Home | History | Annotate | Download | only in state_tracker
      1 /**************************************************************************
      2  *
      3  * Copyright 2007 VMware, Inc.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28  /*
     29   * Authors:
     30   *   Keith Whitwell <keithw (at) vmware.com>
     31   */
     32 
     33 #include "main/macros.h"
     34 #include "main/framebuffer.h"
     35 #include "st_context.h"
     36 #include "st_atom.h"
     37 #include "st_debug.h"
     38 #include "st_program.h"
     39 #include "pipe/p_context.h"
     40 #include "pipe/p_defines.h"
     41 #include "cso_cache/cso_context.h"
     42 
     43 
     44 static GLuint translate_fill( GLenum mode )
     45 {
     46    switch (mode) {
     47    case GL_POINT:
     48       return PIPE_POLYGON_MODE_POINT;
     49    case GL_LINE:
     50       return PIPE_POLYGON_MODE_LINE;
     51    case GL_FILL:
     52       return PIPE_POLYGON_MODE_FILL;
     53    default:
     54       assert(0);
     55       return 0;
     56    }
     57 }
     58 
     59 
     60 
     61 static void update_raster_state( struct st_context *st )
     62 {
     63    struct gl_context *ctx = st->ctx;
     64    struct pipe_rasterizer_state *raster = &st->state.rasterizer;
     65    const struct gl_program *vertProg = ctx->VertexProgram._Current;
     66    const struct gl_program *fragProg = ctx->FragmentProgram._Current;
     67 
     68    memset(raster, 0, sizeof(*raster));
     69 
     70    /* _NEW_POLYGON, _NEW_BUFFERS
     71     */
     72    {
     73       raster->front_ccw = (ctx->Polygon.FrontFace == GL_CCW);
     74 
     75       /* _NEW_TRANSFORM */
     76       if (ctx->Transform.ClipOrigin == GL_UPPER_LEFT) {
     77          raster->front_ccw ^= 1;
     78       }
     79 
     80       /*
     81        * Gallium's surfaces are Y=0=TOP orientation.  OpenGL is the
     82        * opposite.  Window system surfaces are Y=0=TOP.  Mesa's FBOs
     83        * must match OpenGL conventions so FBOs use Y=0=BOTTOM.  In that
     84        * case, we must invert Y and flip the notion of front vs. back.
     85        */
     86       if (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM) {
     87          /* Drawing to an FBO.  The viewport will be inverted. */
     88          raster->front_ccw ^= 1;
     89       }
     90    }
     91 
     92    /* _NEW_LIGHT
     93     */
     94    raster->flatshade = ctx->Light.ShadeModel == GL_FLAT;
     95 
     96    raster->flatshade_first = ctx->Light.ProvokingVertex ==
     97                              GL_FIRST_VERTEX_CONVENTION_EXT;
     98 
     99    /* _NEW_LIGHT | _NEW_PROGRAM */
    100    raster->light_twoside = ctx->VertexProgram._TwoSideEnabled;
    101 
    102    /*_NEW_LIGHT | _NEW_BUFFERS */
    103    raster->clamp_vertex_color = !st->clamp_vert_color_in_shader &&
    104                                 ctx->Light._ClampVertexColor;
    105 
    106    /* _NEW_POLYGON
    107     */
    108    if (ctx->Polygon.CullFlag) {
    109       switch (ctx->Polygon.CullFaceMode) {
    110       case GL_FRONT:
    111 	 raster->cull_face = PIPE_FACE_FRONT;
    112          break;
    113       case GL_BACK:
    114 	 raster->cull_face = PIPE_FACE_BACK;
    115          break;
    116       case GL_FRONT_AND_BACK:
    117 	 raster->cull_face = PIPE_FACE_FRONT_AND_BACK;
    118          break;
    119       }
    120    }
    121    else {
    122       raster->cull_face = PIPE_FACE_NONE;
    123    }
    124 
    125    /* _NEW_POLYGON
    126     */
    127    {
    128       if (ST_DEBUG & DEBUG_WIREFRAME) {
    129          raster->fill_front = PIPE_POLYGON_MODE_LINE;
    130          raster->fill_back = PIPE_POLYGON_MODE_LINE;
    131       }
    132       else {
    133          raster->fill_front = translate_fill( ctx->Polygon.FrontMode );
    134          raster->fill_back = translate_fill( ctx->Polygon.BackMode );
    135       }
    136 
    137       /* Simplify when culling is active:
    138        */
    139       if (raster->cull_face & PIPE_FACE_FRONT) {
    140 	 raster->fill_front = raster->fill_back;
    141       }
    142 
    143       if (raster->cull_face & PIPE_FACE_BACK) {
    144 	 raster->fill_back = raster->fill_front;
    145       }
    146    }
    147 
    148    /* _NEW_POLYGON
    149     */
    150    if (ctx->Polygon.OffsetPoint ||
    151        ctx->Polygon.OffsetLine ||
    152        ctx->Polygon.OffsetFill) {
    153       raster->offset_point = ctx->Polygon.OffsetPoint;
    154       raster->offset_line = ctx->Polygon.OffsetLine;
    155       raster->offset_tri = ctx->Polygon.OffsetFill;
    156       raster->offset_units = ctx->Polygon.OffsetUnits;
    157       raster->offset_scale = ctx->Polygon.OffsetFactor;
    158       raster->offset_clamp = ctx->Polygon.OffsetClamp;
    159    }
    160 
    161    raster->poly_smooth = ctx->Polygon.SmoothFlag;
    162    raster->poly_stipple_enable = ctx->Polygon.StippleFlag;
    163 
    164    /* _NEW_POINT
    165     */
    166    raster->point_size = ctx->Point.Size;
    167    raster->point_smooth = !ctx->Point.PointSprite && ctx->Point.SmoothFlag;
    168 
    169    /* _NEW_POINT | _NEW_PROGRAM
    170     */
    171    if (ctx->Point.PointSprite) {
    172       /* origin */
    173       if ((ctx->Point.SpriteOrigin == GL_UPPER_LEFT) ^
    174           (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM))
    175          raster->sprite_coord_mode = PIPE_SPRITE_COORD_UPPER_LEFT;
    176       else
    177          raster->sprite_coord_mode = PIPE_SPRITE_COORD_LOWER_LEFT;
    178 
    179       /* Coord replacement flags.  If bit 'k' is set that means
    180        * that we need to replace GENERIC[k] attrib with an automatically
    181        * computed texture coord.
    182        */
    183       raster->sprite_coord_enable = ctx->Point.CoordReplace &
    184          ((1u << MAX_TEXTURE_COORD_UNITS) - 1);
    185       if (!st->needs_texcoord_semantic &&
    186           fragProg->info.inputs_read & VARYING_BIT_PNTC) {
    187          raster->sprite_coord_enable |=
    188             1 << st_get_generic_varying_index(st, VARYING_SLOT_PNTC);
    189       }
    190 
    191       raster->point_quad_rasterization = 1;
    192    }
    193 
    194    /* ST_NEW_VERTEX_PROGRAM
    195     */
    196    if (vertProg) {
    197       if (vertProg->Id == 0) {
    198          if (vertProg->info.outputs_written &
    199              BITFIELD64_BIT(VARYING_SLOT_PSIZ)) {
    200             /* generated program which emits point size */
    201             raster->point_size_per_vertex = TRUE;
    202          }
    203       }
    204       else if (ctx->API != API_OPENGLES2) {
    205          /* PointSizeEnabled is always set in ES2 contexts */
    206          raster->point_size_per_vertex = ctx->VertexProgram.PointSizeEnabled;
    207       }
    208       else {
    209          /* ST_NEW_TESSEVAL_PROGRAM | ST_NEW_GEOMETRY_PROGRAM */
    210          /* We have to check the last bound stage and see if it writes psize */
    211          struct gl_program *last = NULL;
    212          if (ctx->GeometryProgram._Current)
    213             last = ctx->GeometryProgram._Current;
    214          else if (ctx->TessEvalProgram._Current)
    215             last = ctx->TessEvalProgram._Current;
    216          else if (ctx->VertexProgram._Current)
    217             last = ctx->VertexProgram._Current;
    218          if (last)
    219             raster->point_size_per_vertex =
    220                !!(last->info.outputs_written &
    221                   BITFIELD64_BIT(VARYING_SLOT_PSIZ));
    222       }
    223    }
    224    if (!raster->point_size_per_vertex) {
    225       /* clamp size now */
    226       raster->point_size = CLAMP(ctx->Point.Size,
    227                                  ctx->Point.MinSize,
    228                                  ctx->Point.MaxSize);
    229    }
    230 
    231    /* _NEW_LINE
    232     */
    233    raster->line_smooth = ctx->Line.SmoothFlag;
    234    if (ctx->Line.SmoothFlag) {
    235       raster->line_width = CLAMP(ctx->Line.Width,
    236                                  ctx->Const.MinLineWidthAA,
    237                                  ctx->Const.MaxLineWidthAA);
    238    }
    239    else {
    240       raster->line_width = CLAMP(ctx->Line.Width,
    241                                  ctx->Const.MinLineWidth,
    242                                  ctx->Const.MaxLineWidth);
    243    }
    244 
    245    raster->line_stipple_enable = ctx->Line.StippleFlag;
    246    raster->line_stipple_pattern = ctx->Line.StipplePattern;
    247    /* GL stipple factor is in [1,256], remap to [0, 255] here */
    248    raster->line_stipple_factor = ctx->Line.StippleFactor - 1;
    249 
    250    /* _NEW_MULTISAMPLE */
    251    raster->multisample = _mesa_is_multisample_enabled(ctx);
    252 
    253    /* _NEW_MULTISAMPLE | _NEW_BUFFERS */
    254    raster->force_persample_interp =
    255          !st->force_persample_in_shader &&
    256          raster->multisample &&
    257          ctx->Multisample.SampleShading &&
    258          ctx->Multisample.MinSampleShadingValue *
    259          _mesa_geometric_samples(ctx->DrawBuffer) > 1;
    260 
    261    /* _NEW_SCISSOR */
    262    raster->scissor = ctx->Scissor.EnableFlags;
    263 
    264    /* _NEW_FRAG_CLAMP */
    265    raster->clamp_fragment_color = !st->clamp_frag_color_in_shader &&
    266                                   ctx->Color._ClampFragmentColor;
    267 
    268    raster->half_pixel_center = 1;
    269    if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP)
    270       raster->bottom_edge_rule = 1;
    271    /* _NEW_TRANSFORM */
    272    if (ctx->Transform.ClipOrigin == GL_UPPER_LEFT)
    273       raster->bottom_edge_rule ^= 1;
    274 
    275    /* ST_NEW_RASTERIZER */
    276    raster->rasterizer_discard = ctx->RasterDiscard;
    277 
    278    if (st->edgeflag_culls_prims) {
    279       /* All edge flags are FALSE. Cull the affected faces. */
    280       if (raster->fill_front != PIPE_POLYGON_MODE_FILL)
    281          raster->cull_face |= PIPE_FACE_FRONT;
    282       if (raster->fill_back != PIPE_POLYGON_MODE_FILL)
    283          raster->cull_face |= PIPE_FACE_BACK;
    284    }
    285 
    286    /* _NEW_TRANSFORM */
    287    raster->depth_clip = !ctx->Transform.DepthClamp;
    288    raster->clip_plane_enable = ctx->Transform.ClipPlanesEnabled;
    289    raster->clip_halfz = (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE);
    290 
    291    cso_set_rasterizer(st->cso_context, raster);
    292 }
    293 
    294 const struct st_tracked_state st_update_rasterizer = {
    295    update_raster_state     /* update function */
    296 };
    297