveout[0] |= new_liveout;
    158                cont = true;
    159             }
    160 	 }
    161 
    162          /* Update livein */
    163          for (int i = 0; i < bitset_words; i++) {
    164             BITSET_WORD new_livein = (bd->use[i] |
    165                                       (bd->liveout[i] &
    166                                        ~bd->def[i]));
    167             if (new_livein & ~bd->livein[i]) {
    168                bd->livein[i] |= new_livein;
    169                cont = true;
    170             }
    171          }
    172          BITSET_WORD new_livein = (bd->flag_use[0] |
    173                                    (bd->flag_liveout[0] &
    174                                     ~bd->flag_def[0]));
    175          if (new_livein & ~bd->flag_livein[0]) {
    176             bd->flag_livein[0] |= new_livein;
    177             cont = true;
    178          }
    179       }
    180    }
    181 }
    182 
    183 vec4_live_variables::vec4_live_variables(const simple_allocator &alloc,
    184                                          cfg_t *cfg)
    185    : alloc(alloc), cfg(cfg)
    186 {
    187    mem_ctx = ralloc_context(NULL);
    188 
    189    num_vars = alloc.total_size * 8;
    190    block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
    191 
    192    bitset_words = BITSET_WORDS(num_vars);
    193    for (int i = 0; i < cfg->num_blocks; i++) {
    194       block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
    195       block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
    196       block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
    197       block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
    198 
    199       block_data[i].flag_def[0] = 0;
    200       block_data[i].flag_use[0] = 0;
    201       block_data[i].flag_livein[0] = 0;
    202       block_data[i].flag_liveout[0] = 0;
    203    }
    204 
    205    setup_def_use();
    206    compute_live_variables();
    207 }
    208 
    209 vec4_live_variables::~vec4_live_variables()
    210 {
    211    ralloc_free(mem_ctx);
    212 }
    213 
    214 #define MAX_INSTRUCTION (1 << 30)
    215 
    216 /**
    217  * Computes a conservative start/end of the live intervals for each virtual GRF.
    218  *
    219  * We could expose per-channel live intervals to the consumer based on the
    220  * information we computed in vec4_live_variables, except that our only
    221  * current user is virtual_grf_interferes().  So we instead union the
    222  * per-channel ranges into a per-vgrf range for virtual_grf_start[] and
    223  * virtual_grf_end[].
    224  *
    225  * We could potentially have virtual_grf_interferes() do the test per-channel,
    226  * which would let some interesting register allocation occur (particularly on
    227  * code-generated GLSL sequences from the Cg compiler which does register
    228  * allocation at the GLSL level and thus reuses components of the variable
    229  * with distinct lifetimes).  But right now the complexity of doing so doesn't
    230  * seem worth it, since having virtual_grf_interferes() be cheap is important
    231  * for register allocation performance.
    232  */
    233 void
    234 vec4_visitor::calculate_live_intervals()
    235 {
    236    if (this->live_intervals)
    237       return;
    238 
    239    int *start = ralloc_array(mem_ctx, int, this->alloc.total_size * 8);
    240    int *end = ralloc_array(mem_ctx, int, this->alloc.total_size * 8);
    241    ralloc_free(this->virtual_grf_start);
    242    ralloc_free(this->virtual_grf_end);
    243    this->virtual_grf_start = start;
    244    this->virtual_grf_end = end;
    245 
    246    for (unsigned i = 0; i < this->alloc.total_size * 8; i++) {
    247       start[i] = MAX_INSTRUCTION;
    248       end[i] = -1;
    249    }
    250 
    251    /* Start by setting up the intervals with no knowledge of control
    252     * flow.
    253     */
    254    int ip = 0;
    255    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
    256       for (unsigned int i = 0; i < 3; i++) {
    257 	 if (inst->src[i].file == VGRF) {
    258             for (unsigned j = 0; j < DIV_ROUND_UP(inst->size_read(i), 16); j++) {
    259                for (int c = 0; c < 4; c++) {
    260                   const unsigned v = var_from_reg(alloc, inst->src[i], c, j);
    261                   start[v] = MIN2(start[v], ip);
    262                   end[v] = ip;
    263                }
    264             }
    265 	 }
    266       }
    267 
    268       if (inst->dst.file == VGRF) {
    269          for (unsigned i = 0; i < DIV_ROUND_UP(inst->size_written, 16); i++) {
    270             for (int c = 0; c < 4; c++) {
    271                if (inst->dst.writemask & (1 << c)) {
    272                   const unsigned v = var_from_reg(alloc, inst->dst, c, i);
    273                   start[v] = MIN2(start[v], ip);
    274                   end[v] = ip;
    275                }
    276             }
    277          }
    278       }
    279 
    280       ip++;
    281    }
    282 
    283    /* Now, extend those intervals using our analysis of control flow.
    284     *
    285     * The control flow-aware analysis was done at a channel level, while at
    286     * this point we're distilling it down to vgrfs.
    287     */
    288    this->live_intervals = new(mem_ctx) vec4_live_variables(alloc, cfg);
    289 
    290    foreach_block (block, cfg) {
    291       struct block_data *bd = &live_intervals->block_data[block->num];
    292 
    293       for (int i = 0; i < live_intervals->num_vars; i++) {
    294          if (BITSET_TEST(bd->livein, i)) {
    295             start[i] = MIN2(start[i], block->start_ip);
    296             end[i] = MAX2(end[i], block->start_ip);
    297          }
    298 
    299          if (BITSET_TEST(bd->liveout, i)) {
    300             start[i] = MIN2(start[i], block->end_ip);
    301             end[i] = MAX2(end[i], block->end_ip);
    302          }
    303       }
    304    }
    305 }
    306 
    307 void
    308 vec4_visitor::invalidate_live_intervals()
    309 {
    310    ralloc_free(live_intervals);
    311    live_intervals = NULL;
    312 }
    313 
    314 int
    315 vec4_visitor::var_range_start(unsigned v, unsigned n) const
    316 {
    317    int start = INT_MAX;
    318 
    319    for (unsigned i = 0; i < n; i++)
    320       start = MIN2(start, virtual_grf_start[v + i]);
    321 
    322    return start;
    323 }
    324 
    325 int
    326 vec4_visitor::var_range_end(unsigned v, unsigned n) const
    327 {
    328    int end = INT_MIN;
    329 
    330    for (unsigned i = 0; i < n; i++)
    331       end = MAX2(end, virtual_grf_end[v + i]);
    332 
    333    return end;
    334 }
    335 
    336 bool
    337 vec4_visitor::virtual_grf_interferes(int a, int b)
    338 {
    339    return !((var_range_end(8 * alloc.offsets[a], 8 * alloc.sizes[a]) <=
    340              var_range_start(8 * alloc.offsets[b], 8 * alloc.sizes[b])) ||
    341             (var_range_end(8 * alloc.offsets[b], 8 * alloc.sizes[b]) <=
    342              var_range_start(8 * alloc.offsets[a], 8 * alloc.sizes[a])));
    343 }
    344